Adsorpcja 4-chlorofenolu z roztworów wodnych na mieszanych adsorbentach: węgiel aktywny - nanorurki węglowe

Wielkość: px
Rozpocząć pokaz od strony:

Download "Adsorpcja 4-chlorofenolu z roztworów wodnych na mieszanych adsorbentach: węgiel aktywny - nanorurki węglowe"

Transkrypt

1 Inżyniria i Ochrona Środowiska 2015,. 18, nr 3, s Krzyszof KUŚMIEREK 1, Andrzj ŚWIĄTKOWSKI 1, Władysław KAMIŃSKI 2 1 Wojskowa Akadmia Tchniczna, Insyu Chmii ul. gn. S. Kaliskigo 2, Warszawa -mail: krzyszof.kusmirk@wa.du.pl; a.swiakowski@wp.pl 2 Polichnika Łódzka, Kadra Trmodynamiki Procsowj ul. Wólczańska 213, Łódź -mail: wladyslaw.kaminski@p.lodz.pl Adsorpcja 4-chlorofnolu z rozworów wodnych na miszanych adsorbnach: węgil akywny - nanorurki węglow Clm pracy było zbadani kinyki adsorpcji oraz adsorpcji równowagowj 4-chlorofnolu (4-CP) z wody na węglu akywnym (AC) i nanorurkach węglowych (CNT) oraz na ich miszaninach o różnym składzi (25/75, 50/50 i 75/25% mas.). Kinyka adsorpcji przbigała zgodni z modlm psudo 2. rzędu, równowaga adsorpcyjna usalała się po około 30 minuach w przypadku nanorurk i po około 4 godzinach w przypadku węgla akywngo. Szybkość adsorpcji 4-CP zwiększała się wraz z wzrosm ilości nanorurk w miszanini adsorbnu, warość k 2 wzrasała z 0,030 g/mmol min dla AC do 0,709 g/mmol min dla CNT. Adsorpcja w warunkach równowagowych zosała opisana za pomocą równań Frundlicha i Langmuira - adsorpcja 4-CP z wody zachodziła zgodni z modlm Langmuira. Wzros udziału węgla akywngo w miszanini adsorbnu zwiększał jj zdolność do usuwania 4-CP z rozworu. Warość maksymalnj pojmności adsorpcyjnj q m wzrosła z 0,296 mmol/g dla CNT do 2,037 mmol/g dla AC. Słowa kluczow: 4-chlorofnol, adsorpcja, węgil akywny, nanorurki węglow Wsęp Adsorpcja zaniczyszczń organicznych na powirzchni ciała sałgo js jdnym z najfkywnijszych i najczęścij sosowanych sposobów oczyszczania wody. Mody adsorpcyjn, poza ym, ż są skuczn, są równiż sosunkowo ani, ław w zasosowaniu na szroką skalę, a ponado ni gnrują dodakowych zaniczyszczń i ścików [1]. Zdcydowani najczęścij sosowanymi adsorbnami w oczyszczaniu wody są węgl akywn (AC), co wynika główni z ich dużj powirzchni właściwj rzędu 1000 m 2 /g i więcj. Procs adsorpcji zalży od właściwości fizykochmicznych węgla akywngo (jgo powirzchni właściwj, rozkładu objęości porów wg rozmiarów, obcności grup funkcyjnych na powirzchni) oraz właściwości samgo adsorbau (masy cząsczkowj, polarności, rozpuszczalności, budowy srukuralnj) [1, 2]. W przypadku adsorpcji z wody ison znaczni mają równiż właściwości fazy cikłj, aki jak: ph, siła jonowa czy ż mpraura [2]. Znajomość wpływu ych wszyskich paramrów pozwala na dobrani opymalngo

2 374 K. Kuśmirk, A. Świąkowski, W. Kamiński adsorbnu w sosunku do konkrngo adsorbau, co z rguły wiąż się z znacznym zwiększnim fkywności całgo procsu oczyszczania. W pracy jako modlowy związk organiczny zosał wybrany 4-chlorofnol (4-CP), kóry, podobni jak i pozosał chlorofnol, nalży do oksycznych zaniczyszczń dość częso spoykanych w wodzi, m.in. w wodzi pinj przznaczonj dla Łodzi, Poznania, Wrocławia i Warszawy [3]. Adsorpcja 4-chlorofnolu na węglu akywnym js sosunkowo dobrz opisana w liraurz [4-16]. Auorzy zbadali adsorpcję na różnych węglach akywnych o zróżnicowanych właściwościach fizykochmicznych, m.in. srukurz porowaj czy chmii powirzchni. Zbadano równiż wpływ ph [14], siły jonowj rozworu [15] czy ż sposobu i szybkości miszania [5, 16] na adsorpcję 4-CP na węglu akywnym. W osanich laach zainrsowanim zaczęły ciszyć się równiż inn mariały węglow, jak włókna [17], sadz [13] czy przd wszyskim nanorurki (CNT) [10, 12, 15, 18-21]. T osani charakryzują się unikalnymi właściwościami adsorpcyjnymi w sosunku do związków organicznych, w ym chlorofnoli. Ich pojmność adsorpcyjna w porównaniu do węgli akywnych js mnijsza, co wynika z znaczni mnijszj powirzchni właściwj, jdnak charakryzują się on o wil lpszymi właściwościami kinycznymi. Równowaga adsorpcyjna 4-chlorofnolu na powirzchni nanorurk węglowych usala się bardzo szybko, bo już po około minuach [15, 18]. W przypadku węgli akywnych procs n js znaczni dłuższy i w zalżności od właściwości węgla (np. granulacji) rwa do kilku godzin [5, 11]. Porównani właściwości adsorpcyjnych węgla akywngo i nanorurk węglowych w sosunku do chlorofnoli było już przdmiom kilku prac badawczych, jdnak wdług naszj widzy adsorpcja na miszanych adsorbnach: węgil akywny - - nanorurki (o różnj proporcji jdngo mariału do drugigo) ni była do j pory brana pod uwagę. Miszan adsorbny, np. miszaniny węgli akywnych o różnym charakrz powirzchni, zosały zasosowan m.in. do oczyszczania olju posmażalniczgo [22]. Zasosowani miszaniny AC-CNT wydaj się jszcz bardzij inrsując z uwagi na odminn właściwości obydwu mariałów. Adsorpcja na miszanym adsorbnci pozwoliłaby połączyć najlpsz cchy węgla akywngo (dużą pojmność adsorpcyjną) i nanorurk węglowych (dużą szybkość adsorpcji). Dobirając odpowidni proporcj obydwu mariałów, możliw byłoby srowani właściwościami akigo miszango adsorbnu - w zalżności od akualnych porzb i warunków zwiększani jgo pojmności adsorpcyjnj (przz zwiększni udziału węgla akywngo) lub ż zwiększani szybkości usuwania adsorbau z rozworu (przz zwiększni udziału nanorurk w miszanini). W prznowanj pracy zbadano kinykę adsorpcji oraz adsorpcję równowagową 4-chlorofnolu na węglu akywnym i nanorurkach węglowych oraz na ich miszaninach o różnym składzi (25/75, 50/50 i 75/25% mas.). 1. Mariały i modyka badań Wzorzc 4-chlorofnolu pochodził z firmy Sigma-Aldrich (USA), naomias pozosał wykorzysywan odczynniki zakupiono w firmi Avanor Prformanc

3 Adsorpcja 4-chlorofnolu z rozworów wodnych na miszanych adsorbnach: 375 Marials (Polska). Jako adsorbny wykorzysano pylisy węgil akywny L2S Cca (Francja) i wilościnn nanorurki węglow o nimodyfikowanj powirzchni (Chngdu Organic Chmical Co. Ld., Chiny). Powirzchnia właściwa węgla akywngo (S BET ) wyznaczona na podsawi niskompraurowj izormy adsorpcji azou wynosiła 935 m 2 /g, objęość mikroporów V mi = 0,25 cm 3 /g, naomias objęość mzoporów V m = 0,22 cm 3 /g [10, 13]. Powirzchnia właściwa nanorurk węglowych wynosiła 181 m 2 /g, naomias całkowia objęość porów (V ) 0,703 cm 3 /g [10, 19]. Przd użycim obydwa adsorbny zosały wysuszon do sałj masy w suszarc próżniowj w mpraurz 130 C. Wszyski ksprymny adsorpcyjn prowadzono w kolbach Erlnmyra, zawirających po 0,04 dm 3 rozworów 4-CP o odpowidnim sężniu i 0,02 g adsorbnu - 100% CNT, 100% AC lub ż ich miszaniny o różnym składzi (25/75, 50/50 i 75/25%). Rozwory wyrząsano na wyrząsarc laboraoryjnj z sałą prędkością 200 obr/min w mpraurz 25 C. Sężnia 4-CP w rozworach oznaczano za pomocą wysokosprawnj chromaografii ciczowj z dkcją w nadfiolci (Shimadzu 2010, Japonia), sosując opisan wczśnij warunki chromaograficzn [15]. Kinykę adsorpcji 4-chlorofnolu zbadano dla jgo sężnia począkowgo w rozworz równgo 1,0 mmol/dm 3. Ilość 4-CP, kóra ulgła zaadsorbowaniu w czasi, zosała obliczona z zalżności: C0 C q= V (1) m gdzi: C 0 - sężni począkow, mmol/dm 3, C - sężni po czasi, mmol/dm 3, V - objęość rozworu, dm 3, m - masa adsorbnu, g. Adsorpcję w warunkach równowagowych (izormy adsorpcji) zbadano dla kilku sężń począkowych adsorbau (0,25 2,0 mmol/dm 3 ). Rozwory zawirając po 0,02 g adsorbnu wyrząsano przz 6 godzin i nasępni analizowano chromaograficzni. Na podsawi oznaczonych sężń 4-CP w rozworach obliczono ilość adsorbau, jaka ulgła adsorpcji na powirzchni adsorbnu q, mmol/g: q C0 C = V (2) m gdzi: C 0 - sężni począkow, mmol/dm 3, C - sężni równowagow, mmol/dm 3, V - objęość rozworu, dm 3, m - masa adsorbnu, g. 2. Wyniki i dyskusja Kinyka adsorpcji 4-chlorofnolu na nanorurkach, węglu akywnym oraz ich miszaninach zosała przdsawiona na rysunku 1. Równowaga adsorpcyjna usalała się po około 30 minuach w przypadku nanorurk i po około 4 godzinach w przypadku węgla akywngo. Wzros procnowgo udziału węgla akywngo w adsor-

