2. Pręt skręcany o przekroju kołowym
|
|
- Henryka Kowalik
- 6 lat temu
- Przeglądów:
Transkrypt
1
2 2. Pręt skręcany o przekroju kołowym
3 Przebieg wykładu : 1. Sformułowanie zagadnienia 2. Warunki równowagi kąt skręcenia 3. Warunek geometryczny kąt odkształcenia postaciowego 4. Związek fizyczny Prawo Hooke a dla skręcania 5. Podsumowanie 6. Przykładowe zadania
4 Sformułowanie zagadnienia Pręt o średnicy D = 2R i długości l, utwierdzony lewym końcem, jest obciążony na końcu prawym momentem M sił zewnętrznych, równoległym do osi pręta.
5 (rys. 2.3) Wywołuje on w dowolnym przekroju, odległym o x od lewego końca, moment skręcający M = M S.
6 Zakłada się, że w przekroju normalnym pręta skręcanego występują wyłącznie naprężenia styczne τ, prostopadłe do promienia ρ. Natomiast na walcowej powierzchni wewnętrznej, o dowolnym promieniu, nie ma naprężeń. (rys. 2.4a) Pręt skręcany można zatem traktować jako zbiór koncentrycznych elementów walcowych o przekroju pierścieniowym, które nie oddziałują na siebie mechanicznie.
7 Warunki równowagi Odcinek dx pręta skręcanego (rys. 2.3 i 2.4a) jest obciążony w przekroju lewym momentem skręcającym M S, a w przekroju prawym elementarnymi siłami wewnętrznymi τda (da jest pierścieniem o promieniu ρ i grubości dρ). Warunek równowagi rozważanej części pręta można zapisać następująco : (2.16)
8 Odkształcenie pręta skręcanego o przekroju kołowym polega na obrocie jego poszczególnych przekrojów względem siebie wokół osi pręta. Kąt wzajemnego obrotu przekrojów końcowych nazywa się kątem skręcania ϕ pręta. Na skutek odkształcenia pręta skręcanego tworzące na jego powierzchni zewnętrznej, a także dowolnej walcowej po-wierzchni wewnętrznej, stają się liniami śrubowymi.
9 Warunek geometryczny Zajmijmy się teraz odkształceniem pierścienia o szerokości dx, promieniu ρ i grubości dρ (rys. 2.4b)
10 Wyodrębnijmy na jego powierzchni prostokąt ABCD, który po odkształceniu stanie się równoległobokiem A'B'CD (ponieważ tworzące DA i CB przekształca się w linie śrubowe DA' CB'). Kąt odkształcenia postaciowego Miarą takiego odkształcenia przy wzajemnym obrocie przekrojów normalnych pręta o kąt dϕ jest kąt odkształcenia postaciowego γ.
11 Łatwo można zauważyć, że łuk AA' jest równy dxρ bądź ρdϕ (dρ pomijamy jako nieskończenie małe w stosunku do ρ). Wynika stąd następujący warunek geometryczny : (2.17)
12 Potraktujmy element ABCD jako prostopadłościan o nieskończenie małych wymiarach dx, dy, dρ (rys. 2.4c). Na ścianach AB i DC prostopadłościanu działają naprężenia τ, które tworzą parę sił o momencie (dy dρτ)dx.
13 Aby element ABCD pozostawał w równowadze, muszą na jego ścianach AD i BC występować naprężenia normalne τ', które tworzą parę sił o momencie (dx dρτ)dy. Obydwie pary przeciwstawiają się sobie nawzajem. Warunek równowagi elementu ABCD będzie miał postać (dy dρτ)dx (dy dρτ )dy = 0 Z podanej równości wynika, że τ=τ'. (2.18)
14 Równość naprężeń stycznych w płaszczyznach wzajemnie prostopadłych Udowodniliśmy szczególny przypadek ogólniejszego twierdzenia, które można sformułować następująco: Naprężenia styczne w płaszczyznach wzajemnie prostopadłych, prostopadłe do krawędzi przecięcia się tych płaszczyzn, są sobie równe i skierowane do lub od krawędzi. Element ABCD podlega działaniu wyłącznie naprężeń stycznych a więc jest ścinany.
