Wykład 11: Martyngały: definicja, twierdzenia o zbieżności
|
|
- Mariusz Nowakowski
- 5 lat temu
- Przeglądów:
Transkrypt
1 RAP Wykład 11: Martyngały: definicja, twierdzenia o zbieżności Wykładowca: Andrzej Ruciński Pisarz:Mirosława Jańczak 1 Wstęp Do tej pory zajmowaliśmy się ciągami zmiennych losowych (X n ) o pewnej strukturze zależności. Ciąg zmiennych losowych niezależnych stanowi tu szczególny przypadek. Badaliśmy pewne własności łańcuchów Markowa, tj. takich ciągów zmiennych losowych, dla których kolejny wyraz zależał wyłącznie od poprzedniego (tzw. własność zaniku pamięci). Kolejny wykład ma na celu przestawienie nowej struktury zależności dla ciągów zmiennych losowych, jaką określają martyngały. Pierwsza część wykładu poświęcona jest przypomnieniu wiadomości na temat warunkowej wartości oczekiwanej. Zawiera ona definicję oraz kilka podstawowych twierdzeń. W kolejnej części wprowadzone zostaje pojęcie martyngału. Przedstawiono tu również kilka przykładów. Ostatnia, trzecia część wykładu dotyczy twierdzeń o zbieżności martyngałów. 2 Warunkowa wartość oczekiwana 2.1 Przypadek jednowymiarowy Rozważania dotyczące warunkowej wartości oczekiwanej ograniczone zostaną do zmiennych losowych dyskretnych. Definicja 1. Warunkową wartością oczekiwaną zmiennej losowej Y pod warunkiem X = x nazywamy liczbę ψ(x) określoną następująco: ψ(x) = E(Y X = x) = y yp (Y = y X = x) Zauważmy, że ψ(x) jest pewną funkcją zmiennej losowej X. Zatem ψ(x) jest również zmienną losową. Oznaczamy ją ψ(x) = E(Y X). Wartość oczekiwana tak określonej zmiennej losowej jest równa E(Y ). Twierdzenie 1. E(ψ(X)) = E(Y ) Dowód. E(ψ(X)) = ψ(x)p X (x) = x x = yp X,Y (x, y) = y x y y x yp Y X (y x)p X (x) = y p X,Y (x, y) = yp Y (y) = E(Y ). y Powyższe twierdzenie można uogólnić: Twierdzenie 2. E(ψ(X)g(X)) = E(Y g(x)) Dowód tego faktu przebiega analogicznie. 11-1
2 2.2 Przypadek wielowymiarowy Zajmiemy się teraz przypadkiem, gdy zmienna losowa X jest postaci X = (X 1, X 2,..., X n ). Lemat 1. Zachodzą następujące własności: a) E(Y 1 + Y 2 X) = E(Y 1 X) + E(Y 2 X), b) E(Y g(x)) = g(x)e(y X), c) Jeśli h jest funkcją różnowartościową, to E(Y h(x)) = E(Y X). Lemat 2. (Własność wieżowa.) E[E(Y X 1, X 2 ) X 1 ] = E(Y X 1 ). A. Zdefiniujemy teraz warunkową wartość oczekiwaną zmiennej losowej Y względem zdarzenia Definicja 2. Niech (Ω, F, P) będzie przestrzenią probabilistyczną, na której określone są zmienne losowe X oraz Y. Warunkową wartością oczekiwaną zmiennej losowej Y względem zdarzenia A F nazywamy liczbę E(Y A) = y yp(y = y A), gdzie P(Y = y A) = P(Y = y {X(ω) : ω A}). Mamy { E(Y A) gdy ω A E(Y I A ) = E(Y A c ) gdy ω / A. Zatem E(Y I A ) jest zmienną losową dwupunktową. Ponadto zachodzi zależność: E(I B A) = P(B A). Lemat 3. Niech A będzie zdarzeniem oraz niech A = n B i, gdzie B i F są zdarzeniami parami rozłącznymi. Wówczas E(Y A)P(A) = E(Y B i )P(B i ). W szczególności, gdy A = Ω dostajemy uogólnienie wzoru na prawdopodobieństwo całkowite: E(Y ) = E(Y B i )P(B i ). Podstawiając w powyższym wzorze Y = I C otrzymujemy znany wzór: P(C) = E(I C ) = E(I C B i )P(B i ) = P(C B i )P(B i ). 11-2