4 376 K. Kuśmirk, A. Świąkowski, W. Kamiński bnci powodował sukcsywn spowolnini procsu adsorpcji. Równoczśni jdnak można było zaobsrwować polpszni pojmności adsorpcyjnj adsorbnu. Po szściu godzinach na poszczgólnych adsorbnach zawirających: 100% CNT, 75% CNT, 50% CNT, 25% CNT i 0% CNT ( czysy węgil akywny) zaadsorbowało się odpowidnio: 5,1%, 18,6%, 35,8%, 45,5% i 56,1% 4-CP. q (m m ol/g) 1,5 1,2 0,9 0,6 CNT 100% CNT 75% CNT 50% CNT 25% CNT 0% 0,3 0, czas (m in) Rys. 1. Kinyka adsorpcji 4-chlorofnolu na węglu akywnym, nanorurkach węglowych i miszanych adsorbnach CNT-AC Fig. 1. Adsorpion kinics of 4-chlorophnol on acivad carbon, carbon nanoubs and mixd CNT-AC adsorbns W clu płnijszj inrpracji uzyskanych wyników badań do opisu kinyki adsorpcji 4-CP zasosowano równania kinyczn psudo 1. [23] i psudo 2. rzędu [24]. Równani kinyczn psudo 1. rzędu [23] js wyrażon wzorm: dq d = k (q q ) (3) 1 kóry po scałkowaniu przybira prosoliniową posać: k1 log(q q ) = logq (4) 2,303 Sał szybkości adsorpcji wg modlu psudo 1. rzędu k 1 (1/min) obliczono, wykorzysując współczynnik kirunkowy prosoliniowj zalżności log(q q ) od czasu. Równani kinyczn psudo 2. rzędu: dq d 2 2 = k (q q ) (5) po przkszałcniu do prosoliniowj posaci js wyrażon wzorm:

5 Adsorpcja 4-chlorofnolu z rozworów wodnych na miszanych adsorbnach: 377 q 1 1 = + (6) 2 k q q 2 Warości k 2 (g/mmol min) zosały obliczon na podsawi zalżności /q = f(). Wszyski obliczon paramry kinyczn - sał szybkości psudo 1. i psudo 2. rzędu oraz uzyskan współczynniki korlacji R 2 zosały przdsawion w abli 1. Tabla 1. Sał szybkości równań psudo 1. i psudo 2. rzędu opisując adsorpcję 4-chlorofnolu na węglu akywnym, nanorurkach węglowych i ich miszaninach Tabl 1. Psudo firs- and psudo scond-ordr ra consans for adsorpion of 4-chlorophnol on acivad carbon, carbon nanoubs and hir mixurs Zawarość CNT psudo 1. rzędu psudo 2. rzędu q (xp) k 1 R 2 k 2 R 2 % mmol/g 1/min mmol/g min 100 0,192 0,028 0,845 0,709 0, ,536 0,026 0,883 0,372 0, ,966 0,025 0,947 0,155 0, ,209 0,021 0,992 0,062 0, ,472 0,019 0,846 0,030 0,999 Zdcydowani wyższ warości współczynników korlacji (R 2 > 0,99) uzyskano dla równania psudo 2. rzędu. Adsorpcja 4-CP zarówno na nanorurkach, węglu akywnym, jak i ich miszaninach przbigała zgodni z modlm kinycznym psudo 2. rzędu. Obliczon warości sałych szybkości adsorpcji k 2 powirdziły przdsawion na rysunku 1 zalżności. Szybkość adsorpcji 4-CP zmnijszała się wraz z coraz o większym udziałm węgla akywngo w miszanini adsorbnu. Warość k 2 wyznaczona dla CNT zmnijszyła się ponad dwudzisokroni z 0,709 do 0,030 g/mmol min dla AC. Równoczśni wraz z spadkim szybkości adsorpcji wzrasała jj skuczność. Wyznaczona ksprymnalni warość q wzrosła z 0,192 mmol/g dla CNT do 1,472 mmol/g dla węgla akywngo. W clu zbadania mchanizmu adsorpcji 4-CP na rozparywanych adsorbnach zasosowano modl dyfuzji wwnąrzcząskowj Wbra-Morrisa [25]: 1/ 2 i q = k + C (7) gdzi k i js sałą szybkości dyfuzji wwnąrzcząskowj, mmol/g min 1/2, naomias C i odpowiada grubości warswy granicznj. Kinyka dyfuzji wwnąrzcząskowj dla adsorpcji 4-chlorofnolu na nanorurkach, węglu akywnym i ich miszaninach zosała przdsawiona na rysunku 2 w posaci zalżności q = f( 1/2 ). Obliczon paramry kinyczn modlu Wbra- -Morrisa podano w abli 2. i

6 378 K. Kuśmirk, A. Świąkowski, W. Kamiński q (m m ol/g) 1,5 1,2 0,9 0,6 CNT 100% CNT 75% CNT 50% CNT 25% CNT 0% 0,3 0, /2 Rys. 2. Kinyka dyfuzji wwnąrzcząskowj dla adsorpcji 4-chlorofnolu z rozworów wodnych Fig. 2. Inraparicl diffusion kinics for adsorpion of 4-chlorophnol from aquous soluions Tabla 2. Paramry kinyczn opisując dyfuzję wwnąrzcząskową dla adsorpcji 4-chlorofnolu na węglu akywnym, nanorurkach węglowych i miszanych adsorbnach CNT-AC Tabl 2. Th inraparicl diffusion kinic paramrs for adsorpion of 4-chlorophnol on acivad carbon, carbon nanoubs and mixd CNT-AC adsorbns Zawarość CNT k i1 R 2 k i2 R 2 % mmol/g min 1/2 mmol/g min 1/ ,0405 0,991 0,0002 0, ,0735 0,996 0,0035 0, ,0902 0,984 0,0075 0, ,1314 0,988 0,0199 0, ,1480 0,984 0,0286 0,905 Przdsawiona na rysunku 2 zalżność pozwala na idnyfikację mchanizmu adsorpcji. Jżli adsorpcja zachodziłaby wyłączni za sprawą dyfuzji wwnąrzcząskowj, wdy zalżność q = f( 1/2 ) byłaby prosoliniowa w całym zakrsi, ponado krzywa przchodziłaby przz począk układu współrzędnych. Brak liniowości (linia łamana na wykrsi) wskazuj z koli na fak, ż w procsi adsorpcji birz udział kilka procsów, a ni ylko dyfuzja wwnąrzcząskowa. Pirwszy, sromy odcink odpowiada adsorpcji na powirzchni zwnęrznj ziarna adsorbnu lub apowi naychmiasowj adsorpcji. Drugi odcink odpowiada apowi sopniowj, łagodnj adsorpcji, gdzi dyfuzja wwnąrzcząskowa js apm konrolującym szybkość całgo procsu adsorpcji. Jak pokazano na rysunku 2, żadna z krzywych ni przchodziła przz począk układu współrzędnych, co sugruj, ż dyfuzja wwnąrzcząskowa ni js jdynym apm limiującym procs adsorpcji 4-CP z wody. Dodakowo zalżności q od 1/2 w całym rozparywanym

