Ćwiczenia: Ukryte procesy Markowa lista 1 kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II
|
|
- Magdalena Mucha
- 6 lat temu
- Przeglądów:
Transkrypt
1 Ćwiczenia: Ukryte procesy Markowa lista kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II dr Jarosław Kotowicz Zadanie. Dany jest łańcuch Markowa, który może przyjmować wartości,,..., 9,. Prawdopodobieństwa przeskoku do każdego stanu są równe. Znajdź stan stacjonarny. Zadanie. Możliwe stany łańcucha (X n ) n= to,,, a jego macierz przejścia to..8 P = Obliczyć a) P (X = ), o ile P (X = ) =, b) P (X = ), o ile P (X = ) =, c) P (X = ), jeżeli start z dowolnego stanu jest jednakowo prawdopodobny. Zadanie. Poklasyfikować stany łańcucha (istotne-nieistotne, pochłaniające, powracające-chwilowe), znaleźć wszystkie zamknięte zbiory stanów i zbadać, czy łańcuchy są nieprzywiedlne, jeżeli dane są macierze przejścia tych łańcuchów: a).7., b).5.5, c) Zadanie. W pierwszej urnie są białe kule, a w drugiej urnie - czarne. W każdym kroku losujemy po jednej kuli z każdej urny i zamieniamy je miejscami. Niech stan procesu oznacza liczbę białych kul w pierwszej urnie. Opisać macierz przejścia tego łańcucha. Rozwiązać analogiczne zadanie, gdy każda urna zawiera N kul. Zadanie 5. Załóżmy,że możliwymi stanami łańcucha (Y n ) są tylko i, a macierz przejścia wygląda następująco: α α P = α + β >. β β Niech P (Y = ) = p. Wykazać, że P (Y n = ) = β ( + ( α β)n p β ). α + β α + β
2 Jak można fizycznie opisać proces o takiej macierzy przejścia? Zadanie 6. W ciągu prób Bernoulliego mówimy, że w chwili n układ jest w stanie E, gdy doświadczenia o numerach n oraz n dały ciąg SS (sukces, sukces). Podobnie stany E, E oraz E określone są przez SP, P S, P P. Wyznaczyć macierz przejścia P oraz P tego łańcucha. Zadanie 7. Pokazać z definicji, że wszystkie stany łańcucha z zadania 6 są powracające. Zadanie 8. Cząsteczka z położenia i Z skacze do i + z prawdopodobieństwem p lub do i z prawdopodobieństwem p. Obliczyć p (), p () oraz p (n). Zadanie 9. Załóżmy, że łączny kapitał graczy A i B wynosi k PLN. W pojedynczej grze gracz A wygrywa złotówkę od gracza B z prawdopodobieństwem p, a przegrywa z prawdopodobieństwem p. Za każdym razem, gdy dany gracz przegrywa ostatnią złotówkę przeciwnik oddaje mu ją z prawdopodobieństwem α. Znaleźć macierz przejścia dla łańcucha, który opisuje kapitał gracza A. Załóżmy, że na początek gracz A dostaje i PLN z prawdopodobieństwem k+, i k. Jakie jest prawdopodobieństwo ruiny gracza A w dwóch grach? Zadanie. Cząstka porusza się między stanami,,,, w taki sposób, że: - ze stanu może przejść do stanów,, z prawdopodobieństwem, - ze stanu może przejść do stanów,, z prawdopodobieństwem, - ze stanu może przejść do stanów,, z prawdopodobieństwem, - ze stanu może przejść do stanów,, z prawdopodobieństwem, - po dotarciu do stanu pozostaje w nim na zawsze. a) Napisać macierz przejścia. b) Pokazać z definicji, że stany - są chwilowe. c) Dla n obliczyć f (n) = P (X, X,..., X n, X n = X = ). d) Pokazać, że z prawdopodobieństwem stan pochłonie cząstkę. Zadanie. Łańcuch ma nieskończoną przestrzeń stanów S = {s, s,...}. Pierwszy wiersz macierzy przejścia P ma postać a a..., a w pozostałych wierszach p i,i =, i. Udowodnić, że stan s jest powracający. Znaleźć wszystkie ciągi (a n ) dla których a) wybrany stan s k jest powracający, b) wszystkie stany są powracające. Zadanie. Pierwsza kolumna macierzy przejścia P łańcucha o przestrzeni stanów S = {,,,...} ma postać q q..., natomiast p i,i+ = q i dla i =,,,.... Badając stan wykazać, że a) q i = ( ) i+ to wszystkie stany są chwilowe, b) q i = to wszystkie stany są powracające. Zadanie. Znaleźć wszystkie rozkłady stacjonarne łańcucha o macierzy przejścia a), b), c)
