Ćwiczenie 6 WYZNACZANIE OBROTÓW KRYTYCZNYCH WAŁÓW
|
|
- Edward Lipiński
- 8 lat temu
- Przeglądów:
Transkrypt
1 Ćwiczenie 6 WYZNACZANIE OBROTÓW KRYTYCZNYCH WAŁÓW. Cel ćwiczenia Cele ćwiczenia jest analitczne wznaczenie obrotów tcznch wału, a następnie werikacja eksperentalna uzskanch wników.. Wprowadzenie O prawidłowości unkcjonowania aszn często decdują drgania ich eleentów, zwłaszcza wałów. Duże aplitud i duże sił, charakterstczne dla drgań wałów zachodzącch w pobliżu lub w obszarze rezonansow ogą powodować ich pękanie wskutek zęczenia. Mogą też prowadzić do uszkodzenia ich eleentów związanch z wałe, np. łożsk, kół zębatch, itp. Praca wałów w pobliżu rezonansu źle wpłwa na dokładność unkcjonowania aszn, jest też uciążliwa dla personelu obsługującego. Rozróżnia się trz or drgań wałów: giętne-sętne i wzdłużne. Ponadto drgania te ogą bć swobodne (własne) lub wuszone. Częstość drgań własnch wału zależ od jego paraetrów konstrukcjnch, właściwości sprężstch, sposobu podparcia (ułożskowania) oraz wielkości i rozieszczenia na ni as (wirników, kół zębatch itp.). Drgania wuszone powstają w wniku działania na eleent sprężst (w nasz przpadku na wał) oesowo ziennej sił zewnętrznej. Jeżeli częstość drgań wuszonch jest równa częstości drgań własnch, wówczas wstępuje rezonans i związan z ni bardzo duż wzrost aplitud... Krtczna prędkość wirowania wału W celu ustalenia związku iędz prędkością wirowania a drganiai własni giętni rozpatrz przpadek obracania się wału prostego z osadzon ążkie (wirnikie) o asie - rs. l, którego środek nie powa się z osią obrotu wału lecz jest oddalon od niej o odległość e. Rs. l. Scheat wału z wirnikie do wznaczania zależności iędz prędkością wirowania a drganiai własni.
2 Na razie poija wpłw sił ciężkości wirnika na ruch wału, dlatego przjuje, że oś wału a kierunek pionow. Podczas ruchu obrotowego wału z prędkością kątową ω powstaje noralna siła bezwładności (siła odśrodkowa), która powoduje ugięcie wału wnoszące r. Silą bezwładności działająca na wal wnosi: P B ω ( r+ e) Siła ta jest zrównoważona przez siłę sprężstości F wału wrażającą się wzore: () F () gdzie: k - stała sprężsta wału równa sile potrzebnej do statcznego ugięcia wału o jednostkę długości. Porównując wrażenia () i () i dokonując odpowiednich przekształceń otrzuje: ω r e k () ω Wrażenie k we wzorze () przedstawia kwadrat częstości poprzecznch (giętnch) drgań własnch wału z asą wirnika. k ω (4) Podstawiając do równania () oraz dokonując prostch przekształceń otrzuje: r e ω ω n ω ω n (5) Na rsunku przedstawiono zależność r e ω ω n
3 ω/ω n Rs.. Wes zależności r e ω dla wału prostego z wirnikie ω n Jak widać z zależności (5) oraz z rs. stosunek ugięcia wału do iośrodu e rośnie nieograniczenie gd prędkość kątowa ω wału zbliża się do częstości kołowej ω n drgań własnch wału. Prędkość kątową ω równą częstości drgań własnch wału nazwa tczną prędkością kątową ω obracającego się wału. Odpowiednio prędkość obrotową oeśla się również tczną prędkością obrotową n. Prz ω<ω prawa strona wrażenia (5) jest liczbą dodatnią, co oznacza, że r i e są ω jednakowego znaku. Natoiast prz ω>ω wartości r i e ają znaki przeciwne i gd rośnie nieograniczenie to r dąż do wartości -e. Z tego wnika, że prz wzrastającch obrotach w zaesie ponad tczn (ω>ω ) środek as zbliża się do osi obrotu układu. Zjawisko to nazwa się sao centrowanie wału. Uożliwia ono stosowanie w pewnch stuacjach giętkich wałów, które po przejściu przez obrot tczne spokojnie" pracują prz prędkościach ponadtcznch. Podobne rozuowanie ożna przeprowadzić dla stuacji, gd środek ciężkości ążka powa się z osią obrotu wału, ale oś wału a kierunek pozio - rs.. ω n