7 Adsorpcja 4-chlorofnolu z rozworów wodnych na miszanych adsorbnach: 379 zakrsi czasu ni były prosoliniow, wskazując jasno, ż szybkość adsorpcji zalży ni ylko od dyfuzji wwnąrzcząskowj. Adsorpcja 4-CP na nanorurkach, węglu akywnym i miszanych adsorbnach w warunkach równowagowych zosała przdsawiona na rysunku 3. q (m m ol/g) 2,0 1,5 1,0 0,5 CNT 100% CNT 75% CNT 50% CNT 25% CNT 0% 0,0 0,0 0,5 1,0 1,5 2,0 C (m m ol/dm 3 ) Rys. 3. Izormy adsorpcji 4-chlorofnolu na węglu akywnym, nanorurkach węglowych i miszanych adsorbnach CNT-AC Fig. 3. Adsorpion isohrms of 4-chlorophnol on acivad carbon, carbon nanoubs and mixd CNT-AC adsorbns Do opisu i inrpracji uzyskanych izorm zasosowano dwa najczęścij wykorzysywan modl - równania Frundlicha [26] i Langmuira [27]. Równani izormy Frundlicha: F 1/n po zlogarymowaniu przybira prosoliniową formę: q = K C (8) 1 ln q= ln KF+ ln C (9) n gdzi: K F - sała równania Frundlicha (mmol/g) (dm 3 /mmol) 1/n, n - wykładnik równania Frundlicha. Zarówno K F, jak i n obliczono na podsawi współczynników kirunkowych i współczynników przsunięcia prosych wyznaczonych dla zalżności lnq od lnc (ab. 3). Równani izormy Langmuira: q q bc m = (10) 1+ bc po przkszałcniu do prosoliniowj posaci js wyrażon wzorm:

8 380 K. Kuśmirk, A. Świąkowski, W. Kamiński C q 1 1 = C+ (11) q q b m m gdzi: q m - maksymalna pojmność adsorpcyjna na powirzchni adsorbnu, mmol/g, b - sała równania Langmuira, dm 3 /mmol. Warości q m i b zosały wyznaczon na podsawi liniowych zalżności C /q od C i przdsawiono j w abli 3. Tabla 3. Paramry równań Frundlicha i Langmuira oraz współczynniki korlacji R 2 opisując adsorpcję 4-chlorofnolu na węglu akywnym, nanorurkach węglowych i miszanych adsorbnach CNT-AC Tabl 3. Th Frundlich and Langmuir isohrm quaion paramrs and corrlaion cofficins R 2 for adsorpion of 4-chlorophnol ono acivad carbon, carbon nanoubs and mixd CNT-AC adsorbns Zawarość CNT Izorma Frundlicha Izorma Langmuira % K F 1/n R 2 q m b R ,219 0,446 0,990 0,296 1,101 0, ,526 0,418 0,980 0,748 2,708 0, ,055 0,185 0,991 1,125 9,974 0, ,412 0,335 0,927 1,513 9,903 0, ,115 0,264 0,930 2,037 12,245 0,991 Biorąc za główny wyznacznik dopasowania izormy orycznj do izormy doświadczalnj warość współczynnika R 2, można zauważyć, ż adsorpcja 4-CP zachodziła zgodni z modlm Langmuira. Tylko w przypadku czysych nanorurk węglowych (100% CNT) wyższą warość współczynnika korlacji uzyskano dla równania Frundlicha (0,990 vs. 0,971), chociaż różnic ni są duż. Wyznaczon paramry adsorpcyjn, zarówno K F, jak i q m, powirdzają wczśnijsz obsrwacj (rys. 2 i 3), ż wzros udziału węgla akywngo w miszanini adsorbnu zwiększa jj zdolność (skuczność) do usuwania 4-CP z rozworu. Obsrwowana prawidłowość ni js oczywiści żadnym zaskocznim i js wynikim o wil większj (ponad pięciokroni) powirzchni węgla akywngo w porównaniu do nanorurk węglowych. Obliczon warości maksymalnj pojmności adsorpcyjnj q m i sałj Frundlicha K F dla AC są odpowidnio 7- i 10-kroni wyższ niż uzyskan dla CNT. Różnic między węglm akywnym i nanorurkami są więc bardzo duż, nimnij jdnak ni aż ak duż, jak ma o mijsc w przypadku kinyki - adsorpcja 4-CP na AC zachodziła ponad 20 razy wolnij niż na CNT. Podsumowani W pracy zbadano kinykę adsorpcji oraz adsorpcję równowagową 4-chlorofnolu z wody na węglu akywnym i nanorurkach węglowych oraz na ich misza-

9 Adsorpcja 4-chlorofnolu z rozworów wodnych na miszanych adsorbnach: 381 nych adsorbnach o różnym składzi (25/75, 50/50 i 75/25%). Uzyskan wyniki pokazały, ż równowaga adsorpcyjna usalała się po około 30 minuach w przypadku nanorurk i po około 4 godzinach w przypadku węgla akywngo. Kinyka adsorpcji przbigała zgodni z modlm psudo 2. rzędu, szybkość adsorpcji 4-CP zwiększała się wraz z wzrosm ilości nanorurk w miszanym adsorbnci. Nizwykl ważnym, aczkolwik ni jdynym apm konrolującym szybkość całgo procsu adsorpcji była dyfuzja wwnąrzcząskowa. Badania równowagow pokazały sukcsywny wzros pojmności adsorpcyjnj adsorbnu wraz z wzrosm udziału węgla akywngo w miszanini. Uzyskan wyniki powirdziły znan i opisan już wczśnij właściwości nanorurk (duża szybkość adsorpcji) i węgla akywngo (duża pojmność adsorpcyjna), al pokazały równiż zachowani ich miszanin o różnj proporcji CNT do AC. Zasosowani miszaniny AC-CNT wydaj się inrsując, gdyż pozwala połączyć unikaln właściwości adsorpcyjn obydwu mariałów. Dobór odpowidnich proporcji obydwu mariałów poprzz zwiększni udziału CNT lub AC pozwala w zalżności od porzb zwiększyć szybkość lub ż skuczność usuwania adsorbau z wody. Podziękowania Praca finansowana z projku RMN Liraura [1] Bansal R.C., Goyal M., Adsorpcja na węglu akywnym, Wydawnicwo Naukowo-Tchniczn, Warszawa [2] Morno-Casilla C., Adsorpion of organic molculs from aquous soluions on carbon marials, Carbon 2004, 42, [3] Michałowicz J., Th occurrnc of chlorophnols, chlorocachols and chlorinad mhoxyphnols in drinking war of h largs ciis in Poland, Polish Journal of Environmnal Sudis 2005, 14, [4] Jung M.W., Ahn K.H., L Y., Kim K.P., Rh J.S., Park J.T., Pang K.J., Adsorpion characrisics of phnol and chlorophnols on granular acivad carbons (GAC), Microchmical Journal 2001, 70, [5] Koumanova B., Pva-Anova P., Yanva Z., Adsorpion of 4-chlorophnol from aquous soluions on acivad carbon - kinic sudy, Journal of h Univrsiy of Chmical Tchnology and Mallurgy 2005, 40(3), [6] Hamdaoui O., Naffrchoux E., Modling of adsorpion isohrms of phnol and chlorophnols ono granular acivad carbon Par I. Two-paramr modls and quaions allowing drminaion of hrmodynamic paramrs, Journal of Hazardous Marials 2007, 147, [7] Hamd B.H., Chin L.H., Rngaraj S., Adsorpion of 4-chlorophnol ono acivad carbon prpard from raan sawdus, Dsalinaion 2008, 225, [8] Tsng R.L., Wu K.T., Wu F.C., Juang R.S., Kinics sudis on h adsorpion of phnol, 4-chlorophnol, and 2,4-dichlorophnol from war using acivad carbons, Journal of Environmnal Managmn 2010, 91, [9] Lornc-Grabowska E., Gryglwicz G., Machnikowski J., p-chlorophnol adsorpion on acivad carbons wih basic surfac propris, Applid Surfac Scinc 2010, 256,