3 Dowód. Z części b) lematu (1) dostajemy: Mamy zatem E(Y I A ) = E(Y A)P(A). E(Y I A ) = E(Y i I Bi ) = i E(Y I Bi ) = i E(Y B i )P(B i ). Definicja 3. Niech (Ω, F, P) będzie przestrzenią probabilistyczną, G F pod σ-ciałem σ- ciała F. Niech ponadto Y : Ω R będzie zmienną losową taką, że EY 2 <. G mierzalną zmienną losową Z nazywamy warunkową wartością oczekiwaną względem G, jeżeli E((Y Z)I G ) = 0 dla każdego G G. Oznaczamy ją Z = E(Y G). 3 Martyngały, definicja i przykłady W tej części wykładu wprowadzona zostanie definicja martyngału oraz podanych będzie kilka przykładów. Definicja 4. Ciąg (S n ) zmiennych losowych (skończony lub nie) jest martyngałem względem ciągu (X n ), jeżeli a) E S n <, b) E(S n+1 X 1, X 2,..., X n ) = S n. Martyngał określa zatem tzw. grę sprawiedliwą w takim sensie, że średnia wygrana w chwili n + 1, gdy znany jest przebieg gry do chwili n, jest równa S n, czyli łącznej wygranej w chwili n. Często definiuje się S n = X n lub określa się S n jako pewną funkcją X n, tj. S n = φ(x n ) (z definicji natomiast mamy S n = φ(x 1, X 2,..., X n ). Przykład 1. Niech X 1, X 2,... będą zmiennymi losowymi niezależnymi takimi, że E(X i ) = 0 oraz E X i <. Zdefiniujmy Zachodzi zależność S n = X 1 + X X n. E(S n+1 X 1, X 2,..., X n ) = E(S n X 1, X 2,..., X n )+E(X n+1 X 1, X 2,..., X n ) = S n +E(X n+1 ) = S n. (S n ) jest zatem martyngałem względem ciągu (X n ). Przykład 2. Do warunków z poprzedniego przykładu dodajmy V ar(x i ) <. Niech T n = S 2 n. Mamy E(T n+1 X 1, X 2,..., X n ) = T n + 2E(X n+1 )E(S n X 1, X 2,..., X n ) + E(X 2 n+1) T n. T n nie jest zatem martyngałem względem ciągu (X n ). Gdy spełniony jest taki rodzaj zależności, mówimy, że T n jest supermartyngałem względem ciągu (X n ). 11-3
4 Przykład 3. Rozważmy prosty spacer losowy, dla którego P(X n = 1) = p, P(X n = 1) = q. Niech S 0 = 0 oraz S n = X i. Sprawdźmy, czy S n jest martyngałem względem X n. Mamy S n n. Stąd E S n <. Ponadto E(S n+1 X 1, X 2,..., X n ) = S n + p q. Zatem S n nie jest martyngałem. Zdefiniujmy ciąg (Y n ) następująco: Wtedy E Y n < oraz Y n = S n E(S n ) = S n n(p q). E(Y n+1 X 1, X 2,..., X n ) = S n + p q (n + 1)(p q) = S n n(p q) = Y n, czyli (Y n ) jest martyngałem względem ciągu (X n ). Przykład 4. Rozważmy pewną grę. Niech S 0 oznacza kapitał początkowy, S n kapitał po n grach. Gra jest sprawiedliwa w potocznym sensie, gdy E(S n+1 S 0, S 1,..., S n ) = S n, czyli ciąg (S n ) jest martyngałem względem samego siebie. Załóżmy, że gracz stosuje strategię podwajania stawki po każdej przegranej. Gra natomiast do czasu uzyskania pierwszego sukcesu. Z prawdopodobieństwem równym 1 strategia ta przynosi sukces, tzn. gracz zyskuje dokładnie 1. Zastanowimy się teraz jaki powinien być kapitał początkowy gracza, aby odniósł on sukces z prawdopodobieństwem 1. Niech L będzie zmienną losową określającą łączną przegraną do momentu pierwszej wygranej, N natomiast niech oznacza liczbę odbytych gier. N jest zmienną losową o rozkładzie geometrycznym z parametrem 1/2 (Wtedy E(n) = 2.) Mamy: ( ) 1 n 1 E(L) = E(E(L N)) = ( n 2 ) =. n=2 Zatem, aby wygrać z prawdopodobieństwem równym jeden należy przyjść z nieskończenie wielkim kapitałem początkowym. Strategia podwajania stawki określa historycznie pierwszy martyngał. Przykład 5. Określimy teraz dwa martyngały na bazie procesu gałązkowego, gdzie Z 0 = 1 oznacza pierwszego przodka oraz Z n dla n 1 są liczebnościami kolejnych pokoleń. a) Mamy E(Z n+1 Z n = z n ) = z n µ, gdzie µ = E(Z 0 ). Stąd E(Z n+1 Z 1, Z 2,..., Z n ) = E(Z n+1 Z n ) = µz n. Ponadto E(Z n ) = µ n. Zdefiniujmy W n = Z n µ n. 11-4