15 Związek fizyczny Prawo Hooke a dla ścinania Dla materiału liniowosprężystego zachodzi liniowy związek między τ i ρ, zwany prawem Hooke'a dla ścinania (2.19) Gdzie : G - współczynnik sprężystości poprzecznej materiału, zwany modułem Kirchhoffa. w N/m 2, γ kąt odkształcenia postaciowego
16 Z zależności (2.17) wyliczamy ρ i wstawiamy do (2.19) (2.20)
17 Po wstawieniu (2.20) do równania równowagi (2.16) i uwzględnieniu, że nie podlega całkowaniu, a biegunowy moment bezwładności przekroju wyraża się wzorem uzyskamy : (2.21)
18 Rozkład naprężeń stycznych w przekroju kołowym. Po wstawieniu zależności (2.21) do (2.20) otrzymamy wzór opisujący rozkład naprężeń stycznych w przekroju kołowym pręta skręcanego : (2.22)
19 Naprężenia styczne τ są liniową funkcją promienia ρ ; mają wartość zerową w środku przekroju pręta oraz wartość maksymalną w jego skrajnej zewnętrznej strefie (rys. 2.4d). Maksymalna wartość naprężenia stycznego wynosi (2.23)
20 Wskaźnik wytrzymałości przekroju na skręcanie Wielkość W S (m 3 ) nazywamy wskaźnikiem wytrzymałości przekroju pręta na skręcanie. Obliczymy go, uwzględniając formułę (1.26) określając I S (2.24)
21 Kąt skręcania pręta Po scałkowaniu wyrażenia (2.21) otrzymamy formułę na kąt skręcania w mierze łukowej (2.25) W przypadku gdy M S, I S oraz G nie zależą od x, formuła ta upraszcza się (2.26) Wielkość GI S nosi nazwę sztywności pręta na skręcanie.
22 Przedstawione wyżej rozważania dotyczą tylko prętów o przekroju kołowym, ponieważ tylko w takim przypadku przekrój pręta po odkształceniu pozostaje płaski. Przekrój nie kołowy po odkształceniu staje się powierzchnią, czyli ulega wypaczeniu (deplanacji). Skręcanie pręta o przekroju dowolnym zostanie omówione w rozdziale dwunastym. W takim przypadku τ max oraz ϕ liczy się odpowiednio ze wzoru (2.23) oraz (2.25) czy (2.26). Zamiast I S stosuje się wskaźnik sztywności przekroju na J skręcanie J S, przy czym W s s. R
23 Równanie różniczkowe kąta skręcania Rozpatrzmy pręt skręcany o długości l, obciążony wzdłuż długości momentem rozłożonym w sposób ciągły o intensywności m(x) i momentem skupionym M działającym na końcu pręta. (rys. 2.5).
24 Wytnijmy odcinek pręta o długości dx. Na odcinek ten działa obciąże-nie ciągłe m(x) oraz na końcach momenty skręcające M S i M S + dm S (rys. 2.5b). Równanie różniczkowe kąta skręcania Warunek równowagi dla wyciętego fragmentu pręta skręcanego ma postać (2.27) Moment skręcający można wyrazić przez kąt skręcenia ϕ (2.28)
25 Wówczas różniczka momentu skręcającego przyjmuje postać Równanie różniczkowe kąta Po podstawieniu wyrażenia (2.29) do warunku (2.27) otrzymujemy ostatecznie skręcania Równanie różniczkowe kąta skręcania : (2.29) (2.30) Gdzie a = GI S
26 Powyższe równanie różniczkowe opisuje kąt skręcenia Równanie różniczkowe kąta ϕ = ϕ (x), 0 < x < l. skręcania (2.30) W celu rozwiązania równania (2.30) należy uzupełnić go o warunki brzegowe w postaci : (2.31)
27 Wzór na moment obrotowy (skręcający) na wale Momenty skręcające przekazywane na wał (za pomocą pasa czy kół zębatych) można obliczyć z jednego z podstawowych wzorów mechaniki, jeżeli znamy moc P przekazywaną na wał i prędkość obrotową wału n z wzoru. P P P M S = = = 9554, 14 ω 2π n n W ktorym : 60 P - moc w kw; n -prędkość obrotowa wału w obr/min; M s - moment skręcający w N m 2 J m kg W 3 s s kg m N m = = = = m = 2 s s s s N m
28 Podsumowanie Prawo Hooke a dla skręcania Rozkład naprężeń na przekroju kołowym Maksymalna wartość naprężeń na przekroju kołowym
29 Wskaźnik wytrzymałości przekroju kołowego na skręcenie Kąt skręcenia pręta Moment skręcający Równanie różniczkowe kąta skręcenia
30 Przykład zadania 1 Dla wału przedstawionego na rysunku wykonać wykres momentów skręcających, oraz obliczyć największe naprężenia i całkowity kąt skręcenia wału.