10 382 K. Kuśmirk, A. Świąkowski, W. Kamiński [10] Świąkowski A., Kuśmirk K., Porównani węgla akywngo i nanorurk węglowych jako adsorbnów do usuwania 2,4-dichlorofnolu z wody, Inżyniria i Ochrona Środowiska 2013, 16(3), [11] Kuśmirk K., Sankowska M., Świąkowski A., Kinic and quilibrium sudis of simulanous adsorpion of monochlorophnols and chlorophnoxy hrbicids on acivad carbon, Dsalinaion and War Tramn 2014, 52, [12] Srachowski P., Bysrzjwski M., Comparaiv sudis of sorpion of phnolic compounds ono carbon-ncapsulad iron nanoparicls, carbon nanoubs and acivad carbon, Colloids and Surfacs A , [13] Kuśmirk K., Sankowska M., Skrzypczyńska K., Świąkowski A., Th adsorpiv propris of powdrd carbon marials wih a srongly diffrniad porosiy and hir applicaions in lcroanalysis and SPME-GC, Journal of Colloid and Inrfac Scinc 2015, 446, [14] Kuśmirk K., Świąkowski A., Influnc of ph on adsorpion kinic of monochlorophnols from aquous soluions on granular acivad carbon, Ecological Chmisry and Enginring S 2015, 22(1), [15] Kuśmirk K., Świąkowski A., Th influnc of an lcroly on h adsorpion of 4-chlorophnol ono acivad carbon and muli-walld carbon nanoubs, Dsalinaion and War Tramn 2015, 56, 11, [16] Kuśmirk K., Świąkowski A., Th influnc of diffrn agiaion chniqus on h adsorpion kinics of 4-chlorophnol on granular acivad carbon, Racion Kinics, Mchanisms and Caalysis 2015, 116, [17] Liu Q.S., Zhng T., Wang P., Jiang J.P., Li N., Adsorpion isohrm, kinic and mchanism sudis of som subsiud phnols on acivad carbon fibrs, Chmical Enginring Journal 2010, 157, [18] Abdl Salam M., Mokhar M., Basahl S.N., Al-Thabaii S.A., Obaid A.Y., Rmoval of chlorophnol from aquous soluions by muli-walld carbon nanoubs: Kinic and hrmodynamic sudis, Journal of Alloys and Compounds 2010, 500, [19] Toh V.A., Torocsik A., Tombacz E., Laszlo K., Compiiv adsorpion of phnol and 3-chlorophnol on purifid MWCNTs, Journal of Colloid and Inrfac Scinc 2012, 387, [20] Kuśmirk K., Sankowska M., Świąkowski A., Adsorpcja dichlorofnoli z rozworów wodnych na wilościnnych nanorurkach węglowych, Przmysł Chmiczny 2013, 92(7), [21] Kragulj M., Tričković J., Kukovcz A., Jović B., Molnar J., Rončvić S., Kónya Z., Dalmacija B., Adsorpion of chlorinad phnols on muliwalld carbon nanoubs, RSC Advancs 2015, 5, [22] Chwiałkowski W., Zasosowani miszaniny węgli akywnych o różnym charakrz powirzchni do oczyszczania olju posmażalniczgo, Inżyniria i Ochrona Środowiska 2013, 16(3), [23] Lagrgrn S., Thori dr sognannn Adsorpion glosr Soff, Vnskapsakad Handlung 1898, 24, [24] Ho Y.S., McKay G., Psudo-scond-ordr modl for sorpion procsss, Procss Biochmisry 1999, 34, [25] Wbr J.W., Morris J., Kinics of adsorpion on carbon from soluion, Journal of h Saniary Enginring Division 1963, 18, [26] Frundlich H.M.F., Übr di Adsorpion in Lösungn, Zischrif für Physikalisch Chmi 1906, 57, [27] Langmuir I., Th consiuion and fundamnal propris of solids and liquids, Journal of h Amrican Chmical Sociy 1916, 38,

11 Adsorpcja 4-chlorofnolu z rozworów wodnych na miszanych adsorbnach: 383 Adsorpion of 4-chlorophnol from Aquous Soluions on Mixd Adsorbns: Acivad Carbon and Carbon Nanoubs Th adsorpion procss by solid adsorbns is on of h mos fficin mhods for h rmoval of organic polluans from war. Adsorpion is araciv for is rlaiv flxibiliy and simpliciy of dsign, as of opraion and rgnraion as wll as no or low gnraion of oxic subsancs. Among all h applid adsorbns, h acivad carbons ar h mos widly usd adsorbns du o hir xclln adsorpion abiliis for organic compounds. Th high adsorpion capaciis of h acivad carbons ar usually rlad o hir high surfac ara and por volum. Rcnly carbon nanoubs ar also usd as adsorbns, mainly du o hir high ra of adsorpion of organic polluans. Th aim of his sudy was o invsiga h adsorpion of 4-chlorophnol (4-CP) from aquous soluions on mixd adsorbns: acivad carbon (AC) and carbon nanoubs (CNT). Such a mixd adsorbn combins h advanags of boh acivad carbon (high adsorpion capaciy) as wll as carbon nanoubs (xclln kinic propris). Various adsorbns composiions wr sd: 0/100, 25/75, 50/50, 75/25 and 100/0 w.% of acivad carbon/carbon nanoubs. Th rsuls showd ha h adsorpion quilibriums wr achivd afr 30 min for h carbon nanoubs and afr abou 4 hours for h acivad carbon. For h dscripion of h xprimnal daa, h quaions of h psudo-firs and psudo-scond ordr wr considrd. Th corrlaion cofficins for h psudo-firs ordr kinic modl wr rlaivly low, whras h psudoscond ordr modl givs an xclln fiing wih h high R 2 valus (> 0.99). This indicas ha h adsorpion sysm blongs o h scond-ordr kinic modl. Th adsorpion ra of 4-CP incrasd wih h incras in h amoun of carbon nanoubs in h adsorbn mixur from g/mmol min for pur acivad carbon o g/mmol min for CNT. In ordr o invsiga h mchanism of h adsorpion, h inraparicl diffusion modl (Wbr-Morris modl) was also usd. Th rsuls showd ha h inraparicl diffusion was no h only ra-conrolling sp. Morovr, h Wbr-Morris plos (q vs. 1/2 ) wr no linar ovr h whol im rang, suggsing ha mor han on procss affcd h adsorpion. Th adsorpion was also analyzd as a funcion of h soluion concnraion a h quilibrium. Adsorpion isohrms of 4-CP wr analyzd using h Frundlich and Langmuir modls. Th R 2 valus show ha h quilibrium daa wr br rprsnd by h Langmuir isohrm compard o h Frundlich quaion. Th incras in h amoun of acivad carbon in h adsorbn mixur rsuld in an incras in h adsorpion capaciy of h adsorbn from mmol/g for CNT o mmol/g for AC. Kywords: 4-chlorophnol, adsorpion, acivad carbon, carbon nanoubs

Porównanie węgla aktywnego i nanorurek węglowych jako adsorbentów do usuwania 2,4-dichlorofenolu z wody

Porównanie węgla aktywnego i nanorurek węglowych jako adsorbentów do usuwania 2,4-dichlorofenolu z wody Inżyniria i Ochrona Środowiska 2013, t. 16, nr 3, s. 293-301 Andrzj ŚWIĄTKOWSKI*, Krzysztof KUŚMIEREK** Wojskowa Akadmia Tchniczna, Instytut Chmii ul. gn. S. Kaliskigo 2, 00-908 Warszawa *-mail: a.swiatkowski@wp.pl;

Bardziej szczegółowo

Wykład 6 Pochodna, całka i równania różniczkowe w praktycznych zastosowaniach w elektrotechnice.

Wykład 6 Pochodna, całka i równania różniczkowe w praktycznych zastosowaniach w elektrotechnice. Wykład 6 Pochodna, całka i równania różniczkow w prakycznych zasosowaniach w lkrochnic. Przypomnini: Dfinicja pochodnj: Granica ilorazu różnicowgo-przyros warości funkcji do przyrosu argumnów-przy przyrości

Bardziej szczegółowo

Ekonomiczno-techniczne aspekty wykorzystania gazu w energetyce

Ekonomiczno-techniczne aspekty wykorzystania gazu w energetyce Ekonomiczno-chniczn aspky wykorzysania gazu w nrgyc anusz oowicz Wydział Inżynirii i Ochrony Środowiska Polichnika Częsochowska zacowani nakładów inwsycyjnych na projky wykorzysania gazu w nrgyc anusz

Bardziej szczegółowo

LABORATORIUM ESBwT. Optymalizacja niezawodnościowa struktury elektronicznego systemu bezpieczeństwa

LABORATORIUM ESBwT. Optymalizacja niezawodnościowa struktury elektronicznego systemu bezpieczeństwa ZESPÓŁ LAORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LAORATORIUM ESwT INSTRUKCJA DO ĆWICZENIA nr Opymalizacja nizawodnościowa srukury

Bardziej szczegółowo

Wpływ chemii powierzchni węgli aktywnych na adsorpcję kwasu 2,4-dichlorofenoksyoctowego

Wpływ chemii powierzchni węgli aktywnych na adsorpcję kwasu 2,4-dichlorofenoksyoctowego Inżyniria i Ochrona Środowiska 2016, 19(2), 255-263 p-issn 1505-3695 Enginring and Protction of Environmnt -ISSN 2391-7253 is.pcz.pl/124/indx/czasopismo_inzyniria_i_ochrona_rodowiska.html DOI: 10.17512/ios.2016.2.8

Bardziej szczegółowo

ĆWICZENIE 11 OPTYMALIZACJA NIEZAWODNOŚCIOWA STRUKTURY ELEKTRONICZNEGO SYSTEMU BEZPIECZEŃSTWA

ĆWICZENIE 11 OPTYMALIZACJA NIEZAWODNOŚCIOWA STRUKTURY ELEKTRONICZNEGO SYSTEMU BEZPIECZEŃSTWA ĆWICZENIE OPTYMALIZACJA NIEZAWODNOŚCIOWA STUKTUY ELEKTONICZNEGO SYSTEMU EZPIECZEŃSTWA Cl ćwicznia: zapoznani z analizą nizawodnościowo-ksploaacyjną lkronicznych sysmów bzpiczńswa; wyznaczni wybranych wskaźników

