Bryła sztywna Zadanie domowe

Wielkość: px
Rozpocząć pokaz od strony:

Download "Bryła sztywna Zadanie domowe"

Transkrypt

1 Bryła sztywna Zadanie domowe 1. Podczas ruszania samochodu, w pewnej chwili prędkość środka przedniego koła wynosiła. Sprawdź, czy pomiędzy kołem a podłożem występował poślizg, jeżeli średnica tego koła wynosiła a jego prędkość kątowa. [1 pkt.] 2. Koło zamachowe o momencie bezwładności, obraca się w wokół poziomej osi przechodzącej przez jego środek. W pewnej chwili zaczęto je hamować (ruchem jednostajnie opóźnionym, wskutek czego zatrzymało się po upływie 20 sekund. Oblicz wartość momentu siły hamującej, jeżeli w chwili rozpoczęcia hamowania koło wykonywało [2 pkt.] 3. Oblicz współrzędne środka masy zgiętego, jednorodnego pręta o stałym przekroju, przedstawionego na poniższym rysunku. Każda z dwóch części pręta ma masę grubości pręta. [2 pkt.] i długość. Nie uwzględniaj Y X 4. Oblicz długość zewnętrznego promienia koła zamachowego, jeżeli podczas jego ruchu obrotowego ze stałą prędkością kątową, wartość prędkości liniowej dowolnego punktu na jego obwodzie wynosi, natomiast dowolnego punktu, który znajduje się o bliżej jego osi obrotu wynosi. [2 pkt.] 5. Jednorodna belka o stałym przekroju, ma długość i masę. Belka ta podparta w punktach A i B znajduje się w równowadze. Wyprowadź wzór na wartość sił reakcji w miejscach podparcia. Wskazówka: muszą się równoważyć zarówno siły działające na belkę, jak i ich momenty liczone względem dowolnego punktu belki. [2,5 pkt.] A B Zadanie domowe - Bryła sztywna Strona 1

2 6. Bryła sztywna składa się z jednorodnej kuli i czterech jednorodnych prętów o takim samym i stałym polu przekroju (patrz rysunek). Masa kuli wynosi a jej promień. Masa każdego z prętów wynosi, ich długość a promień przekroju. Wyprowadź wzór na moment bezwładności bryły względem: 2 a. osi przechodzącej przez środek kuli i prostopadłej do płaszczyzny, w której znajdują się pręty (oś 1), [2 pkt.] 1 b. osi przechodzącej przez środek kuli i biegnącej przez środki masy prętów ustawionych na rysunku pionowo (oś 2). [2 pkt.] 7. Na wygiętym pręcie (składającym się z dwóch prętów o długościach ) podwieszono obciążnik o masie (patrz rysunek). Ten układ ciał może się obracać wokół osi przechodzącej przez punkt i prostopadłej do płaszczyzny rysunku. Wyprowadź wzór na wartość siły, jaką trzeba przyłożyć prostopadle do końca pręta, aby układ był w równowadze Wskazówka: muszą się równoważyć momenty odpowiednich sił liczone względem punktu O. [2 pkt.] Zadanie domowe - Bryła sztywna Strona 2

3 8. Drabina o długości i masie, stoi oparta o gładką ścianę (brak sił tarcia w miejscu styku drabiny ze ścianą). Maksymalny kąt jaki może tworzyć drabina ze ścianą, aby nie upaść, wynosi. Wyprowadź wzór na wartość współczynnika tarcia między drabiną a podłogą. Wskazówka: muszą się równoważyć zarówno siły działające na belkę, jak i ich momenty liczone względem dowolnego punktu belki. [3 pkt.] 9. Cienką żyłkę (nierozciągliwą i o pomijalnie małej masie) nawinięto na rurę o masie M. Grubość ścianki rury jest wielokrotnie mniejsza od jej promienia zewnętrznego. Oznacza to, że można ją potraktować jako obręcz cienkościenną. Koniec żyłki zamocowano do sufitu, po czym (przy napiętej żyłce) rurę puszczono swobodnie. Wyprowadź wzór na przyspieszenie, z jakim opadać będzie w dół rura oraz na wartość siły naciągu żyłki. [4 pkt.] M 10. W przypadku, gdy siła tarcia (statycznego), jest odpowiednio duża, walec stacza się z równi pochyłej bez poślizgu, natomiast w przypadku, gdy nie ma żadnych sił tarcia ześlizguje się z niej swobodnie. Wyprowadź wzór na wartość szybkości w obu przypadkach, jeżeli w chwili początkowej walec był nieruchomy i podczas ruchu jego środek ciężkości przebył w pionie odległość h. Która z szybkości była większa i ile razy? Wskazówka: najszybciej rozwiążesz zadania korzystając z zasady zachowania energii mechanicznej. [4 pkt.] Zadanie domowe - Bryła sztywna Strona 3