31 R o z w i ą z a n i e Moment reakcji ściany wynika z równania statyki stąd
32 Moment pracujący w przedziale 1:(0 < x 1 < l) w przedziale 2:(l < x 2 <2l) w przedziale 3:(2l < x 3 <3l)
33 Na podstawie wyników można narysować wykres momentów skręcających działających na wał.
34 Największy moment skręcający wynosi M smax = M s2 = 3M Największe naprężenie styczne
35 Całkowity kąt skręcenia jest sumą kątów skręcenia kolejnych odcinków wału Znak dodatni świadczy o tym, że lewy koniec pręta obróci się w kierunku zgodnym z momentem 2M.
36 Przykład zadania 2 Silnik elektryczny o mocy P = 80 kw i obrotach n = 750 obr/min napędza dwie maszyny, z których jedna pobiera 70%, a druga 30% mocy silnika. Obliczyć minimalne średnice wałów napędzających obie maszyny, jeżeli naprężenia dopuszczalne wynoszą k s = 80 MPa.
37 R o z w i ą z a n i e Moment skręcający działający na wale 1 wynosi a na wale 2
38 Naprężenia styczne w wale 1 wynoszą Skąd po przekształceniu otrzymamy średnicę d 1 Analogicznie postępujemy dla wyznaczenia d 2
39 FIN
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany
STATYCZNA PRÓBA SKRĘCANIA
Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie STATYCZNA PRÓBA SKRĘCANIA Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Skręcanie pręta występuje w przypadku
Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Próba skręcania pręta o przekroju okrągłym Numer ćwiczenia: 4 Laboratorium z
Wytrzymałość Materiałów
Wytrzymałość Materiałów Skręcanie prętów o przekrojach kołowych Siły przekrojowe, deformacja, naprężenia, warunki bezpieczeństwa i sztywności, sprężyny śrubowe. Wydział Inżynierii Mechanicznej i Robotyki
Ścinanie i skręcanie. dr hab. inż. Tadeusz Chyży
Ścinanie i skręcanie dr hab. inż. Tadeusz Chyży 1 Ścinanie proste Ścinanie czyste Ścinanie techniczne 2 Ścinanie Czyste ścinanie ma miejsce wtedy, gdy na czterech ścianach prostopadłościennej kostki występują
SKRĘCANIE WAŁÓW OKRĄGŁYCH
KRĘCANIE AŁÓ OKRĄGŁYCH kręcanie występuje wówczas gdy para sił tworząca moment leży w płaszczyźnie prostopadłej do osi elementu konstrukcyjnego zwanego wałem Rysunek pokazuje wał obciążony dwiema parami
Defi f nicja n aprę r żeń
Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie
CIENKOŚCIENNE KONSTRUKCJE METALOWE
CIENKOŚCIENNE KONSTRUKCJE METALOWE Wykład 6: Wymiarowanie elementów cienkościennych o przekroju w ujęciu teorii Własowa INFORMACJE OGÓLNE Ścianki rozważanych elementów, w zależności od smukłości pod naprężeniami
Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia
Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości
Wytrzymałość Materiałów
Wytrzymałość Materiałów Zginanie Wyznaczanie sił wewnętrznych w belkach i ramach, analiza stanu naprężeń i odkształceń, warunek bezpieczeństwa Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości,
WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ
ĆWICZENIE 12 WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ Cel ćwiczenia: Wyznaczanie modułu sztywności drutu metodą sprężystych drgań obrotowych. Zagadnienia: sprężystość, naprężenie ścinające, prawo
WYZNACZANIE MODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G PRZEZ POMIAR KĄTA SKRĘCENIA
LABORATORIU WYTRZYAŁOŚCI ATERIAŁÓW Ćwiczenie 7 WYZNACZANIE ODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G PRZEZ POIAR KĄTA SKRĘCENIA 7.1. Wprowadzenie - pręt o przekroju kołowym W pręcie o przekroju kołowym, poddanym
15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin
15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze w
Wyznaczanie modułu sztywności metodą Gaussa
Ćwiczenie M13 Wyznaczanie modułu sztywności metodą Gaussa M13.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu sztywności stali metodą dynamiczną Gaussa. M13.2. Zagadnienia związane z
MECHANIKA PRĘTÓW CIENKOŚCIENNYCH
dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki
Dr inż. Janusz Dębiński
Wytrzymałość materiałów ćwiczenia projektowe 5. Projekt numer 5 przykład 5.. Temat projektu Na rysunku 5.a przedstawiono belkę swobodnie podpartą wykorzystywaną w projekcie numer 5 z wytrzymałości materiałów.