3 Zadanie. Zbadać kiedy istnieje rozkład stacjonarny dla łańcucha z zadania 6. Znaleźć ten rozkład w przypadku, gdy a) a i = ( ) i, i b) a i = i +i, i Zadanie 5. Dla jakich p łańcuch z zadania 5 jest stacjonarny? Kiedy łańcuch ten jest ergodyczny? Obliczyć E(Y ) oraz lim E(Y n). Zadanie 6. Uzasadnić, że dla p, q > takich, że p + q = łańcuch o macierzy przejścia q p q p q p jest ergodyczny i wyznaczyć prawdopodobieństwa ergodyczne. Zadanie 7. Łańcuch ma macierz przejścia P = Wykorzystując własności stanów obliczyć lim p ij(n) dla wszystkich i, j. Zadanie 8. W ciągu doświadczeń Bernoulliego z prawdopodobieństwem sukcesu p mówimy, że w chwili n układ znajduje się w stanie, gdy n-te doświadczenie dało porażkę, a w stanie k {,,,..., n}, gdy ostatnia porażka nastąpiła w chwili n k (zerowe doświadczenie uważamy za porażkę). Innymi słowy, stan w chwili n to długość nieprzerwanej serii sukcesów, kończącej się w chwili n. Obliczyć p j = lim p ij(n). Zadanie 9. Niech P będzie macierzą rozmiaru n n podwójnie stochastyczną, tzn. taką, w której zarówno suma każdego wiersza jak i każdej kolumny jest równa. Znaleźć rozkład stacjonarny łańcucha o takiej macierzy przejścia. Wskazówka zobacz np. zad. a), b). Zadanie. Niech P będzie macierzą przejścia łańcucha Markowa o n stanach. Pierwszy wiersz tej macierzy składa się z elementów p, p,..., p n, a następne wiersze powstają z niego przez cykliczne przesunięcie, tzn. drugi wiersz ma postać p n, p,..., p n, trzeci wiersz ma postać p n, p n, p,..., p n itd, a ostatni ma postać p, p,..., p n, p. Czy ten łańcuch jest ergodyczny tzn. czy istnieje granica lim P n? Jeżeli tak to obliczyć prawdopodobieństwa ergodyczne. Zadanie. W pudełku A jest sześć kul ponumerowanych liczbami od do 6, a pudełko B jest puste. Wykonamy rzutów kostką i po każdym rzucie przełożymy kulę o wylosowanym numerze do drugiego pudełka. Obliczyć przybliżone prawdopodobieństwo tego, że pudełko A będzie puste. Zadanie. Szachista A jest bardzo odporny psychicznie i niezależnie od wyników poprzednich gier wygrywa kolejną partię z prawdopodobieństwem p, remisuje z prawdopodobieństwem r lub przegrywa z prawdopodobieństwem q. Szachista B jest słabszy psychicznie: - jeżeli poprzednią partię przegrał to wygrywa kolejną partię z prawdopodobieństwem p ε, remisuje z prawdopodobieństwem r lub przegrywa z prawdopodobieństwem q + ε,
4 - jeżeli poprzednią partię zremisował to wygrywa kolejną partię z prawdopodobieństwem p, remisuje z prawdopodobieństwem r lub przegrywa z prawdopodobieństwem q, - jeżeli poprzednią partię wygrał to wygrywa kolejną partię z prawdopodobieństwem p+ε, remisuje z prawdopodobieństwem r lub przegrywa z prawdopodobieństwem q ε. Załóżmy, że gracz B ostatnią partię przed turniejem zremisował. a) Który z graczy w długim turnieju (kilkadziesiąt partii) osiągnie lepszy wynik? b) Jak odpowiedź do a) zależy od ε? c) Czy odpowiedź do a) zależy od wyniku ostatniej partii gracza B przed turniejem? Zadanie. Niech (X n ) n= będzie łańcuchem Markowa, przy czym p ij = P (X n+ = j X n = i). Za pomocą liczb p ij opisać prawdopodobieństwa P (X n = j X n+ = i) oraz P (X n = j X n+ = k). Zadanie. Dana jest macierz przejścia w jednym kroku łańcucha Markowa: Czy ten łańcuch jest okresowy? Czy jest ergodyczny (to znaczy, czy istnieje granica lim P n )? Jeśli tak, to obliczyć rozkład stacjonarny. Zadanie 5. Niech (X n ) n= będzie łańcuchem Markowa. Czy proces (X n ) n= (gdzie występują tylko zmienne o indeksach parzystych) jest łańcuchem Markowa? Jeśli odpowiedz brzmi TAK, to udowodnić to, jeśli brzmi NIE, to wskazać kontrprzykład. Zadanie 6. Ergodyczny łańcuch Markowa o dwóch stanach ma rozkład stacjonarny (p, p), < p <. Jak wygląda macierz przejścia tego łańcucha? Zadanie 7. Wykaż, że relacja komunikowania się jest relacją równoważności. Jak wyglądają klasy równoważności tej relacji? Zadanie 8. Określ wszystkie stany powracające i przejściowe w łańcuchu Markowa z macierzą przejścia P. Zadanie 9. Wykaż, że proces Markowa jest ergodyczny wtedy i tylko wtedy, gdy istnieje N takie, że P n > dla każdego n N. Zadanie. Rozważ problem ruiny gracza, w którym gracz gra tak długo, aż straci l dolarów lub wygra l dolarów (zaczyna z pulą dolarów, w każdej rundzie wygrywa dolara i traci dolara z jednakowym prawdopodobieństwem). Udowodnij, że:. prawdopodobieństwo wygrania l dolarów wynosi l l +l,. wartość oczekiwana liczby rozegranych rund wynosi l l. Zadanie. Macierz prawdopodobieństw przejścia w pojedynczym kroku w łańcuchu Markowa o trzech stanach {E, E, E } jest postaci q p q p q p gdzie q, oraz p = q. Załóżmy, iż po nieograniczenie rosnącej liczbie kroków rozkład prawdopodobieństwa na przestrzeni stanów zbiega do P (E ) = 7, P (E ) = 7 oraz P (E ) = 7. Obliczyć q.
