Termodynamika. Część 10. Elementy fizyki statystycznej klasyczny gaz doskonały. Janusz Brzychczyk, Instytut Fizyki UJ

Wielkość: px
Rozpocząć pokaz od strony:

Download "Termodynamika. Część 10. Elementy fizyki statystycznej klasyczny gaz doskonały. Janusz Brzychczyk, Instytut Fizyki UJ"

Transkrypt

1 Trodynaika Część 1 Elnty fizyki statystycznj klasyczny gaz doskonały Janusz Brzychczyk, Instytut Fizyki UJ

2 Użytczn całki ax2 dx = 1 2 a x ax2 dx = 1 2a ax2 dx = a a x 2 ax2 dx = 1 4a a x 3 ax2 dx = 1 2a 2 x 4 ax2 dx = 3 8a 2 a

3 Klasyczny opis gazu doskonałgo T tpratura gazu V objętość asa cząstki N liczba cząstk n = N/V śrdnia liczba cząstk na jdnostkę objętości Warunk stosowalności przybliżnia klasyczngo: (triczna długość fali d Brogli'a) << (śrdnia odlgłość poiędzy cząstkai) = h 2 1/2 n 1/3

4 Rozkład Maxwlla Rozważay rozkład prędkości cząstk gazu doskonałgo w przybliżniu klasyczny. Tpratura gazu T, asa cząstki, śrdnia liczba cząstk w jdnostc objętości n. Gęstość prawdopodobiństwa, ż dana cząstka a pęd f p p2 2 p jst okrślona przz rozkład kanoniczny Poniważ p = v v2 2 f v = C Wartość stałj C otrzyujy z warunku noralizacji. W rzultaci f v = 2 v 2 3/ 2 2 Prawdopodobiństwo, ż cząstka a prędkość zawartą w przdzial [v, vdv ] jst równ f v d 3 v. Śrdnia liczba cząstk na jdnostkę objętości, któr ają prędkość zawartą w przdzial [v, vdv ] nv d 3 v = n f v d 3 v

5 Rozkład Maxwlla Rozkład jdnj z składowych prędkości Gęstość prawdopodobiństwa, ż cząstka a składową prędkości v x g v x = f v x,v y,v z dv y dv z = 2 2 3/ 2 v 2 v 2 2 x y v z dvy dv z g v x = 2 v x 2 1/2 2 Jst to rozkład Gaussa o wartości śrdnij v x = oraz odchylniu standardowy =.

6 Rozkład Maxwlla Rozkład szybkości cząstk Gęstość prawdopodobiństwa, ż cząstka porusza się z szybkością v = v w dowolny kirunku otrzyay całkując f v po wszystkich kirunkach wktora prędkości. Poniważ f v ni zalży od kirunku, wystarczy ponożyć f v przz pol powirzchni sfry o proiniu v f v = 4v 2 f v f v = 4 2 3/2 v 2 v2 2 Prawdopodobiństwo, ż cząstka a szybkość w przdzial [ v 1, v 2 ] v 2 P v 1,v 2 = v 1 f vdv Gęstość prawdopodobiństwa, ż cząstka a nrgię kintyczną E f ( E ) = f (v) ( dv de ) = 2π E (π ) 3/2 E

7 Własności rozkładu szybkości cząstk f v = 4 2 Wartość śrdnia 3/2 v 2 v2 2 v = v f v dv = 8 Wartość najbardzij prawdopodobna f v Wikipdia T = 25 o C v = 2 = 2 v v [ / s] Śrdnia wartość kwadratu prędkości v 2 = v 2 f v dv = 3 Śrdnia nrgia kintyczna cząstki E = 1 2 v 2 = 3 2

8 Ciśnini Śrdnia liczba cząstk, których składowa x prędkości, v x, a wartość zawartą w przdzial [v x, v x + dv x ] N v x dv x = N g v x dv x Z tj liczby, tylko t cząstki udrzą w ścianę w przciągu czasu t, których odlgłość od ściany jst nijsza niż v x t, czyli cząstki znajdując się w objętości Av x t. Liczba ta wynosi Av x t V N g v x dv x v v x v x t A powirzchnia ściany Po zdrzniu z ścianą ziana pędu cząstki wynosi 2 v x, zat całkowita ziana pędu wszystkich cząstk zdrzających się z ścianą w przdzial czasu t, równa zgodni z III zasadą dynaiki Nwtona wartości F t, wynosi F = p A x F t = 2 A t N V v x 2 g v x dv x stąd ciśnini gazu p = F A = 2 N V v x 2 g v x dv x = N V ( równani stanu )

9 Trodynaika gazu doskonałgo Kanoniczna funkcja rozdziału dla jdnj cząstki Z 1 = 1 h 3 dx dydz Z 1 = V h 3 p 2 x 2 dp x p 2 p 2 2 x y p z 2 p 2 y 2 dp y dp x dp y dp z p 2 z 2 dp z = V 2 3 h 3 Z 1 = V 2 h 2 3/2 = V 3 Funkcja rozdziału dla N cząstk rozróżnialnych: Z N = Z 1 N. Dla cząstk nirozróżnialnych Z N = Z N 1 N! = V N 2 N! h 2 3 N /2

10 Trodynaika gazu doskonałgo ln Z N = N lnv 3 N 2 ln ln N! 3 N 2 ln 2 Ciśnini gazu h 2 p = ln Z N V T,N = N V równani stanu. Używając przybliżnia Stirlinga: ln N! N ln N N otrzyujy F = ln Z N = N [ ln V N 3 2 ln 2 h 1 ] 2 S = F T V, N = Nk [ ln V N 3 2 ln 2 h ] U = 2 ln Z N T V, N = 3 2 N = F N T,V = ln[ V N 2 h 2 3 ] 2