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste
WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204
WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 1 DZIAŁ PROGRAMOWY V. PODSTAWY STATYKI I WYTRZYMAŁOŚCI MATERIAŁÓW
Liczba godzin Liczba tygodni w tygodniu w semestrze
15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: mechatronika systemów energetycznych Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze
Siły wewnętrzne - związki różniczkowe
Siły wewnętrzne - związki różniczkowe Weźmy dowolny fragment belki obciążony wzdłuż osi obciążeniem n(x) oraz poprzecznie obciążeniem q(x). Na powyższym rysunku zwroty obciążeń są zgodne z dodatnimi zwrotami
MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający
Naprężenia styczne i kąty obrotu
Naprężenia tyczne i kąty obrotu Rozpatrzmy pręt pryzmatyczny o przekroju kołowym obciążony momentem kręcającym 0 Σ ix 0 0 A A 0 0 Skręcanie prętów o przekroju kołowym, pierścieniowym, cienkościennym. Naprężenia
Mechanika teoretyczna
Inne rodzaje obciążeń Mechanika teoretyczna Obciążenie osiowe rozłożone wzdłuż pręta. Obciążenie pionowe na pręcie ukośnym: intensywność na jednostkę rzutu; intensywność na jednostkę długości pręta. Wykład
Politechnika Białostocka
Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 6 Temat ćwiczenia:
5. Indeksy materiałowe
5. Indeksy materiałowe 5.1. Obciążenia i odkształcenia Na poprzednich zajęciach poznaliśmy różne możliwe typy obciążenia materiału. Na bieżących, skupimy się na zagadnieniu projektowania materiałów tak,
BADANIA GRUNTU W APARACIE RC/TS.
Str.1 SZCZEGÓŁOWE WYPROWADZENIA WZORÓW DO PUBLIKACJI BADANIA GRUNTU W APARACIE RC/TS. Dyka I., Srokosz P.E., InŜynieria Morska i Geotechnika 6/2012, s.700-707 III. Wymuszone, cykliczne skręcanie Rozpatrujemy
Przykład Łuk ze ściągiem, obciążenie styczne. D A
Przykład 1.4. Łuk ze ściągiem, obciążenie styczne. Rysunek przedstawia łuk trójprzegubowy, kołowy, ze ściągiem. Łuk obciążony jest obciążeniem stycznym do łuku, o stałej gęstości na jednostkę długości
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )
Spis treści. Wstęp Część I STATYKA
Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.
Tra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m
Wytrzymałość materiałów Naprężenia główne na przykładzie płaskiego stanu naprężeń 1 Tensor naprężeń Naprężenia w stanie przestrzennym: τ τxz τ yx τ yz τzx τzy zz Układ współrzędnych jest zwykle wybrany
MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących
Wytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów.
Wytrzymałość Konstrukcji I - MEiL część II egzaminu 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. 2. Omówić pojęcia sił wewnętrznych i zewnętrznych konstrukcji.