4 11. Jednorodna bryła o obrotowa (kula, walec, obręcz cienkościenna) ma masę m i promień r. Moment bezwładności tej bryły względem jej środka masy wynosi. Bryłę tę położono w tej samej odległości od podstawy równi pochyłej o kącie nachylenia i puszczono swobodnie, wskutek czego zaczęły się toczyć bez poślizgu. Wyprowadź wzór na wartość prędkości liniowej środka ciężkości tej bryły na dole równi pochyłej. Która z wymienionych powyżej brył miała prędkość o największej wartości - w wyprowadzonym wzorze uwzględnij zależności określające momenty bezwładności tych brył. Wskazówka: najszybciej rozwiążesz zadania korzystając z zasady zachowania energii mechanicznej. [4 pkt.] 12. W pewnej chwili na jednorodnej tarczy (o pewnym promieniu) wirującej swobodnie w płaszczyźnie poziomej ze stałą prędkością kątową usiadł żuczek (na osi obrotu tej tarczy). Po pewnym czasie żuczek przeszedł na skraj tarczy i tam się zatrzymał. Oblicz zmianę prędkości kątowej tarczy, jeżeli masa tarczy wynosiła M, masa żuczka m. Wskazówka: skorzystaj z zasady zachowania momentu pędu. [5 pkt.] 13. Uczeń siedzi (z wyprostowanymi w bok rękoma) na krześle obrotowym, które może się obracać swobodnie wokół osi pionowej. W tej sytuacji całkowity moment bezwładności układu krzesło-uczeń wynosi Uczniowi dano do trzymania do każdej dłoni obciążnik o masie, po czym wprawiono go ruchu obrotowy, tak że częstotliwość jego obrotów wynosiła. W tej sytuacji każdy z obciążników znajdował się w odległości od osi obrotu. Ile wynosić będzie częstotliwość obrotów, jeżeli uczeń zginając ręce spowoduje, że obciążniki znajdą się w odległości od osi obrotu. Potraktuj obciążniki jako masy punktowe oraz przyjmij, że po zgięciu rąk całkowity moment bezwładności układu uczeń-krzesło (bez obciążników!) zmalał do momentu pędu. [4 pkt.] Wskazówka: skorzystaj z zasady zachowania Zadanie domowe - Bryła sztywna Strona 4

5 14. Na jednorodnym walcu o masie M i pewnym promieniu, nawinięto długi cienki sznurek, na końcu którego zamocowano obciążnik o masie m. Walec może się obracać swobodnie wokół osi przechodzącej przez jego oś wzdłużną. W chwili początkowej obciążnik był nieruchomy i znajdował się na wysokości h nad powierzchnią Ziemi. Wyprowadź wzór na czas, po upływie którego obciążnik uderzy o powierzchnię Ziemi. Pomiń masę sznurka i siły tarcia. [5 pkt.] Chwila początkowa 15. Drewniany, jednorodny pręt o stałym przekroju ustawiony jest poziomo i może się obracać wokół pionowej osi przechodzącej przez jego środek masy. Masa tego pręta wynosi M. W pewnej chwili w jednym z końców tego pręta ugrzęzła kula karabinowa o masie m lecąca z prędkością na kierunku prostopadłym do osi obrotu i do pręta. W chwili uderzenia kuli pręt był nieruchomy. Wyprowadź wzór na wartość zmiany energii kinetycznej układu pocisk-pręt. Wskazówka: skorzystaj z zasady zachowania momentu pędu. [6 pkt.] "Widok z góry" m M SM Zadanie domowe - Bryła sztywna Strona 5

v 6 i 7 j. Wyznacz wektora momentu pędu czaski względem początku układu współrzędnych.

v 6 i 7 j. Wyznacz wektora momentu pędu czaski względem początku układu współrzędnych. Dynamika bryły sztywnej.. Moment siły. Moment pędu. Moment bezwładności. 171. Na cząstkę o masie kg znajdującą się w punkcie określonym wektorem r 5i 7j działa siła F 3i 4j. Wyznacz wektora momentu tej

Bardziej szczegółowo

Dynamika ruchu obrotowego

Dynamika ruchu obrotowego Dynamika ruchu obrotowego 1. Mając dane r = îx + ĵy + ˆkz i = î x + ĵ y + ˆk z znaleźć moment siły τ = r. Pokazać, że jeżeli r i leżą w danej płaszczyźnie, to τ nie ma składowych w tej płaszczyźnie. 2.