5 Wówczas E(W n+1 Z 1, Z 2,..., Z n ) = µz n µ n = W n i (W n ) jest martyngałem względem (Z n ). b) Niech η będzie prawdopodobieństwem wyginięcia procesu gałązkowego. Wtedy ciąg (V n ) określony następująco: V n = η Zn jest martyngałem względem (Z n ). 4 Twierdzenia o zbieżności martyngałów Na początku tej części wykładu przypomnimy definicje kilku typów zbieżności zmiennych losowych. Definicja 5. Mówimy, że X n dąży do X z prawdopodobieństwem jeden, jeżeli Zapisujemy X n X. P({ω : lim n X n(ω) = X(ω)}) = 1. Definicja 6. X n zbiega do X według r-tego momentu, gdy E(X n ) r < oraz Stosujemy oznaczenie X n r X. lim E( X n X r ) = 0. n Fakt 1. Jeżeli r s, to X n r X Xn X. Twierdzenie 3. (O zbieżności martyngałów.) Niech (S n ) będzie martyngałem oraz E(Sn) 2 <. Istnieje wówczas zmienna losowa S taka, że S oraz S n S n 2 S. Wniosek 1. (Mocne prawo wielkich liczb) Niech X 1, X 2,..., X n będą zmiennymi losowymi niezależnymi o takich samych rozkładach. Niech S n = X 1 + X X n. Wtedy Wówczas µ = E(X 1 ). µ R : S n n µ E X 1 <. 11-5
6 Dowód. Załóżmy bez straty ogólności, że µ = 0. Zdefiniujmy zmienną losową S n = X i i. Wtedy S n+1 = S n + X n+1 n + 1. (S n) jest martyngałem względem (X n ). Z twierdzenia (3) wiemy, że istnieje zmienna losowa S taka, że S n S. Stąd dostajemy, że X i i < z prawdopodobieństwem jeden. Z lematu Kroneckera otrzymujemy zatem X i i = S n n 0. Lemat 4. Kroneckera. Jeżeli (b n ) jest ciągiem monotonicznie rosnącym do nieskończoności oraz a i b i n lim a i = 0. n b n W twierdzeniu powyżej stosujemy lemat podstawiając: b n := n, a i := X i. Twierdzenie 4. (Nierówność Dooba-Kołmogorowa) Jeżeli (S n ) jest martyngałem względem (X n ), to P( max 1 i n S i ε) E(S2 n) ε 2. <, to 11-6
Wykład 11: Martyngały: Twierdzenie o zbieżności i Hoeffdinga
RAP 412 21.01.2009 Wykład 11: Martyngały: Twierdzenie o zbieżności i Hoeffdinga Wykładowca: Andrzej Ruciński Pisarz: Łukasz Waszak 1 Wstęp Na ostatnim wykładzie przedstawiliśmy twierdzenie o zbieżności
Bardziej szczegółowoMetody probabilistyczne
Metody probabilistyczne. Twierdzenia graniczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 20.2.208 / 26 Motywacja Rzucamy wielokrotnie uczciwą monetą i zliczamy
Bardziej szczegółowoWykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.
Rachunek prawdopodobieństwa MAT1332 Wydział Matematyki, Matematyka Stosowana Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Warunkowa
Bardziej szczegółowo8 Całka stochastyczna względem semimartyngałów
M. Beśka, Całka Stochastyczna, wykład 8 148 8 Całka stochastyczna względem semimartyngałów 8.1 Całka stochastyczna w M 2 Oznaczmy przez Ξ zbiór procesów postaci X t (ω) = ξ (ω)i {} (t) + n ξ i (ω)i (ti,
Bardziej szczegółowoMetody probabilistyczne
Metody probabilistyczne 6. Momenty zmiennych losowych Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 8.11.2018 1 / 47 Funkcje zmiennych losowych Mierzalna funkcja Y
Bardziej szczegółowoPrawa wielkich liczb, centralne twierdzenia graniczne
, centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne
Bardziej szczegółowoRozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład
Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem
Bardziej szczegółowoWykład 2 Zmienne losowe i ich rozkłady
Wykład 2 Zmienne losowe i ich rozkłady Magdalena Frąszczak Wrocław, 11.10.2017r Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe Doświadczenie
Bardziej szczegółowo2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.