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki
Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu:
Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia Przedmiot: Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: MT 1 S 0 3 19-0_1 Rok: II Semestr: 3 Forma studiów:
Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa
Spis treści Rozdział I. Membrany izotropowe 1. Wyprowadzenie równania na ugięcie membrany... 13 2. Sformułowanie zagadnień brzegowych we współrzędnych kartezjańskich i biegunowych... 15 3. Wybrane zagadnienia
MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie
WYZNACZANIE MODUŁU YOUNGA PRZEZ ZGINANIE
ĆWICZENIE 4 WYZNACZANIE MODUŁU YOUNGA PRZEZ ZGINANIE Wprowadzenie Pręt umocowany na końcach pod wpływem obciążeniem ulega wygięciu. własnego ciężaru lub pod Rys. 4.1. W górnej warstwie pręta następuje
Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III
KATEDRA MECHANIKI MATERIAŁÓW POLITECHNIKA ŁÓDZKA DEPARTMENT OF MECHANICS OF MATERIALS TECHNICAL UNIVERSITY OF ŁÓDŹ Al.Politechniki 6, 93-590 Łódź, Poland, Tel/Fax (48) (42) 631 35 51 Mechanika Budowli
ROZCIĄGANIE I ŚCISKANIE OSIOWE. Pojęcia podstawowe. Zasada de Saint Venanta
ROZCIĄGNIE I ŚCISKNIE OSIOWE Pojęcia podstawowe. Zasada de Saint Venanta Pręt obciążony siłami podłużnymi (działającymi wzdłuż osi pręta) nazywamy prętem rozciąganym, gdyż siła podłużna jest dodatnia (N
Stan odkształcenia i jego parametry (1)
Wprowadzenie nr * do ćwiczeń z przedmiotu Wytrzymałość materiałów przeznaczone dla studentów II roku studiów dziennych I stopnia w kierunku nergetyka na wydz. nergetyki i Paliw, w semestrze zimowym /.
Zginanie proste belek
Zginanie belki występuje w przypadku obciążenia działającego prostopadle do osi belki Zginanie proste występuje w przypadku obciążenia działającego w płaszczyźnie głównej zx Siły przekrojowe w belkach
Wprowadzenie do WK1 Stan naprężenia
Wytrzymałość materiałów i konstrukcji 1 Wykład 1 Wprowadzenie do WK1 Stan naprężenia Płaski stan naprężenia Dr inż. Piotr Marek Wytrzymałość Konstrukcji (Wytrzymałość materiałów, Mechanika konstrukcji)
WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA
Ćwiczenie 58 WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA 58.1. Wiadomości ogólne Pod działaniem sił zewnętrznych ciała stałe ulegają odkształceniom, czyli zmieniają kształt. Zmianę odległości między
Ć w i c z e n i e K 3
Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa
Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH. Doświadczalne sprawdzenie zasady superpozycji
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Doświadczalne sprawdzenie zasady superpozycji Numer ćwiczenia: 8 Laboratorium
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
Wyboczenie ściskanego pręta
Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia
Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron)
Jerzy Wyrwał Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron) Uwaga. Załączone materiały są pomyślane jako pomoc do zrozumienia informacji podawanych na wykładzie. Zatem ich
2. Charakterystyki geometryczne przekroju
. CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 1.. Charakterystyki geometryczne przekroju.1 Podstawowe definicje Z przekrojem pręta związane są trzy wielkości fizyczne nazywane charakterystykami geometrycznymi
( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x
Arkusz I Zadanie. Wartość bezwzględna Rozwiąż równanie x + 3 x 4 x 7. Naszkicujmy wykresy funkcji f ( x) x + 3 oraz g ( x) x 4 uwzględniając tylko ich miejsca zerowe i monotoniczność w ten sposób znajdziemy
Z1/1. ANALIZA BELEK ZADANIE 1
05/06 Z1/1. NLIZ LK ZNI 1 1 Z1/1. NLIZ LK ZNI 1 Z1/1.1 Zadanie 1 Udowodnić geometryczną niezmienność belki złożonej na rysunku Z1/1.1 a następnie wyznaczyć reakcje podporowe oraz wykresy siły poprzecznej
LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach
Rachunek całkowy - całka oznaczona
SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej
Z1/7. ANALIZA RAM PŁASKICH ZADANIE 3
Z1/7. NLIZ RM PŁSKIH ZNI 3 1 Z1/7. NLIZ RM PŁSKIH ZNI 3 Z1/7.1 Zadanie 3 Narysować wykresy sił przekrojowych w ramie wspornikowej przedstawionej na rysunku Z1/7.1. Następnie sprawdzić równowagę sił przekrojowych
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Mechanika techniczna i wytrzymałość materiałów Rok akademicki: 2012/2013 Kod: STC-1-105-s Punkty ECTS: 3 Wydział: Energetyki i Paliw Kierunek: Technologia Chemiczna Specjalność: Poziom studiów:
1. Dostosowanie paska narzędzi.
1. Dostosowanie paska narzędzi. 1.1. Wyświetlanie paska narzędzi Rysuj. Rys. 1. Pasek narzędzi Rysuj W celu wyświetlenia paska narzędzi Rysuj należy wybrać w menu: Widok Paski narzędzi Dostosuj... lub
1. Pojazdy i maszyny robocze 2. Metody komputerowe w projektowaniu maszyn 3. Inżynieria produkcji Jednostka prowadząca
Kod przedmiotu: PLPILA02-IPMIBM-I-2p7-2012-S Pozycja planu: B7 1. INFORMACJE O PRZEDMIOCIE A. Podstawowe dane 1 Nazwa przedmiotu Wytrzymałość materiałów I 2 Rodzaj przedmiotu Podstawowy/obowiązkowy 3 Kierunek
Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu:
Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia Przedmiot: Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: MT 1 N 0 3 19-0_1 Rok: II Semestr: 3 Forma studiów:
Zadanie 1: śruba rozciągana i skręcana
Zadanie 1: śruba rozciągana i skręcana Cylindryczny zbiornik i jego pokrywę łączy osiem śrub M16 wykonanych ze stali C15 i osadzonych na kołnierzu. Średnica wewnętrzna zbiornika wynosi 200 mm. Zbiornik
Rysunek Łuk trójprzegubowy, kołowy, obciążony ciężarem własnym na prawym odcinku łuku..
rzykład 10.. Łuk obciążony ciężarem przęsła. Rysunek przedstawia łuk trójprzegubowy, którego oś ma kształt części półokręgu. Łuk obciążony jest ciężarem własnym. Zakładamy, że prawe przęsło łuku jest nieporównanie
WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ GAUSSA
Ćwiczenie WYZNACZANIE MOUŁU SZTYWNOŚCI METOĄ YNAMICZNĄ GAUSSA.1. Wiadomości ogóne Pod wpływem sił zewnętrznych ciała stałe uegają odkształceniom tzn. zmieniają swoje wymiary oraz kształt. Jeżei po usunięciu
1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych
Mechanika teoretyczna
Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe
Rodzaje obciążeń, odkształceń i naprężeń
Rodzaje obciążeń, odkształceń i naprężeń 1. Podział obciążeń i odkształceń Oddziaływania na konstrukcję, w zależności od sposobu działania sił, mogą być statyczne lun dynamiczne. Obciążenia statyczne występują
MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 11 Praca, moc, energia Prowadzący: dr Krzysztof Polko PRACA MECHANICZNA SIŁY STAŁEJ Pracą siły stałej na prostoliniowym przemieszczeniu w kierunku działania siły nazywamy iloczyn
Linie wpływu w belce statycznie niewyznaczalnej
Prof. Mieczysław Kuczma Poznań, styczeń 215 Zakład Mechaniki Budowli, PP Linie wpływu w belce statycznie niewyznaczalnej (Przykład liczbowy) Zacznijmy od zdefiniowania pojęcia linii wpływu (używa się też
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory
Laboratorium wytrzymałości materiałów
Politechnika Lubelska MECHANIKA Laboratorium wytrzymałości materiałów Ćwiczenie 19 - Ścinanie techniczne połączenia klejonego Przygotował: Andrzej Teter (do użytku wewnętrznego) Ścinanie techniczne połączenia
Karta (sylabus) przedmiotu Mechanika i Budowa Maszyn Studia I stopnia o profilu: A P
WM Karta (sylabus) przedmiotu Mechanika i Budowa Maszyn Studia I stopnia o profilu: A P Przedmiot: Wytrzymałość Materiałów I Kod ECTS Status przedmiotu: obowiązkowy MBM 1 S 0 3 37-0_0 Język wykładowy:
TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania
TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika
6. ZWIĄZKI FIZYCZNE Wstęp