Bardziej szczegółowo

12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa

12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa Włodzimierz Wolczyński Przyspieszenie kątowe 1 RUCH OROTOWY RYŁY SZTYWNEJ I = = ε przyspieszenie kątowe [ ] ω prędkość kątowa = = T okres, = - częstotliwość s=αr v=ωr a=εr droga = kąt x promień prędkość

Bardziej szczegółowo

Ws-ka: Proszę zastosować zasadę zachowania momentu pędu (ale nie pędu) do zderzenia kulki z prętem.

Ws-ka: Proszę zastosować zasadę zachowania momentu pędu (ale nie pędu) do zderzenia kulki z prętem. WPPT; kier. Inż. Biom.; lista zad. nr 5 pt.: Rozwiązywanie zadań z zakresu dynamiki ruchu obrotowego bryły sztywnej z wykorzystaniem zasady zachowania momentu pędu; listę kończą zadania do samodzielnego

Bardziej szczegółowo

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 13 RUCH OBROTOWY BRYŁY SZTYWNEJ. CZĘŚĆ 3

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 13 RUCH OBROTOWY BRYŁY SZTYWNEJ. CZĘŚĆ 3 autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 13 RUCH OBROTOWY BRYŁY SZTYWNEJ. CZĘŚĆ 3 Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania PYTANIA ZAMKNIĘTE Zadanie

Bardziej szczegółowo

1. Z pręta o stałym przekroju poprzecznym i długości 1 m odcięto 25 cm kawałek. O ile przesunęło się połoŝenie środka masy pręta. Odp. o 8.

1. Z pręta o stałym przekroju poprzecznym i długości 1 m odcięto 25 cm kawałek. O ile przesunęło się połoŝenie środka masy pręta. Odp. o 8. DYNAMIKA BRYŁY SZTYWNEJ Środek asy. Z pręta o stały przekroju poprzeczny i długości odcięto 5 c kawałek. O ile przesunęło się połoŝenie środka asy pręta. o 8 początkowej długości pręta. Trzy kule o asach:,

Bardziej szczegółowo

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Obrót wokół ustalonej osi Prawa ruchu Dla bryły sztywnej obracajacej się wokół ostalonej osi mement

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego

Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Bryła sztywna Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Typ równowagi zależy od zmiany położenia środka masy ( Równowaga Statyka Bryły sztywnej umieszczonej

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

Bryła sztywna Przewodnik do rozwiązywania typowych zadań

Bryła sztywna Przewodnik do rozwiązywania typowych zadań Bryła sztywna Przewodnik do rozwiązywania typowych zadań Przed przystąpieniem do korzystania z poniższego poradnika: wydrukuj jego treść, przygotuj kartki w kratkę, na których będziesz rozwiązywał zadania,

Bardziej szczegółowo

Lista zadań nr 6 Środek masy, Moment bezwładności, Moment siły (2h)

Lista zadań nr 6 Środek masy, Moment bezwładności, Moment siły (2h) Lista zadań nr 6 Środek masy, Moment bezwładności, Moment siły (2h) Środek ciężkości Zaad.6.1 Wyznacz środek masy układu pięciu mas o odpowiednich współrzędnych: m 1 (2,2), m 2 (2,5), m 3 (-4,2), m 4 (-3,-2),

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu.

(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu. 1 1 x (m/s) 4 0 4 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 t (s) a) Narysuj wykres a x (t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka

Bardziej szczegółowo

DYNAMIKA ZADANIA. Zadanie DYN1

DYNAMIKA ZADANIA. Zadanie DYN1 DYNAMIKA ZADANIA Zadanie DYN1 Na ciało działa siła (przy czym i to stałe). W chwili początkowej ciało miało prędkość i znajdowało się w punkcie. Wyznacz położenie i prędkość ciała w funkcji czasu., Zadanie

Bardziej szczegółowo

Fizyka elementarna materiały dla studentów. Części 9, 10 i 11. Moment pędu. Moment bezwładności.

Fizyka elementarna materiały dla studentów. Części 9, 10 i 11. Moment pędu. Moment bezwładności. Fizyka elementarna materiały dla studentów. Części 9, 10 i 11. Moment pędu. Moment bezwładności. Przygotowane częściowo na podstawie materiałów z roku akademickiego 2007/8. Literatura (wspólna dla wszystkich

Bardziej szczegółowo

Dynamika ruchu obrotowego 1

Dynamika ruchu obrotowego 1 Dynamika ruchu obrotowego 1 1. Obliczyć moment bezwładności jednorodnego pręta o masie M i długości L względem osi prostopadłej do niego i przechodzącej przez: (a) koniec pręta, (b) środek pręta. 2. Obliczyć

Bardziej szczegółowo

Zadania z fizyki. Wydział PPT

Zadania z fizyki. Wydział PPT Zadania z fizyki Wydział PPT 9 Moment pędu; bryła sztywna Uwaga: Zadania oznaczone przez (c) należy w pierwszej kolejności rozwiązać na ćwiczeniach. Zadania (lub ich części) opatrzone gwiazdką są (zdaniem