4 ωω ω>ω Rs.. Scheat wału prostego z wirnikie o osi pozioej. W t przpadku ugięcie statczne wału spowodowane ciężare wirnika przejawia taki sa skutek jak iośrodowość e. Konstruktor usi uchronić asznę od prac w pobliżu rezonansu przez zaprojektowanie częstości podstawowej węzłów w bezpiecznej odległości od częstości sił wuszającch. Ponieważ charakterstki drgań w pobliżu rezonansu są bardzo stroe (rs.) dlatego odstęp iędz częstością sił wuszającej ω częstością drgań własnch ω n powinien bć jak największ. Przjuje się: ω 0,5> > ω n (6). Obliczanie obrotów tcznch wału Dla konstruktora ważna jest znajoość prostch etod obliczania tcznej prędkości obrotowej wałów. Jedną z nich jest etoda ugięcia statcznego. Siła ciężkości G ążka zaocowanego na wale powoduje jego ugięcie statczne st, które wraża wzór: G g st k k (7) gdzie: - asa ążka, g 9,8 [/s ], k - jak we wzorze (). Mając na względzie, że wał osiąga tczną prędkość wirowania, gd częstość sił wuszającej jest taka saa jak częstość drgań własnch wału: ω ω oraz ω n k (4) to ω g st (8)
5 Uwzględniając zależność iędz częstotliwością drgań wrażoną w [Hz] a częstością kołową wrażoną w [rad/s] ożna zapisać: ϖ π (9) Podstawiając g9,8 /s oraz st [] otrzuje: 9,8 0,5 [Hz] π st st (0) Zate tczna prędkość obrotowa wału wrażana w [obr/in.] wnosi: n 60 () Jeżeli a wznaczć częstość drgań własnch (częstość tczną) układu złożonego z wału ającego więcej niż jeden wirnik to nie ożna do tego celu zastosować etod ugięcia statstcznego w sposób bezpośredni. Posługuje się wówczas wzore Dunkerlea: n () gdzie: - przbliżona częstotliwość drgań własnch układu, 0 - częstotliwość drgań własnch wału bez wirnika, - częstotliwość drgań własnch z pierwszą asą, bez uwzględnienia as wału i pozostałch as, - częstotliwość drgań własnch z drugą asą bez uwzględniania as wału i pozostałch as. n - częstość drgań wału z n-tą asą bez uwzględnienia as wału i pozostałch as. Z zależności iędz częstotliwością a ugięcie statczn (wzór 0) wnika, że zastępcze (równoważne) ugięcie statczne z równa się suie poszczególnch ugięć statcznch. Może zate zapisać: z n () gdzie 0,,,..., n oznaczają ugięcia statczne odpowiadające warunko wienion w związku z wrażenie ()... Przkład Przkład. Obliczć obrot tczne wału wentlatora o przepłwie osiow przedstawionego scheatcznie na rsunku
6 Wentlator jest napędzan pase. Dwa łożska znajdujące się po obu stronach napędzającego koła pasowego ustalają wał w ten sposób, że układ ten ożna traktować jako belkę wspornikową z obciążenie uieszczon na jej końcu st P l E I Ab wznaczć n skorzsta z wzorów (0) i (). Obliczenie waga wcześniejszego wznaczenia ugięcia statcznego wału pod wpłwe ciężaru wirnika: st P l E I gdzie: P- ciężar wirnika P g, E - oduł Younga, I - oent bezwładności przeoju. st 85 9,8 (0,8) 8 0 [ ] 4 5 6π (95 0 ), n ,5 st 0 st [ obr / in]
7 Zadanie ożna sorułować nieco inaczej, a ianowicie: dla podanej as wirnika 85 kg długości wału l80 i prędkości obrotowej wału np. n600 obr/in. należ wznaczć średnicę wału d tak, ab jego częstotliwość drgań własnch bła dwa raz większa od częstotliwości wuszającej (do rozwiązania we własn zaesie). Przkład. Wznaczć obrot tczne wału z dwoa wirnikai pokazanego na rsunku. Ab to zadanie rozwiązać skorzsta z wzoru Dunkerlea. Należ więc kolejno obliczć: 0 - ugięcie wału pod wpłwe as własnej 0 - ugięcie wału pod wpłwe as z poinięcie 0 i - ugięcie wału pod wpłwe as z poinięcie 0 i Oblicza ugięcie statczne wału pod wpłwe ciężaru własnego (belka równoiernie obciążona) gdzie q- ciężar l wału 0 5ql 4 84EI d q π , N
8 (0,75) ,6 0 [ ] 4 84, 0 π (50 0 ) Ugięcia statczne, pochodzące od ciężarów wirników oblicz według wzoru na ugięcie belki wwołane siłą skupioną działającą w dowoln punkcie: Pl b x ( l x) b l x 6EI l l l l l Wobec tego ugięcie statczne spowodowane ciężare wirnika l wnosi: ( 0,75 0,5),5 9,8 0,75 0,5 0,5 0,5 0,75 0,5 4,5 0 [ ] 4 +,4 ( 50 0 ) 0,75 0,75 0,75 0,75 0,75 6, 0 64 W ten sa sposób obliczone wnosi: 9,75 0 [ ] z + + (9,6+ 4,5+ 9,8) 0,9 0 0 [ ] a przbliżona częstotliwość drgań giętnch własnch: 0,5 z 0,5,9 0 85,9[ Hz] n [obr/in]. Przebieg ćwiczenia.. Opis układu poiarowego Rs. 4 Scheat układu poiarowego: l- silnik elektrczn, - autotransorator, - wał, 4 - wirnik, 5 - podpora stała, 6 podpora przesuwna, 7 - elektroagnetczn przetwornik prędkości obrotowej, 8 - wskaźnik crow