Zadania z Procesów Stochastycznych 1 1. Udowodnij, że z prawdopodobieństwem 1 trajektorie procesu Poissona są niemalejące, przyjmują wartości z Z +, mają wszystkie skoki równe 1 oraz dążą do nieskończoności.
Bardziej szczegółowoZmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014
Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe
Bardziej szczegółowo4 Kilka klas procesów
Marek Beśka, Całka Stochastyczna, wykład 4 48 4 Kilka klas procesów 4.1 Procesy rosnące i przestrzenie V,, loc Jak poprzednio niech (Ω, F, F, P ) będzie zupełną bazą stochastyczną. Definicja 4.1 Proces
Bardziej szczegółowoRachunek Prawdopodobieństwa Rozdział 5. Rozkłady łączne
Rachunek Prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.0 Definicje Katarzyna Rybarczyk-Krzywdzińska Wprowadzenie Przykład 1 Bolek, Lolek i Tola wstąpili do kasyna. (A) Bolek postawił na czerwone, (B)
Bardziej szczegółowoRachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne
Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.3 Rozkłady warunkowe i warunkowa wartość oczekiwana Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Prawdopodobieństwo wyraża postawę
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Wykład IV: 27 października 2014 Współczynnik korelacji Brak korelacji a niezależność Definicja współczynnika korelacji Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i Y nazywamy
Bardziej szczegółowoPrzestrzeń probabilistyczna
Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty
Bardziej szczegółowoWykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.
Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.
Bardziej szczegółowoMNRP r. 1 Aksjomatyczna definicja prawdopodobieństwa (wykład) Grzegorz Kowalczyk
MNRP 18.03.2019r. Grzegorz Kowalczyk 1 Aksjomatyczna definicja prawdopodobieństwa (wykład) Definicja (σ - ciało) Niech Ω - dowolny zbiór. Rodzinę F P (Ω), gdzie P (Ω) jest rodziną wszystkich podzbiorów
Bardziej szczegółowoWYKŁAD 1. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Instytut Matematyki Uniwersytet Warszawski
WYKŁAD 1 Witold Bednorz, Paweł Wolff Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Wprowadzenie Gry hazardowe Wprowadzenie Gry hazardowe Klasyczna definicja prawdopodobieństwa.
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Wykład V: Zmienne losowe i ich wartości oczekiwane 25 października 2017 Definicja zmiennej losowej Definicja Zmienne losowa to charakterystyka liczbowa wyniku eksperymentu losowego. Zmienne losowa na przestrzeni
Bardziej szczegółowo3. Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ,
Zadania z Rachunku Prawdopodobieństwa II - Mówimy, że i) ciąg miar probabilistycznych µ n zbiega słabo do miary probabilistycznej µ (ozn. µ n µ), jeśli fdµ n fdµ dla dowolnej funkcji ciągłej ograniczonej
Bardziej szczegółowoRACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3.