Bardziej szczegółowo

Wykład 2 Wahadło rezonans parametryczny. l+δ

Wykład 2 Wahadło rezonans parametryczny. l+δ Wykład Wahadło rzonans paramryczny θ θ l l+δ C B B Wykład Wahadło - rzonans paramryczny E E E B mg l cos θ θ E kinb m d d l l+δ B B l C I m l E B B kinb' I m B' B' d d d d B l ml d d B ' mgl cos ' B gcos

Bardziej szczegółowo

Analiza wybranych własności rozkładu reszt

Analiza wybranych własności rozkładu reszt Analiza wybranych własności rozkładu rsz Poprawni skonsruowany i oszacowany modl, kóry nasępni ma być wykorzysany do clów analizy i prdykcji, poza wysokim sopnim odzwircidlania zmian warości mpirycznych

Bardziej szczegółowo

Ćwiczenie XII: PRAWO PODZIAŁU NERNSTA

Ćwiczenie XII: PRAWO PODZIAŁU NERNSTA Ćwiczenie XII: PRAWO PODZIAŁU NERNSTA opracowanie: Wojciech Solarski Wprowadzenie Prawo podziału sformułowane przez Walera H. Nensa opisuje układ rójskładnikowy, z czego dwa składniki o rozpuszczalniki

Bardziej szczegółowo

Zarys modelu oceny niezawodności pracy działka lotniczego w aspekcie powstawania uszkodzeń katastroficznych w postaci zacięć

Zarys modelu oceny niezawodności pracy działka lotniczego w aspekcie powstawania uszkodzeń katastroficznych w postaci zacięć Zarys modlu ocny nizawodności pracy działa loniczgo 9 ZAGADNIENIA EKSPLOATAJI MASZYN Zszy 4 5 7 HENRYK TOMASZEK, MARIUSZ WAŻNY, MIHAŁ JASZTAL Zarys modlu ocny nizawodności pracy działa loniczgo w aspci

Bardziej szczegółowo

Adsorpcja barwników organicznych na węglach aktywnych otrzymanych z porolniczych i poprodukcyjnych materiałów odpadowych

Adsorpcja barwników organicznych na węglach aktywnych otrzymanych z porolniczych i poprodukcyjnych materiałów odpadowych Justyna Kaźmirczak-Raźna a Piotr Nowicki a * Wojcich Franus b Robrt Pitrzak a a Uniwrsytt im. Adama Mickiwicza Poznań; b Politchnika Lublska Adsorption of organic dys onto activatd carbons obtaind from

Bardziej szczegółowo

KINETYKA REAKCJI ZŁOŻONYCH Reakcje odwracalne Reakcje równoległe Reakcje następcze Reakcje łańcuchowe

KINETYKA REAKCJI ZŁOŻONYCH Reakcje odwracalne Reakcje równoległe Reakcje następcze Reakcje łańcuchowe Kinya raji hmiznyh KINETYK REKJI ZŁOŻONYH 4... Raj owraaln 4... Raj równolgł 4..3. Raj nasępz 4..4. Raj łańuhow 4..5. Inrpraja oryzna inyi raji hmiznyh 4..6. Toria zrzń aywnyh 4..7. Toria sanu przjśiowgo

Bardziej szczegółowo

Szeregowy obwód RC - model matematyczny układu

Szeregowy obwód RC - model matematyczny układu Akadmia Morska w Gdyni Katdra Automatyki Okrętowj Toria strowania Mirosław Tomra Na przykładzi szrgowgo obwodu lktryczngo składającgo się z dwóch lmntów pasywnych: rzystora R i kondnsatora C przdstawiony

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

Stanowisko laboratoryjne do badań przesuwników fazowych

Stanowisko laboratoryjne do badań przesuwników fazowych Polichnika Śląska Wydział Elkryczny Insyu Mrologii i Auomayki Elkrochniczn Tma pracy: Sanowisko laboraoryn do badań przsuwników fazowych Promoor: Dr inż. Adam Cichy Dyploman: Adam Duna Srukura rfrau. Wsęp.

Bardziej szczegółowo

4.2. Obliczanie przewodów grzejnych metodą dopuszczalnego obciążenia powierzchniowego

4.2. Obliczanie przewodów grzejnych metodą dopuszczalnego obciążenia powierzchniowego 4.. Obliczanie przewodów grzejnych meodą dopuszczalnego obciążenia powierzchniowego Meodą częściej sosowaną w prakyce projekowej niż poprzednia, jes meoda dopuszczalnego obciążenia powierzchniowego. W

Bardziej szczegółowo

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

Farmakokinetyka furaginy jako przykład procesu pierwszego rzędu w modelu jednokompartmentowym zawierającym sztuczną nerkę jako układ eliminujący lek

Farmakokinetyka furaginy jako przykład procesu pierwszego rzędu w modelu jednokompartmentowym zawierającym sztuczną nerkę jako układ eliminujący lek 1 Matriał tortyczny do ćwicznia dostępny jst w oddzilnym dokumnci, jak równiż w książc: Hrmann T., Farmakokintyka. Toria i praktyka. Wydawnictwa Lkarski PZWL, Warszawa 2002, s. 13-74 Ćwiczni 6: Farmakokintyka

Bardziej szczegółowo

Analiza danych jakościowych

Analiza danych jakościowych Analiza danych jakościowych Ccha ciągła a ccha dyskrtna! Ciągła kg Dyskrtna Cchy jakościow są to cchy, których jdnoznaczn i oczywist scharaktryzowani za pomocą liczb jst nimożliw lub bardzo utrudnion.

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Skręcalność właściwa sacharozy. opiekun ćwiczenia: dr A. Pietrzak

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Skręcalność właściwa sacharozy. opiekun ćwiczenia: dr A. Pietrzak Kaedra Chemii Fizycznej Uniwersyeu Łódzkiego Skręcalność właściwa sacharozy opiekun ćwiczenia: dr A. Pierzak ćwiczenie nr 19 Zakres zagadnień obowiązujących do ćwiczenia 1. Akywność opyczna a srukura cząseczki.

Bardziej szczegółowo

Inwestycje. MPK = R/P = uc (1) gdzie uc - realny koszt pozyskania kapitału. Przyjmując, że funkcja produkcji ma postać Cobba-Douglasa otrzymamy: (3)

Inwestycje. MPK = R/P = uc (1) gdzie uc - realny koszt pozyskania kapitału. Przyjmując, że funkcja produkcji ma postać Cobba-Douglasa otrzymamy: (3) Dr Barłomij Rokicki Ćwiczia z Makrokoomii II Iwsycj Iwsycj są ym składikim PB, kóry wykazuj ajwiększą skłoość do flukuacji czyli wahań. Spadk popyu a dobra i usługi jaki js obsrwoway podczas rcsji zwykl

Bardziej szczegółowo

ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO

ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO Łukasz MACH Strszczni: W artykul przdstawiono procs budowy modlu rgrsji logistycznj, którgo clm jst wspomagani

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

I. KINEMATYKA I DYNAMIKA

I. KINEMATYKA I DYNAMIKA piagoras.d.pl I. KINEMATYKA I DYNAMIKA KINEMATYKA: Położenie ciała w przesrzeni można określić jedynie względem jakiegoś innego ciała lub układu ciał zwanego układem odniesienia. Ruch i spoczynek są względne

Bardziej szczegółowo

Pojęcia podstawowe 1

Pojęcia podstawowe 1 Tomasz Lubera Pojęcia podsawowe aa + bb + dd + pp + rr + ss + Kineyka chemiczna dział chemii fizycznej zajmujący się przebiegiem reakcji chemicznych w czasie, ich mechanizmami oraz wpływem różnych czynników

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA WYDZIAŁ TRANSPORTU

POLITECHNIKA WARSZAWSKA WYDZIAŁ TRANSPORTU POLITECHNIKA WARSZAWSKA WYDZIAŁ TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE EKSPLOATACJA SYSTEMÓW TELEKOMUNIKACYJNYCH LAORATORIUM Program,,Wspomagani Dcyzji Nizawodnościowo- Eksploaacyjnych Transporowych

Bardziej szczegółowo

CHARAKTERYSTYKA OBCIĄŻENIOWA

CHARAKTERYSTYKA OBCIĄŻENIOWA Opracowani: dr inż. Ewa Fudalj-Kostrzwa CHARAKTERYSTYKA OBCIĄŻENIOWA Charaktrystyki obciążniow są wyznaczan w ramach klasycznych statycznych badań silników zarówno dla silników o zapłoni iskrowym jak i

Bardziej szczegółowo

LABORATORIUM ESBwT. Program,,Wspomaganie Decyzji Niezawodnościowo-Eksploatacyjnych Transportowych Systemów Nadzoru

LABORATORIUM ESBwT. Program,,Wspomaganie Decyzji Niezawodnościowo-Eksploatacyjnych Transportowych Systemów Nadzoru ZESPÓŁ LAORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LAORATORIUM ESwT Program,,Wspomagani Dcyzji Nizawodnościowo-Eksploaacyjnych Transporowych

Bardziej szczegółowo

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1) Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza

Bardziej szczegółowo

Krzywe na płaszczyźnie.