6. ZWIĄZKI FIZYCZN 1 6. 6. ZWIĄZKI FIZYCZN 6.1. Wstęp Aby rozwiązać jakiekolwiek zadanie mechaniki ośrodka ciągłego musimy dysponować 15 niezależnymi równaniami, gdyż tyle mamy niewiadomych: trzy składowe
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów studia niestacjonarne I-go stopnia, semestr zimowy
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów studia niestacjonarne I-go stopnia, semestr zimowy 1. Położenie osi obojętnej przekroju rozciąganego mimośrodowo zależy od: a) punktu przyłożenia
Model odpowiedzi i schemat oceniania do arkusza II
Model odpowiedzi i schemat oceniania do arkusza II Zadanie 12 (3 pkt) Z warunków zadania : 2 AM = MB > > n Wprowadzenie oznaczeń, naprzykład: A = (x, y) i obliczenie współrzędnych wektorów n Obliczenie
Wyznaczanie modułu sprężystości za pomocą wahadła torsyjnego
Wyznaczanie modułu sprężystości za pomocą wahadła torsyjnego Obowiązkowa znajomość zagadnień Charakterystyka odkształceń sprężystych, pojęcie naprężenia. Prawo Hooke a, moduł Kirchhoffa i jego wpływ na
MECHANIKA 2. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Prowadzący: dr Krzysztof Polko PLAN WYKŁADÓW 1. Podstawy kinematyki 2. Ruch postępowy i obrotowy bryły 3. Ruch płaski bryły 4. Ruch złożony i ruch względny 5. Ruch kulisty i ruch ogólny bryły
Mechanika i Budowa Maszyn
Mechanika i Budowa Maszyn Materiały pomocnicze do ćwiczeń Wyznaczanie sił wewnętrznych w belkach statycznie wyznaczalnych Andrzej J. Zmysłowski Andrzej J. Zmysłowski Wyznaczanie sił wewnętrznych w belkach
{H B= 6 kn. Przykład 1. Dana jest belka: Podać wykresy NTM.
Przykład 1. Dana jest belka: Podać wykresy NTM. Niezależnie od sposobu rozwiązywania zadania, zacząć należy od zastąpienia podpór reakcjami. Na czas obliczania reakcji można zastąpić obciążenie ciągłe
Materiały do wykładu na temat Obliczanie sił przekrojowych, naprężeń i zmian geometrycznych prętów rozciąganych iściskanych bez wyboczenia.
Materiały do wykładu na temat Obliczanie sił przekrojowych naprężeń i zmian geometrycznych prętów rozciąganych iściskanych bez wyboczenia. Sprawdzanie warunków wytrzymałości takich prętów. Wydruk elektroniczny
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego
Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura
Część DZIAŁANIE MOMENTU SKRĘCAJĄCEGO 1 DZIAŁANIE MOMENTU SKRĘCAJĄCEGO ZALEŻNOŚCI PODSTAWOWE
Część 1. DZIŁNIE OENTU SKRĘCJĄCEGO 1 1 DZIŁNIE OENTU SKRĘCJĄCEGO 1.1. ZLEŻNOŚCI PODSTWOWE 1.1.1. Podstawy teorii skręcania swobodnego prętów sprężystych Rozważmy jednorodny, izotropowy, liniowo-sprężysty
8. WIADOMOŚCI WSTĘPNE
Część 2 8. MECHNIK ELEMENTÓW PRĘTOWYCH WIDOMOŚCI WSTĘPNE 1 8. WIDOMOŚCI WSTĘPNE 8.1. KLSYFIKCJ ZSDNICZYCH ELEMENTÓW KONSTRUKCJI Podstawą klasyfikacji zasadniczych elementów konstrukcji jest kształt geometryczny
Zadanie 3. Belki statycznie wyznaczalne. Dla belek statycznie wyznaczalnych przedstawionych. na rysunkach rys.a, rys.b, wyznaczyć:
adanie 3. elki statycznie wyznaczalne. 15K la belek statycznie wyznaczalnych przedstawionych na rysunkach rys., rys., wyznaczyć: 18K 0.5m 1.5m 1. składowe reakcji podpór, 2. zapisać funkcje sił przekrojowych,
Przykłady (twierdzenie A. Castigliano)