11 Gaz doskonały w polu sił zwnętrznych Całkowita nrgia cząstki Er,p = E kin p E pot r Gęstość prawdopodobiństwa, ż cząstka a dany pęd i położni qr, p E p kin E r pot Rozkłady gęstości prawdopodobiństwa dla pędu i położnia są nizalżn. Dla pędu f p p2 2 rozkład Maxwlla Dla położń E r pot f r Zat koncntracja cząstk (śrdnia liczba cząstk na jdnostkę objętości) zalży od położnia wdług zalżności E r pot nr

12 Gaz doskonały w jdnorodny polu grawitacyjny Rozważay gaz w pobliżu powirzchni Zii E pot x, y, z = g z gdzi z oznacza wysokość na którj znajduj się cząstka, a g jst przyspiszni ziski. Koncntracja cząstk na wysokości z n z gz Z równania stanu gazu doskonałgo p z = n z zat zalżność ciśninia gazu od wysokości gz p z = p wzór barotryczny gdzi p oznacza ciśnini na wysokości z =. Dla ałych wysokości gz p z = p p g 1 z

13 Efuzja z T tpratura gazu n śrdnia liczba cząstk na jdnostkę objętości v t A powirzchnia otworu Cząstczki o prędkościach z przdziału v,vdv trafią na otwór w ciągu czasu t jżli będą się znajdować w pochyły walcu o podstawi A i wysokości v t cos. Liczba tych cząstk wynosi gdzi J v d 3 v = n A v t cos f v d 3 v f v jst rozkład prędkości Maxwlla. Dla jdnostkowj powirzchni A i jdnostkowgo czasu t J v d 3 v = n f v v cos d 3 v

14 Efuzja Przchodziy z współrzędnych kartzjańskich do sfrycznych J v d 3 v = n f v v cos d 3 v = n f v v cos v 2 sindvdd Całkując po wszystkich ożliwych kirunkach wktora prędkości otrzyujy rozkład szybkości cząstk w wiązc z 2 J v dv = J v dv = 2 1 /2 d sincosd nv 3 f v dv sin d sin nv 3 f v dv = nv 3 f v dv v t J v dv = 1 4 J v dv = n nv f v dv 2 3/2 v 3 v2 2 dv Śrdnia liczba cząstk gazu wydostających się przz otwór o jdnostkowj powirzchni w ciągu jdnostki czasu wynosi J = J v dv = 1 4 n v f v dv J = 1 4 nv = n 2

Ćw. 27. Badanie właściwości statystycznych elektronów emitowanych z katody lampy próżniowej

Ćw. 27. Badanie właściwości statystycznych elektronów emitowanych z katody lampy próżniowej Ćw. 7. Badani właściwości statystycznych lktronów itowanych z katody lapy próżniowj Michał Urbański 1. Wprowadznia Kintyczna toria gazów i atrii została sforułowana pod konic XIXw. i spowodowała rwolucję

Bardziej szczegółowo

2009 ZARZĄDZANIE. LUTY 2009

2009 ZARZĄDZANIE. LUTY 2009 Wybran zstawy gzaminacyjn kursu Matmatyka na Wydzial ZF Uniwrsyttu Ekonomiczngo w Wrocławiu w latach 009 06 Zstawy dotyczą trybu stacjonarngo Niktór zstawy zawirają kompltn rozwiązania Zakrs matriału w

Bardziej szczegółowo

Rozkład Maxwell a prędkości cząsteczek gazu Prędkości poszczególnych cząsteczek mogą być w danej chwili dowolne

Rozkład Maxwell a prędkości cząsteczek gazu Prędkości poszczególnych cząsteczek mogą być w danej chwili dowolne Rozkład Maxwll a rędkośi ząstzk gazu 9-9. Rozkład Maxwll a rędkośi ząstzk gazu Prędkośi oszzgólnyh ząstzk ogą być w danj hwili dowoln 3 a tylko rędkość śrdnia kwadratowa wynosi sk. Można się jdnak sodziwać,

Bardziej szczegółowo

Fizyka promieniowania jonizującego. Zygmunt Szefliński

Fizyka promieniowania jonizującego. Zygmunt Szefliński Fizyka prominiowania jonizującgo ygmunt Szfliński 1 Wykład 10 Rozpady Rozpady - warunki nrgtyczn Ściżka stabilności Nad ściżką znajdują się jądra prominiotwórcz, ulgając rozpadowi -, zaś pod nią - jądra

Bardziej szczegółowo

Ekscytony Wanniera Motta

Ekscytony Wanniera Motta ozpatrzmy oddziaływani lktronu o wktorz falowym bliskim minimum pasma przwodnictwa oraz dziury z obszaru blisko wirzcołka pasma walncyjngo. Zakładamy, ż oba pasma są sfryczni symtryczn, a ic kstrma znajdują

Bardziej szczegółowo

cos(ωt) ω ( ) 1 cos ω sin(ωt)dt = sin(ωt) ω cos(ωt)dt i 1 = sin ω i ( 1 cos ω ω 1 e iωt dt = e iωt iω II sposób: ˆf(ω) = 1 = e iω 1 = i(e iω 1) i ω

cos(ωt) ω ( ) 1 cos ω sin(ωt)dt = sin(ωt) ω cos(ωt)dt i 1 = sin ω i ( 1 cos ω ω 1 e iωt dt = e iωt iω II sposób: ˆf(ω) = 1 = e iω 1 = i(e iω 1) i ω Rachunk prawdopodobiństwa MAP6 Wydział Elktroniki, rok akad. 8/9, sm. ltni Wykładowca: dr hab. A. Jurlwicz Przykłady do listy : Transformata Fourira Przykłady do zadania. : Korzystając z dfinicji wyznaczyć