Krzywe na płaszczyźnie. Krzwe na płaszczźnie. Współrzędne paramerczne i biegunowe. Współrzędne biegunowe. Dan jes punk O, zwan biegunem, kór sanowi począek półprosej, zwanej półosią. Dowoln punk P na płaszczźnie można opisać

Bardziej szczegółowo

Całka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona

Całka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona Całka nieoznaczona Andrzej Musielak Sr Całka nieoznaczona Całkowanie o operacja odwrona do liczenia pochodnych, zn.: f()d = F () F () = f() Z definicji oraz z abeli pochodnych funkcji elemenarnych od razu

Bardziej szczegółowo

TERMOMECHANICZNY OPIS PROCESU PEŁZANIA DREWNA

TERMOMECHANICZNY OPIS PROCESU PEŁZANIA DREWNA ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 8/8 Komisja Inżynirii Budowlanj Oddział Polskij Akadmii Nauk w Kaowicach TERMOMECHANICZNY OPIS PROCESU PEŁZANIA DREWNA Kamil PAWLIK Polichnika Opolska, Opol. Wprowadzni

Bardziej szczegółowo

Granulowany węgiel aktywny z łupin orzechów kokosowych: BT bitumiczny AT - antracytowy 999-DL06

Granulowany węgiel aktywny z łupin orzechów kokosowych: BT bitumiczny AT - antracytowy 999-DL06 Granulowany węgiel aktywny z łupin orzechów kokosowych: BT bitumiczny AT - antracytowy 999-DL06 Granulowany Węgiel Aktywny GAC (GAC - ang. Granular Activated Carbon) jest wysoce wydajnym medium filtracyjnym.

Bardziej szczegółowo

Adsorpcja fenoli z roztworów wodnych na pylistych węglach aktywnych

Adsorpcja fenoli z roztworów wodnych na pylistych węglach aktywnych Inżynieria i Ochrona Środowiska 2016, 19(2), 217-226 p-issn 1505-3695 Engineering and Protection of Environment e-issn 2391-7253 is.pcz.pl/124/index/czasopismo_inzynieria_i_ochrona_rodowiska.html DOI:

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,

Bardziej szczegółowo

wydanie 3 / listopad 2015 znaków ewakuacji i ochrony przeciwpożarowej PN-EN ISO 7010 certyfikowanych pr zez C N B O P www.znaki-tdc.

wydanie 3 / listopad 2015 znaków ewakuacji i ochrony przeciwpożarowej PN-EN ISO 7010 certyfikowanych pr zez C N B O P www.znaki-tdc. Stosowani znaków wakuacji i ochron przciwpożarowj crtfikowanch pr zz C N B O P www.znaki-tdc.com wdani 3 / listopad 2015 AA 001 Wjści wakuacjn AA 010 Drzwi wakuacjn AA 009 Drzwi wakuacjn AA E001 E001 AA

Bardziej szczegółowo

SYMULACJA KINETYKI REAKCJI

SYMULACJA KINETYKI REAKCJI OLITECHNIK ŚLĄSK WYDZIŁ CHEMICZNY KTEDR FIZYKOCHEMII I TECHNOLOGII OLIMERÓW SYMULCJ KINETYKI REKCJI CHEMICZNYCH Opiun ćwicznia: Tomasz Jarosz Mijsc ćwicznia: Zała Chmii Fizycznj ul. M. Srzoy 9, p. II,

Bardziej szczegółowo

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając

Bardziej szczegółowo

WYKORZYSTANIE TESTU OSTERBERGA DO STATYCZNYCH OBCIĄŻEŃ PRÓBNYCH PALI

WYKORZYSTANIE TESTU OSTERBERGA DO STATYCZNYCH OBCIĄŻEŃ PRÓBNYCH PALI Prof. dr hab.inż. Zygmun MEYER Poliechnika zczecińska, Kaedra Geoechniki Dr inż. Mariusz KOWALÓW, adres e-mail m.kowalow@gco-consul.com Geoechnical Consuling Office zczecin WYKORZYAIE EU OERERGA DO AYCZYCH

Bardziej szczegółowo

POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 83 Electrical Engineering 2015

POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 83 Electrical Engineering 2015 POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 83 Elcrical Enginring 5 Pior SERKIES* Krzyszof SZABAT* OCENA WPŁYWU NIEDOKŁADNOŚCI WYZNACZENIA PARAMETRÓW NAPĘDU DWUMASOWEGO NA JAKOŚĆ ESTYMACJI

Bardziej szczegółowo

Ocena przydatności torfu do usuwania chlorofenoli z roztworów wodnych

Ocena przydatności torfu do usuwania chlorofenoli z roztworów wodnych OCHRONA ŚRODOWISKA Vol. 35 2013 Nr 2 Krzysztof Kuśmierek, Lidia Dąbek, Władysław Kamiński, Andrzej Świątkowski Ocena przydatności torfu do usuwania chlorofenoli z roztworów wodnych Chlorowane związki organiczne,

Bardziej szczegółowo

Wrocław, DIALIZA 1. OPIS PROCESU

Wrocław, DIALIZA 1. OPIS PROCESU Wrocław, 24.11.15 DIALIZA 1. OPIS PROCESU Do procesów membranowych służących do rozdzielania układów ciekłych należy akże dializa. Jes o izobaryczny i izoermiczny proces membranowy, w kórym siłą napędową

Bardziej szczegółowo

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się: Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili

Bardziej szczegółowo

Dynamiczne formy pełzania i relaksacji (odprężenia) górotworu

Dynamiczne formy pełzania i relaksacji (odprężenia) górotworu Henryk FILCEK Akademia Górniczo-Hunicza, Kraków Dynamiczne formy pełzania i relaksacji (odprężenia) góroworu Sreszczenie W pracy podano rozważania na ema możliwości wzbogacenia reologicznego równania konsyuywnego

Bardziej szczegółowo

Termodynamika. Część 10. Elementy fizyki statystycznej klasyczny gaz doskonały. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 10. Elementy fizyki statystycznej klasyczny gaz doskonały. Janusz Brzychczyk, Instytut Fizyki UJ Trodynaika Część 1 Elnty fizyki statystycznj klasyczny gaz doskonały Janusz Brzychczyk, Instytut Fizyki UJ Użytczn całki ax2 dx = 1 2 a x ax2 dx = 1 2a ax2 dx = a a x 2 ax2 dx = 1 4a a x 3 ax2 dx = 1 2a

Bardziej szczegółowo

Przemieszczeniem ciała nazywamy zmianę jego położenia

Przemieszczeniem ciała nazywamy zmianę jego położenia 1 Przemieszczeniem ciała nazywamy zmianę jego położenia + 0 k k 0 Przemieszczenie jes wekorem. W przypadku jednowymiarowym możliwy jes ylko jeden kierunek, a zwro określamy poprzez znak. Przyjmujemy, że

Bardziej szczegółowo

O pewnym algorytmie rozwiązującym problem optymalnej alokacji zasobów. Cezary S. Zaremba*, Leszek S. Zaremba ** WPROWADZENIE

O pewnym algorytmie rozwiązującym problem optymalnej alokacji zasobów. Cezary S. Zaremba*, Leszek S. Zaremba ** WPROWADZENIE O pewnym algorymie rozwiązującym problem opymalnej alokacji zasobów Cezary S. Zaremba*, Leszek S. Zaremba ** WPROWADZENIE W kierowaniu firmą Zarząd częso saje wobec problemu rozdysponowania (alokacji)

Bardziej szczegółowo

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH Franciszek SPYRA ZPBE Energopomiar Elekryka, Gliwice Marian URBAŃCZYK Insyu Fizyki Poliechnika Śląska, Gliwice DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ

Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ Wprowadzenie Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ opracowanie: Barbara Stypuła Celem ćwiczenia jest poznanie roli katalizatora w procesach chemicznych oraz prostego sposobu wyznaczenia wpływu

Bardziej szczegółowo

Równania ruchu konstrukcji głównej z dołączonymi tłumikami drgań opisanymi standardowym modelem reologicznym

Równania ruchu konstrukcji głównej z dołączonymi tłumikami drgań opisanymi standardowym modelem reologicznym Budownicwo i Archiura 9 (211) 23-38 Równania ruchu onsrucji głównj z dołączonymi łumiami drgań opisanymi sandardowym modlm rologicznym Pior Wilgos Kadra Mchanii Budowli, Polichnia Lublsa, Wydział Budownicwa

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut Wojewódzki Konkurs Maemayczny dla uczniów gimnazjów. Eap szkolny 5 lisopada 2013 Czas 90 minu ZADANIA ZAMKNIĘTE Zadanie 1. (1 punk) Liczby A = 0, 99, B = 0, 99 2, C = 0, 99 3, D = 0, 99, E=0, 99 1 usawiono

Bardziej szczegółowo

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak ( ) ( ) ( ) i E E E i r r = = = = = θ θ ρ ν φ ε ρ α * 1 1 1 ) ( R. popyu R. Fishera Krzywa Phillipsa

Bardziej szczegółowo

Harmonogram czyszczenia z osadów sieci wymienników ciepła w trakcie eksploatacji instalacji na przykładzie destylacji rurowo-wieżowej

Harmonogram czyszczenia z osadów sieci wymienników ciepła w trakcie eksploatacji instalacji na przykładzie destylacji rurowo-wieżowej Mariusz Markowski, Marian Trafczyński Poliechnika Warszawska Zakład Aparaury Przemysłowe ul. Jachowicza 2/4, 09-402 Płock Harmonogram czyszczenia z osadów sieci wymienników ciepła w rakcie eksploaaci insalaci

Bardziej szczegółowo

Adsorpcja 2,4,6-trichlorofenolu na węglu aktywnym z roztworów wodno-metanolowych

Adsorpcja 2,4,6-trichlorofenolu na węglu aktywnym z roztworów wodno-metanolowych Inżynieria i Ochrona Środowiska 213, t. 16, nr 3, s. 313-321 Lidia DĄBEK 1 *, Krzysztof KUŚMIEREK 2 **, Andrzej ŚWIĄTKOWSKI 2 *** 1 Politechnika Świętokrzyska, Katedra Inżynierii i Ochrony Środowiska al.