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3. ZMIENNA LOSOWA JEDNOWYMIAROWA. Zmienną losową X nazywamy funkcję (praktycznie każdą) przyporządkowującą zdarzeniom elementarnym liczby rzeczywiste. X : Ω R (dokładniej:
Bardziej szczegółowoPEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA 1. Trójkę (Ω, F, P ), gdzie Ω, F jest σ-ciałem podzbiorów Ω, a P jest prawdopodobieństwem określonym na F, nazywamy przestrzenią probabilistyczną. 2. Rodzinę F
Bardziej szczegółowoRachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne
Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.2. Momenty rozkładów łącznych. Katarzyna Rybarczyk-Krzywdzińska rozkładów wielowymiarowych Przypomnienie Jeśli X jest zmienną losową o rozkładzie
Bardziej szczegółowoZadania z Rachunku Prawdopodobieństwa II Podaj przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ,
Zadania z Rachunku Prawdopodobieństwa II -. Udowodnij, że dla dowolnych liczb x n, x, δ xn δ x wtedy i tylko wtedy, gdy x n x.. Wykaż, że n n k= δ k/n λ, gdzie λ jest miarą Lebesgue a na [, ].. Podaj przykład
Bardziej szczegółowoRachunek prawdopodobieństwa Rozdział 4. Zmienne losowe
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.0. Rozkłady zmiennych losowych, dystrybuanta. Katarzyna Rybarczyk-Krzywdzińska Wprowadzenie Rozważmy eksperymenty 1 gra Bolka w ruletkę w kasynie;
Bardziej szczegółowoZadania z Rachunku Prawdopodobieństwa III - 1
Zadania z Rachunku Prawdopodobieństwa III - 1 Funkcją tworzącą momenty (transformatą Laplace a) zmiennej losowej X nazywamy funkcję M X (t) := Ee tx, t R. 1. Oblicz funkcję tworzącą momenty zmiennych o
Bardziej szczegółowo2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.
Zadania z Procesów Stochastycznych 1 1. Udowodnij, że z prawdopodobieństwem 1 trajektorie procesu Poissona są niemalejące, przyjmują wartości z Z +, mają wszystkie skoki równe 1 oraz dążą do nieskończoności.
Bardziej szczegółowoWykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja
Bardziej szczegółowoWykład 3 Jednowymiarowe zmienne losowe
Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej
Bardziej szczegółowoRachunek prawdopodobieństwa Rozdział 4. Zmienne losowe
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.4. Momenty zmiennych losowych Katarzyna Rybarczyk-Krzywdzińska Wprowadzenie Przykład 1 Rzucamy raz kostką Ile wynosi średnia liczba oczek, jaka
Bardziej szczegółowoRozkłady łaczne wielu zmiennych losowych
Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 3 Motywacje Przykłady sytuacji z kilkoma zmiennymi losowymi: Antropometria: wzrost, waga ciała i grubość skóry przedramienia
Bardziej szczegółowoWykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.
Rachunek prawdopodobieństwa MAP1181 Wydział PPT, MS, rok akad. 213/14, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.
Bardziej szczegółowoi=7 X i. Zachodzi EX i = P(X i = 1) = 1 2, i {1, 2,..., 11} oraz EX ix j = P(X i = 1, X j = 1) = 1 7 VarS 2 2 = 14 3 ( 5 2 =
Kombinatoryka W tej serii zadań można znaleźć pojawiające się na egzaminach zadania dotyczące problemu wyznaczania prostych parametrów rozkładu w przypadku zgadnień kombinatorycznych. Zadania te wymagają
Bardziej szczegółowoWYKŁAD 3. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki
WYKŁAD 3 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Schemmat Bernouliego Rzucamy 10 razy moneta, próba Bernouliego jest pojedynczy
Bardziej szczegółowoSpacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
Bardziej szczegółowo5 Przegląd najważniejszych rozkładów
5 Przegląd najważniejszych rozkładów 5. Rozkład Bernoulliego W niezmieniających się warunkach wykonujemy n razy pewne doświadczenie. W wyniku każdego doświadczenia może nastąpić zdarzenie A lub A. Zakładamy,
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Wykład VIII: Przestrzenie statystyczne. Estymatory 1 grudnia 2014 Wprowadzenie Przykład: pomiar z błędem Współczynnik korelacji r(x, Z) = 0, 986 Wprowadzenie Przykład: pomiar z błędem Współczynnik korelacji
Bardziej szczegółowoWYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 2 i 3 1 / 19 Zmienna losowa Definicja Dana jest przestrzeń probabilistyczna
Bardziej szczegółowoCentralne twierdzenie graniczne
Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 4 Ważne uzupełnienie Dwuwymiarowy rozkład normalny N (µ X, µ Y, σ X, σ Y, ρ): f XY (x, y) = 1 2πσ X σ Y 1 ρ 2 { [ (x ) 1
Bardziej szczegółowo7 Twierdzenie Fubiniego
M. Beśka, Wstęp do teorii miary, wykład 7 19 7 Twierdzenie Fubiniego 7.1 Miary produktowe Niech i będą niepustymi zbiorami. Przez oznaczmy produkt kartezjański i tj. zbiór = { (x, y : x y }. Niech E oraz
Bardziej szczegółowoPrawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018
Katedra Matematyki i Ekonomii Matematycznej SGH 16 października 2018 Definicja σ-algebry Definicja Niech Ω oznacza zbiór niepusty. Rodzinę M podzbiorów zbioru Ω nazywamy σ-algebrą (lub σ-ciałem) wtedy
Bardziej szczegółowoPrzykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru
Bardziej szczegółowo21 maja, Mocna własność Markowa procesu Wienera. Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126
Mocna własność Markowa procesu Wienera Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 21 maja, 2012 Mocna własność Markowa W = (W 1,..., W d ) oznaczać
Bardziej szczegółowoWażne rodziny nad- i podmartyngałów dla symetrycznego błądzenia losowego
Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki Joanna Dys Nr albumu: 233996 Ważne rodziny nad- i podmartyngałów dla symetrycznego błądzenia losowego Praca licencjacka na kierunku MATEMATYKA
Bardziej szczegółowoSzkice do zajęć z Przedmiotu Wyrównawczego
Szkice do zajęć z Przedmiotu Wyrównawczego Matematyka Finansowa sem. letni 2011/2012 Spis treści Zajęcia 1 3 1.1 Przestrzeń probabilistyczna................................. 3 1.2 Prawdopodobieństwo warunkowe..............................