9 Wał wraz z silnikie 4 napędza silnik elektrczn, którego prędkość obrotową ożna zieniać za poocą autotransoratora. Na końcu wału znajduje się elektroagnetczn przetwornik prędkości obrotowej 7 z którego sgnał jest przekazwan na wskaźnik crow 8. Zasadę tego przetwornika wjaśnia rs. 5 Rs. 5. Zasada elektroagnetcznego przetwarzania prędkości obrotowej w częstotliwość Stalowa tarcza z odpowiednią liczbą zębów obraca się w pobliżu obwodu agnetcznego czujnika z agnese trwał i z cewką na nabiegunniku. Przesunięcie jednego zęba w pobliżu nabiegunników czujnika powoduje wzrost i następnie zniejszenie struienia agnetcznego, a t sa zaindukowanie w cewce jednego oesu napięcia przeiennego. Jeśli tarcza a zębów na obwodzie, to podczas jednego obrotu tarcz w cewce indukuje się oesów napięcia. Jeśli tarcza wiruje z prędkością n obrotów na inutę. to częstotliwość indukowanego napięcia n stąd n.. Zadania do wkonania podczas ćwiczenia l) zierzć średnicę wału i rozstaw łożsk (podpór), oeślić położenie wirnika i jego wiar; na podstawie wiarów wirnika obliczć jego asę. ) korzstając z etod ugięcia statcznego obliczć obrot tczne wału, ) uruchoić silnik (w obecności prowadzącego ćwiczenia) i zieniając jego prędkość obrotową zierzć obrot tczne wału. 4 Wskazówki dotczące sprawozdania. Sprawozdanie powinno zawierać: - teat i cel ćwiczenia, - scheat stanowiska poiarowego wraz z wiarai istotnch eleentów, - opis przebiegu ćwiczenia, - wniki obliczeń i poiarów, - wnioski sorułowane na podstawie uzskanch wników, - zadanie obliczeniowe: dla wznaczonej as wirnika ustuowanego w środku wału oraz zierzonego rozstawu łożsk należ obliczć średnicę wału, którego częstotliwość drgań własnch giętnch będzie dwuotnie większa niż częstotliwość wuszająca.
10 5. Inoracje dodatkowe: gęstość stali: ρ 7800kg/ 4 πd oent bezwładności przeoju kołowego I 64 oduł Younga dla stali E,l*0 5 MPa,*0 N/ ugięcie belki obciążonej w środku siłą P: Pl 48EI
ZASADY ZACHOWANIA W FIZYCE
ZASADY ZACHOWAIA: ZASADY ZACHOWAIA W FIZYCE Energii Pędu Moentu pędu Ładunku Liczb barionowej ZASADA ZACHOWAIA EERGII Praca sił zewnętrznej W = ΔE calk Ziana energii całkowitej Jeżeli W= to ΔE calk = ZASADA
BADANIA CHARAKTERYSTYK STATYCZNYCH WIBROIZOLATORÓW
ĆWICZEIA LABORATORYJE Z WIBROIZOLACJI: BADAIA CHARAKTERYSTYK STATYCZYCH WIBROIZOLATORÓW 1. WSTĘP Stanowisko laboratoryjne znajduje się w poieszczeniu hali technologicznej w budynku C-6 Politechniki Wrocławskiej.
Ć w i c z e n i e K 2 b
Akademia Górniczo Hutnicza Wdział Inżnierii Mechanicznej i Robotki Katedra Wtrzmałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wdział Górnictwa i Geoinżnierii Grupa nr: Ocena:
Pomiar bezpośredni przyrządem wskazówkowym elektromechanicznym
. Rodzaj poiaru.. Poiar bezpośredni (prost) W przpadku poiaru pojednczej wielkości przrząde wskalowan w jej jednostkach wartość niedokładności ± określa graniczn błąd przrządu analogowego lub cfrowego
Charakterystyki geometryczne figur płaskich. dr hab. inż. Tadeusz Chyży Katedra Mechaniki Konstrukcji
Charakterstki geometrczne figur płaskich dr hab. inż. Tadeusz Chż Katedra Mechaniki Konstrukcji Wielkości geometrczne charakterzujące przekrój pod względem wtrzmałościowm to: pole przekroju (A), (ang.
WYKŁAD Parcie na ściankę zakrzywioną
WYKŁD.3. Parcie na ściankę zakrzwioną Parcie ciecz na dowolną zakrzwiona powierzchnie jest geoetrczna sua par eleentarnch. Obliczenie tego parcia polega na wznaczeniu jego składowch, jako rzutów na osie
ĆWICZENIE 1. (8.10) Rozciąganie statycznie wyznaczalne, pręty o skokowo zmiennym przekroju, kratownice, Obciążenia termiczne.