5 Zadanie. Łańcuch Markowa ma przestrzeń stanów {e, e, e, e } i macierz prawdopodobieństw przejścia.5... Rozkład początkowy (w chwili ) jest wektorem.5.5. Z jakim prawdopodobieństwem łańcuch w chwili znajdzie się w stanie e? Zadanie. Łańcuch Markowa ma przestrzeń stanów {e, e, e } i macierz prawdopodobieństw przejścia. 6 Zakładamy, że w chwili łańcuch znajduje się w stanie e. Niech T oznacza chwilę, w której łańcuch po raz pierwszy znajdzie się w stanie e. Wyznaczyć wartość oczekiwaną zmiennej losowej T. Zadanie. Macierz przejścia łańcucha Markowa o stanach {E, E, E, E } jest równa:. Niech P n (, ) będzie prawdopodobieństwem, że łańcuch po wykonaniu n kroków znajdzie się w stanie E, jeśli w chwili początkowej znajdował się w stanie E. Obliczyć lim P n (, ). Zadanie 5. Łańcuch Markowa ma dwa stany: E, E i macierz przejścia.5.5 Niech X n oznacza stan, w którym znajduje się łańcuch po dokonaniu n kroków (n =,,...). Funkcję f na zbiorze stanów określamy wzorem f(e i ) = i dla i =,. Obliczyć granicę lim Cov(f(X n), f(x n+ )). Zadanie 6. Łańcuch Markowa ma przestrzeń stanów {E, E, E } i stałą macierz prawdopodobieństw przejścia. 9 9 W chwili początkowej jesteśmy w stanie E. Jakie jest prawdopodobieństwo przebywania w stanie E po dwustu krokach. Zadanie 7. Rozważamy łańcuch Markowa X, X,... na przestrzeni stanów {,, } o macierzy przejścia α α P = β β. (gdzie P ij = P (X n+ = j X n = i) dla i, j =,, ). Załóżmy, że rozkład początkowy łańcucha jest wektorem β α αβ π = β + α αβ β + α αβ β + α αβ (gdzie π i = P (X = i) dla i =,, ). Obliczyć P (X = X, X ). 9.
6 Zadanie 8. Rozważmy łańcuch Markowa (X n ) n= o dwóch stanach: i, który ma następującą macierz prawdopodobieństw przejścia: P = (oczywiście, element P ij stojący w i-tym wierszu i j-tej kolumnie tej macierzy oznacza P (X n+ = j X n = i)). Załóżmy ponadto, że P (X = ) =. Obliczyć lim P (X n = X n+ = ). Zadanie 9. Rozważmy łańcuch Markowa (X n ) n= o trzech stanach, i, który ma następującą macierz prawdopodobieństw przejścia P = (oczywiście, element P ij stojący w i-tym wierszu i j-tej kolumnie tej macierzy oznacza P (X n+ = j X n = i)). Załóżmy ponadto, że P (X = ) = 6, P (X = ) = i P (X = ) =. Obliczyć lim P (X n+ = X n = ). Zadanie. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się reszki. Obliczyć wartość oczekiwaną liczby wykonanych rzutów. Wskazówka: jeśli w rzucie numer n jest orzeł to przyjmijmy, że układ jest w stanie. Jeśli w rzucie numer n jest reszka a w rzucie n był orzeł, to układ jest w stanie. Kończymy, gdy układ znajdzie się w stanie. W ten sposób definiujemy łańcuch Markowa. Rozpatrzeć wartość oczekiwaną liczby rzutów w zależności od stanu układu.) Zadanie. Rozważamy łańcuch Markowa X, X,... na przestrzeni stanów {,, } o macierzy przejścia P =, (gdzie P ij = P (X n+ = j X n = i) dla i, j =,, ). Załóżmy, że rozkład początkowy łańcucha jest wektorem π = 9 9 (gdzie π i = P (X = i) dla i =,, ). Obliczyć P (X = X, X ). Zadanie. Macierz prawdopodobieństw przejścia w jednym kroku dla łańcucha Markowa (X n ) n= o trzech stanach {,, } jest postaci P = (oczywiście, element P ij stojący w i-tym wierszu i j-tej kolumnie tej macierzy oznacza P (X n+ = j X n = i)). Obliczyć lim Cov(X n, X n+ ).
Lista 1. Procesy o przyrostach niezależnych.
Lista. Procesy o przyrostach niezależnych.. Niech N t bedzie procesem Poissona o intensywnoci λ = 2. Obliczyć a) P (N 2 < 3, b) P (N =, N 3 = 6), c) P (N 2 = N 5 = 2), d) P (N =, N 2 = 3, N 4 < 5), e)
Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.
Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. 2 Łańcuchem Markowa nazywamy proces będący ciągiem zmiennych
12DRAP - parametry rozkładów wielowymiarowych
DRAP - parametry rozkładów wielowymiarowych Definicja.. Jeśli h : R R, a X, Y ) jest wektorem losowym o gęstości fx, y) to EhX, Y ) = hx, y)fx, y)dxdy. Jeśli natomiast X, Y ) ma rozkład dyskretny skupiony
Zadania z Rachunku Prawdopodobieństwa II Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ,
Zadania z Rachunku Prawdopodobieństwa II -. Udowodnij, że dla dowolnych liczb x n, x, δ xn δ x wtedy i tylko wtedy, gdy x n x.. Wykaż, że n n k= δ k/n λ, gdzie λ jest miarą Lebesgue a na [, ].. Podać przykład
Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.
Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. Przykład Symetryczne błądzenie przypadkowe na prostej. 1 2 Łańcuchem
Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS
Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85
Matematyka podstawowa X. Rachunek prawdopodobieństwa
Matematyka podstawowa X Rachunek prawdopodobieństwa Zadania wprowadzające: 1. Rzucasz trzy razy monetą a) Napisz zbiór wszystkich wyników tego doświadczenia losowego. Ile ich jest? Wyrzuciłeś większą liczbę
Zadania z Rachunku Prawdopodobieństwa II Podaj przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ,
Zadania z Rachunku Prawdopodobieństwa II -. Udowodnij, że dla dowolnych liczb x n, x, δ xn δ x wtedy i tylko wtedy, gdy x n x.. Wykaż, że n n k= δ k/n λ, gdzie λ jest miarą Lebesgue a na [, ].. Podaj przykład
Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w
3. Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ,
Zadania z Rachunku Prawdopodobieństwa II - Mówimy, że i) ciąg miar probabilistycznych µ n zbiega słabo do miary probabilistycznej µ (ozn. µ n µ), jeśli fdµ n fdµ dla dowolnej funkcji ciągłej ograniczonej
Elementy modelowania matematycznego
Elementy modelowania matematycznego Łańcuchy Markowa: zagadnienia graniczne. Ukryte modele Markowa. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ KLASYFIKACJA STANÓW Stan i jest osiągalny
Zbigniew S. Szewczak Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki. Graniczne własności łańcuchów Markowa
Zbigniew S. Szewczak Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Graniczne własności łańcuchów Markowa Toruń, 2003 Co to jest łańcuch Markowa? Każdy skończony, jednorodny łańcuch Markowa
Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku.
Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku. Uogólnienie na przeliczalnie nieskończone przestrzenie stanów zostało opracowane
c. dokładnie 10 razy została wylosowana kula antracytowa, ale nie za pierwszym ani drugim razem;
05DRAP - Niezależność zdarzeń, schemat Bernoulliego A Zadania na ćwiczenia Zadanie A.. Niech Ω = {ω, ω 2, ω, ω, ω 5 } i P({ω }) = 8, P({ω 2}) = P({ω }) = P({ω }) = 6 oraz P({ω 5}) = 5 6. Niech A = {ω,
p k (1 p) n k. k c. dokładnie 10 razy została wylosowana kula amarantowa, ale nie za pierwszym ani drugim razem;
05DRAP - Niezależność zdarzeń, schemat Bernoulliego Definicja.. Zdarzenia A i B nazywamy niezależnymi, jeżeli zachodzi równość P(A B) = P(A) P(B). Definicja. 2. Zdarzenia A,..., A n nazywamy niezależnymi
Seria 1. Zbieżność rozkładów
Seria Zbieżność rozkładów We wszystkich poniższych zadaniach (E, ρ) jest przestrzenią metryczną Wykazać, że dla dowolnych x, x n, δ xn δ x wtedy i tylko wtedy, gdy x n x Sprawdzić, że n nk= δ k n λ, gdzie
Podstawy nauk przyrodniczych Matematyka
Podstawy nauk przyrodniczych Matematyka Elementy rachunku prawdopodobieństwa dr inż. Małgorzata Szeląg Zakład Genetyki Molekularnej Człowieka tel. 61 829 59 04 malgorzata.szelag@amu.edu.pl Pokój 1.118
Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018
Katedra Matematyki i Ekonomii Matematycznej SGH 16 października 2018 Definicja σ-algebry Definicja Niech Ω oznacza zbiór niepusty. Rodzinę M podzbiorów zbioru Ω nazywamy σ-algebrą (lub σ-ciałem) wtedy
Zmienne losowe i ich rozkłady
Zmienne losowe i ich rozkłady 29 kwietnia 2019 Definicja: Zmienną losową nazywamy mierzalną funkcję X : (Ω, F, P) (R n, B(R n )). Definicja: Niech A będzie zbiorem borelowskim. Rozkładem zmiennej losowej
Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova
Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova M. Czoków, J. Piersa 2010-12-21 1 Definicja Własności Losowanie z rozkładu dyskretnego 2 3 Łańcuch Markova Definicja Własności Losowanie z rozkładu
i=7 X i. Zachodzi EX i = P(X i = 1) = 1 2, i {1, 2,..., 11} oraz EX ix j = P(X i = 1, X j = 1) = 1 7 VarS 2 2 = 14 3 ( 5 2 =
Kombinatoryka W tej serii zadań można znaleźć pojawiające się na egzaminach zadania dotyczące problemu wyznaczania prostych parametrów rozkładu w przypadku zgadnień kombinatorycznych. Zadania te wymagają
Spacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =
Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x
Prawdopodobieństwo zadania na sprawdzian
Prawdopodobieństwo zadania na sprawdzian Zad. 1. Zdarzenia A, B, C oznaczają, że wzięto co najmniej po jednej książce odpowiednio z pierwszych, drugich i trzecich dzieł zebranych. Każde z dzieł zebranych
Laboratorium nr 7. Zmienne losowe typu skokowego.