Bardziej szczegółowoZadania o numerze 4 z zestawów licencjat 2014.
Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...
Bardziej szczegółowoZmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015
Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20
Bardziej szczegółowoZadania z Rachunku Prawdopodobieństwa II Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ,
Zadania z Rachunku Prawdopodobieństwa II -. Udowodnij, że dla dowolnych liczb x n, x, δ xn δ x wtedy i tylko wtedy, gdy x n x.. Wykaż, że n n k= δ k/n λ, gdzie λ jest miarą Lebesgue a na [, ].. Podać przykład
Bardziej szczegółowoG. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28
G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28 1.9 Zadania 1.9.1 Niech R będzie pierścieniem zbiorów. Zauważyć, że jeśli A, B R to A B R i A B R. Sprawdzić, że (R,, ) jest także pierścieniem w sensie
Bardziej szczegółowoJednowymiarowa zmienna losowa
1 Jednowymiarowa zmienna losowa Przykład Doświadczenie losowe - rzut kostką do gry. Obserwujemy ilość wyrzuconych oczek. Teoretyczny model eksperymentu losowego - przestrzeń probabilistyczna (Ω, S, P ),
Bardziej szczegółowoWykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału
Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału Magdalena Frąszczak Wrocław, 22.02.2017r Zasady oceniania Ćwiczenia 2 kolokwia (20 punktów każde) 05.04.2017 oraz 31.05.2017 2 kartkówki
Bardziej szczegółowoRachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i )
Rachunek prawdopodobieństwa - Teoria - Przypomnienie Podstawy Definicja 1. Schemat klasyczny - wszystkie zdarzenia elementarne są równo prawdopodobne, licząc prawdopodobieństwo liczymy stosunek liczby
Bardziej szczegółowoF t+ := s>t. F s = F t.
M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną
Bardziej szczegółowo2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27
SYGNAŁY STOCHASTYCZNE Przestrzeń probabilistyczna i zmienna losowa Definicja Przestrzenią probabilistyczną (doświadczeniem) nazywamy trójkę uporządkowaną (E, B, P ), gdzie: E przestrzeń zdarzeń elementarnych;
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej
Bardziej szczegółowoZmienne losowe. Powtórzenie. Dariusz Uciński. Wykład 1. Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski
Powtórzenie Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 1 Podręcznik podstawowy Jacek Koronacki, Jan Mielniczuk: Statystyka dla studentów kierunków technicznych i przyrodnicznych,
Bardziej szczegółowoRachunek Prawdopodobieństwa i Statystyka
Rachunek Prawdopodobieństwa i Statystyka W 2. Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne
Bardziej szczegółowoPROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω)
PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) określonych na tej samej przestrzeni probabilistycznej
Bardziej szczegółowo12DRAP - parametry rozkładów wielowymiarowych
DRAP - parametry rozkładów wielowymiarowych Definicja.. Jeśli h : R R, a X, Y ) jest wektorem losowym o gęstości fx, y) to EhX, Y ) = hx, y)fx, y)dxdy. Jeśli natomiast X, Y ) ma rozkład dyskretny skupiony
Bardziej szczegółowoWykład 3 Momenty zmiennych losowych.
Wykład 3 Momenty zmiennych losowych. Wrocław, 18 października 2017r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną
Bardziej szczegółowoAnaliza matematyczna. 1. Ciągi
Analiza matematyczna 1. Ciągi Definicja 1.1 Funkcję a: N R odwzorowującą zbiór liczb naturalnych w zbiór liczb rzeczywistych nazywamy ciągiem liczbowym. Wartość tego odwzorowania w punkcie n nazywamy n
Bardziej szczegółowojest ciągiem elementów z przestrzeni B(R, R)
Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)
Bardziej szczegółowoWykład 3 Momenty zmiennych losowych.
Wykład 3 Momenty zmiennych losowych. Wrocław, 19 października 2016r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną
Bardziej szczegółowoSeria 1. Zbieżność rozkładów
Seria Zbieżność rozkładów We wszystkich poniższych zadaniach (E, ρ) jest przestrzenią metryczną Wykazać, że dla dowolnych x, x n, δ xn δ x wtedy i tylko wtedy, gdy x n x Sprawdzić, że n nk= δ k n λ, gdzie
Bardziej szczegółowoRachunek prawdopodobieństwa- wykład 6
Rachunek prawdopodobieństwa- wykład 6 Zmienne losowe dyskretne. Charakterystyki liczbowe zmiennych losowych dyskretnych dr Marcin Ziółkowski Instytut Matematyki i Informatyki Uniwersytet Humanistyczno-Przyrodniczy
Bardziej szczegółowoĆwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu.
Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. A Teoria Definicja A.1. Niech (Ω, F, P) będzie przestrzenią probabilistyczną. Zmienną losową określoną na przestrzeni Ω nazywamy dowolną
Bardziej szczegółowoStatystyka i eksploracja danych
Wykład I: Formalizm statystyki matematycznej 17 lutego 2014 Forma zaliczenia przedmiotu Forma zaliczenia Literatura Zagadnienia omawiane na wykładach Forma zaliczenia przedmiotu Forma zaliczenia Literatura
Bardziej szczegółowoPodstawy metod probabilistycznych. dr Adam Kiersztyn
Podstawy metod probabilistycznych dr Adam Kiersztyn Przestrzeń zdarzeń elementarnych i zdarzenia losowe. Zjawiskiem lub doświadczeniem losowym nazywamy taki proces, którego przebiegu i ostatecznego wyniku
Bardziej szczegółowoDrugie kolokwium z Rachunku Prawdopodobieństwa, zestaw A
Drugie kolokwium z Rachunku Prawdopodobieństwa, zestaw A Zad. 1. Korzystając z podanych poniżej mini-tablic, oblicz pierwszy, drugi i trzeci kwartyl rozkładu N(10, 2 ). Rozwiązanie. Najpierw ogólny komentarz
Bardziej szczegółowoElementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa
Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący
Bardziej szczegółowoStatystyka i eksploracja danych
Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,
Bardziej szczegółowo1. Definicja granicy właściwej i niewłaściwej funkcji.
V. Granica funkcji jednej zmiennej. 1. Definicja granicy właściwej i niewłaściwej funkcji. Definicja 1.1. (sąsiedztwa punktu i sąsiedztwa nieskończoności) Niech x 0 R, r > 0, a, b R. Definiujemy S(x 0,
Bardziej szczegółowoTeoria miary. WPPT/Matematyka, rok II. Wykład 5
Teoria miary WPPT/Matematyka, rok II Wykład 5 Funkcje mierzalne Niech (X, F) będzie przestrzenią mierzalną i niech f : X R. Twierdzenie 1. NWSR 1. {x X : f(x) > a} F dla każdego a R 2. {x X : f(x) a} F
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Wykład XIV: Metody Monte Carlo 19 stycznia 2016 Przybliżone obliczanie całki oznaczonej Rozważmy całkowalną funkcję f : [0, 1] R. Chcemy znaleźć przybliżoną wartość liczbową całki 1 f (x) dx. 0 Jeden ze
Bardziej szczegółowozadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:
Bardziej szczegółowoOśrodkowość procesów, proces Wienera. Ośrodkowość procesów, proces Wienera Procesy Stochastyczne, wykład, T. Byczkowski,
Procesy Stochastyczne, wykład, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 27 luty, 2012 Ośrodkowość procesów Dalej zakładamy, że (Ω, Σ, P) jest zupełną przestrzenią miarową. Definicja.