ĆWICZENIE 1 (8.10) Rozciąganie statycznie wyznaczalne, pręty o skokowo zienny przekroj, kratownice, Obciążenia tericzne. Rozciąganie - przykłady statycznie wyznaczalne Zadanie Zadanie jest zaprojektowanie
Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6
ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem
Ć w i c z e n i e K 6. Wyznaczanie stałych materiałowych przy wykorzystaniu pomiarów tensometrycznych.
Akadeia Górniczo Hutnicza ydział Inżynierii Mechanicznej i Robotyki Katedra ytrzyałości, Zęczenia Materiałów i Konstrukcji Nazwisko i Iię: Nazwisko i Iię: ydział Górnictwa i Geoinżynierii Grupa nr: Ocena:
Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 4-5
ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch - Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs... s.. rzed przstąpieniem
Imperfekcje globalne i lokalne
Imperfekcje globalne i lokalne Prz obliczaniu nośności i stateczności konstrukcji stalowch szczególnego znaczenia nabiera konieczność uwzględniania warunków wkonania, transportu i montażu elementów konstrukcjnch.
Równania różniczkowe opisujące ruch fotela z pilotem:
. Katapultowanie pilota z samolotu Równania różniczkowe opisujące ruch fotela z pilotem: gdzie D - siłą ciągu, Cd współczynnik aerodynamiczny ciągu, m - masa pilota i fotela, g przys. ziemskie, ρ - gęstość
Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników
Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników 1. Podstawowe pojęcia związane z niewyważeniem Stan niewyważenia stan wirnika określony takim rozkładem masy, który w czasie wirowania wywołuje
MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający
Dobór silnika serwonapędu. (silnik krokowy)
Dobór silnika serwonapędu (silnik krokowy) Dane wejściowe napędu: Masa całkowita stolika i przedmiotu obrabianego: m = 40 kg Współczynnik tarcia prowadnic = 0.05 Współczynnik sprawności przekładni śrubowo
FIZYKA R.Resnick & D. Halliday
FIZYKA R.Resnick & D. Halliday rozwiązania zadań (część IV) Jacek Izdebski 5 stycznia 2002 roku Zadanie 1 We wnętrzu zakniętego wagonu kolejowego znajduje się aratka wraz z zapase pocisków. Aratka strzela
Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3.
Dynamika ruchu obrotowego Zauważyłem, że zadania dotyczące ruchu obrotowego bardzo często sprawiają maturzystom wiele kłopotów. A przecież wystarczy zrozumieć i stosować zasady dynamiki Newtona. Przeanalizujmy
Metoda pasm skończonych płyty dwuprzęsłowe
etoda pasm skończonch płt dwuprzęsłowe Dla płt przedstawionej na rsunku należ: 1. Dla obciążenia ciężarem własnm q oraz obciążeniami p 1 i p obliczć ugięcia w punktach A i B oraz moment, i w punktach A,B
DRGANIA MECHANICZNE. Poniższe materiały tylko dla studentów uczęszczających na zajęcia. Zakaz rozpowszechniania i powielania bez zgody autora.
DRGANIA MECHANICZNE materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. Sebastian Korczak część 3 drgania wymuszone siłą harmoniczną drgania
wiczenie 15 ZGINANIE UKO Wprowadzenie Zginanie płaskie Zginanie uko nie Cel wiczenia Okre lenia podstawowe
Ćwiczenie 15 ZGNANE UKOŚNE 15.1. Wprowadzenie Belką nazywamy element nośny konstrukcji, którego: - jeden wymiar (długość belki) jest znacznie większy od wymiarów przekroju poprzecznego - obciążenie prostopadłe
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie
PORÓWNANIE WPŁYWU WYBRANYCH PARAMETRÓW CIĄGNIKA ROLNICZEGO NA JEGO DRGANIA
Inżynieria Rolnicza (90)/007 PORÓWNANIE WPŁYWU WYBRANYCH PARAMETRÓW CIĄGNIKA ROLNICZEGO NA JEGO DRGANIA Instytut Inżynierii Rolniczej, Akadeia Rolnicza w Poznaniu Streszczenie. Drgania ciągnika, szczególnie
1. Z pręta o stałym przekroju poprzecznym i długości 1 m odcięto 25 cm kawałek. O ile przesunęło się połoŝenie środka masy pręta. Odp. o 8.