Laboratorium nr 7. Zmienne losowe typu skokowego.. Zmienna losowa X ma rozkład dany tabelką: - 0 3 0, 0,3 0, 0,3 0, Naszkicować dystrybuantę zmiennej X. Obliczyć EX oraz VarX.. Zmienna losowa ma rozkład
Deska Galtona. Adam Osękowski. Instytut Matematyki, Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski
a schemat Bernoulliego Instytut Matematyki, Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski XV Festiwal Nauki, 21 września 2011r. a schemat Bernoulliego Schemat Bernoulliego B(n, p)
Ćwiczenia z metodyki nauczania rachunku prawdopodobieństwa
Ćwiczenia z metodyki nauczania rachunku prawdopodobieństwa 25 marca 209 Zadanie. W urnie jest b kul białych i c kul czarnych. Losujemy n kul bez zwracania. Jakie jest prawdopodobieństwo, że pierwsza kula
19 marzec, Łańcuchy Markowa z czasem dyskretnym. Procesy Stochastyczne, wykład 6, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136
Procesy Stochastyczne, wykład 6, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 19 marzec, 2012 Przykłady procesów Markowa (i). P = (p ij ) - macierz stochastyczna, tzn. p ij 0, j p ij =
c) ( 13 (1) (2) Zadanie 2. Losując bez zwracania kolejne litery ze zbioru AAAEKMMTTY, jakie jest prawdopodobieństwo Odp.
Zadania na kolokwium nr Zadanie. Spośród kart w tali wylosowano. Jakie jest prawdopodobieństwo: pików, kierów, trefli i karo otrzymania wszystkich kolorów otrzymania dokładnie pików a ( b ( ( c ( ( ( (
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.1. Zmienne losowe dyskretne. Katarzyna Rybarczyk-Krzywdzińska Definicja/Rozkład Zmienne losowe dyskretne Definicja Zmienną losową, która skupiona
L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 2 ZADANIA - ZESTAW 2
ZADANIA - ZESTAW 2 Zadanie 2.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 1 0 2 p k 1/ 1/6 1/2 a) wyznaczyć dystrybuantę tej zmiennej losowej i naszkicować jej wykres, b) obliczyć
Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa
Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego
Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:
Metody probabilistyczne
Metody probabilistyczne. Twierdzenia graniczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 20.2.208 / 26 Motywacja Rzucamy wielokrotnie uczciwą monetą i zliczamy
WYKŁAD 3. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki
WYKŁAD 3 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Schemmat Bernouliego Rzucamy 10 razy moneta, próba Bernouliego jest pojedynczy
Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i )
Rachunek prawdopodobieństwa - Teoria - Przypomnienie Podstawy Definicja 1. Schemat klasyczny - wszystkie zdarzenia elementarne są równo prawdopodobne, licząc prawdopodobieństwo liczymy stosunek liczby
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i
Rachunek prawdopodobieństwa
Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry
02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w
02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w A Zadania na ćwiczenia Zadanie A.1. Niech Ω = R oraz F będzie σ-ciałem generowanym przez rodzinę wszystkich przedziałów otwartych typu (,
ZADANIA - ZESTAW 2. Zadanie 2.1. Wyznaczyć m (n)
ZADANIA - ZESTAW Zadaie.. Wyzaczyć m (), D ( ) dla procesu symetryczego (p = q =,) błądzeia przypadkowego. Zadaie.. Narysuj graf łańcucha Markowa symetrycze (p = q =,) błądzeie przypadkowe z odbiciem.
Zmienna losowa. Rozkład skokowy
Temat: Zmienna losowa. Rozkład skokowy Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga * - materiał nadobowiązkowy Anna Rajfura, Matematyka i statystyka matematyczna na kierunku Rolnictwo SGGW 1 Zagadnienia
Zadanie 2. Wiadomo, że A, B i C są trzema zdarzeniami losowymi takimi, że P (A) = 2/5, P (B A) = 1/4, P (C A B) = 0.5, P (A B) = 6/10, P (C B) = 1/3.