Bardziej szczegółowo

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki

Bardziej szczegółowo

Zjawisko Zeemana (1896)

Zjawisko Zeemana (1896) iczby kwantow Zjawisko Zana (1896) Badani inii widowych w siny pou agntyczny, prowadzi do rozszczpini pozioów nrgtycznych. W odu Bohra, kwantowani orbitango ontu pędu n - główna iczba kwantowa n = 1,,

Bardziej szczegółowo

w rozrzedzonych gazach atomowych

w rozrzedzonych gazach atomowych w rozrzdzonych gazach atomowych Anna Okopińska Instytut Fizyki II. T E O R IA Z DE G E N E R O WA N Y C H G A Z Ó W DO S K O N A Ł Y C H Mchanika cząstki kwantowj Cząstkę kwantową w polu siły o potncjal

Bardziej szczegółowo

Rachunek Prawdopodobieństwa MAP1151, 2011/12 Wydział Elektroniki Wykładowca: dr hab. Agnieszka Jurlewicz

Rachunek Prawdopodobieństwa MAP1151, 2011/12 Wydział Elektroniki Wykładowca: dr hab. Agnieszka Jurlewicz 1 Rachunk Prawdopodobiństwa MAP1151, 011/1 Wydział Elktroniki Wykładowca: dr hab. Agniszka Jurlwicz Listy zadań nr 5-6 Opracowani: dr hab. Agniszka Jurlwicz Lista 5. Zminn losow dwuwymiarow. Rozkłady łączn,

Bardziej szczegółowo

RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU

RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU X. RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU Równanie Schrődingera niezależne od czasu to równanie postaci: ħ 2 2m d 2 x dx 2 V xx = E x (X.1) Warunki regularności na x i a) skończone b) ciągłe c) jednoznaczne

Bardziej szczegółowo

Oddziaływanie elektronu z materią

Oddziaływanie elektronu z materią Oddiaływani lktronu matrią p p X-ray p wt wt A wt p - lktron pirwotny, 0-3000V. wt - lktron wtórny, 0-0 V. A- lktron Augr a, 0-000V. X-ray- proiowani X, 000-000V. - plamon, 0-80 V. - fonon, 0,0-0,5V. Zdrni

Bardziej szczegółowo

Wykład 6 Pochodna, całka i równania różniczkowe w praktycznych zastosowaniach w elektrotechnice.

Wykład 6 Pochodna, całka i równania różniczkowe w praktycznych zastosowaniach w elektrotechnice. Wykład 6 Pochodna, całka i równania różniczkow w prakycznych zasosowaniach w lkrochnic. Przypomnini: Dfinicja pochodnj: Granica ilorazu różnicowgo-przyros warości funkcji do przyrosu argumnów-przy przyrości

Bardziej szczegółowo

Termodynamika. Część 11. Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 11. Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 11 Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna Janusz Brzychczyk, Instytut Fizyki UJ Układ otwarty rozkład wielki kanoniczny Rozważamy układ w równowadze termicznej

Bardziej szczegółowo

gdzie: E ilość energii wydzielona z zamiany masy na energię m ubytek masy c szybkość światła w próŝni (= m/s).

gdzie: E ilość energii wydzielona z zamiany masy na energię m ubytek masy c szybkość światła w próŝni (= m/s). 1 Co to jst dfkt masy? Ŝli wskutk rakcji chmicznj masa produktów jst mnijsza od masy substratów to zjawisko taki nazywamy dfktm masy Ubytkowi masy towarzyszy wydzilani się nrgii ówimy Ŝ masa jst równowaŝna

Bardziej szczegółowo

Eikonał Optyczny.doc Strona 1 z 6. Eikonał Optyczny

Eikonał Optyczny.doc Strona 1 z 6. Eikonał Optyczny Eikonał Optyczny.doc Stona z 6 Eikonał Optyczny µ µ Rozpatzmy ośodk bz ładunków i pądów z polm o pulsacji ω Uwaga: ni zakłada się jdnoodności ośodka: ε ε xyz,,, Równania Maxwlla: H iωε ε E ikc ε ε E E

Bardziej szczegółowo

Teoria kinetyczna gazów

Teoria kinetyczna gazów Teoria kinetyczna gazów Mikroskopowy model ciśnienia gazu wzór na ciśnienie gazu Mikroskopowa interpretacja temperatury Średnia energia cząsteczki gazu zasada ekwipartycji energii Czy ciepło właściwe przy

Bardziej szczegółowo

Podstawy fizyki subatomowej

Podstawy fizyki subatomowej Podstawy fizyki subatomowj Wykład marca 09 r. Modl Standardowy Modl Standardowy opisuj siln, słab i lktromagntyczn oddziaływania i własności cząstk subatomowych. cząstki lmntarn MS: lptony, kwarki, bozony

Bardziej szczegółowo

IX. MECHANIKA (FIZYKA) KWANTOWA

IX. MECHANIKA (FIZYKA) KWANTOWA IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji

Bardziej szczegółowo

V.4 Ruch w polach sił zachowawczych

V.4 Ruch w polach sił zachowawczych r. akad. 5/ 6 V.4 Ruch w polach sił zachowawczych. Ruch cząstki w potencjale jednowyiarowy. Ruch w polu siły centralnej. Wzór Bineta 3. Przykład: całkowanie wzoru Bineta dla siły /r Dodatek: całkowanie