Bardziej szczegółowo

Wykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I. Kinemayka punku maerialnego Kaedra Opyki i Fooniki Wydział Podsawowych Problemów Techniki Poliechnika Wrocławska hp://www.if.pwr.wroc.pl/~wozniak/fizyka1.hml Miejsce konsulacji: pokój

Bardziej szczegółowo

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych Laboratorium Półprzwodniki Dilktryki Magntyki Ćwiczni nr Badani matriałów frromagntycznych I. Zagadninia do przygotowania:. Podstawow wilkości charaktryzując matriały magntyczn. Związki pomiędzy B, H i

Bardziej szczegółowo

Silniki cieplne i rekurencje

Silniki cieplne i rekurencje 6 FOTO 33, Lao 6 Silniki cieplne i rekurencje Jakub Mielczarek Insyu Fizyki UJ Chciałbym Pańswu zaprezenować zagadnienie, kóre pozwala, rozważając emaykę sprawności układu silników cieplnych, zapoznać

Bardziej szczegółowo

2. Tablica routingu dla pewnej sieci złożonej z czterech węzłów wygląda następująco:

2. Tablica routingu dla pewnej sieci złożonej z czterech węzłów wygląda następująco: Colloquium 4, Grupa A. Jaką oszczędność w zarządzaniu działm Biura Obsługi Klina (polgającą na rdukcji liczby sanowisk obsługi) mogą odnoować dwa połączon przdsiębiorswa, jżli: a. każda z firm przd połącznim

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml

Bardziej szczegółowo

MINISTERSTWO GOSPODARKI, plac Trzech Krzyży 3/5, 00-507 Warszawa G-10.3

MINISTERSTWO GOSPODARKI, plac Trzech Krzyży 3/5, 00-507 Warszawa G-10.3 MINISTERSTWO GOSPODARKI, plac Trzech Krzyży 3/5, 00-507 Warszawa Nazwa i adres jednoski sprawozdawczej Numer idenyfikacyjny - REGON 1 Kod właściwy dla elekrowni jako jednoski lokalnej G-10.3 Sprawozdanie

Bardziej szczegółowo

BEZRYZYKOWNE BONY I LOKATY BANKOWE ALTERNATYWĄ DLA PRZYSZŁYCH EMERYTÓW. W tym krótkim i matematycznie bardzo prostym artykule pragnę osiągnąc 3 cele:

BEZRYZYKOWNE BONY I LOKATY BANKOWE ALTERNATYWĄ DLA PRZYSZŁYCH EMERYTÓW. W tym krótkim i matematycznie bardzo prostym artykule pragnę osiągnąc 3 cele: 1 BEZRYZYKOWNE BONY I LOKATY BANKOWE ALTERNATYWĄ DLA PRZYSZŁYCH EMERYTÓW Leszek S. Zaremba (Polish Open Universiy) W ym krókim i maemaycznie bardzo prosym arykule pragnę osiągnąc cele: (a) pokazac że kupowanie

Bardziej szczegółowo

LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.

LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Komisja Egzamiacyja la Akuariuszy LIII Egzami la Akuariuszy z 3 paźzirika 0 r. Część II Mamayka ubzpiczń życiowych Imię i azwisko osoby gzamiowaj:... Czas gzamiu: 00 miu Warszawa, 3 paźzirika 0 r. Mamayka

Bardziej szczegółowo

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE Janusz Sowiński, Rober Tomaszewski, Arur Wacharczyk Insyu Elekroenergeyki Poliechnika Częsochowska Aky prawne

Bardziej szczegółowo

ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/2007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Katowicach

ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/2007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Katowicach ROZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Kaowicach WYZNAZANIE PARAMETRÓW FUNKJI PEŁZANIA DREWNA W UJĘIU LOSOWYM * Kamil PAWLIK Poliechnika

Bardziej szczegółowo

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna

Bardziej szczegółowo

Ćwiczenie 119. Tabela II. Część P19. Wyznaczanie okresu drgań masy zawieszonej na sprężynie. Nr wierzchołka 0 1 2 3 4 5 6 7 8

Ćwiczenie 119. Tabela II. Część P19. Wyznaczanie okresu drgań masy zawieszonej na sprężynie. Nr wierzchołka 0 1 2 3 4 5 6 7 8 2012 Kaedra Fizyki SGGW Nazwisko... Daa... Nr na liście... Imię... Wydział... Dzień yg.... Godzina... Ruch harmoniczny prosy masy na sprężynie Tabela I: Część X19. Wyznaczanie sałej sprężyny Położenie

Bardziej szczegółowo

Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO. Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni.

Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO. Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni. Część I. MECHANIKA Wykład.. KINEMATYKA PUNKTU MATERIALNEGO Ruch jednowymiarowy Ruch na płaszczyźnie i w przesrzeni 1 KINEMATYKA PUNKTU MATERIALNEGO KINEMATYKA zajmuje się opisem ruchu ciał bez rozparywania

Bardziej szczegółowo

ANALIZA WPŁYWU PARAMETRÓW AKUMULATORA NA PRACĘ ROZRUSZNIKA SAMOCHODOWEGO Z SILNIKIEM BLDC

ANALIZA WPŁYWU PARAMETRÓW AKUMULATORA NA PRACĘ ROZRUSZNIKA SAMOCHODOWEGO Z SILNIKIEM BLDC Prac Naukow Insyuu Maszyn, Napędów i Pomiarów Elkrycznych Nr 65 Polichniki Wrocławskij Nr 65 Sudia i Mariały Nr 31 211 Mark CIURYS* Ignacy DUDZIKOWSKI* maszyny lkryczn, zasilani akumulaorow silniki bzszczokow,

Bardziej szczegółowo

PLAN WYKŁADU. Równanie Clausiusa-Clapeyrona 1 /21

PLAN WYKŁADU. Równanie Clausiusa-Clapeyrona 1 /21 PAN WYKŁADU Równani Clausiusa-Clapyrona 1 /1 Podręczniki Salby, Chaptr 4 C&W, Chaptr 4 R&Y, Chaptr /1 p (mb) 1 C Fusion iquid Solid 113 6.11 Vapor 1 374 (ºC) Kropl chmurow powstają wtdy kidy zostani osiągnięty

Bardziej szczegółowo

Analiza rynku projekt

Analiza rynku projekt Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes

Bardziej szczegółowo

Rzeszów, 16 kwietnia, 2018 r. RECENZJA

Rzeszów, 16 kwietnia, 2018 r. RECENZJA Rzeszów, 16 kwietnia, 2018 r. RECENZJA rozprawy doktorskiej mgr inż. Agaty PRZEWŁOCKIEJ pt.: Biosorpcjne usuwanie mieszaniny jonów Ni(II), Pb(II) oraz Zn(II) z roztworu wodnego przy zastosowaniu złoża

Bardziej szczegółowo

ADSORPCJA BŁĘKITU METYLENOWEGO I JODU NA WYBRANYCH WĘGLACH AKTYWNYCH

ADSORPCJA BŁĘKITU METYLENOWEGO I JODU NA WYBRANYCH WĘGLACH AKTYWNYCH Węgiel aktywny w ochronie środowiska i przemyśle (2006) ZYGMUNT DĘBOWSKI, EWA OKONIEWSKA Politechnika Częstochowska, Wydział Inżynierii i Ochrony Środowiska ul. Brzeźnicka 60a, 42-200 Częstochowa ADSORPCJA

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych. i rocznych ocen klasyfikacyjnych z fizyki dla klasy 1 gimnazjum

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych. i rocznych ocen klasyfikacyjnych z fizyki dla klasy 1 gimnazjum Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z fizyki dla klasy 1 gimnazjum Semesr I 1. Wykonujemy pomiary Tema zajęć Wielkości fizyczne, kóre