Zadanie 1. O zdarzeniach A, B, C z pewnej przestrzeni uzyskaliśmy informacje, iż P (A B C) = 0.6, P (B A C) = 0.3 oraz P (C A B) = 0.9. Obliczyć P [A B C (A B) (A C) (B C)]. Odp. 9/37 Zadanie 2. Wiadomo,
07DRAP - Zmienne losowe: dyskretne i ciągłe
07DRAP - Zmienne losowe: dyskretne i ciągłe Słynne rozkłady dyskretne Rozkład parametry P (X = k dla k = E(X Var(X uwagi ( dwumianowy n, p n k p k ( p n k 0,,, n np np( p liczba sukcesów w n próbach Bernoulliego
Wersja testu A 18 czerwca 2012 r. x 2 +x dx
1. Funkcja f : R R jest różniczkowalna na całej prostej, a ponadto dla każdej liczby rzeczywistej x zachodzi nierówność f x
MODELE STOCHASTYCZNE Plan wykładu
UNIWERSYTET WROCŁAWSKI Wydział Matematyki i Informatyki Instytut Matematyczny M.Majsnerowska rok akademicki 2018/2019 MODELE STOCHASTYCZNE Plan wykładu 1. Łańcuchy Markowa 1.1. Podstawowe pojęcia i przykłady
Matlab. modelowanie prostych eksperymentów losowych. Wykorzystanie funkcji rand - generatora liczb losowych, w który wyposaŝony jest MATLAB.
Matlab modelowanie prostych eksperymentów losowych WYK.PAWEŁ DĘBEK ETI 9.1 Wykorzystanie funkcji rand - generatora liczb losowych, w który wyposaŝony jest MATLAB. WPROWADZENIE Najprościej mówiąc, wywołanie
Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń
Agata Boratyńska Ćwiczenia z rachunku prawdopodobieństwa 1 Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń UWAGA:
Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład
Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem
51. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń.
Matematyka lekcja 5 5. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń. I. rzypomnij sobie:. Jak rysujemy drzewo stochastyczne i przy jego pomocy obliczamy prawdopodobieństwo
Zadania z RP 2. seria Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n
Zadania z RP 2. seria 1. 1. Dla x R n, niech δ x oznacza miarę Diraca, skupioną w punkcie x. Wykazać, że dla dowolnego ciągu x n R n zachodzi δ xn δ x wtedy i tylko wtedy, gdy x n x. 2. Podać przykład
Ruletka czy można oszukać kasyno?
23 stycznia 2017 Ruletka czy można oszukać kasyno? M. Dworak, K. Maraj, S. Michałowski Plan prezentacji Podstawy ruletki System dwójkowy (Martingale) Czy system rzeczywiście działa? 1/22 Podstawy ruletki
Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń
Agata Boratyńska Ćwiczenia z rachunku prawdopodobieństwa 1 Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń UWAGA:
Rozkłady prawdopodobieństwa zmiennych losowych
Rozkłady prawdopodobieństwa zmiennych losowych Rozkład dwumianowy Rozkład normalny Marta Zalewska Zmienna losowa dyskretna (skokowa) jest to zmienna, której zbór wartości jest skończony lub przeliczalny.
L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω)
ZADANIA - ZESTAW 1 Zadanie 1.1 Rzucamy trzy razy monetą. A i - zdarzenie polegające na tym, że otrzymamy orła w i - tym rzucie. Określić zbiór zdarzeń elementarnych. Wypisać zdarzenia elementarne sprzyjające
Prawdopodobieństwo
Prawdopodobieństwo http://www.matemaks.pl/ Wstęp do rachunku prawdopodobieństwa http://www.matemaks.pl/wstep-do-rachunku-prawdopodobienstwa.html Rachunek prawdopodobieństwa pomaga obliczyć szansę zaistnienia
Matematyczne Podstawy Kognitywistyki
Matematyczne Podstawy Kognitywistyki Dorota Leszczyńska-Jasion Kombinatoryka, ci agi liczbowe, skończone przestrzenie probabilistyczne Przykłady zagadnień kombinatorycznych Rozważmy układ n miast o bardzo
P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)
Wykład 3 Niezależność zdarzeń, schemat Bernoulliego Kiedy dwa zdarzenia są niezależne? Gdy wiedza o tym, czy B zaszło, czy nie, NIE MA WPŁYWU na oszacowanie prawdopodobieństwa zdarzenia A: P (A B) = P
( n) Łańcuchy Markowa X 0, X 1,...
Łańcuchy Markowa Łańcuchy Markowa to rocesy dyskretne w czasie i o dyskretnym zbiorze stanów, "bez amięci". Zwykle będziemy zakładać, że zbiór stanów to odzbiór zbioru liczb całkowitych Z lub zbioru {,,,...}
Układy stochastyczne
Instytut Informatyki Uniwersytetu Śląskiego 21 stycznia 2009 Definicja Definicja Proces stochastyczny to funkcja losowa, czyli funkcja matematyczna, której wartości leżą w przestrzeni zdarzeń losowych.
Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład 1
Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład dr Mariusz Grządziel 5 lutego 04 Paradoks Zenona z Elei wersja uwspółcześniona Zenek goni Andrzeja; prędkość Andrzeja:
PRAWDOPODOBIEŃSTWO CZAS PRACY: 180 MIN. ZADANIE 1 (5 PKT) NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI
IMIE I NAZWISKO PRAWDOPODOBIEŃSTWO PRAWDOPODOBIEŃSTWO CZAS PRACY: 180 MIN. SUMA PUNKTÓW: 100 ZADANIE 1 (5 PKT) Rzucono dwiema sześciennymi kostkami do gry i określono zdarzenia A na każdej kostce wypadła
Wstęp do rachunku prawdopodobieństwa. Cz. 1 / William Feller. wyd. 6, dodr. 4. Warszawa, Spis treści
Wstęp do rachunku prawdopodobieństwa. Cz. 1 / William Feller. wyd. 6, dodr. 4. Warszawa, 2012 Spis treści Od Wydawnictwa 5 Z przedmowy autora do wydania pierwszego 7 Z przedmowy autora do wydania drugiego
Procesy stochastyczne
Wykład IV: dla łańcuchów Markowa 14 marca 2017 Wykład IV: Klasyfikacja stanów Kiedy rozkład stacjonarny jest jedyny? Przykład Macierz jednostkowa I wymiaru #E jest macierzą stochastyczną. Dla tej macierzy
Rachunek prawdopodobieństwa- wykład 2
Rachunek prawdopodobieństwa- wykład 2 Pojęcie dyskretnej przestrzeni probabilistycznej i określenie prawdopodobieństwa w tej przestrzeni dr Marcin Ziółkowski Instytut Matematyki i Informatyki Uniwersytet
P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt.
