Matematyka ubezpieczeń majątkowych r.
|
|
- Krystyna Magdalena Olejnik
- 7 lat temu
- Przeglądów:
Transkrypt
1 Maemayka ubezpeczeń mająkowych r. Zadane. Pewne ryzyko generuje jedną szkodę z prawdopodobeńswem q, zaś zero szkód z prawdopodobeńswem ( q). Ubezpeczycel pokrywa nadwyżkę szkody ponad udzał własny w wysokośc d, jednak ne węcej nż α % jej warośc, o znaczy że odszkodowane za szkodę o warośc y wynos: I ( y) = mn{ max{ 0, y d}, y α% }. Przyjmjmy, że: q = / 5 d = α % = 80% warość szkody (pod warunkem że do nej dojdze) ma rozkład równomerny na przedzale ( 0, 0). Składka neo (warość oczekwana wypłay z ego ryzyka) wynos: (A) 0.70 (B) 0.7 (C) 0.74 (D) 0.76 (E) 0.78
2 Maemayka ubezpeczeń mająkowych r. Zadane. Szkoda Y może przyjmować warośc ze skończonego zboru lczb { y, y, K, y n } akch, że mn{ y, y, K, y n }. Łączna warość szkód w porfelu W równa sę: W = n = N y, gdze N o lczba szkód o warośc y. Załóżmy, że N,, o nawzajem nezależne zmenne losowe o rozkładach K N n n Possona z waroścam oczekwanym odpowedno λ, K,λ. Wemy, że: E( W ) = 50 VAR( W ) = 660 λ = λ = 0 n = Jeżel do każdej szkody zasosujemy udzał własny ubezpeczonego w wysokośc d =, o warancja łącznej warośc szkód pozosałej na udzale ubezpeczycela wynese: (A) 460 (B) 500 (C) 540 (D) 560 (E) 600
3 Maemayka ubezpeczeń mająkowych r. Zadane. Mamy nepełną nformację o rozkładze zmennej losowej X. Wemy, że: X przyjmuje warośc neujemne E( X ) = 6 E X 4 = [( ) + ] Pr ( X > 4) =. Nech σ oznacza najmnejszą możlwą warość warancj zmennej X. (A) 5 σ = (B) σ = 8 (C) (D) (E) 6 σ = 70 σ = 9 64 σ = 9
4 Maemayka ubezpeczeń mająkowych r. Zadane 4. Zmenna losowa: X = M + M M N ma złożony rozkład ujemny dwumanowy, gdze lczba składnków sumy N ma rozkład ujemny dwumanowy o paramerach ( r, q), zn.: r + k k Pr ( N = k) = ( q) r q, k = 0,,,..., k zaś każdy ze składnków ma rozkład dwumanowy: Pr M = = Pr M = 0. ( ) ( ) Q = Rozważ, czy rozkład zmennej losowej X jes rozkładem ujemnym dwumanowym; wyberz poprawną odpowedź: (A) Rozkład zmennej X ne należy do klasy rozkładów ujemnych dwumanowych (B) X ujemny dwum. o paramerach (, q ) (C) X ujemny dwum. o paramerach (, q ) (D) X ujemny dwum. o paramerach (, q ) (E) X ujemny dwum. o paramerach (, q ) r akch, że r = r oraz r akch, że r r oraz r akch, że r r oraz r akch, że r = r oraz q = q q = q q q q q 4
5 Maemayka ubezpeczeń mająkowych r. Zadane 5. Zmenna losowa: W = X + X X n jes sumą n składnków o denycznym rozkładze, o warośc oczekwanej µ X. Co prawda zmenne e są zależne, ale srukura ch zależnośc jes dość prosa. W szczególnośc o momenach cenralnych rzecego rzędu ych zmennych wemy, ż dla, j, k =,,..., n warość oczekwana: E X µ X µ X µ [( )( )( )] X j X k X wynos: a, jeśl wszyske rzy lczby, j,k są różne, b, jeśl rójka lczb, j,k zawera dwe różne lczby (jedna z lczb powarza sę dwa razy) c, jeśl = j = k. Momen cenralny rzecego rzędu zmennej W, kóry generalne wyraża sę wzorem: n E [( W E( W )) ] = E ( X µ X ) = można przy powyższych założenach wyrazć jako funkcję paramerów a, b, c oraz n o posac: E W E W = f n a + f n b + f n. [( ( )) ] ( ) ( ) ( ) c Funkcja f ( n) wyraża sę wzorem: (A) n( n ) (B) 6n( n ) (C) (D) (E) n n 6n n 6n n 5
6 Maemayka ubezpeczeń mająkowych r. Zadane 6. W kolejnych okresach czasu ubezpeczony charakeryzujący sę waroścą λ parameru ryzyka Λ generuje szkody w lośc N : k λ λ Pr ( N = k Λ = λ) = e =, ; k! przy czym: Pr( N = k N = k Λ = λ ) = Pr( N = k Λ = λ) Pr( N = k Λ = λ). Rozkład parameru ryzyka Λ w populacj ubezpeczonych jes rozkładem logarymczno-normalnym o paramerach µ,σ, zn. zmenna O paramerach ych zakładamy, że: µ = ln 4, ( ) σ = ln ( ) ln ( Λ) ma rozkład normalny o paramerach (,σ ) µ. W efekce dośwadczena dwueapowego (wylosowane ubezpeczonego, nasępne wygenerowane przez nego szkód w lośc N poem N ), COV ( N, N ) wynos: (A) (B) (C) (D) (E)
7 Maemayka ubezpeczeń mająkowych r. Zadane 7. Rozważamy klasyczny model procesu nadwyżk ubezpeczycela z czasem cągłym. Tak węc: szkody pojawają sę zgodne z procesem Possona o nensywnośc λ nensywność składk (napływającej w sposób cągły) wynos c = ( + θ ) λ E(Y ), gdze θ > 0 Y o warość pojedynczej szkody o akm rozkładze, że Pr ( Y > 0) =. Wadomo, ż funkcję prawdopodobeńswa runy możemy wyrazć w posac: Ψ( u) = FL ( u), gdze maksymalną łączną sraę L możemy przedsawć jako zmenną o rozkładze złożonym: L = l l N, gdze N ma rozkład geomeryczny o loraze posępu ( ) +θ, zaś l o wysokość kolejnego ąpnęca ponżej doychczas osągnęego mnmum procesu. Wemy, że dysrybuana F zmennej l dana jes wzorem: ( x) F l Oblcz E Y. 5 = 5 + x ( ) 4 l (A) E ( Y ) = 4 / (B) E( Y ) = 6 / 5 (C) E( Y ) = (D) E( Y ) = 5 / 4 (E) E( Y ) = 5 / 7
8 Maemayka ubezpeczeń mająkowych r. Zadane 8. Klasyczny proces nadwyżk ubezpeczycela charakeryzują paramery: λ - nensywność Possonowskego procesu pojawana sę szkód, u - nadwyżka począkowa, rozkład zmennej Y - warośc pojedynczej szkody, θ - sosunkowy narzu na składkę neo. Załóżmy, ż warość pojedynczej szkody ma rozkład równomerny na przedzale ( 0, M ), gdze M jes dodane. Załóżmy akże, ż u = 4 M. Przyjmjmy wreszce, ż nasz cel o skalkulowane składk ak, aby zachodzł warunek bezpeczeńswa: exp ( Ru ) = / 6, gdze R o zw. adjusmen coeffcen. Warość θ wynos (z dobrym przyblżenem): (A) θ 7.7% (B) θ.8% (C) θ 5.9% (D) θ 40.% (E) θ 44.% 8
9 Maemayka ubezpeczeń mająkowych r. Zadane 9. Zmenna losowa S o zdyskonowana warość szkód w złożonym procese Possona: S = exp( δ ) n= ( Y ) ( ) Y n T n ), gdze:,t,, Y,T,... oznaczają odpowedno warośc oraz momeny zajśca kolejnych szkód; zmenne Y n ( n =,,... ) są nawzajem nezależne mają denyczny rozkład wykładnczy o warośc oczekwanej równej β ; czasy oczekwana T, T T, T T, T4 T,... są nezależnym zmennym losowym o jednakowym rozkładze wykładnczym o warośc oczekwanej / λ, nezależnym akże od zmennych Y,, Y,...; > 0 okres o długośc. Y δ o naężene oprocenowana, a wec ( δ) [ ] Momen cenralny rzecego rzędu ( S E( S )) λ (A) δβ λ (B) δβ exp o czynnk dyskona za E zmennej S wynos: (C) (D) (E) λ ( δβ ) λ ( δβ ) 6λ ( δβ ) Wskazówka: możesz najperw wyznaczyć momen cenralny rzecego rzędu zmennej losowej S h, kóra dla dowolnego h > 0 jes posac: ( ) ( h) = W ( h) exp( h m) m= S δ, m ( ) gdze zmenne W ( h), W h,... są nezależne mają denyczny rozkład złożony Possona z paramerem częsolwośc λ h oraz rozkładem pojedynczego składnka wykładnczym o warośc oczekwanej β. Teraz możesz wykorzysać fak, że rozkład zmennej S (h) zbega przy h 0 do rozkładu zmennej S. Uwaga (dopsana po egzamne): Zmenna S ma rozkład Γ ( λ δ, β ); ławej jednak wyznaczyć kumulanę wybranego rzędu (np. rzecego, jak w zadanu) nż rozkład S. 9
10 Maemayka ubezpeczeń mająkowych r. Zadane 0. Załóżmy, że momeny pojawana sę szkód T < T <... < Tn <... worzą proces Possona na przedzale ( 0, ), o nensywnośc λ. Innym słowy, T, T T, T T, T 4 T,... są nezależnym zmennym losowym o jednakowym rozkładze wykładnczym o warośc oczekwanej / λ. Przyjmujemy, że każda szkoda, nezależne od pozosałych, jes lkwdowana po upływe pewnego losowego okresu czasu. Mówąc dokładnej, momeny lkwdacj są zmennym losowym posac: T = T + D, T = T + D,..., Tn = Tn + Dn,... przy czym,,czasy opóźnena D są nezależne nawzajem oraz od T, T, T,... mają jednakową dysrybuanę F. Oblcz warość oczekwaną lczby szkód zaszłych przed czasem, ale do ego czasu ne zlkwdowanych, czyl: E[ N( ) N( )], gdze N() oznacza lczbę punków T w przedzale ( 0, ], zaś N ( ) oznacza lczbę punków T w przedzale (0,]. ( ) (A) λ F() (B) (C) (D) 0 λ F( x) dx λ [ F( x)] dx 0 λ [ F ( x)] dx (E) λ F() [ ] ( ) = Wskazówka: E N( ) Pr T. = Uwag (dopsane po egzamne): przechodząc do grancy przy dosajemy ważny wynk: E [ N( ) N( )] = λ E(D), co jes waroścą skończoną jeśl ylko E( D) < ; dla oblczena samej warośc oczekwanej wysarczyłaby nezależność param zmennych D, T. 0
11 Maemayka ubezpeczeń mająkowych r. Egzamn dla Akuaruszy z 7 maja 00 r. Maemayka ubezpeczeń mająkowych Arkusz odpowedz Imę nazwsko...k L U C Z O D P O W I E D Z I... Pesel... Zadane nr Odpowedź Punkacja D B B 4 E 5 A 6 E 7 D 8 A 9 B 0 C Ocenane są wyłączne odpowedz umeszczone w Arkuszu odpowedz. Wypełna Komsja Egzamnacyjna.
) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4
Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =
Prawdopodobieństwo i statystyka r.
Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =
( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X
Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są
Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )
Zadanie. Zmienna losowa: X = Y +... + Y N ma złożony rozkład Poissona. W abeli poniżej podano rozkład prawdopodobieńswa składnika sumy Y. W ejże abeli podano akże obliczone dla k = 0... 4 prawdopodobieńswa
Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =
Matematyka ubezpieczeń majątkowych 0.0.006 r. Zadanie. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k 5 Pr( N = k) =, k = 0,,,... 6 6 Wartości kolejnych szkód Y, Y,, są i.i.d.,
0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4
Zad. 1. Dana jest unkcja prawdopodobeństwa zmennej losowej X -5-1 3 8 p 1 1 c 1 Wyznaczyć: a. stałą c b. wykres unkcj prawdopodobeństwa jej hstogram c. dystrybuantę jej wykres d. prawdopodobeństwa: P (
Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f
Zadanie. W kolejnych latach t =,,,... ubezpieczony charakteryzujący się parametrem ryzyka Λ generuje N t szkód. Dla danego Λ = λ zmienne N, N, N,... są warunkowo niezależne i mają (brzegowe) rozkłady Poissona:
Funkcje i charakterystyki zmiennych losowych
Funkcje charakterystyk zmennych losowych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Funkcje zmennych losowych
65120/ / / /200
. W celu zbadana zależnośc pomędzy płcą klentów ch preferencjam, wylosowano kobet mężczyzn zadano m pytane: uważasz za lepszy produkt frmy A czy B? Wynk były następujące: Odpowedź Kobety Mężczyźn Wolę
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych..00 r. Zadanie. Proces szkód w pewnym ubezpieczeniu jest złożonym procesem Poissona z oczekiwaną liczbą szkód w ciągu roku równą λ i rozkładem wartości szkody o dystrybuancie
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 4.04.0 r. Zadanie. Przy danej wartości λ parametru ryzyka Λ liczby szkód generowane przez ubezpieczającego się w kolejnych latach to niezależne zmienne losowe o rozkładzie
dla t ściślejsze ograniczenie na prawdopodobieństwo otrzymujemy przyjmując k = 1, zaś dla t > t ściślejsze ograniczenie otrzymujemy przyjmując k = 2.