23 Przykłady (twierdzenie A. Castigiano) Zadanie 8.4.1 Obiczyć maksymane ugięcie beki przedstawionej na rysunku (8.2). Do obiczeń przyjąć następujące dane: q = 1 kn m, = 1 [m], E = 2 17 [Pa], d = 4 [cm],
Wyznaczanie modułu Younga metodą strzałki ugięcia
Ćwiczenie M12 Wyznaczanie modułu Younga metodą strzałki ugięcia M12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu Younga różnych materiałów poprzez badanie strzałki ugięcia wykonanych
LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ . Cel ćwiczenia Pomiar współrzędnych powierzchni swobodnej w naczyniu cylindrycznym wirującym wokół
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/
Zadanie 1 Zadanie 2 tylko Zadanie 3
Zadanie 1 Obliczyć naprężenia oraz przemieszczenie pionowe pręta o polu przekroju A=8 cm 2. Siła działająca na pręt przenosi obciążenia w postaci siły skupionej o wartości P=200 kn. Długość pręta wynosi
Równania różniczkowe opisujące ruch fotela z pilotem:
. Katapultowanie pilota z samolotu Równania różniczkowe opisujące ruch fotela z pilotem: gdzie D - siłą ciągu, Cd współczynnik aerodynamiczny ciągu, m - masa pilota i fotela, g przys. ziemskie, ρ - gęstość
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki
Wewnętrzny stan bryły
Stany graniczne Wewnętrzny stan bryły Bryła (konstrukcja) jest w równowadze, jeżeli oddziaływania zewnętrzne i reakcje się równoważą. P α q P P Jednak drugim warunkiem równowagi jest przeniesienie przez
Treść ćwiczenia T6: Wyznaczanie sił wewnętrznych w belkach
Instrukcja przygotowania i realizacji scenariusza dotyczącego ćwiczenia 6 z przedmiotu "Wytrzymałość materiałów", przeznaczona dla studentów II roku studiów stacjonarnych I stopnia w kierunku Energetyka
PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH
1 Przedmowa Okładka CZĘŚĆ PIERWSZA. SPIS PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1. STAN NAPRĘŻENIA 1.1. SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE 1.2. WEKTOR NAPRĘŻENIA 1.3. STAN NAPRĘŻENIA W PUNKCIE 1.4. RÓWNANIA
Ć w i c z e n i e K 4
Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa
Obliczanie naprężeń stycznych wywołanych momentem skręcającym w przekrojach: kołowym, pierścieniowym, prostokątnym 7
Obiczanie naprężeń tycznych wywołanych momentem kręcającym w przekrojach: kołowym, pierścieniowym, protokątnym 7 Wprowadzenie Do obiczenia naprężeń tycznych wywołanych momentem kręcającym w przekrojach
WSTĘP DO TEORII PLASTYCZNOŚCI
13. WSTĘP DO TORII PLASTYCZNOŚCI 1 13. 13. WSTĘP DO TORII PLASTYCZNOŚCI 13.1. TORIA PLASTYCZNOŚCI Teoria plastyczności zajmuje się analizą stanów naprężeń ciał, w których w wyniku działania obciążeń powstają
Stożkiem nazywamy bryłę obrotową, która powstała przez obrót trójkąta prostokątnego wokół jednej z jego przyprostokątnych.
1.4. Stożek W tym temacie dowiesz się: jak obliczać pole powierzchni bocznej i pole powierzchni całkowitej stożka, jak obliczać objętość stożka, jak wykorzystywać własności stożków w zadaniach praktycznych.
KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie
KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie
Integralność konstrukcji w eksploatacji
1 Integralność konstrukcji w eksploatacji Wykład 0 PRZYPOMNINI PODSTAWOWYCH POJĘĆ Z WYTRZYMAŁOŚCI MATRIAŁÓW Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji