Współczynnik korelacji liniowej oraz funkcja regresji liniowej dwóch zmiennych
|
|
- Julia Stanisława Wilczyńska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Współcznnk korelacj lnowej oraz funkcja regresj lnowej dwóch zmennch
2 S S r, cov
3 współcznnk determnacj R r Współcznnk ndetermnacj ϕ r Zarówno współcznnk determnacj jak ndetermnacj po przemnożenu przez 00 można wrazć w procentach. Wówczas współcznnk determnacj nformuje nas, w jakm procence zmenność jednej zmennej X lub Y można wjaśnć zmennoścą drugej zmennej Y lub X. Oblczając współcznnk ndetermnacj dowem sę, w jakm procence zmenność jednej ze zmennch X lub Y ne zależ od zmennośc drugej Y lub X, lecz od nnch cznnków losowch.
4 Przkład Zbadaj cz stneje zwązek pomędz wzrostem zmenna X w cm a cężarem cała mężczzn zmenna Y w kg dane w tabel ponżej. Wznacz znterpretuj: współcznnk korelacj, współcznnk determnacj ndetermnacj. Opsz badaną zależność za pomocą lnowej funkcj regresj oraz zbadaj dobroć jej dopasowana do danch emprcznch narsuj wkres współzależnośc, znterpretuj parametr funkcj regresj. mężczzna wzrost [cm] cężar [kg]
5 . Oblczane współcznnka korelacj lnowej wzrost w cężar w cm kg suma oraz r 6 6 0, ,95 0, ,90038 R r 9% ϕ r 0, , % Pomędz wzrostem cężarem cała stneje slna dodatna współzależność. Cężar cała zależ od wzrost w ok. 9 procentach, natomast w 9 procentach zależ od nnch cznnków losowch ne ujętch w tm badanu
6 Wkres zależnośc pomedz wzostem cężarem cała cężar cała w kg wzrost w cm
7 Aproksmacja funkcj lnowej postac a + b + b a + b a Parametr a b wnoszą odpowedno: S S r a oraz a b Parametr a nazwan jest współcznnkem regresj. Informuje o le średno ulegne zmane wartość zmennej Y, jeżel wartość zmennej X wzrośne o jednostkę. Wraz woln funkcj b odpowada na ptane le teoretczne wnese wartość zmennej Y jeżel X będze równe 0.
8 Korzstając z nformacj lczbowch w przkładze, oszacować parametr a b lnowej funkcj regresj Y względem X oraz X względem Y. a b a 0, , ,4375 Zatem, funkcja regresj Y względem X ma postać: ˆ 0, ,4375, Parametr a, nazwan jest współcznnkem regresj. W analzowanm przkładze parametr ten nformuje nas, że jeżel mężczzna urośne o jednostkę tzn. cm to wówczas pownen przbrać na wadze średno 0,97 kg atomast wraz woln b, wskazuje le będze wnosć średna wartość zmennej Y, jeże zmenna X0. W analzowanm przpadku, parametr ten ne posada logcznej nterpretacj, gdż ne możlw jest wzrost wnosząc 0 cm :
9 Wkres zależnośc pomedz wzostem cężarem cała wraz z funkcją regresj cężar cała w kg ˆ 0, , wzrost w cm
10 Mar dobroc dopasowana funkcj Warancja resztowa: s ε / ˆ, Odchlene standardowe składnka resztowego: s s ε ε / / ˆ Odchlene standardowe składnka resztowego nformuje badacza, o le średno n plus lub n mnus odchlają sę wartośc emprczne Y od wartośc hpotetcznch określonch na podstawe funkcj regresj.
11 Współcznnk ndetermnacj ϕ funkcj regresj Y względem X: ϕ Współcznnk determnacj: ˆ, 4 R ϕ ˆ 5 Współcznnk determnacj nformuje nas, jaka część zman wartośc zmenne objaśnanej została wjaśnona, przez oszacowaną funkcję regresj. Im współcznnk determnacj jest blższ jednośc, tm funkcja regresj jest lepej dopasowana do danch emprcznch. Współcznnk ndetermnacj wskazuje natomast, jaka część zmennośc zmennej objaśnanej ne jest wjaśnona przez zmenną objaśnaną zmenne objaśnające wstępujące w funkcj regresj. Im wartość współcznnka jest blższa zeru, tm funkcja regresj jest lepej dopasowana do zmennch emprcznch.
12 wzrost w cm cężar w kg ,85 0,875 0, ,065 -,065 4, ,5 0,875 0, ,9375 0,065 0, ,065 0,9375 0, Σ , Źródło: Oblczena własne 6 5,9375 / s ε ˆ 0, s, ε / sε / 0, Powższ wnk oznacza, że wartośc emprczne cężaru cała odchlają sę od wartośc hpotetcznch średno o ± 0,99 kg. ˆ ˆ 5,9375 5,9375 ϕ 0, %, R ϕ 0, % Z powższch oblczeń wnka, że w około 9% zmennośc zmennej objaśnanej cężar wnka ze zmennośc zmennej objaśnającej wzrost wstępującej w funkcj regresj, natomast 9% zmennośc zmennej objaśnanej jest uzależnona od nnch cznnków ne objętch badanem.
13 Przkład W celu zbadana wpłwu spożwanego posłku śnadana na wnk otrzmane ze sprawdzan ze statk, poddano badanu grupę 0 studentów. Perwszą z cech ocenano na skal dwupunktowej w następując sposób 0 gd gd student zjadł śnadane X, student ne zjadł śnadana natomast druga z cech bła ocenana na skal punktowej od 0 do 5 punktów Otrzmano następujące wnk: student śnadane lczba punktów 5, , Cz stneje współzależność pomędz wnkam ze sprawdzanu spożwanm posłkam?
14 Inne wbrane mar współzależnośc Współcznnk korelacj dwuserjnej Współcznnk skojarzena Yulea Współcznnk korelacj rang Spearmana
15 Emprczn współcznnk korelacj dwuserjnej 0 r d. S 0 0 średna artmetczna realzacj zmennej losowej Y, skojarzonch z realzacjam zmennej X o wartośc 0, średna artmetczna realzacj zmennej losowej Y, skojarzonch z realzacjam zmennej X o wartośc, 0 lczebność podzboru zer, lczebność podzboru jednek, 0 +, S odchlene standardowe zmennej losowej Y.
16 student śnadane lczba punktów 5,5 0,5 0, ,5 5,5 30, suma ,5 5 S S r 0 d. 6,85 4,048755,4 8,6 0,
17 Przkład 3 60 studentów regularne przgotowwało sę do zajęć ze Statstk, a 40 sporadczne. w grupe perwszej egzamn poprawkowe zdarzł sę 0 raz w cągu studów, a w drugej aż 30. Cz stneje zwązek pomędz soldnoścą prac konecznoścą poprawkowch egzamnów? Uzasadnć odpowedź posługując sę odpowednm mernkem
18 Y Σ 0 X 0 f0;0 f0; f0;0 + f0; f;0 f; f;0 + f; Σ f0;0 + f;0 f0; + f; Współcznnk skojarzena: f 0;0 f ; Q f 0;0 f ; + f f 0; f 0; f ;0 ;0
19 Przjmjm następujące oznaczena: X 0, jeżel student zdał egzamn w perwszm termne X, jeżel student mał egzamn poprawkow Y 0, jeżel student uczł sę regularne Y, jeżel student uczł sę sporadczne X Σ Y Σ Q [ ]/ [ ]0,875
20 Współcznnk korelacj rang Spearmana Współcznnk korelacj rang stosuje sę wówczas, gd wartośc cech merzalnch opsanch przez odpowedne zmenne cągłe lub skokowe lub warant cech nemerzalnej, został zastąpone rangam, czl kolejnm lczbam. 6 d rs. gdze d - oznacza różncę pomędz rangam zmennej X Y, lość par obserwacj zmennej X Y.
21 Przkład 4 Wkorzstując dane z przkładu wznaczć współcznnk korelacj rang Spearmana pomędz wzrostem a cężarem cała mężczzn. wzrost w cm cężar w kg rang zmennej X rang zmennej Y ,5, ,5 3-0,5 0,5 Σ XXX XXX XXX 3,5 d d 6 d 6 3, s. 0,9. r
Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej
Rachunek prawdopodobeństwa statstka W 11: Analz zależnoścpomędz zmennm losowm Model regresj welokrotnej Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Model regresj lnowej Model regresj lnowej prostej
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA. Wkład wstępn. Teora prawdopodobeństwa element kombnatork. Zmenne losowe ch rozkład 3. Populacje prób danch, estmacja parametrów 4. Testowane hpotez statstcznch 5. Test parametrczne
Natalia Nehrebecka. Zajęcia 3
St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 3 1. Dobroć dopasowana równana regresj. Współczynnk determnacj R Dk Dekompozycja warancj zmennej zależnej ż Współczynnk determnacj R. Zmenne cągłe a
Stanisław Cichocki. Natalia Nehrebecka Katarzyna Rosiak-Lada. Zajęcia 3
Stansław Cchock Natala Nehrebecka Katarzyna Rosak-Lada Zajęca 3 1. Dobrod dopasowana równana regresj. Współczynnk determnacj R 2 Dekompozycja warancj zmennej zależnej Współczynnk determnacj R 2 2. Zmenne
INFORMATYKA W SELEKCJI
IFORMATYKA W SELEKCJI IFORMATYKA W SELEKCJI - zagadnena. Dane w prac hodowlanej praca z dużm zborem danch (Ecel). Podstaw prac z relacjną bazą danch w programe MS Access 3. Sstem statstczne na przkładze
Natalia Nehrebecka. Wykład 2
Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad
Statystyka i opracowanie danych W 5: Odkrywanie i analiza zależności pomiędzy zmiennymi losowymi (danymi empirycznymi)
Statstka opracowane danch W 5: Odkrwane analza zależnośc pomędz zmennm losowm (danm emprcznm) Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Odkrwane analza zależnośc pomędz zmennm loścowm(lczowm) Przedmotem
CZĘŚĆ 6. MODEL REGRESJI, TREND LINIOWY ESTYMACJA, WNIOSKOWANIE
CZĘŚĆ 6. MODEL REGRESJI, TREND LINIOWY ESTYMACJA, WNIOSKOWANIE Zadane 1. Na podstawe obserwacj dotczącch welkośc powerzchn ekspozcjnej (cecha X w m kw.) oraz welkośc dzennego obrotu punktu sprzedaż płtek
Egzamin ze statystyki/ Studia Licencjackie Stacjonarne/ Termin I /czerwiec 2010
Egzamn ze statystyk/ Studa Lcencjacke Stacjonarne/ Termn /czerwec 2010 Uwaga: Przy rozwązywanu zadań, jeśl to koneczne, naleŝy przyjąć pozom stotnośc 0,01 współczynnk ufnośc 0,99 Zadane 1 PonŜsze zestawene
Weryfikacja hipotez dla wielu populacji
Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w
Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer
Statystyka Opsowa 2014 część 2 Katarzyna Lubnauer Lteratura: 1. Statystyka w Zarządzanu Admr D. Aczel 2. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucjan Kowalsk. 4. Statystyka opsowa,
Zad 2 Dynamika zatrudnienia mierzona indeksami łańcuchowymi w ostatnich pięciu latach kształtowały się następująco: Lata Indeksy ( w %)
Analza dnamk Zad. 1 Indeks lczb studującch studentów w województwe śląskm w kolejnch pęcu latach przedstawał sę następująco: Lata 1 2 3 4 5 Indeks jednopodstawowe z roku t = 1 100,0 115,7 161,4 250,8 195,9
( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X
Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są
Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane
) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4
Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =
Dobór zmiennych objaśniających
Dobór zmennych objaśnających Metoda grafowa: Należy tak rozpąć graf na werzchołkach opsujących poszczególne zmenne, aby występowały w nm wyłączne łuk symbolzujące stotne korelacje pomędzy zmennym opsującym.
Przypomnienie: wykłady i zadania kursu były zaczerpnięte z podręczników: Model statystyczny Format danych
Wkład 13: (prota) regreja lnowa Model tattczn Format danch Przedzał ufnośc tet totnośc dla parametrów modelu Przpomnene: wkład zadana kuru bł zaczerpnęte z podręcznków: Stattka dla tudentów kerunków techncznch
Badanie współzaleŝności dwóch cech ilościowych X i Y. Analiza korelacji prostej. Badanie zaleŝności dwóch cech ilościowych. Analiza regresji prostej
Badane współzaleŝnośc dwóch cech loścowych X Y. Analza korelacj prostej Badane zaleŝnośc dwóch cech loścowych. Analza regresj prostej Kody znaków: Ŝółte wyróŝnene nowe pojęce czerwony uwaga kursywa komentarz
KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1
KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Interpretacja parametrów przy zmennych objaśnających cągłych Semelastyczność 2. Zastosowane modelu potęgowego Model potęgowy 3. Zmenne cągłe za zmenne dyskretne
Statystyka. Zmienne losowe
Statystyka Zmenne losowe Zmenna losowa Zmenna losowa jest funkcją, w której każdej wartośc R odpowada pewen podzbór zboru będący zdarzenem losowym. Zmenna losowa powstaje poprzez przyporządkowane każdemu
Natalia Nehrebecka. Zajęcia 4
St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4
Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja
65120/ / / /200
. W celu zbadana zależnośc pomędzy płcą klentów ch preferencjam, wylosowano kobet mężczyzn zadano m pytane: uważasz za lepszy produkt frmy A czy B? Wynk były następujące: Odpowedź Kobety Mężczyźn Wolę
Natalia Nehrebecka. Dariusz Szymański
Natala Nehrebecka Darusz Szymańsk . Sprawy organzacyjne Zasady zalczena Ćwczena Lteratura. Czym zajmuje sę ekonometra? Model ekonometryczny 3. Model lnowy Postać modelu lnowego Zaps macerzowy modelu dl
IID = 2. i i i i. x nx nx nx
Zadane Analzujemy model z jedną zmenną objaśnającą bez wyrazu wolnego: y = β x + ε, ε ~ (0, σ ), gdze x jest nelosowe.. Wyznacz estymator MNK parametru β oraz oblcz jego warancję. (4 pkt) y. Zaproponowano
Prawdopodobieństwo i statystyka r.
Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =
; -1 x 1 spełnia powyższe warunki. Ale
AIB-Inormatka-Wkła - r Aam Ćmel cmel@.ah.eu.pl Funkcje uwkłane Przkła.ozważm równane np. nech. Ptane Cz la owolneo [] stneje tak że? Nech. Wówczas unkcja - spełna powższe warunk. Ale [ ] Q spełna je także
W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.
Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas
; -1 x 1 spełnia powyższe warunki. Ale
Funkcje uwkłane Przkła.ozważm równane np. nech. Ptane Cz la owolneo [ ] stneje tak że? Nech. Wówczas unkcja - spełna powższe warunk. Ale spełna je także unkcja [ ] Q. Dokłaając warunek cąłośc unkcj [ ]
formularzy opisowych, ankiet lub innych dokumentów stanowi nieuporządkowany statystyczny, stanowi on podstawę dalszych
Zebran materał statstczn w forme sprawozdań, formularz opsowch, anket lub nnch dokumentów stanow neuporządkowan surow materał statstczn, neprzdatn jeszcze do bezpośrednej analz, porównań wnosków. Materał
RACHUNEK NIEPEWNOŚCI POMIARU
Mędznarodowa Norma Ocen Nepewnośc Pomaru(Gude to Epresson of Uncertant n Measurements - Mędznarodowa Organzacja Normalzacjna ISO) RACHUNEK NIEPEWNOŚCI http://phscs.nst./gov/uncertant POMIARU Wrażane Nepewnośc
WPROWADZENIE DO ANALIZY KORELACJI I REGRESJI
WPROWADZENIE DO ANALIZY KORELACJI I REGRESJI dr Janusz Wątroba, StatSoft Polska Sp. z o.o. Prezentowany artykuł pośwęcony jest wybranym zagadnenom analzy korelacj regresj. Po przedstawenu najważnejszych
Regresja liniowa i nieliniowa
Metody prognozowana: Regresja lnowa nelnowa Dr nż. Sebastan Skoczypec Zmenna losowa Zmenna losowa X zmenna, która w wynku pewnego dośwadczena przyjmuje z pewnym prawdopodobeństwem wartość z określonego
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane
Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej
Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.
Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński
Mkroekonometra 5 Mkołaj Czajkowsk Wktor Budzńsk Uogólnone modele lnowe Uogólnone modele lnowe (ang. Generalzed Lnear Models GLM) Różną sę od standardowego MNK na dwa sposoby: Rozkład zmennej objaśnanej
Procedura normalizacji
Metody Badań w Geograf Społeczno Ekonomcznej Procedura normalzacj Budowane macerzy danych geografcznych mgr Marcn Semczuk Zakład Przedsęborczośc Gospodark Przestrzennej Instytut Geograf Unwersytet Pedagogczny
Analiza zależności zmiennych ilościowych korelacja i regresja
Analza zależnośc zmennych loścowych korelacja regresja JERZY STEFANOWSKI Instytut Informatyk Poltechnka Poznańska Plan wykładu 1. Lnowa zależność mędzy dwoma zmennym: Prosta regresja Metoda najmnejszych
EKONOMETRIA Wykład 2: Metoda Najmniejszych Kwadratów
EKONOMERIA Wkład : Meoda Najmnejszch Kwadraów dr Doroa Cołek Kaedra Ekonomer Wdzał Zarządzana UG hp://wzr.pl/dc doroa.colek@ug.edu.pl Lnow model ekonomerczn:... zmenna endogenczna, 0 k k u zmenne objaśnające,
Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ
WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Model potęgowy Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych
Analiza struktury zbiorowości statystycznej
Analza struktury zborowośc statystycznej.analza tendencj centralnej. Średne klasyczne Średna arytmetyczna jest parametrem abstrakcyjnym. Wyraża przecętny pozom badanej zmennej (cechy) w populacj generalnej:
Funkcje i charakterystyki zmiennych losowych
Funkcje charakterystyk zmennych losowych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Funkcje zmennych losowych
Ekonometria I materiały do ćwiczeń data lp wykładu temat Wykład dr Dorota Ciołek Ćwiczenia mgr inż. Marta Chylińska
Ekonomera I maerał do ćwczeń daa lp wkładu ema Wkład dr Doroa Cołek Ćwczena mgr nż. Mara Chlńska - Rodzaje danch sascznch 1a) Przkład problemów badawczch - Zmenne ekonomczne jako zmenne hpoeza, propozcja
t t t t T 2 Interpretacja: Przeciętna wartość zmiennej objaśnianej różni się od wartości teoretycznej średnio o
Cele werfacj odelu Werfacja sasczna odelu polega na oblczenu szeregu ernów jaośc odelu oraz werfacj pewnch hpoez sascznch w celu sprawdzena cz na podsawe ego odelu ożna wcągać wnos doczące badanego zjawsa
Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE
Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:
BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda
BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp
Analiza korelacji i regresji
Analza korelacj regresj Zad. Pewen zakład produkcyjny zatrudna pracownków fzycznych. Ich wydajność pracy (Y w szt./h) oraz mesęczne wynagrodzene (X w tys. zł) przedstawa ponższa tabela: Pracownk y x A
t t t t T 2 Interpretacja: Przeciętna wartość zmiennej objaśnianej różni się od wartości teoretycznej średnio o ˆ
Eonoera Ćwczena Werfacja odelu eonoercznego Maerał poocncze Cele werfacj odelu Werfacja sasczna odelu polega na oblczenu szeregu ernów jaośc odelu oraz werfacj pewnch hpoez sascznch w celu sprawdzena cz
Służą opisowi oraz przewidywaniu przyszłego kształtowania się zależności gospodarczych.
MODEL EOOMERYCZY MODEL EOOMERYCZY DEFIICJA Modl konomtrczn jst równanm matmatcznm (lub układm równao), któr przdstawa zasadncz powązana loścow pomędz rozpatrwanm zjawskam konomcznm., uwzględnającm tlko
Statystyka. Katarzyna Chudy Laskowska
Statstka Katarza Chud Laskowska http://kc.sd.prz.edu.pl/ Aalza korelacj umożlwa stwerdzee wstępowaa zależośc oraz oceę jej atężea ZALEŻNOŚCI pomędz CECHAMI: CECHY: ILOŚCIOWA ILOŚCIOWA CECHY: JAKOŚCIOWA
Zjawiska masowe takie, które mogą wystąpid nieograniczoną ilośd razy. Wyrazów Obcych)
Statystyka - nauka zajmująca sę metodam badana przedmotów zjawsk w ch masowych przejawach ch loścową lub jakoścową analzą z punktu wdzena nauk, do której zakresu należą.
Statystyka Inżynierska
Statystyka Inżynerska dr hab. nż. Jacek Tarasuk AGH, WFIS 013 Wykład DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE Zmenna losowa, Funkcja rozkładu, Funkcja gęstośc, Dystrybuanta, Charakterystyk zmennej, Funkcje
Rozkład dwupunktowy. Rozkład dwupunktowy. Rozkład dwupunktowy x i p i 0 1-p 1 p suma 1
Rozkład dwupunktowy Zmenna losowa przyjmuje tylko dwe wartośc: wartość 1 z prawdopodobeństwem p wartość 0 z prawdopodobeństwem 1- p x p 0 1-p 1 p suma 1 Rozkład dwupunktowy Funkcja rozkładu prawdopodobeństwa
STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH
STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj
Statystyka Opisowa 2014 część 1. Katarzyna Lubnauer
Statystyka Opsowa 2014 część 1 Katarzyna Lubnauer Lteratura: 1. Statystyka w Zarządzanu Admr D. Aczel 2. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucjan Kowalsk. 4. Statystyka opsowa,
ZESTAW ZADAŃ Z INFORMATYKI
(Wpsue zdaąc przed rozpoczęcem prac) KOD ZDAJĄCEGO ZESTAW ZADAŃ Z INFORMATYKI CZĘŚĆ II (dla pozomu rozszerzonego) GRUDZIEŃ ROK 004 Czas prac 50 mnut Instrukca dla zdaącego. Proszę sprawdzć, cz zestaw zadań
Wnioskowanie statystyczne dla korelacji i regresji.
STATYSTYKA MATEMATYCZNA WYKŁAD 6 Woskowae statstcze dla korelacj regresj. Aalza korelacj Założee: zmea losowa dwuwmarowa X, Y) ma rozkład ormal o współczku korelacj ρ. X, Y cech adae rówocześe. X X X...
Materiały do wykładu 7 ze Statystyki
Materał do wkładu 7 ze Statstk Aalza ZALEŻNOŚCI pomędz CECHAMI (Aalza KORELACJI REGRESJI) korelacj wkres rozrzutu (korelogram) rodzaje zależośc (brak, elowa, lowa) pomar sł zależośc lowej (współczk korelacj
BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ
Matematka statstka matematcza dla rolków w SGGW Aa Rajfura, KDB WYKŁAD 2 BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ Matematka statstka matematcza dla rolków w SGGW Aa Rajfura, KDB Przkład.
0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4
Zad. 1. Dana jest unkcja prawdopodobeństwa zmennej losowej X -5-1 3 8 p 1 1 c 1 Wyznaczyć: a. stałą c b. wykres unkcj prawdopodobeństwa jej hstogram c. dystrybuantę jej wykres d. prawdopodobeństwa: P (
Mikroekonometria 10. Mikołaj Czajkowski Wiktor Budziński
Mkroekonometra 10 Mkołaj Czajkowsk Wktor Budzńsk Jak analzować dane o charakterze uporządkowanym? Dane o charakterze uporządkowanym Wybór jednej z welkośc na uporządkowanej skal Skala ne ma nterpretacj
Stanisław Cichocki. Natalia Nehrebecka. Wykład 7
Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy zmennych dyskretnych 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy
25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx
5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.
Zaawansowane metody numeryczne
Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x
EKONOMETRIA I Spotkanie 1, dn. 05.10.2010
EKONOMETRIA I Spotkane, dn. 5..2 Dr Katarzyna Beń Program ramowy: http://www.sgh.waw.pl/nstytuty/e/oferta_dydaktyczna/ekonometra_stacjonarne_nest acjonarne/ Zadana, dane do zadań, ważne nformacje: http://www.e-sgh.pl/ben/ekonometra
Macierz prawdopodobieństw przejścia w pojedynczym kroku dla łańcucha Markowa jest postaci
Zadane. Macerz radoodobeńst rzejśca ojedynczym kroku dla łańcucha Markoa...... o trzech stanach { } jest ostac 0 n 0 0 (oczyśce element stojący -tym erszu j -tej kolumne tej macerzy oznacza P( = j. Wtedy
7.8. RUCH ZMIENNY USTALONY W KORYTACH PRYZMATYCZNYCH
WYKŁAD 7 7.8. RUCH ZMIENNY USTALONY W KORYTACH PRYZMATYCZNYCH 7.8.. Ogólne równane rucu Rucem zmennym w korytac otwartyc nazywamy tak przepływ, w którym parametry rucu take jak prędkość średna w przekroju
Stanisław Cichocki. Natalia Nehrebecka. Wykład 7
Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Interakcje 2. Przyblżane model nelnowych 3. Założena KMRL 1. Interakcje 2. Przyblżane model nelnowych 3. Założena KMRL W standardowym modelu lnowym zakładamy,
METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów.
Opracowane: Dorota Mszczyńska METODA UNITARYZACJI ZEROWANEJ Porównane obektów przy ocene welokryteralnej. Rankng obektów. Porównane wybranych obektów (warantów decyzyjnych) ze względu na różne cechy (krytera)
Markowa. ZałoŜenia schematu Gaussa-
ZałoŜena scheatu Gaussa- Markowa I. Model jest nezennczy ze względu na obserwacje: f f f3... fl f, czyl y f (x, ε) II. Model jest lnowy względe paraetrów. y βo + β x +ε Funkcja a być lnowa względe paraetrów
WPŁYW AKCESJI POLSKI DO UNII EUROPEJSKIEJ NA ROZWÓJ ROLNICTWA EKOLOGICZNEGO. Lidia Luty
74 LIDIA LUTY ROCZNIKI NAUKOWE EKONOMII ROLNICTWA I ROZWOJU OBSZARÓW WIEJSKICH, T. 11, z. 1, 214 WPŁYW AKCESJI POLSKI DO UNII EUROPEJSKIEJ NA ROZWÓJ ROLNICTWA EKOLOGICZNEGO Lda Lut Katedra Statstk Matematcznej
1.1. Uprość opis zdarzeń: 1.2. Uprościć opis zdarzeń: a) A B A Uprościć opis zdarzeń: 1.4. Uprościć opis zdarzeń:
.. Uprość ops zdarzeń: a) A B, A \ B b) ( A B) ( A' B).. Uproścć ops zdarzeń: a) A B A b) A B, ( A B) ( B C).. Uproścć ops zdarzeń: a) A B A B b) A B C ( A B) ( B C).4. Uproścć ops zdarzeń: a) A B, A B
Ć w i c z e n i e K 2 b
Akademia Górniczo Hutnicza Wdział Inżnierii Mechanicznej i Robotki Katedra Wtrzmałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wdział Górnictwa i Geoinżnierii Grupa nr: Ocena:
Ekonometria ćwiczenia Kolokwium 1 semestr 20/12/08. / 5 pkt. / 5 pkt. / 5 pkt. / 5 pkt. /20 pkt. Regulamin i informacje dodatkowe
Ekonometra IE Kolokwum 0/1/08 mę, nazwsko, nr ndeksu: Ekonometra ćwczena Kolokwum 1 semestr 0/1/08 Zadane 1 Zadane Zadane 3 Zadane 4 Razem / 5 pkt / 5 pkt / 5 pkt / 5 pkt /0 pkt Skala ocen: do 8,00 punktów
Problem nośności granicznej płyt żelbetowych w ujęciu aktualnych przepisów normowych. Prof. dr hab. inż. Piotr Konderla, Politechnika Wrocławska
Proble nośnośc grancznej płt żelbetowch w ujęcu aktualnch przepsów norowch Prof. dr hab. nż. Potr Konderla Poltechnka Wrocławska 1. Wprowadzene Przedote analz jest płta żelbetowa zbrojona ortogonalne paraetrzowana
Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.
Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :
termodynamika fenomenologiczna p, VT V, teoria kinetyczno-molekularna <v 2 > termodynamika statystyczna n(v) to jest długi czas, zachodzi
fzka statstczna stan makroskopow układ - skończon obszar przestrzenn (w szczególnośc zolowan) termodnamka fenomenologczna p, VT V, teora knetczno-molekularna termodnamka statstczna n(v) stan makroskopow
L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 4 ZADANIA - ZESTAW 4
ZADANIA - ZESTAW 4 Zadanie 4. 0-0,4 c 0 0, 0, Wznacz c. Wznacz rozkład brzegowe. Cz, są niezależne? (odp. c = 0,3 Zadanie 4.- 0-0,4 0,3 0 0, 0, Wznaczć macierz kowariancji i korelacji. Cz, są skorelowane?
Termodynamika. Wydział Inżynierii Mechanicznej i Robotyki II rok inż. Pomiary temperatury Instrukcja do ćwiczenia
Termodnamka Wdzał Inżner Mechancznej Robotk II rok nż. Pomar temperatur Instrukcja do ćwczena Katedra Sstemów Energetcznch Urządzeń Ochron Środowska AGH Kraków 014 1. INSTRUKCJA DO ĆWICZENIA LABORATORYJNEGO
Matematyka ubezpieczeń majątkowych r.
Maemayka ubezpeczeń mająkowych 7.05.00 r. Zadane. Pewne ryzyko generuje jedną szkodę z prawdopodobeńswem q, zaś zero szkód z prawdopodobeńswem ( q). Ubezpeczycel pokrywa nadwyżkę szkody ponad udzał własny
LINIOWA FUNKCJA PRAWDOPODOBIEŃSTWA
Studa Ekonomczne. Zeszt Naukowe Unwerstetu Ekonomcznego w Katowcach ISSN 283-86 Nr 324 27 Jerz W. Wśnewsk Unwerstet Mkołaja Kopernka Wdzał Nauk Ekonomcznch Zarządzana Katedra Ekonometr Statstk jerz.wsnewsk@umk.pl
Trzecie laboratoria komputerowe ze Staty Testy
Trzece laboratora komputerowe ze Staty Testy Korzystać będzemy z danych dane_3.dta. Chcemy (jak zwykle ) oszacować model zarobków. Tym razem nteresująca nas postać modelu to: p0 = β + β pd0 + β pl08 +
Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.
Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane
Metody badań kamienia naturalnego: Oznaczanie współczynnika nasiąkliwości kapilarnej
Metody badań kaena naturalnego: Oznaczane współczynnka nasąklwośc kaplarnej 1. Zasady etody Po wysuszenu do stałej asy, próbkę do badana zanurza sę w wodze jedną z powerzchn (ngdy powerzchną obrabaną)
1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ
Ćwczene nr 1 cz.3 Dyfuzja pary wodnej zachodz w kerunku od środowska o wyższej temperaturze do środowska chłodnejszego. Para wodna dyfundująca przez przegrody budowlane w okrese zmowym napotyka na coraz
Mikroekonometria 10. Mikołaj Czajkowski Wiktor Budziński
Mkroekonometra 10 Mkołaj Czajkowsk Wktor Budzńsk Wybór uporządkowany Wybór uporządkowany (ang. ordered choce) Wybór jednej z welkośc na podanej skal Skala wartośc są uporządkowane Przykłady: Oceny konsumencke
EKONOMETRIA Wykład 4: Model ekonometryczny - dodatkowe zagadnienia
EKONOMETRIA Wykład 4: Model ekonometryczny - dodatkowe zagadnena dr Dorota Cołek Katedra Ekonometr Wydzał Zarządzana UG http://wzr.pl/dorota-colek/ dorota.colek@ug.edu.pl 1 Wpływ skalowana danych na MNK
f(x, y) = arctg x y. f(u) = arctg(u), u(x, y) = x y. x = 1 1 y = y y = 1 1 +
Różnczkowalność pocodne Ćwczene. Znaleźć pocodne cz astkowe funkcj f(x, y) = arctg x y. Rozw azane: Wdać, że funkcj f można napsać jako f(u(x, y)) gdze f(u) = arctg(u), u(x, y) = x y. Korzystaj ac z reg
Parametry zmiennej losowej
Eonometra Ćwczena Powtórzene wadomośc ze statysty SS EK Defncja Zmenną losową X nazywamy funcję odwzorowującą przestrzeń zdarzeń elementarnych w zbór lczb rzeczywstych, taą że przecwobraz dowolnego zboru
Ekonometria egzamin 01/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
mę, nazwsko, nr ndeksu: Ekonometra egzamn 1//19 1. Egzamn trwa 9 mnut.. Rozwązywane zadań należy rozpocząć po ogłoszenu początku egzamnu a skończyć wraz z ogłoszenem końca egzamnu. Złamane tej zasady skutkuje
Sprawozdanie powinno zawierać:
Sprawozdane pownno zawerać: 1. wypełnoną stronę tytułową (gotowa do ćw. nr 0 na strone drugej, do pozostałych ćwczeń zameszczona na strone 3), 2. krótk ops celu dośwadczena, 3. krótk ops metody pomaru,
Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB
Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe
STATYSTYKA. Zmienna losowa skokowa i jej rozkład
STATYSTYKA Wnosowane statystyczne to proces myślowy polegający na formułowanu sądów o całośc przy dysponowanu o nej ogranczoną lczbą nformacj Zmenna losowa soowa jej rozład Zmenną losową jest welość, tóra
Laboratorium ochrony danych
Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz
METODY KOMPUTEROWE 10
MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Poechnka Poznańska Mchał Płokowak Adam Łodgowsk Mchał PŁOKOWIAK Adam ŁODYGOWSKI Konsace nakowe dr nż. Wod Kąko Poznań 00/00 MEODY KOMPUEROWE 0 RÓWNANIA RÓŻNICZKOWE
Mikroekonometria 13. Mikołaj Czajkowski Wiktor Budziński
Mkroekonometra 13 Mkołaj Czajkowsk Wktor Budzńsk Symulacje Analogczne jak w przypadku cągłej zmennej zależnej można wykorzystać metody Monte Carlo do analzy różnego rodzaju problemów w modelach gdze zmenna
Prawo propagacji niepewności. 1
Prwo propgc nepewnośc. Prwo propgc nepewnośc. W przpdk pomrów metodą pośredną wrtość welkośc stl sę n podstwe wrtośc nnch welkośc zmerzonch bezpośredno. przkłd obętość V 0 prostopdłoścn o krwędzch D 0
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych
Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,