DYNAMIKA BRYŁY SZTYWNEJ Środek asy. Z pręta o stały przekroju poprzeczny i długości odcięto 5 c kawałek. O ile przesunęło się połoŝenie środka asy pręta. o 8 początkowej długości pręta. Trzy kule o asach:,
W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ
POLITECHNIKA BIAŁOSTOCKA Wydział Budownictwa i Inżynierii Środowiska Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: POWIERZCHNIA SWOBODNA CIECZY W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ Ćwiczenie
ĆWICZENIE 5 Badanie stanów nieustalonych w obwodach szeregowych RLC przy wymuszeniu sinusoidalnie zmiennym
ĆWIZENIE 5 Badanie stanów nieustalonych w obwodach szeregowych R przy wyuszeniu sinusoidaie zienny. el ćwiczenia Zapoznanie się z rozpływe prądów, rozkłade w stanach nieustalonych w obwodach szeregowych
Politechnika Białostocka
Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 6 Temat ćwiczenia:
Ćwiczenie: "Silnik prądu stałego"
Ćwiczenie: "Silnik prądu stałego" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Zasada
19. Wybrane układy regulacji Korekcja nieliniowa układów. Przykład K s 2. Rys Schemat blokowy układu oryginalnego
19. Wbrane układ regulacji Przkład 19.1 19.1. Korekcja nieliniowa układów w K s 2 Rs. 19.1. Schemat blokow układu orginalnego 1 Zbadać możliwość stabilizacji układu za pomocą nieliniowego prędkościowego
TMM-1 Wyznaczanie współrzędnych tensorów bezwładności członów manipulatorów
aboratoriu Teorii Mechanizów TMM-1 Wyznaczanie współrzędnych tensorów bezwładności członów anipulatorów Cele ćwiczenia jest doświadczalne wyznaczanie współrzędnych tensorów bezwładności członów anipulatora
Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
2. Pręt skręcany o przekroju kołowym
2. Pręt skręcany o przekroju kołowym Przebieg wykładu : 1. Sformułowanie zagadnienia 2. Warunki równowagi kąt skręcenia 3. Warunek geometryczny kąt odkształcenia postaciowego 4. Związek fizyczny Prawo
Bryła sztywna Zadanie domowe
Bryła sztywna Zadanie domowe 1. Podczas ruszania samochodu, w pewnej chwili prędkość środka przedniego koła wynosiła. Sprawdź, czy pomiędzy kołem a podłożem występował poślizg, jeżeli średnica tego koła
( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia.
Adam Bdnar: Wtrzmałść Materiałów Analiza płaskieg stanu naprężenia 5 ANALIZA PŁASKIEGO STANU NAPRĘŻENIA 5 Naprężenia na dwlnej płaszczźnie Jak pamiętam płaski stan naprężenia w punkcie cechuje t że wektr
Rys. 1. Rozwiązanie zadania rozpoczniemy od wyznaczenia wartość momentów zginających wywołanych działaniem siły 20[kN]. Rys. 2
Dynaika Drgania wyuszone nietłuione - Raa /9 Dynaika Drgania wyuszone nietłuione Raa Wyznaczyć siły kinetyczne działające na raę jak na rysunku, obciążoną zienna haronicznie siłą P o. Przyjąć następujące
Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH. Doświadczalne sprawdzenie zasady superpozycji
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Doświadczalne sprawdzenie zasady superpozycji Numer ćwiczenia: 8 Laboratorium
lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów
9. CAŁKA POWÓJNA 9.. Całka podwójna w prostokącie Niech P będzie prostokątem opisanm na płaszczźnie OXY nierównościami: a < < b, c < < d, a f(,) funkcją określoną i ograniczoną w tm prostokącie. Prostokąt
Młodzieżowe Uniwersytety Matematyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego REGUŁA GULDINA
Młodzieżowe Uniwerstet Matematczne Projekt współfinansowan przez Unię Europejską w ramach Europejskiego Funduszu połecznego REGUŁA GULDINA dr Bronisław Pabich Rzeszów marca 1 Projekt realizowan przez Uniwerstet
MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH
MES W ANAIZIE SPRĘŻYSEJ KŁADÓW PRĘOWYCH Przkład obliczeń Kratownice płaskie idia FEDOROWICZ Jan FEDOROWICZ Magdalena MROZEK Dawid MROZEK Gliwice r. - idia Fedorowicz Jan Fedorowicz Magdalena Mrozek Dawid
2. CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH
dam Bodnar: Wtrzmałość Materiałów. Charakterstki geometrczne figur płaskich.. CHRKTERSTKI GEOMETRCZNE FIGUR PŁSKICH.. Definicje podstawowch charakterstk geometrcznch Podczas zajęć z wtrzmałości materiałów
MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne
INSTRUKCJA DO ĆWICZENIA NR 2. Analiza kinematyczna napędu z przekładniami
INSTRUKCJA DO ĆWICZENIA NR 2 Analiza kinematyczna napędu z przekładniami 1. Wprowadzenie Układ roboczy maszyny, cechuje się swoistą charakterystyką ruchowoenergetyczną, często odmienną od charakterystyki
Wyznaczanie e/m za pomocą podłużnego pola magnetycznego
- 1 - Wyznaczanie e/ za poocą podłużnego pola agnetycznego Zagadnienia: 1. Ruch cząstek naładowanych w polu elektryczny i agnetyczny.. Budowa i zasada działania lapy oscyloskopowej. 3. Wyprowadzenie wzoru
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego
Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura
Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Próba skręcania pręta o przekroju okrągłym Numer ćwiczenia: 4 Laboratorium z
Obwody prądu przemiennego bez liczb zespolonych