P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. Lekcja 2 Temat: Podstawowe pojęcia związane z prawdopodobieństwem. Str. 10-21 1. Doświadczenie losowe jest to doświadczenie,
Obliczanie prawdopodobieństwa za pomocą metody drzew metoda drzew. Drzewem Reguła iloczynów. Reguła sum.
Obliczanie prawdopodobieństwa za pomocą metody drzew Jeżeli doświadczenie losowe składa się z więcej niż jednego etapu, takich jak serie rzutów kostką lub monetą, zastosowanie klasycznej definicji prawdopodobieństwa
rachunek prawdopodobieństwa - zadania
rachunek prawdopodobieństwa - zadania ogólna definicja prawdopodobieństwa, własności - 6.10.2012 1. (d, 1pkt) Udowodnić twierdzenie 2 tj. własności prawdopodobieństwa (W1)-(W7). 2. Niech Ω = [0,1] oraz
Wykład 11: Martyngały: definicja, twierdzenia o zbieżności
RAP 412 14.01.2009 Wykład 11: Martyngały: definicja, twierdzenia o zbieżności Wykładowca: Andrzej Ruciński Pisarz:Mirosława Jańczak 1 Wstęp Do tej pory zajmowaliśmy się ciągami zmiennych losowych (X n
ćwiczenia z rachunku prawdopodobieństwa
ćwiczenia z rachunku prawdopodobieństwa 9.10.2010 ogólna definicja prawdopodobieństwa, własności 1. Niech Ω = [0, 1] oraz niech Σ będzie pewną σ-algebrą podzbiorów odcinka [0, 1]. Udowodnić, że funkcja
Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 14 Zadania statystyka, prawdopodobieństwo i kombinatoryka
1 TEST WSTĘPNY 1. (1p) Zestaw danych 3, 5, x, 7, 10, 12 jest uporządkowany niemalejąco. Mediana tego zestawu jest równa 6, więc liczba x jest równa A. 7 B. 6 C. 5 D. 4 2. (2p) Średnia arytmetyczna liczb:
a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.);
03DRAP - Przykłady przestrzeni probabilistycznych A Zadania na ćwiczenia Zadanie A1 (wskazówka: pierwsze ćwicznia i rozdział 23 przykł 1 i 2) Zbuduj model przestrzeni klasycznej (czyli takiej, w której
RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub
RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub 1. W grupie jest 15 kobiet i 18 mężczyzn. Losujemy jedną osobę
KURS PRAWDOPODOBIEŃSTWO
KURS PRAWDOPODOBIEŃSTWO Lekcja 4 Prawdopodobieństwo całkowite i twierdzenie Bayesa. Drzewko stochastyczne. Schemat Bernoulliego. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź
Prawdopodobieństwo GEOMETRYCZNE
Prawdopodobieństwo GEOMETRYCZNE Zadanie 1. Skoczek spadochronowy skacze nad kwadratową wyspą o boku 20km. Na środku wyspy znajduje się prostokątne lądowisko o wymiarach 2x3 km. Jakie jest prawdopodobieństwo,
Zadania zestaw 1: Zadania zestaw 2
Zadania zestaw 1: Zadania zestaw 2 Zadania zestaw 3. 1 Rozkład zmiennej losowej skokowej X przedstawia tabela. x i m 0 n p i 0,4 0,3 0,3 a) Wyznacz m i n jeśli: są całkowite, m
= A. A - liczba elementów zbioru A. Lucjan Kowalski
Lucjan Kowalski ZADANIA, PROBLEMY I PARADOKSY W PROBABILISTYCE Przypomnienie. Ω - zbiór zdarzeń elementarnych. A zdarzenie (podzbiór Ω). A - liczba elementów zbioru A Jeśli zdarzeń elementarnych jest skończenie
Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru
a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.);
03DRAP - Przykłady przestrzeni probabilistycznych Definicja 1 Przestrzeń probabilistyczna to trójka (Ω, F, P), gdzie Ω zbiór zdarzeń elementarnych, F σ ciało zdarzeń (podzbiorów Ω), P funkcja prawdopodobieństwa/miara
Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa
Po co nam matematyka? 7 kwietnia 2016 Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Empik
Statystyka podstawowe wzory i definicje
1 Statystyka podstawowe wzory i definicje Średnia arytmetyczna to suma wszystkich liczb (a 1, a 2,, a n) podzielona przez ich ilość (n) Przykład 1 Dany jest zbiór liczb {6, 8, 11, 2, 5, 3}. Oblicz średnią
Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast
Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa
Kampus Ochota 18 kwietnia 2015 Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Andrey (Andrei)
c) Zaszły oba zdarzenia A i B; d) Zaszło zdarzenie A i nie zaszło zdarzenie B;
Rachunek prawdopodobieństwa rozwiązywanie zadań 1. Rzucamy dwa razy symetryczną sześcienną kostką do gry. Zapisujemy liczbę oczek, jakie wypadły w obu rzutach. Wypisz zdarzenia elementarne tego doświadczenia.
Moneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( )
Nowa matura kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Doświadczenie losowe polega na rzucie dwiema symetrycznymi monetami i sześcienną kostką do gry. Prawdopodobieństwo
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I GEOMETRIA ANALITYCZNA 1. Równanie prostej w postaci ogólnej i kierunkowej powtórzenie 2. Wzajemne położenie dwóch prostych powtórzenie
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 4 / 9 Przekształcenia zmiennej losowej X
Rachunek Prawdopodobieństwa i Statystyka Matematyczna
Rachunek rawdopodobieństwa i Statystyka Matematyczna rowadzący: prof. dr hab. inż. Ireneusz Jóźwiak Zestaw nr. Opracowanie: Grzegorz Drzymała 4996 Grzegorz Dziemidowicz 49965 drian Gawor 49985 Zadanie..
DODATKOWA PULA ZADAŃ DO EGZAMINU. Rozważmy ciąg zdefiniowany tak: s 0 = a. s n+1 = 2s n +b (dla n=0,1,2 ) Pokaż, że s n = 2 n a +(2 n =1)b
DODATKOWA PULA ZADAŃ DO EGZAMINU Rozważmy ciąg zdefiniowany tak: s 0 = a s n+1 = 2s n +b (dla n=0,1,2 ) Pokaż, że s n = 2 n a +(2 n =1)b Udowodnij, że liczba postaci 5 n+1 +2 3 n +1 jest podzielna przez
Rachunek prawdopodobieństwa i statystyka
Rachunek prawdopodobieństwa i statystyka Przestrzeń probabilistyczna Niech Ω będzie dowolnym zbiorem, zwanym przestrzenią zdarzeń elementarnych. Elementy ω tej przestrzeni nazywamy zdarzeniami elementarnymi.
Rachunek prawdopodobieństwa w grach losowych.
Rachunek prawdopodobieństwa w grach losowych. Lista zawiera kilkadziesiąt zadań dotyczących różnych gier z użyciem kart i kości, w tym tych najbardziej popularnych jak brydż, tysiąc itp. Kolejne zadania
Kombinatoryka i rachunek prawdopodobieństwa (rozszerzenie)
Kombinatoryka i rachunek prawdopodobieństwa (rozszerzenie) (1) Ile liczb czterocyfrowych można utworzyć używając jedynie cyfr 1,2,3,4,5,6,7,8? (2) Ile liczb czterocyfrowych o różnych cyfrach można utworzyć
KURS PRAWDOPODOBIEŃSTWO
KURS PRAWDOPODOBIEŃSTWO Lekcja 3 Definicja prawdopodobieństwa Kołmogorowa. Prawdopodobieństwa warunkowe i niezależne. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko
Zmienna losowa (wygrana w pojedynczej grze): (1, 0.5), ( 1, 0.5)
Przykład 0. Gra polega na jednokrotnym rzucie symetryczną monetą, przy czym wygrywamy 1 jeżeli wypadnie orzeł oraz przegrywamy 1 jeżeli wypadnie reszka. Nasz początkowy kapitał wynosi 5. Jakie jest prawdopodobieństwo,
Matematyk Ci powie, co łączy Eugeniusza Oniegina i gry hazardowe
Matematyk Ci powie, co łączy Eugeniusza Oniegina i gry hazardowe Empik każdego inspiruje inaczej Aleksander Puszkin (1799 1837) Andrey (Andrei) Andreyevich Markov (1856 1922) Wśród 20 tysięcy początkowych
3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B
1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =
dr Jarosław Kotowicz 14 października Zadania z wykładu 1
Rachunek prawdopodobieństwa - ćwiczenia drugie Prawdopodobieństwo warunkowe i całkowite. Wzór Bayesa. Zdarzenia niezależne. kierunek: informatyka i ekonometria I dr Jarosław Kotowicz 14 października 2011
Metody Probabilistyczne zestaw do ćwiczeń Katarzyna Lubnauer
Metody Probabilistyczne zestaw do ćwiczeń Katarzyna Lubnauer Model klasyczny prawdopodobieństwa.losowo ustawiam w szeregu klocki z literami MMAAATTYKE. Opisać przestrzeń zdarzeń elementarnych i obliczyć
EGZAMIN DYPLOMOWY, część II, Biomatematyka
Biomatematyka Niech a będzie recesywnym płciowo skojarzonym genem i załóżmy, że proces selekcji uniemożliwia kojarzenie się osobników płci męskiej o genotypie aa. Przyjmijmy, że genotypy AA, Aa i aa występują
Skrypt 30. Prawdopodobieństwo
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 30 Prawdopodobieństwo 5.