Zadanie. Dla dowolnej zmiennej losowej X o wartości oczekiwanej μ, wariancji momencie centralnym μ k rzędu k zachodzą nierówności (typu Czebyszewa): ( X μ k Pr > μ + t σ ) 0. k k t σ *
Macierz prawdopodobieństw przejścia w pojedynczym kroku dla łańcucha Markowa jest postaci
Zadane. Macerz radoodobeńst rzejśca ojedynczym kroku dla łańcucha Markoa...... o trzech stanach { } jest ostac 0 n 0 0 (oczyśce element stojący -tym erszu j -tej kolumne tej macerzy oznacza P( = j. Wtedy
Matematyka ubezpieczeń majątkowych r.
Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną
Statystyka Inżynierska
Statystyka Inżynerska dr hab. nż. Jacek Tarasuk AGH, WFIS 013 Wykład DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE Zmenna losowa, Funkcja rozkładu, Funkcja gęstośc, Dystrybuanta, Charakterystyk zmennej, Funkcje
Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n
Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam
N ma rozkład Poissona z wartością oczekiwaną równą 100 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach:
Zadanie. O niezależnych zmiennych losowych N, M M, M 2, 3 wiemy, że: N ma rozkład Poissona z wartością oczekiwaną równą 00 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach: 2, 3 Pr( M = )
( X, Y ) będzie dwuwymiarową zmienną losową o funkcji gęstości
Zadae. Nech Nech (, Y będze dwuwymarową zmeą losową o fukcj gęstośc 4 x + xy gdy x ( 0, y ( 0, f ( x, y = 0 w przecwym przypadku. S = + Y V Y E V S =. =. Wyzacz ( (A 0 (B (C (D (E 8 8 7 7 Zadae. Załóżmy,
Matematyka ubezpieczeń majątkowych r.
Zadanie 1. W pewnej populacji podmiotów każdy podmiot narażony jest na ryzyko straty X o rozkładzie normalnym z wartością oczekiwaną równą μ i wariancją równą. Wszystkie podmioty z tej populacji kierują
Matematyka ubezpieczeń majątkowych r. t warunkowo niezależne i mają (brzegowe) rozkłady Poissona:
Zadae. W kolejych okresach czasu t =, ubezpeczoy, charakteryzujący sę parametrem ryzyka Λ, geeruje N t szkód. Dla daego Λ = λ zmee N, N są warukowo ezależe mają (brzegowe) rozkłady Possoa: k λ Pr( N t
Zadanie 1. Ilość szkód N ma rozkład o prawdopodobieństwach spełniających zależność rekurencyjną:
Zadanie. Ilość szkód N ma rozkład o prawdopodobieństwach spełniających zależność rekurencyjną: Pr Pr ( = k) ( N = k ) N = + k, k =,,,... Jeśli wiemy, że szkód wynosi: k= Pr( N = k) =, to prawdopodobieństwo,
Stanisław Cichocki Natalia Nehrebecka. Wykład 2
Sansław Cchock Naala Nehrebecka Wykład 2 1 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 2 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 3 Szereg czasowy jes pojedynczą realzacją pewnego
Stanisław Cichocki Natalia Nehrebecka. Wykład 2
Sansław Cchock Naala Nehrebecka Wykład 2 1 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 4. Zmenne znegrowane 2 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 4. Zmenne znegrowane 3 Szereg
Statystyka. Zmienne losowe
Statystyka Zmenne losowe Zmenna losowa Zmenna losowa jest funkcją, w której każdej wartośc R odpowada pewen podzbór zboru będący zdarzenem losowym. Zmenna losowa powstaje poprzez przyporządkowane każdemu
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 0.0.005 r. Zadanie. Likwidacja szkody zaistniałej w roku t następuje: w tym samym roku z prawdopodobieństwem 0 3, w następnym roku z prawdopodobieństwem 0 3, 8 w roku
Rozkład dwupunktowy. Rozkład dwupunktowy. Rozkład dwupunktowy x i p i 0 1-p 1 p suma 1
Rozkład dwupunktowy Zmenna losowa przyjmuje tylko dwe wartośc: wartość 1 z prawdopodobeństwem p wartość 0 z prawdopodobeństwem 1- p x p 0 1-p 1 p suma 1 Rozkład dwupunktowy Funkcja rozkładu prawdopodobeństwa
01. dla x 0; 1 2 wynosi:
Matematyka ubezpieczeń majątkowych 0.0.04 r. Zadanie. Ryzyko X ma rozkład z atomami: Pr X 0 08. Pr X 0. i gęstością: f X x 0. dla x 0; Ryzyko Y ma rozkład z atomami: Pr Y 0 07. Pr Y 0. i gęstością: fy
Prawdopodobieństwo i statystyka r.