FOTON 94, Jesień 6 45 Obwody prądu przeiennego bez liczb zespolonych Jerzy Ginter Wydział Fizyki Uniwersytetu Warszawskiego Kiedy prowadziłe zajęcia z elektroagnetyzu na Studiu Podyploowy, usiałe oówić
ĆWICZENIE 8 i 9. Zginanie poprzeczne z wykładową częścią
ĆWICZENIE 8 i 9 Zginanie poprzeczne z wkładową częścią z z QzS J b z Dskusja wzoru na naprężenia stczne. Uśrednione naprężenie stczne, J bz Qz x S z jest funkcją dwóch zmiennch: x- położenia przekroju
Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka
Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/
ANALiZA DRGAŃ WAŁU DOPROWADZAJĄCEGO NAPĘD DO PRZEKŁADNi OGONOWEJ ŚMiGŁOWCA ULTRALEKKiEGO
PRACE instytutu LOTNiCTWA 213, s. 148-160, Warszawa 2011 ANALiZA DRGAŃ WAŁU DOPROWADZAJĄCEGO NAPĘD DO PRZEKŁADNi OGONOWEJ ŚMiGŁOWCA ULTRALEKKiEGO WItold PerkoWSkI Instytut Lotnictwa Streszczenie W artykule
Zasada zachowania pędu
Zasada zachowania pędu Fizyka I (B+C) Wykład XIII: Zasada zachowania pędu Zasada zachowania oentu pędu Ruch ciał o ziennej asie Zasada zachowania pędu Układ izolowany Każde ciało oże w dowolny sposób oddziaływać
Definicja wartości bezwzględnej. x < x y. x =
1.9. WARTOŚĆ BEZWZGLĘDNA Definicja wartości bezwzględnej... gd... 0 =... gd... < 0 Własności wartości bezwzględnej 0 = = = n a n = a, gd n jest liczbą parzstą Przkład 1.9.1. Oblicz: a) b) c) 1 d) 0 e)
Ćwiczenie: "Silnik indukcyjny"
Ćwiczenie: "Silnik indukcyjny" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Zasada
Pomiar parametrów w obwodach magnetycznych Pomiar parametrów w łączach selsynowych
Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych Ciężkich W Laboratoriu Elektrotechniki i Elektroniki Ćwiczenie - protokół oiar paraetrów w obwodach agnetycznych oiar paraetrów w łączach selsynowych
Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań
KAEDRA FIZYKI SOSOWANEJ PRACOWNIA 5 FIZYKI Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na ores drgań Wprowadzenie Ruch drgający naeży do najbardziej rozpowszechnionych ruchów w przyrodzie.
Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka.
Cel ćwiczenia: WYZNACZANIE GĘSTOŚCI CIECZY ZA POMOCĄ WAGI HYDROSTATYCZNEJ Wyznaczenie gęstości cieczy za poocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), koplet odważników, obciążnik,
1. Dostosowanie paska narzędzi.
1. Dostosowanie paska narzędzi. 1.1. Wyświetlanie paska narzędzi Rysuj. Rys. 1. Pasek narzędzi Rysuj W celu wyświetlenia paska narzędzi Rysuj należy wybrać w menu: Widok Paski narzędzi Dostosuj... lub
Ćwiczenie 6 IZOLACJA DRGAŃ MASZYNY. 1. Cel ćwiczenia
Ćwiczenie 6 IZOLACJA DRGAŃ MASZYNY 1. Cel ćwiczenia Przeprowadzenie izolacji drgań przekładni zębatej oraz doświadczalne wyznaczenie współczynnika przenoszenia drgań urządzenia na fundament.. Wprowadzenie
1.11. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ
.. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ od płem obciążenia prostolinioa oś podłużna belki staje się krzolinioa. Zakrzioną oś belki nazam linią ugięcia (osią ugiętą), przemieszczenie pionoe ( x) tej osi nazam
POMIAR PRĘDKOŚCI DŹWIĘKU METODĄ REZONANSU I METODĄ SKŁADANIA DRGAŃ WZAJEMNIE PROSTOPADŁYCH
Ćwiczenie 5 POMIR PRĘDKOŚCI DŹWIĘKU METODĄ REZONNSU I METODĄ SKŁDNI DRGŃ WZJEMNIE PROSTOPDŁYCH 5.. Wiadomości ogólne 5... Pomiar prędkości dźwięku metodą rezonansu Wyznaczanie prędkości dźwięku metodą
Ćwiczenie 361 Badanie układu dwóch soczewek
Nazwisko... Data... Wdział... Imię... Dzień tg.... Godzina... Ćwiczenie 36 Badanie układu dwóch soczewek Wznaczenie ogniskowch soczewek metodą Bessela Odległość przedmiotu od ekranu (60 cm 0 cm) l Soczewka
POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie D-3
POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN Ćwiczenie D-3 Temat: Obliczenie częstotliwości własnej drgań swobodnych wrzecion obrabiarek Konsultacje: prof. dr hab. inż. F. Oryński
Sterowanie napędów maszyn i robotów
Sterowanie napędów maszyn i robotów dr inż. akub ożaryn Wykład Instytut Automatyki i obotyki Wydział echatroniki Politechnika Warszawska, 014 Projekt współfinansowany przez Unię Europejską w ramach Europejskiego
Podstawy opisu dynamiki punktu materialnego
Podstaw opisu dnaiki punktu aterialnego Ruch ałego obiektu, któr oże przbliżać koncepcjnie jako punkt obdarzon asą (tzw. punkt aterialn) będzie opiswać podając wektor położenia tego punktu jako funkcję
RACHUNEK CAŁKOWY FUNKCJI DWÓCH ZMIENNYCH
RACHUNEK CAŁKOWY FUNKCJI WÓCH ZMIENNYCH einicja całki podwójnej po prostokącie einicja Podziałem prostokąta R ={ : a b c d} inaczej: R = [a b] [c d] nazwam zbiór Pn złożon z prostokątów R R... Rn które
Stan naprężenia. Przykład 1: Tarcza (płaski stan naprężenia) Określić siły masowe oraz obciążenie brzegu tarczy jeśli stan naprężenia wynosi:
Stan naprężenia Przkład 1: Tarcza (płaski stan naprężenia) Określić sił masowe oraz obciążenie brzegu tarcz jeśli stan naprężenia wnosi: 5 T σ. 8 Składowe sił masowch obliczam wkonując różniczkowanie zapisane
Spis treści. Wstęp Część I STATYKA
Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.