Bardziej szczegółowo

PODSTAWY MECHANIKI KWANTOWEJ

PODSTAWY MECHANIKI KWANTOWEJ PODSTAWY MECHANIKI KWANTOWEJ De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie

Bardziej szczegółowo

Swobodny spadek ciał w ośrodku stawiającym opór

Swobodny spadek ciał w ośrodku stawiającym opór Ryszard Chybici Swobodny spad ciał w ośrodu stawiający opór (Posłuiwani się przz osoby trzci ty artyuł lub jo istotnyi frantai bz widzy autora jst wzbronion) Milc, 005 Swobodny spad ciała ośrodu stawiający

Bardziej szczegółowo

Wykład 25. Kwantowa natura promieniowania

Wykład 25. Kwantowa natura promieniowania 1 Wykład 5 Kwantowa natura prominiowania 1.1 Prominiowani cipln. Ciała, któr podgrzwan są do dostatczni wysokich tmpratur świcą. Świcni ciał, któr spowodowan jst nagrzwanim, nazywa się prominiowanim ciplnym

Bardziej szczegółowo

Obserwacje świadczące o dyskretyzacji widm energii w strukturach niskowymiarowych

Obserwacje świadczące o dyskretyzacji widm energii w strukturach niskowymiarowych Obsrwacj świadcząc o dyskrtyzacji widm nrgii w strukturach niskowymiarowych 1. Optyczn Widma: - absorpcji wzbudzani fotonami o coraz większj nrgii z szczytu pasma walncyjngo do pasma przwodnictwa maksima

Bardziej szczegółowo

Pomiar stosunku e/m dla elektronów

Pomiar stosunku e/m dla elektronów Narodow Cntru Badań Jądrowych Dział Edukacji i Szkolń ul. ndrzja Sołtana 7, 5-4 Otwock-Świrk ĆWICZENIE 11 L B O R T O R I M F I Z Y K I T O M O W E J I J Ą D R O W E J Poiar stosunku / dla lktronów Iię

Bardziej szczegółowo

gęstością prawdopodobieństwa

gęstością prawdopodobieństwa Funkcja falowa Zgodnie z hipotezą de Broglie'a, cząstki takie jak elektron czy proton, mają własności falowe. Własności falowe cząstki (lub innego obiektu) w mechanice kwantowej opisuje tzw. funkcja falowa(,t)

Bardziej szczegółowo

PARCIE GRUNTU. Przykłady obliczeniowe. Zadanie 1.

PARCIE GRUNTU. Przykłady obliczeniowe. Zadanie 1. MECHANIA GRUNTÓW ćwicznia, dr inż. Irnusz Dyka irunk studiów: Budownictwo Rok III, s. V Zadani. PARCIE GRUNTU Przykłady obliczniow Przdstawion zostały wyniki obliczń parcia czynngo i birngo (odporu) oraz

Bardziej szczegółowo

Wykład 2 Wahadło rezonans parametryczny. l+δ

Wykład 2 Wahadło rezonans parametryczny. l+δ Wykład Wahadło rzonans paramryczny θ θ l l+δ C B B Wykład Wahadło - rzonans paramryczny E E E B mg l cos θ θ E kinb m d d l l+δ B B l C I m l E B B kinb' I m B' B' d d d d B l ml d d B ' mgl cos ' B gcos

Bardziej szczegółowo

Statyka płynów - zadania

Statyka płynów - zadania Zadanie 1 Wyznaczyć rozkład ciśnień w cieczy znajdującej się w stanie spoczynku w polu sił ciężkości. Ponieważ na cząsteczki cieczy działa wyłącznie siła ciężkości, więc składowe wektora jednostkowej siły

Bardziej szczegółowo

Fizyka statystyczna Zwyrodniały gaz Fermiego. P. F. Góra

Fizyka statystyczna Zwyrodniały gaz Fermiego. P. F. Góra Fizyka statystyczna Zwyrodniały gaz Fermiego P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2016 Fermiony w niskich temperaturach Wychodzimy ze znanego już wtrażenia na wielka sumę statystyczna: Ξ = i=0

Bardziej szczegółowo

J. Szantyr - Wykład 3 Równowaga płynu

J. Szantyr - Wykład 3 Równowaga płynu J. Szantyr - Wykład 3 Równowaga płynu Siły wewnętrzne wzajemne oddziaływania elementów mas wydzielonego obszaru płynu, siły o charakterze powierzchniowym, znoszące się parami. Siły zewnętrzne wynik oddziaływania

Bardziej szczegółowo

Równania różniczkowe zwyczajne

Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne zadań dla sudenów kierunku Auomayka i roboyka WEAIiIB AGH Michał Góra Wydział Maemayki Sosowanej AGH I. Równania o zmiennych rozdzielonych: y = f (y)f () Zadanie. Rozwiąż

Bardziej szczegółowo

Zjonizowana cząsteczka wodoru H 2+ - elektron i dwa protony

Zjonizowana cząsteczka wodoru H 2+ - elektron i dwa protony Zjonizowana cząstczka wodoru H - lktron i dwa protony Enrgia potncjalna lktronu w polu lktrycznym dwu protonów ˆ pˆ H = m pˆ 1 m p pˆ m p 1 1 1 4πε 0 r0 r1 r Hamiltonian cząstczki suma nrgii kintycznj

Bardziej szczegółowo

Przykład 1 modelowania jednowymiarowego przepływu ciepła

Przykład 1 modelowania jednowymiarowego przepływu ciepła Przykład 1 modlowania jdnowymiarowgo przpływu cipła 1. Modl przpływu przz ścianę wilowarstwową Ściana składa się trzch warstw o różnych grubościach wykonana z różnych matriałów. Na jdnj z ścian zwnętrznych

Bardziej szczegółowo

lim lim 4) lim lim lim lim lim x 3 e e lim lim x lim lim 2 lim lim lim Zadanie 1 Wyznacz dziedziny następujących funkcji: log x x 6x

lim lim 4) lim lim lim lim lim x 3 e e lim lim x lim lim 2 lim lim lim Zadanie 1 Wyznacz dziedziny następujących funkcji: log x x 6x Tmat : Funkcj jdnj zminnj Zadani Wyznacz dzidziny następujących funkcji: ) f ) f 5) log 6 ) f ) f 7 Zadani Oblicz granic funkcji: log f 5 6) f 7 8 ) ) ) 8 7 ) 5) 6) 7) 8) 9) 5 5 7 7 7 6 0) 6 ) ) 9) 0)

Bardziej szczegółowo

Wykład 2: Atom wodoru

Wykład 2: Atom wodoru Wykład : Ato wodou Równani Schödinga Kwantowani ngii Wida atoow wodou Kwantowani ontu pędu Liczby kwantow Część adialna i kątowa funkcji falowj Radialny ozkład gęstości pawdopodobiństwa Kontuy obitali

Bardziej szczegółowo

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów

Bardziej szczegółowo

4) lim. lim. lim. lim. lim. x 3. e e. lim. lim x. lim. lim. lim. lim 2. lim. lim. lim. Zadanie 1 Wyznacz dziedziny następujących funkcji: log x.

4) lim. lim. lim. lim. lim. x 3. e e. lim. lim x. lim. lim. lim. lim 2. lim. lim. lim. Zadanie 1 Wyznacz dziedziny następujących funkcji: log x. Zastosowania matmatyki w konomii Tmat : Funkcj jdnj zminnj Zadani Wyznacz dzidziny następujących funkcji: ) f ) f 5) log 6 ) f ) f 7 Zadani Oblicz granic funkcji: log f 5 6) f 7 8 ) ) ) 8 7 ) 5) 6) 7)

Bardziej szczegółowo

Arkusz 1 - karta pracy Całka oznaczona i jej zastosowania. Całka niewłaściwa

Arkusz 1 - karta pracy Całka oznaczona i jej zastosowania. Całka niewłaściwa Arkusz - krt prcy Cłk oznczon i jj zstosowni. Cłk niwłściw Zdni : Obliczyć nstępując cłki oznczon 5 d 5 d + 5 + 7 d Zuwżmy, ż d, Stąd d, + 5 + 7 d + ] 7 + + ln d cos sin d d ]. d + d 5, d + 5 + 7 7 7 d

Bardziej szczegółowo

Uogólnione wektory własne

Uogólnione wektory własne Uogólnion wktory własn m Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do

Bardziej szczegółowo

Termodynamika Część 3

Termodynamika Część 3 Termodynamika Część 3 Formy różniczkowe w termodynamice Praca i ciepło Pierwsza zasada termodynamiki Pojemność cieplna i ciepło właściwe Ciepło właściwe gazów doskonałych Ciepło właściwe ciała stałego

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny

Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny Janusz Brzychczyk, Instytut Fizyki UJ Związek pomiędzy równaniem

Bardziej szczegółowo

mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej

mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej ver-28.06.07 współrzędne uogólnione punkt materialny... wektor wodzący: prędkość: przyspieszenie: liczba

Bardziej szczegółowo

FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w

FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym

Bardziej szczegółowo

Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A

Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A Uogólnion wktory własnw Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A m do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do

Bardziej szczegółowo

Zasady zachowania, równanie Naviera-Stokesa. Mariusz Adamski

Zasady zachowania, równanie Naviera-Stokesa. Mariusz Adamski Zasady zachowania, równanie Naviera-Stokesa Mariusz Adamski 1. Zasady zachowania. Znaczna część fizyki, a w szczególności fizyki klasycznej, opiera się na sformułowaniach wypływających z zasad zachowania.

Bardziej szczegółowo

Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 4 Procesy izoparametryczne Entropia Druga zasada termodynamiki Janusz Brzychczyk, Instytut Fizyki UJ Pierwsza zasada termodynamiki procesy kwazistatyczne Zgodnie z pierwszą zasadą termodynamiki,

Bardziej szczegółowo

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się Ładunki elektryczne Ładunki jednoimienne odpychają się Ładunki różnoimienne przyciągają się q = ne n - liczba naturalna e = 1,60 10-19 C ładunek elementarny Ładunek jest cechąciała i nie można go wydzielićz

Bardziej szczegółowo

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera lementy mechaniki kwantowej Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe

Bardziej szczegółowo

ZASTOSOWANIA POCHODNEJ

ZASTOSOWANIA POCHODNEJ ZASTOSOWANIA POCODNEJ Ruła d l'ospitala. Nich, - różniczkowa w pwnym sąsidztwi punktu oraz lub istnij skończona lub niwłaściwa ranica wtdy Uwaa. Powyższ twirdzni jst równiż prawdziw dla ranic jdnostronnych

Bardziej szczegółowo

O ruchu. 10 m. Założenia kinematyki. Najprostsza obserwowana zmiana. Opis w kategoriach przestrzeni i czasu ( geometria fizyki ).

O ruchu. 10 m. Założenia kinematyki. Najprostsza obserwowana zmiana. Opis w kategoriach przestrzeni i czasu ( geometria fizyki ). O ruchu Założenia kinematyki Najprostsza obserwowana zmiana. Ignorujemy czynniki sprawcze ruchu, rozmiar, kształt, strukturę ciała (punkt materialny). Opis w kategoriach przestrzeni i czasu ( geometria

Bardziej szczegółowo

W-24 (Jaroszewicz) 22 slajdy Na podstawie prezentacji prof. J. Rutkowskiego. Cząstka w studni potencjału. przykłady efektu tunelowego

W-24 (Jaroszewicz) 22 slajdy Na podstawie prezentacji prof. J. Rutkowskiego. Cząstka w studni potencjału. przykłady efektu tunelowego Kyongju, Kora, April 999 W-4 (Jaroszwicz) slajdy Na podstawi przntacji prof. J. Rutowsigo Fizya wantowa 3 Cząsta w studni potncjału sończona studnia potncjału barira potncjału barira potncjału o sończonj

Bardziej szczegółowo

Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego

Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego Elektrostatyka Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego 1 Prawo Coulomba odpychanie naelektryzowane szkło nie-naelektryzowana miedź F 1 4 0 q 1 q 2 r 2 0 8.85

Bardziej szczegółowo

Rozwiązania zadań egzaminacyjnych (egzamin poprawkowy) z Mechaniki i Szczególnej Teorii Względności

Rozwiązania zadań egzaminacyjnych (egzamin poprawkowy) z Mechaniki i Szczególnej Teorii Względności Rozwiązania zadań egzaminacyjnych (egzamin poprawkowy) z Mechaniki i Szczególnej Teorii Względności Zadanie 1 (7 pkt) Cząstka o masie m i prędkości v skierowanej horyzontalnie wpada przez bocznąściankę

Bardziej szczegółowo

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera lementy mechaniki kwantowej Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera Fale materii de Broglie a (rok 193) De Broglie zaproponował, że każdy

Bardziej szczegółowo

5 Równania różniczkowe zwyczajne rzędu drugiego

5 Równania różniczkowe zwyczajne rzędu drugiego 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =

Bardziej szczegółowo

Rachunek Prawdopodobieństwa MAP1064, 2008/09

Rachunek Prawdopodobieństwa MAP1064, 2008/09 1 Rachunk Prawdopodobiństwa MAP1064, 008/09 Wydział Elktroniki Wykładowca: dr hab. Agniszka Jurlwicz Listy zadań nr 10-1 Opracowani: dr hab. Agniszka Jurlwicz Litratura: [1] A. Plucińska, E. Pluciński,

Bardziej szczegółowo

Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji

Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji . Własności funkcji () Wyznaczyć dziedzinę funkcji danej wzorem: y = 2 2 + 5 y = +4 y = 2 + (2) Podać zbiór wartości funkcji: y = 2 3, [2, 5) y = 2 +, [, 4] y =, [3, 6] (3) Stwierdzić, czy dana funkcja

Bardziej szczegółowo

Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.

Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1. Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1.a. Funkcja: ϕ = sin2x Zad. 1.1.b. Funkcja: ϕ = e x 2 2 Operator: f = d2 dx

Bardziej szczegółowo

13. Optyka Polaryzacja przez odbicie.

13. Optyka Polaryzacja przez odbicie. 13. Optyka 13.8. Polaryzaja przz odbii. x y z Fala lktromagntyzna, to fala poprzzna. Wktory E i są prostopadł do kirunku rozhodznia się fali. W wszystkih punktah wktory E (podobni jak ) są do sibi równolgł.

Bardziej szczegółowo

PLAN WYKŁADU. Równanie Clausiusa-Clapeyrona 1 /21

PLAN WYKŁADU. Równanie Clausiusa-Clapeyrona 1 /21 PAN WYKŁADU Równani Clausiusa-Clapyrona 1 /1 Podręczniki Salby, Chaptr 4 C&W, Chaptr 4 R&Y, Chaptr /1 p (mb) 1 C Fusion iquid Solid 113 6.11 Vapor 1 374 (ºC) Kropl chmurow powstają wtdy kidy zostani osiągnięty

Bardziej szczegółowo

Wykład VIII: Odkształcenie materiałów - właściwości sprężyste

Wykład VIII: Odkształcenie materiałów - właściwości sprężyste Wykład VIII: Odkształcni matriałów - właściwości sprężyst JERZY LI Wydział Inżynirii Matriałowj i ramiki Katdra Tchnologii ramiki i Matriałów Ogniotrwałych Trść wykładu: 1. Właściwości matriałów wprowadzni

Bardziej szczegółowo

Statystyki kwantowe. P. F. Góra

Statystyki kwantowe. P. F. Góra Statystyki kwantowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2016 Statystyki kwantowe Rozpatrujemy gaz doskonały o Hamiltonianie H = N i=1 p i 2 2m. (1) Zamykamy czastki w bardzo dużym pudle o idealnie

Bardziej szczegółowo

Wykład 7: Układy cząstek. WPPT, Matematyka Stosowana

Wykład 7: Układy cząstek. WPPT, Matematyka Stosowana Wykład 7: Układy cząstek WPPT, Matematyka Stosowana Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał wypadek? Uderzasz kijem w kule bilardowe czy to uda ci się trafić w kieszeń?

Bardziej szczegółowo

Przepływy laminarne - zadania

Przepływy laminarne - zadania Zadanie 1 Warstwa cieczy o wysokości = 3mm i lepkości v = 1,5 10 m /s płynie równomiernie pod działaniem siły ciężkości po płaszczyźnie nachylonej do poziomu pod kątem α = 15. Wyznaczyć: a) Rozkład prędkości.

Bardziej szczegółowo

Rozwiązania zadań z podstaw fizyki kwantowej

Rozwiązania zadań z podstaw fizyki kwantowej Rozwiązania zadań z podstaw fizyki kwantowej Jacek Izdebski 5 stycznia roku Zadanie 1 Funkcja falowa Ψ(x) = A n sin( πn x) jest zdefiniowana jedynie w obszarze

Bardziej szczegółowo

Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 )

Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 ) Mechanika Kwantowa Maciej J. Mrowiński 4 grudnia 11 Zadanie MK1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = ma następującą postać: A(a Ψ(x,) = x ) gdy x [ a,a] gdy x / [ a,a] gdzie a +. Wyznacz

Bardziej szczegółowo

Rozwiązanie równania różniczkowego MES

Rozwiązanie równania różniczkowego MES Rozwiązani równania różniczkowgo MES Jrzy Pamin -mail: jpamin@l5.pk.du.pl Instytut Tchnologii Informatycznych w Inżynirii Lądowj Wydział Inżynirii Lądowj Politchniki Krakowskij Strona domowa: www.l5.pk.du.pl

Bardziej szczegółowo

S ścianki naczynia w jednostce czasu przekazywany

S ścianki naczynia w jednostce czasu przekazywany FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym

Bardziej szczegółowo

Granica funkcji - Lucjan Kowalski GRANICA FUNKCJI

Granica funkcji - Lucjan Kowalski GRANICA FUNKCJI GRANICA FUNKCJI Granica uncji. - dowolna liczba rzczywista. O, = - ; + - otoczni liczby puntu o prominiu, S, = - ;, + - sąsidztwo liczby puntu o prominiu, Nich uncja będzi orślona w sąsidztwi puntu, g

Bardziej szczegółowo

Wykład 3. Entropia i potencjały termodynamiczne

Wykład 3. Entropia i potencjały termodynamiczne Wykład 3 Entropia i potencjały termodynamiczne dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej

Bardziej szczegółowo

Zespół kanoniczny N,V, T. acc o n =min {1, exp [ U n U o ] }

Zespół kanoniczny N,V, T. acc o n =min {1, exp [ U n U o ] } Zespół kanoniczny Zespół kanoniczny N,V, T acc o n =min {1, exp [ U n U o ] } Zespół izobaryczno-izotermiczny Zespół izobaryczno-izotermiczny N P T acc o n =min {1, exp [ U n U o ] } acc o n =min {1, exp[

Bardziej szczegółowo

Opracowanie: mgr Jerzy Pietraszko

Opracowanie: mgr Jerzy Pietraszko Analiza Matematyczna Opracowanie: mgr Jerzy Pietraszko Zadanie 1. Oblicz pochodną funkcji: (a) f(x) = x xx (b) f(x) = log sin 4 x cos 4 x (c) f(x) = sin sin x log x 2(2x) (d) f(x) = ( tg ( x + π 2 (e)

Bardziej szczegółowo

n p 2 i = R 2 (8.1) i=1

n p 2 i = R 2 (8.1) i=1 8.9 Rozkład Maxwella Jest to rozkład prędkości cząstek w gazie doskonałym. Wielkość f (p) jest gęstością prawdopodobieństwa znalezienia cząstki o pędzie p. Różnica pomiędzy rozkładem Maxwella i rozkładem

Bardziej szczegółowo

Dynamika relatywistyczna

Dynamika relatywistyczna Dynamika relatywistyczna Fizyka I (B+C) Wykład XVIII: Energia relatywistyczna Transformacja Lorenza energii i pędu Masa niezmiennicza Energia relatywistyczna Dla ruchu ciała pod wpływem stałej siły otrzymaliśmy:

Bardziej szczegółowo

Kinetyczna teoria gazów Termodynamika. dr Mikołaj Szopa Wykład

Kinetyczna teoria gazów Termodynamika. dr Mikołaj Szopa Wykład Kinetyczna teoria gazów Termodynamika dr Mikołaj Szopa Wykład 7.11.015 Kinetyczna teoria gazów Kinetyczna teoria gazów. Termodynamika Termodynamika klasyczna opisuje tylko wielkości makroskopowe takie

Bardziej szczegółowo

Geometria analityczna - przykłady

Geometria analityczna - przykłady Geometria analityczna - przykłady 1. Znaleźć równanie ogólne i równania parametryczne prostej w R 2, któr przechodzi przez punkt ( 4, ) oraz (a) jest równoległa do prostej x + 5y 2 = 0. (b) jest prostopadła

Bardziej szczegółowo

Zasada zachowania pędu

Zasada zachowania pędu Zasada zachowania pędu Fizyka I (B+C) Wykład XIII: Zasada zachowania pędu Zasada zachowania oentu pędu Ruch ciał o ziennej asie Zasada zachowania pędu Układ izolowany Każde ciało oże w dowolny sposób oddziaływać

Bardziej szczegółowo

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.

Bardziej szczegółowo

Wykład FIZYKA I. 11. Fale mechaniczne. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 11. Fale mechaniczne.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 11. Fale mechaniczne Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html FALA Falą nazywamy każde rozprzestrzeniające

Bardziej szczegółowo

ELEMENTY FIZYKI STATYSTYCZNEJ

ELEMENTY FIZYKI STATYSTYCZNEJ ELEMENTY FIZYKI STATYSTYCZNEJ Przedmiot badań fizyki statystycznej układy składające się z olbrzymiej ilości cząstek (ujawniają się specyficzne prawa statystyczne). 15.1. Termodynamiczny opis układu Opis

Bardziej szczegółowo

17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek

17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 17 KLASYCZNA DYNAMIKA MOLEKULARNA 17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek Rozważamy układ N punktowych cząstek

Bardziej szczegółowo

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 12 Procesy transportu Janusz Brzychczyk, Instytut Fizyki UJ Zjawiska transportu Zjawiska transportu są typowymi procesami nieodwracalnymi zachodzącymi w przyrodzie. Zjawiska te polegają

Bardziej szczegółowo

Fizyka 3.3 WYKŁAD II

Fizyka 3.3 WYKŁAD II Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło

Bardziej szczegółowo

MATEMATYKA II. znaleźć f(g(x)) i g(f(x)).

MATEMATYKA II. znaleźć f(g(x)) i g(f(x)). MATEMATYKA II PAWEŁ ZAPAŁOWSKI Równania i nierówności Zadanie Wyznaczyć dziedziny i wzory dla f f, f g, g f, g g, gdzie () f() =, g() =, () f() = 3 + 4, g() = Zadanie Dla f() = 3 5 i g() = 8 znaleźć f(g()),

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 3 19.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 3 19.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka - Mechanika Wykład 3 9.X.07 Zygunt Szefliński Środowiskowe Laboratoriu Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Stałe przyspieszenie Przyspieszenie charakteryzuje się ziana prędkości

Bardziej szczegółowo

Analiza danych jakościowych

Analiza danych jakościowych Analiza danych jakościowych Ccha ciągła a ccha dyskrtna! Ciągła kg Dyskrtna Cchy jakościow są to cchy, których jdnoznaczn i oczywist scharaktryzowani za pomocą liczb jst nimożliw lub bardzo utrudnion.

Bardziej szczegółowo

Fizyka statystyczna, elementy termodynamiki nierównowagowej Cele, zakres zagadnień

Fizyka statystyczna, elementy termodynamiki nierównowagowej Cele, zakres zagadnień Fizyka statystyczna, elementy termodynamiki nierównowagowej Cele, zakres zagadnień Narzędzia przypomnienie podstawowych definicji i twierdzeń z rachunku prawdopodobienstwa; podstawowe rozkłady statystyczne

Bardziej szczegółowo

( t) UKŁADY TRÓJFAZOWE

( t) UKŁADY TRÓJFAZOWE KŁDY TRÓJFW kładm wilofazowym nazywamy zbiór obwodów lktrycznych (fazowych) w których działają napięcia żródłow sinusoidaln o jdnakowj częstotliwości przsunięt względm sibi w fazi i wytwarzan przważni

Bardziej szczegółowo

I. PIERWSZE SPOTKANIE Z FIZYKĄ (6 godzin + 2 godziny łącznie na powtórzenie i sprawdzian)

I. PIERWSZE SPOTKANIE Z FIZYKĄ (6 godzin + 2 godziny łącznie na powtórzenie i sprawdzian) koniczn rozszrzając ponad I. PIERWSZE SPOTKANIE Z FIZYKĄ (6 godzin + 2 godziny łączni na powtórzni i sprawdzian) Czym zajmuj się fizyka; Wilkości fizyczn, jdnostki i pomiary; Jak przprowadzać doświadcznia

Bardziej szczegółowo

Termodynamiczny opis układu

Termodynamiczny opis układu ELEMENTY FIZYKI STATYSTYCZNEJ Przedmiot badań fizyki statystycznej układy składające się z olbrzymiej ilości cząstek (ujawniają się specyficzne prawa statystyczne). Termodynamiczny opis układu Opis termodynamiczny

Bardziej szczegółowo

dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B

dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A, p 2, S E C B, p 1, S C [W] wydajność pompowania C= d ( pv ) = d dt dt (nrt )= kt dn dt dn / dt - ilość cząstek przepływających w ciągu

Bardziej szczegółowo

FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że

FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że FAL MATRII De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie a Cząstce materialnej

Bardziej szczegółowo

Wartość ciśnienia wiatru działającego na powierzchnie zewnętrzne (w e ) i wewnętrzne (w i ) konstrukcji.

Wartość ciśnienia wiatru działającego na powierzchnie zewnętrzne (w e ) i wewnętrzne (w i ) konstrukcji. Zbrani obciążń a) Stał: Ciężar własny okrycia dachu: Pokryci dachówką kariówką odwójni. Przyjęto ciężar okrycia wraz z konstrukcją dachu: g 0,95 ; b) Zinn: Śnig wg EC: s ) C i i C s t k,gdzi: s wartość

Bardziej szczegółowo

Równanie Schrödingera

Równanie Schrödingera Równanie Schrödingera Maciej J. Mrowiński 29 lutego 2012 Zadanie RS1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = 0 ma następującą postać: A(a Ψ(x,0) = 2 x 2 ) gdy x [ a,a] 0 gdy x / [ a,a]

Bardziej szczegółowo

KONSTRUKCJE DREWNIANE I MUROWE

KONSTRUKCJE DREWNIANE I MUROWE POLITECHNIKA BIAŁOSTOCKA WBiIŚ KATEDRA KONSTRUKCJI BUDOWLANYCH ZAJĘCIA 2 KONSTRUKCJE DREWNIANE I MUROWE Mgr inż. Julita Krassowska POKRYCIE DACHU gont bitumiczny, papa na dskowaniu, dachówka karpiówka,

Bardziej szczegółowo

Agata Fronczak Elementy fizyki statystycznej

Agata Fronczak Elementy fizyki statystycznej Agata Fronczak Elementy fizyki statystycznej Skrypt do wykładu i ćwiczeń rachunkowych dla kierunku Fotonika (rok III, semestr 5) na Wydziale Fizyki PW Warszawa 2016 Spis treści 1. Termodynamika klasyczna,

Bardziej szczegółowo

Podstawy fizyki sezon 1 V. Pęd, zasada zachowania pędu, zderzenia

Podstawy fizyki sezon 1 V. Pęd, zasada zachowania pędu, zderzenia Podstawy fizyki sezon 1 V. Pęd, zasada zachowania pędu, zderzenia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne

1 Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe Równaniem

Bardziej szczegółowo