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODEE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Joanna Małgorzaa andmesser Szkoła Główna

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1 PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,

Bardziej szczegółowo

( t) UKŁADY TRÓJFAZOWE

( t) UKŁADY TRÓJFAZOWE KŁDY TRÓJFW kładm wilofazowym nazywamy zbiór obwodów lktrycznych (fazowych) w których działają napięcia żródłow sinusoidaln o jdnakowj częstotliwości przsunięt względm sibi w fazi i wytwarzan przważni

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )

Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( ) Zadanie. Zmienna losowa: X = Y +... + Y N ma złożony rozkład Poissona. W abeli poniżej podano rozkład prawdopodobieńswa składnika sumy Y. W ejże abeli podano akże obliczone dla k = 0... 4 prawdopodobieńswa

Bardziej szczegółowo

Badanie funktorów logicznych TTL - ćwiczenie 1

Badanie funktorów logicznych TTL - ćwiczenie 1 adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami

Bardziej szczegółowo

Wygładzanie metodą średnich ruchomych w procesach stałych

Wygładzanie metodą średnich ruchomych w procesach stałych Wgładzanie meodą średnich ruchomch w procesach sałch Cel ćwiczenia. Przgoowanie procedur Średniej Ruchomej (dla ruchomego okna danch); 2. apisanie procedur do obliczenia sandardowego błędu esmacji;. Wizualizacja

Bardziej szczegółowo

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów

Bardziej szczegółowo

Wykład 4 Metoda Klasyczna część III

Wykład 4 Metoda Klasyczna część III Teoria Obwodów Wykład 4 Meoda Klasyczna część III Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska D-, 5/8 el: (7) 3 6 fax: (7)

Bardziej szczegółowo

Lista nr Znaleźć rozwiązania ogólne następujących równań różniczkowych: a) y = y t,

Lista nr Znaleźć rozwiązania ogólne następujących równań różniczkowych: a) y = y t, RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE B Lisa nr 1 1. Napisać równanie różniczkowe, jakie spełnia napięcie u = u() na okładkach kondensaora w obwodzie zawierającym połączone szeregowo oporność R i pojemność C,

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK 1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny

Bardziej szczegółowo

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów

Bardziej szczegółowo

Funkcja nieciągła. Typy nieciągłości funkcji. Autorzy: Anna Barbaszewska-Wiśniowska

Funkcja nieciągła. Typy nieciągłości funkcji. Autorzy: Anna Barbaszewska-Wiśniowska Funkcja niciągła. Typy niciągłości funkcji Autorzy: Anna Barbaszwska-Wiśniowska 2018 Funkcja niciągła. Typy niciągłości funkcji Autor: Anna Barbaszwska-Wiśniowska DEFINICJA Dfinicja 1: Funkcja niciągła

Bardziej szczegółowo

( ) ( ) ( τ) ( t) = 0

( ) ( ) ( τ) ( t) = 0 Obliczanie wraŝliwości w dziedzinie czasu... 1 OBLICZANIE WRAśLIWOŚCI W DZIEDZINIE CZASU Meoda układu dołączonego do obliczenia wraŝliwości układu dynamicznego w dziedzinie czasu. Wyznaczane będą zmiany

Bardziej szczegółowo

OPIS RÓWNOWAGI SORPCJI BARWNIKÓW AZOWYCH DIRECT ORANGE 26 I REACTIVE BLUE 81 NA TANIM SORBENCIE ROŚLINNYM

OPIS RÓWNOWAGI SORPCJI BARWNIKÓW AZOWYCH DIRECT ORANGE 26 I REACTIVE BLUE 81 NA TANIM SORBENCIE ROŚLINNYM Procdings of ECOpol DOI: 1.2429/proc.214.8(2)7 214;8(2) Elwira TOMCZAK 1 i Pawł TOSIK 1 OPIS RÓWNOWAGI SORPCJI BARWNIKÓW AZOWYCH DIRECT ORANGE 26 I REACTIVE BLUE 81 NA TANIM SORBENCIE ROŚLINNYM SORPTION

Bardziej szczegółowo

ADSORPCJA PARACETAMOLU NA WĘGLU AKTYWNYM

ADSORPCJA PARACETAMOLU NA WĘGLU AKTYWNYM ADSORPCJA PARACETAMOLU NA WĘGLU AKTYWNYM CEL ĆWICZENIA Celem ćwiczenia jest analiza procesu adsorpcji paracetamolu na węglu aktywnym. Zadanie praktyczne polega na spektrofotometrycznym oznaczeniu stężenia

Bardziej szczegółowo

Proces stochastyczny jako funkcja dwóch zmiennych. i niepusty podzbiór zbioru liczb rzeczywistych T. Proces stochastyczny jest to funkcja

Proces stochastyczny jako funkcja dwóch zmiennych. i niepusty podzbiór zbioru liczb rzeczywistych T. Proces stochastyczny jest to funkcja POJĘCI PROCSU STOCHSTYCZNGO Przykład mpluda napęca gnrowango przz prądncę prądu zmnngo zalży od czynnków losowych moż być zapsana jako funkcja X sn c c - sała okrślająca częsolwość - zmnna losowa o rozkładz

Bardziej szczegółowo

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Barbara Baóg Iwona Foryś PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH Wsęp Koszy dosarczenia wody

Bardziej szczegółowo

WYKŁAD FIZYKAIIIB 2000 Drgania tłumione

WYKŁAD FIZYKAIIIB 2000 Drgania tłumione YKŁD FIZYKIIIB Drgania łumione (gasnące, zanikające). F siła łumienia; r F r b& b współczynnik łumienia [ Nm s] m & F m & && & k m b m F r k b& opis różnych zjawisk izycznych Niech Ce p p p p 4 ± Trzy

Bardziej szczegółowo

4.4. Obliczanie elementów grzejnych

4.4. Obliczanie elementów grzejnych 4.4. Obiczanie eemenów grzejnych Po wyznaczeniu wymiarów przewodu grzejnego naeży zaprojekować eemen grzejny, a więc okreśić wymiary skręki grzejnej czy eemenu faisego (wężownicy grzejnej, meandra grzejnego).

Bardziej szczegółowo

Gr.A, Zad.1. Gr.A, Zad.2 U CC R C1 R C2. U wy T 1 T 2. U we T 3 T 4 U EE

Gr.A, Zad.1. Gr.A, Zad.2 U CC R C1 R C2. U wy T 1 T 2. U we T 3 T 4 U EE Niekóre z zadań dają się rozwiązać niemal w pamięci, pamięaj jednak, że warunkiem uzyskania różnej od zera liczby punków za każde zadanie, jes przedsawienie, oprócz samego wyniku, akże rozwiązania, wyjaśniającego

Bardziej szczegółowo

Wpływ modyfikacji chemicznej lotnego popiołu węglowego na adsorpcję jonów ołowiu(ii) w obecności jonów kadmu(ii) w układzie jedno- i dwuskładnikowym

Wpływ modyfikacji chemicznej lotnego popiołu węglowego na adsorpcję jonów ołowiu(ii) w obecności jonów kadmu(ii) w układzie jedno- i dwuskładnikowym Inżyniria i Ochrona Środowiska 2016, 19(1), 81-95 p-issn 1505-3695 Enginring and Protction of Environmnt -ISSN 2391-7253 http://is.pcz.pl/124/indx/czasopismo_inzyniria_i_ochrona_rodowiska.html DOI: 10.17512/ios.2016.1.7

Bardziej szczegółowo

2. Architektury sztucznych sieci neuronowych

2. Architektury sztucznych sieci neuronowych - 8-2. Architktury sztucznych sici nuronowych 2.. Matmatyczny modl nuronu i prostj sici nuronowj Sztuczn sici nuronow są modlami inspirowanymi przz strukturę i zachowani prawdziwych nuronów. Podobni jak

Bardziej szczegółowo

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: = ROZŁADOWANIE KONDENSATORA I. el ćwiczenia: wyznaczenie zależności napięcia (i/lub prądu I ) rozładowania kondensaora w funkcji czasu : = (), wyznaczanie sałej czasowej τ =. II. Przyrządy: III. Lieraura:

Bardziej szczegółowo

TRANZYSTORY POLOWE JFET I MOSFET

TRANZYSTORY POLOWE JFET I MOSFET POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora

Bardziej szczegółowo

W-24 (Jaroszewicz) 22 slajdy Na podstawie prezentacji prof. J. Rutkowskiego. Cząstka w studni potencjału. przykłady efektu tunelowego

W-24 (Jaroszewicz) 22 slajdy Na podstawie prezentacji prof. J. Rutkowskiego. Cząstka w studni potencjału. przykłady efektu tunelowego Kyongju, Kora, April 999 W-4 (Jaroszwicz) slajdy Na podstawi przntacji prof. J. Rutowsigo Fizya wantowa 3 Cząsta w studni potncjału sończona studnia potncjału barira potncjału barira potncjału o sończonj

Bardziej szczegółowo