M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA
M WYZNACZANE MOMENTU BEZWŁADNOŚC WAHADŁA OBERBECKA opracowała Bożena Janowska-Dmoch Do opisu ruchu obrotowego ciał stosujemy prawa dynamiki ruchu obrotowego, w których występują wielkości takie jak: prędkość
Sterowanie napędów maszyn i robotów
Sterowanie napędów maszyn i robotów dr inż. akub ożaryn Wykład. Instytut Automatyki i obotyki Wydział echatroniki Politechnika Warszawska, 014 Projekt współfinansowany przez Unię Europejską w ramach Europejskiego
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Mikrosilniki prądu stałego cz. 2
Jakub Wierciak Mikrosilniki cz. 2 Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Mikrosilnik z komutacją bezzestykową 1 - wałek,
KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów. Schemat punktowania zadań
1 KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów 18 stycznia 018 r. zawody II stopnia (rejonowe) Schemat punktowania zadań Maksymalna liczba punktów 60. 85% 51pkt. Uwaga! 1. Za poprawne rozwiązanie
15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin
15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze w
P R O J E K T N R 1 WYTRZYMAŁOŚCI MATERIAŁÓW. Zawiera: Wyznaczenie wymiarów przekroju poprzecznego belki zginanej poprzecznie
atedra Wtrzmałości Materiałów Rok akad. 005/06 Wdział Inżnierii Lądowej emestr zimow Politechniki rakowskiej P R O J E T N R 1 Z WYTRZYMAŁOŚCI MATERIAŁÓW Zawiera: Wznaczenie wmiarów przekroju poprzecznego
ρ d... kn m 3 - ciężar objętościowy drewna: ρ d... kn m 3 Wytrzymałości drewna wg PN-EN 338:2004 Drewno konstrukcyjne. Klasy wytrzymałości:
1. Dane ogólne 1.1. Opis projektowanego ostu Zaprojektowano ost jednoprzęsłowy wolnopodparty. Ustrój niosący stanowi... belek stalowych I... o rozstawie... i poost drewniany o konstrukcji: pokład górny
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
MOMENTY BEZWŁADNOŚCI, RÓWNANIE KRĘTU I ENERGIA KINETYCZNA CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA
Dr inż. Andrzej Polka Katedra Dynaiki Maszyn Politechniki Łódzkiej MOMENTY BEZWŁADNOŚCI, RÓWNANIE KRĘTU I ENERGIA KINETYCZNA CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Praca wprowadza oenty bezwładności ciała
Badania zginanych belek
Mechanika i wtrzmałość materiałów - instrukcja do ćwiczenia laboratorjneo: Badania zinanch belek oprac. dr inż. Ludomir J. JNKOWSKI, dr inż. nna NIKODM. Wprowadzenie W wtrzmałości materiałów stan obciążenia
MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących
Fizyka 1 (mechanika) AF14. Wykład 9
Fizyka 1 (mechanika) 1100-1AF14 Wykład 9 Jerzy Łusakowski 05.12.2016 Plan wykładu Żyroskopy, bąki, etc. Toczenie się koła Ruch w polu sił centralnych Żyroskopy, bąki, etc. Niezrównoważony żyroskop L m
2. Obwody prądu zmiennego
. Obwody prądu ziennego.. Definicje i wielkości charakteryzujące Spośród wielu oŝliwych przebiegów ziennych w czasie zajiey się jedynie przebiegai haronicznyi (sinusoidalnyi lub cosinusoidalnyi). Prądy
3.3. UKŁADY RÓWNAŃ LINIOWYCH. Równanie liniowe z dwiema niewiadomymi. Równaniem liniowym z dwiema niewiadomymi x i y nazywamy równanie postaci
.. UKŁADY RÓWNAŃ LINIOWYCH Równanie liniowe z dwiema niewiadommi Równaniem liniowm z dwiema niewiadommi i nazwam równanie postaci A B C 0, gdzie A, B, C R i A B 0 m równania z dwiema niewiadommi nazwam
RÓWNANIA FIZYCZNE DLA KOMPOZYTÓW
Kopozt RÓWNANIA FIZYCZN DLA KOMPOZYTÓW Równania fizczne dla ateriałów anizotropowch Równania fizczne liniowej teorii sprężstości ożna zapisać w ogólnej postaci ij ijkl kl lub po odwróceniu ij ijkl kl gdzie
Bryła sztywna. Fizyka I (B+C) Wykład XXII: Porównanie ruchu obrotowego z ruchem postępowym. Bak Precesja Żyroskop
Bryła sztywna Wykład XXII: Fizyka I (B+C) Porównanie ruchu obrotowego z ruchem postępowym Bak Precesja Żyroskop Ogólne wyrażenie na moment pędu Tensor momentu bezwładności Osie główne Porównanie Punkt
MECHANIKA 2. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Prowadzący: dr Krzysztof Polko PLAN WYKŁADÓW 1. Podstawy kinematyki 2. Ruch postępowy i obrotowy bryły 3. Ruch płaski bryły 4. Ruch złożony i ruch względny 5. Ruch kulisty i ruch ogólny bryły
LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach
Rodzaj/forma zadania. Max liczba pkt. zamknięte 1 1 p. poprawna odpowiedź. zamknięte 1 1 p. poprawne odpowiedzi. zamknięte 1 1 p. poprawne odpowiedzi
KARTOTEKA TESTU I SCHEMAT OCENIANIA - gimnazjum - etap rejonowy Nr zada Cele ogólne nia 1 I. Wykorzystanie wielkości fizycznych 2 I. Wykorzystanie wielkości fizycznych 3 III. Wskazywanie w otaczającej
Metody Eulera i Eulera-Cauchy'ego rozwiązywania równań różniczkowych zwyczajnych. y 3 := x 2 (1) ( ) Rozwiązanie dokładne równania (1) (2)
euler-przkl_.xmcd Metod Eulera i Eulera-Cauch'ego rozwiązwania równań różniczkowch zwczajnch ' ( x, ) : x () + Rozwiązanie dokładne równania () ( x, C) : + C exp( atan( x) ) () Sprawdzenie: d dx ( x, C)
BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC
Ćwiczenie 45 BADANE EEKTYZNEGO OBWOD EZONANSOWEGO 45.. Wiadomości ogólne Szeregowy obwód rezonansowy składa się z oporu, indukcyjności i pojemności połączonych szeregowo i dołączonych do źródła napięcia
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
gdzie x jest wychyleniem z położenia równowagi. Współczynnik k jest tutaj współczynnikiem proporcjonalności.
RUCH DRGJĄCY Ruche drgający (drganiai) nazywa się każdy ruch, który charakteryzuje powtarzalność w czasie wielkości fizycznych (np wychylenia) określających ten ruch Występujące w przyrodzie drgania ożna
Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7
ozwiązwanie ram płaskich wznaczanie reakcji i wkresów sił przekrojowch 7 Obciążenie ram płaskiej, podobnie jak w przpadku beek rozdział 6, mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe
Szybkobieżne Pojazdy Gąsienicowe (15) nr 1, 2002
Szbkobieżne Poazd Gąsienicowe (15) nr 1, 2002 Marek KOCHAŃCZYK Andrze WILK WYRÓWNANIE ROZKŁADU OBCIĄŻENIA KOŁA ZĘBATEGO ZA POMOCĄ MIMOŚRODOWEGO ŁOŻYSKOWANIA WAŁU DOBÓR CECH GEOMETRYCZYCH Streszczenie.
Podstawy fizyki sezon 2 7. Układy elektryczne RLC
Podstawy fizyki sezon 2 7. Układy elektryczne RLC Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Układ RC
LABORATORIUM PRZETWORNIKÓW ELEKTROMECHANICZNYCH
-CEL- LABORATORIUM PRZETWORNIKÓW ELEKTROMECHANICZNYCH PODSTAWOWE CHARAKTERYSTYKI I PARAMETRY SILNIKA RELUKTANCYJNEGO Z KLATKĄ ROZRUCHOWĄ (REL) Zapoznanie się z konstrukcją silników reluktancyjnych. Wyznaczenie
Badanie ugięcia belki
Badanie ugięcia belki Szczecin 2015 r Opracował : dr inż. Konrad Konowalski *) opracowano na podstawie skryptu [1] 1. Cel ćwiczenia Celem ćwiczenia jest: 1. Sprawdzenie doświadczalne ugięć belki obliczonych
Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym
Przykład 4.1. Ściag stalowy Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym rysunku jeśli naprężenie dopuszczalne wynosi 15 MPa. Szukana siła P przyłożona jest
Definicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
POWODZENIA! ZDANIA ZAMKNIĘTE. WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2009/2010 Czas trwania: 90 minut KOD UCZESTNIKA KONKURSU.
KOD UCZESTNIKA KONKURSU WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2009/2010 Czas trwania: 90 inut Test składa się z dwóch części. W części pierwszej asz do rozwiązania 15 zadań zakniętych,