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Wykład I: Formalizm teorii prawdopodonieństwa 6 października 2014 Forma zaliczenia przedmiotu Forma zaliczenia Literatura Dostępność treści wykładów 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin dwuczęściowy:
Bardziej szczegółowoWYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 4 / 9 Przekształcenia zmiennej losowej X
Bardziej szczegółowoP(U 1 > max{u 2,..., U 1000 } U 1 = s)dp U1 (s).
Kolokwium poszło gorzej, niż miałem nadzieję, a lepiej, niż się obawiałem. Maksymalny wynik to 74 punkty na 20), średnia to 55,6, zaś mediana to 50. Grupy były dość równe w jednej średnia to 54,5, w drugiej
Bardziej szczegółowoRozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast
Bardziej szczegółowoLista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w
Bardziej szczegółowoWykład 5 Estymatory nieobciążone z jednostajnie minimalną war
Wykład 5 Estymatory nieobciążone z jednostajnie minimalną wariancją Wrocław, 25 października 2017r Statystyki próbkowe - Przypomnienie Niech X = (X 1, X 2,... X n ) będzie n elementowym wektorem losowym.
Bardziej szczegółowoTeoria miary i całki
Teoria miary i całki Spis treści 1 Wstęp 3 2 lgebra zbiorów 5 3 Pierścienie, ciała, σ ciała zbiorów. 7 3.1 Definicja pierścienia ciała i σ ciała............... 7 3.2 Pierścień, ciało i σ ciało generowane
Bardziej szczegółowoIII. ZMIENNE LOSOWE JEDNOWYMIAROWE
III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta
Bardziej szczegółowoA i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.
M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A
Bardziej szczegółowoWYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady
WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena
Bardziej szczegółowoStatystyka i eksploracja danych
Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Statystyka i eksploracja
Bardziej szczegółowoMetody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym
Bardziej szczegółowoWykład 6 Estymatory efektywne. Własności asymptotyczne estym. estymatorów
Wykład 6 Estymatory efektywne. Własności asymptotyczne estymatorów Wrocław, 30 listopada 2016r Powtórzenie z rachunku prawdopodobieństwa Zbieżność Definicja 6.1 Niech ciąg {X } n ma rozkład o dystrybuancie
Bardziej szczegółowoNiech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.
Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,
Bardziej szczegółowoZadania z Rachunku Prawdopodobieństwa III - 1
Zadania z Rachunku Prawdopodobieństwa III - 1 1. Oblicz funkcję tworzącą momenty zmiennych o następujących rozkładach: a) symetryczny dwupunktowy; b) dwumianowy z parametrami n, p; c) Poissona z parametrem
Bardziej szczegółowoZmienna losowa. Rozkład skokowy
Temat: Zmienna losowa. Rozkład skokowy Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga * - materiał nadobowiązkowy Anna Rajfura, Matematyka i statystyka matematyczna na kierunku Rolnictwo SGGW 1 Zagadnienia
Bardziej szczegółowoRodzinę spełniającą trzeci warunek tylko dla sumy skończonej nazywamy ciałem (algebrą) w zbiorze X.
1 σ-ciała Definicja 1.1 (σ - ciało) σ - ciałem (σ - algebrą) w danym zbiorze X (zwanym przestrzenią) nazywamy rodzinę M pewnych podzbiorów zbioru X, spełniającą trzy warunki: 1 o M; 2 o jeśli A M, to X
Bardziej szczegółowoProcesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.
Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. 2 Łańcuchem Markowa nazywamy proces będący ciągiem zmiennych
Bardziej szczegółowoRachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne.
Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne. 6.2. Centralne Twierdzenie Graniczne Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Słabe prawo wielkich liczb przypomnienie Słabe
Bardziej szczegółowoMetody probabilistyczne
Metody probabilistyczne 2. Aksjomatyczna definicja prawdopodobieństwa Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 10.10.2017 1 / 33 Klasyczna definicja prawdopodobieństwa
Bardziej szczegółowoGeometryczna zbieżność algorytmu Gibbsa
Geometryczna zbieżność algorytmu Gibbsa Iwona Żerda Wydział Matematyki i Informatyki, Uniwersytet Jagielloński 6 grudnia 2013 6 grudnia 2013 1 / 19 Plan prezentacji 1 Algorytm Gibbsa 2 Tempo zbieżności
Bardziej szczegółowoRachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 3
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 3 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Zmienna losowa i jej
Bardziej szczegółowo