Zadae. W ure zajduje sę 5 kul, z których 5 jest bałych czarych. Losujemy bez zwracaa kolejo po jedej kul. Kończymy losowae w momece, kedy wycągęte zostaą wszystke czare kule. Oblcz wartość oczekwaą lczby
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 3..007 r. Zadanie. Każde z ryzyk pochodzących z pewnej populacji charakteryzuje się tym że przy danej wartości λ parametru ryzyka Λ rozkład wartości szkód z tego ryzyka
13. DWA MODELE POTOKU RUCHU (TEORIOKOLEJKOWE)(wg Wocha,1998)
3. Dwa modele pooku ruchu (eorokolejkowe) 3. DWA MODELE POTOKU RUCHU (TEORIOKOLEJKOWE)(wg Wocha,998) 3.. Model Hagha Isneje wele prac z la powojennych, w kórych wysępują próby modelowana kolejek ruchowych
Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ
WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 5.0.00 r. Zadanie. Dla dowolnej zmiennej losowej X o wartości oczekiwanej µ wariancji oraz momencie centralnym µ k rzędu k zachodzą nierówności (typu Czebyszewa): ( X
1.1. Uprość opis zdarzeń: 1.2. Uprościć opis zdarzeń: a) A B A Uprościć opis zdarzeń: 1.4. Uprościć opis zdarzeń:
.. Uprość ops zdarzeń: a) A B, A \ B b) ( A B) ( A' B).. Uproścć ops zdarzeń: a) A B A b) A B, ( A B) ( B C).. Uproścć ops zdarzeń: a) A B A B b) A B C ( A B) ( B C).4. Uproścć ops zdarzeń: a) A B, A B
Mikroekonometria 10. Mikołaj Czajkowski Wiktor Budziński
Mkroekonometra 10 Mkołaj Czajkowsk Wktor Budzńsk Jak analzować dane o charakterze uporządkowanym? Dane o charakterze uporządkowanym Wybór jednej z welkośc na uporządkowanej skal Skala ne ma nterpretacj
Zadanie 1. O rozkładzie pewnego ryzyka X posiadamy następujące informacje: znamy oczekiwaną wartość nadwyżki ponad 20:
Zadanie 1. O rozkładzie pewnego ryzyka X posiadamy następujące informacje: znamy oczekiwaną wartość nadwyżki ponad 20: E X 20 8 oraz znamy następujące charakterystyki dotyczące przedziału 10, 20 : 3 Pr
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane
Natalia Nehrebecka. Zajęcia 3
St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 3 1. Dobroć dopasowana równana regresj. Współczynnk determnacj R Dk Dekompozycja warancj zmennej zależnej ż Współczynnk determnacj R. Zmenne cągłe a
Ekonometryczne modele nieliniowe
Ekonomeryczne modele nelnowe Wykład 5 Progowe modele regrej Leraura Hanen B. E. 997 Inference n TAR Model, Sude n Nonlnear Dynamc and Economerc,. Tek na rone nerneowej wykładu Dodakowa leraura Hanen B.
będą niezależnymi zmiennymi losowymi z rozkładu o gęstości
Prawdopodobeństwo statystyka 4.0.00 r. Zadae Nech... będą ezależym zmeym losowym z rozkładu o gęstośc θ f ( x) = θ xe gdy x > 0. Estymujemy dodat parametr θ wykorzystując estymator ajwększej warogodośc
Weryfikacja hipotez dla wielu populacji
Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w
Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów.
Pradopodobeństo statystya 6..3r. Zadae. Rzucamy symetryczą moetą ta długo aż dóch olejych rzutach pojaą sę resz. Oblcz artość oczeaą lczby yoaych rzutó. (A) 7 (B) 8 (C) 9 (D) (E) 6 Wsazóa: jeśl rzuce umer
będą niezależnymi zmiennymi losowymi o tym samym 2 x
Prawdopodobeństwo statystyka 8.0.007 r. Zadae. Nech,,, rozkładze z gęstoścą Oblczyć m E max będą ezależym zmeym losowym o tym samym { },,, { },,, gdy x > f ( x) = x. 0 gdy x 8 8 Prawdopodobeństwo statystyka
będzie próbką prostą z rozkładu normalnego ( 2
Zadae. eh K będze próbką prostą z rozkładu ormalego ( μ σ ) zaś: ( ) S gdze:. Iteresuje as względy błąd estymaj: σ R S. σ rzy wartość ozekwaa E R jest rówa ( ) (A).8 (B).9 (C). (D). (E). Zadae. eh K K
STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH
STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj
Matematyka ubezpieczeń majątkowych r.
Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną
Prawdopodobieństwo i statystyka r.
Prawdopodobeństwo statystyka 0.06.0 r. Zadae. Ura zawera kul o umerach: 0,,,,. Z ury cągemy kulę, zapsujemy umer kulę wrzucamy z powrotem do ury. Czyość tę powtarzamy, aż kula z każdym umerem zostae wycągęta
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Model potęgowy Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych
Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE
Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:
Elementy rachunku prawdopodobieństwa. repetytorium
Elementy rachunku prawdopodobeństwa repetytorum myślowy. - powtarzalny eksperyment fzyczny lub obserwacja czy śwatło jest zapalone czy zgaszone, określene lośc braków w bel tkanny, ustalene lośc wadlwych
W loterii bierze udział 10 osób. Regulamin loterii faworyzuje te osoby, które w eliminacjach osiągnęły lepsze wyniki:
Zadae W loter berze udzał 0 osób. Regulam loter faworyzuje te osoby, które w elmacjach osągęły lepsze wyk: Zwycęzca elmacj, azyway graczem r. otrzymuje 0 losów, Osoba, która zajęła druge mejsce w elmacjach,
z przedziału 0,1 liczb dodatnich. Rozważmy dwie zmienne losowe:... ma złożony rozkład dwumianowy o parametrach 1,q i, gdzie X, wszystkie składniki X
Zadanie. Mamy dany ciąg liczb q, q,..., q n z przedziału 0,, oraz ciąg m, m,..., m n liczb dodatnich. Rozważmy dwie zmienne losowe: o X X X... X n, gdzie X i ma złożony rozkład dwumianowy o parametrach,q
Matematyka ubezpieczeń majątkowych 1.10.2012 r.
Zadanie. W pewnej populacji każde ryzyko charakteryzuje się trzema parametrami q, b oraz v, o następującym znaczeniu: parametr q to prawdopodobieństwo, że do szkody dojdzie (może zajść co najwyżej jedna
Matematyka ubezpieczeń majątkowych r.
Zadanie. Niech łączna wartość szkód: Ma złożony rozkład Poissona. Momenty rozkładu wartości poedyncze szkody wynoszą:, [ ]. Wiemy także, że momenty nadwyżki wartości poedyncze szkody ponad udział własny
Ekonometria egzamin 01/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
mę, nazwsko, nr ndeksu: Ekonometra egzamn 1//19 1. Egzamn trwa 9 mnut.. Rozwązywane zadań należy rozpocząć po ogłoszenu początku egzamnu a skończyć wraz z ogłoszenem końca egzamnu. Złamane tej zasady skutkuje
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Interpretacja parametrów przy zmennych objaśnających cągłych Semelastyczność 2. Zastosowane modelu potęgowego Model potęgowy 3. Zmenne cągłe za zmenne dyskretne
XXXV Konferencja Statystyka Matematyczna
XXXV Konferencja Saysyka Maeayczna MODEL OTOWOŚCI SYSTEMU TECHNICZNEO Karol J. ANDRZEJCZAK karol.andrzejczak@pu.poznan.pl Polechnka Poznańska hp://www.pu.poznan.pl/ PRORAM REERATU 1. WPROWADZENIE 2. ORMALIZACJA
Zadanie 1. są niezależne i mają rozkład z atomami: ( ),
Zadanie. Zmienne losowe są niezależne i mają rozkład z atomami: ( ) ( ) i gęstością: ( ) na przedziale ( ). Wobec tego ( ) wynosi: (A) 0.2295 (B) 0.2403 (C) 0.2457 (D) 0.25 (E) 0.269 Zadanie 2. Niech:
Matematyka finansowa r.
. Sprawdź, tóre z ponższych zależnośc są prawdzwe: () = n n a s v d v d d v v d () n n m ) ( n m ) ( v a d s ) m ( = + & & () + = = + = )! ( ) ( δ Odpowedź: A. tylo () B. tylo () C. tylo () oraz () D.
Zadanie 1. ), gdzie 1. Zmienna losowa X ma rozkład logarytmiczno-normalny LN (, . EX (A) 0,91 (B) 0,86 (C) 1,82 (D) 1,95 (E) 0,84
Zadae. Zmea losowa X ma rozkład logarytmczo-ormaly LN (, ), gdze E ( X e X e) 4. Wyzacz. EX (A) 0,9 (B) 0,86 (C),8 (D),95 (E) 0,84 Zadae. Nech X, X,, X0, Y, Y,, Y0 będą ezależym zmeym losowym. Zmee X,
Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami:
Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Pr(X 1 = 0) = 6/10, Pr(X 1 = 1) = 1/10, i gęstością: f(x) = 3/10 na przedziale (0, 1). Wobec tego Pr(X 1 + X 2 5/3) wynosi:
FINANSOWE SZEREGI CZASOWE WYKŁAD 3
FINANSOWE SZEREGI CZASOWE WYKŁAD 3 dr Tomasz Wójowcz Wydzał Zarządzana AGH 3800 3300 800 300 800 300 800 0 0 30 40 50 60 70 Kraków 0 Tomasz Wójowcz, WZ AGH Kraków przypomnene MA(q): gdze ε są d(0,σ ).
Zbigniew Palmowski. Analiza Przeżycia
Zbgnew Palmowsk Analza Przeżyca Wrocław 9 Zbgnew Palmowsk Docendo dscmus (Ucząc nnych, sam sę uczymy) Seneka Mos of he me I fnd myself workng n heorecal problems, because I am neresed n applcaons. I also
Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.
Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można
6. ROŻNICE MIĘDZY OBSERWACJAMI STATYSTYCZNYMI RUCHU KOLEJOWEGO A SAMOCHODOWEGO
Różnce mędzy obserwacjam statystycznym ruchu kolejowego a samochodowego 7. ROŻNICE MIĘDZY OBSERWACJAMI STATYSTYCZNYMI RUCHU KOLEJOWEGO A SAMOCHODOWEGO.. Obserwacje odstępów mędzy kolejnym wjazdam na stację
Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński
Mkroekonometra 5 Mkołaj Czajkowsk Wktor Budzńsk Uogólnone modele lnowe Uogólnone modele lnowe (ang. Generalzed Lnear Models GLM) Różną sę od standardowego MNK na dwa sposoby: Rozkład zmennej objaśnanej
Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.
Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :
= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału
5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B
ma rozkład normalny z nieznaną wartością oczekiwaną m
Zadae Każda ze zmeych losowych,, 9 ma rozkład ormaly z ezaą wartoścą oczekwaą m waracją, a każda ze zmeych losowych Y, Y,, Y9 rozkład ormaly z ezaą wartoścą oczekwaą m waracją 4 Założoo, że wszystke zmee
Stanisław Cichocki. Natalia Nehrebecka. Wykład 7
Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy zmennych dyskretnych 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy
Natalia Nehrebecka. Zajęcia 4
St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających
Agata Boratyńska Statystyka aktuarialna... 1
Agata Boratyńska Statystyka aktuarialna... 1 ZADANIA NA ĆWICZENIA Z TEORII WIAROGODNOŚCI Zad. 1. Niech X 1, X 2,..., X n będą niezależnymi zmiennymi losowymi z rozkładu wykładniczego o wartości oczekiwanej
KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1
KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej
Pattern Classification
attern Classfcaton All materals n these sldes were taken from attern Classfcaton nd ed by R. O. Duda,. E. Hart and D. G. Stork, John Wley & Sons, 000 wth the permsson of the authors and the publsher Chapter
Mikroekonometria 10. Mikołaj Czajkowski Wiktor Budziński
Mkroekonometra 10 Mkołaj Czajkowsk Wktor Budzńsk Wybór uporządkowany Wybór uporządkowany (ang. ordered choce) Wybór jednej z welkośc na podanej skal Skala wartośc są uporządkowane Przykłady: Oceny konsumencke
PROBLEM ODWROTNY DLA RÓWNANIA PARABOLICZNEGO W PRZESTRZENI NIESKOŃCZENIE WYMIAROWEJ THE INVERSE PARABOLIC PROBLEM IN THE INFINITE DIMENSIONAL SPACE
JAN KOOŃSKI POBLEM ODWOTNY DLA ÓWNANIA PAABOLICZNEGO W PZESTZENI NIESKOŃCZENIE WYMIAOWEJ THE INVESE PAABOLIC POBLEM IN THE INFINITE DIMENSIONAL SPACE S r e s z c z e n e A b s r a c W arykule skonsruowano
. Wtedy E V U jest równa
Prawdopodobeństwo statystyka 7.0.0r. Zadae Dwuwymarowa zmea losowa Y ma rozkład cągły o gęstośc gdy ( ) 0 y f ( y) 0 w przecwym przypadku. Nech U Y V Y. Wtedy E V U jest rówa 8 7 5 7 8 8 5 Prawdopodobeństwo
Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.
Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,
2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)
Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4
Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja
5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim
5. Pocodna funkcj Defncja 5.1 Nec f: (a, b) R nec c (a, b). Jeśl stneje granca lm x c x c to nazywamy ją pocodną funkcj f w punkce c oznaczamy symbolem f (c) Twerdzene 5.1 Jeśl funkcja f: (a, b) R ma pocodną
MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak
MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak 2 Plan wykładu Zakłócenia w modelu DAD/DAS: Wzros produkcji poencjalnej; Zakłócenie podażowe o sile
Nieparametryczne Testy Istotności
Neparametryczne Testy Istotnośc Wzory Neparametryczne testy stotnośc schemat postępowana punkt po punkce Formułujemy hpotezę główną odnoszącą sę do: zgodnośc populacj generalnej z jakmś rozkładem, lub:
Modelowanie ryzyka kredytowego MODELOWANIE ZA POMOCA HAZARDU
Modelowanie ryzyka kredyowego MODELOWANIE ZA POMOCA PROCESU HAZARDU Mariusz Niewęgłowski Wydział Maemayki i Nauk Informacyjnych, Poliechniki Warszawskiej Warszawa 2014 hazardu Warszawa 2014 1 / 18 Proces
Proces narodzin i śmierci
Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do
BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda
BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp
ma rozkład normalny z wartością oczekiwaną EX = EY = 1, EZ = 0 i macierzą kowariancji
Zadae. Zmea losowa (, Y, Z) ma rozkład ormaly z wartoścą oczekwaą E = EY =, EZ = 0 macerzą kowaracj. Oblczyć Var(( Y ) Z). (A) 5 (B) 7 (C) 6 Zadae. Zmee losowe,, K,,K P ( = ) = P( = ) =. Nech S =. Oblcz
Statystyka aktuarialna i teoria ryzyka, model indywidualny i zespołowy, rozkłady złożone
Statystyka aktuarialna i teoria ryzyka, model indywidualny i zespołowy, rozkłady złożone Agata Boratyńska SGH, Warszawa Agata Boratyńska (SGH) SAiTR wykład 3 i 4 1 / 25 MODEL RYZYKA INDYWIDUALNEGO X wielkość
W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.
Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas
Komputerowe generatory liczb losowych
. Perwszy generator Komputerowe generatory lczb losowych 2. Przykłady zastosowań 3. Jak generuje sę lczby losowe przy pomocy komputera. Perwszy generator lczb losowych L. H. C. Tppet - 927 Ksąż ążka -
1 Przestrzenie statystyczne, statystyki
M. Beśka, Statystyka matematyczna, wykład 1 1 1 Przestrzene statystyczne, statystyk 1.1 Rozkłady zmennych losowych Nech Ω, F, P ) będze ustaloną przestrzeną probablstyczną, a X : Ω IR zmenną losową na
2012-10-11. Definicje ogólne
0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj
MUMIO Lab 6 (składki, kontrakt stop-loss)
MUMIO Lab 6 (składki, kontrakt stop-loss) 1. (6p.) Niech X oznacza ryzyko (zmienn a losow a o własności P (X 0) = 1), a H( ) niech oznacza formułȩ kalkulacji składki (przyporz adkowuj ac a każdemu ryzyku
Natalia Nehrebecka. Wykład 2
Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad
Mikroekonometria 12. Mikołaj Czajkowski Wiktor Budziński
Mkroekonometra 12 Mkołaj Czajkowsk Wktor Budzńsk Modele bnarne heterogenczność parametrów Heterogenczność stałej (model efektów stałych) lub warancj składnka losowego (model efektów losowych) można uznać
Pobieranie próby. Rozkład χ 2
Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie
Kwantowa natura promieniowania elektromagnetycznego
Efekt Comptona. Kwantowa natura promenowana elektromagnetycznego Zadane 1. Foton jest rozpraszany na swobodnym elektrone. Wyznaczyć zmanę długośc fal fotonu w wynku rozproszena. Poneważ układ foton swobodny
STATYSTYKA. Zmienna losowa skokowa i jej rozkład
STATYSTYKA Wnosowane statystyczne to proces myślowy polegający na formułowanu sądów o całośc przy dysponowanu o nej ogranczoną lczbą nformacj Zmenna losowa soowa jej rozład Zmenną losową jest welość, tóra
termodynamika fenomenologiczna p, VT V, teoria kinetyczno-molekularna <v 2 > termodynamika statystyczna n(v) to jest długi czas, zachodzi
fzka statstczna stan makroskopow układ - skończon obszar przestrzenn (w szczególnośc zolowan) termodnamka fenomenologczna p, VT V, teora knetczno-molekularna termodnamka statstczna n(v) stan makroskopow
Matematyka ubezpieczeń majątkowych 6.04.2009 r.
Matematyka ubezpieczeń majątkowych 6.04.009 r. Zadanie. Niech N oznacza liczbę szkód zaszłych w ciągu roku z pewnego ubezpieczenia z czego: M to liczba szkód zgłoszonych przed końcem tego roku K to liczba
p Z(G). (G : Z({x i })),
3. Wykład 3: p-grupy twerdzena Sylowa. Defncja 3.1. Nech (G, ) będze grupą. Grupę G nazywamy p-grupą, jeżel G = dla pewnej lczby perwszej p oraz k N. Twerdzene 3.1. Nech (G, ) będze p-grupą. Wówczas W