Bardziej szczegółowo

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA M WYZNACZANE MOMENTU BEZWŁADNOŚC WAHADŁA OBERBECKA opracowała Bożena Janowska-Dmoch Do opisu ruchu obrotowego ciał stosujemy prawa dynamiki ruchu obrotowego, w których występują wielkości takie jak: prędkość

Bardziej szczegółowo

3. Zadanie nr 21 z rozdziału 7. książki HRW

3. Zadanie nr 21 z rozdziału 7. książki HRW Lista 3. do kursu Fizyka; rok. ak. 2012/13 sem. letni W. Inż. Środ.; kierunek Inż. Środowiska Tabele wzorów matematycznych (http://www.if.pwr.wroc.pl/~wsalejda/mat-wzory.pdf) i fizycznych (http://www.if.pwr.wroc.pl/~wsalejda/wzf1.pdf;

Bardziej szczegółowo

Zasady dynamiki Newtona

Zasady dynamiki Newtona Zasady dynamiki Newtona 1. Znajdź masę ciała (poruszającego się po prostej), które pod działaniem siły o wartości F = 30 N w czasie t= 5s zmienia swą szybkość z v 1 = 15 m/s na v 2 = 30 m/s. 2. Znajdź

Bardziej szczegółowo

Doświadczalne sprawdzenie drugiej zasady dynamiki ruchu obrotowego za pomocą wahadła OBERBECKA.

Doświadczalne sprawdzenie drugiej zasady dynamiki ruchu obrotowego za pomocą wahadła OBERBECKA. Dowiadczalne sprawdzenie drugiej zasady dynamiki ruchu obrotowego za pomocą wahadła OBERBECKA. Wprowadzenie Wahadło Oberbecka jest bryłą sztywną utworzoną przez tuleję (1) i cztery identyczne wkręcone

Bardziej szczegółowo

Theory Polish (Poland) Przed rozpoczęciem rozwiązywania przeczytaj ogólne instrukcje znajdujące się w osobnej kopercie.

Theory Polish (Poland) Przed rozpoczęciem rozwiązywania przeczytaj ogólne instrukcje znajdujące się w osobnej kopercie. Q1-1 Dwa zagadnienia mechaniczne (10 points) Przed rozpoczęciem rozwiązywania przeczytaj ogólne instrukcje znajdujące się w osobnej kopercie. Część A. Ukryty metalowy dysk (3.5 points) Rozważmy drewniany

Bardziej szczegółowo

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3.

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3. Dynamika ruchu obrotowego Zauważyłem, że zadania dotyczące ruchu obrotowego bardzo często sprawiają maturzystom wiele kłopotów. A przecież wystarczy zrozumieć i stosować zasady dynamiki Newtona. Przeanalizujmy

Bardziej szczegółowo

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły

Bardziej szczegółowo

Zadania z dynamiki. Maciej J. Mrowiński 11 marca mω 2. Wyznacz położenie i prędkość ciała w funkcji czasu. ma t + f 0. ma 2 (e at 1), v gr = f 0

Zadania z dynamiki. Maciej J. Mrowiński 11 marca mω 2. Wyznacz położenie i prędkość ciała w funkcji czasu. ma t + f 0. ma 2 (e at 1), v gr = f 0 Zadania z dynamiki Maciej J. Mrowiński 11 marca 2010 Zadanie DYN1 Na ciało działa siła F (t) = f 0 cosωt (przy czym f 0 i ω to stałe). W chwili początkowej ciało miało prędkość v(0) = 0 i znajdowało się

Bardziej szczegółowo

Tematy zadań do rozwiązania przy użyciu modułu symulacji dynamicznej programu Autodesk Inventor

Tematy zadań do rozwiązania przy użyciu modułu symulacji dynamicznej programu Autodesk Inventor Tematy zadań do rozwiązania przy użyciu modułu symulacji dynamicznej programu Autodesk Inventor (na podstawie J.Giergiel, L.Głuch, A.Łopata: Zbiór zadań z mechaniki.wydawnictwo AGH, Kraków 2011r.) Temat

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 Podstawy fizyki wykład 4 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada

Bardziej szczegółowo

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie

Bardziej szczegółowo

STATYKA I DYNAMIKA PUNKTU MATERIALNEGO I BRYŁY SZTYWNEJ, WŁASNOŚCI SPRĘŻYSTE CIAŁ

STATYKA I DYNAMIKA PUNKTU MATERIALNEGO I BRYŁY SZTYWNEJ, WŁASNOŚCI SPRĘŻYSTE CIAŁ STATYKA I DYNAMIKA PUNKTU MATERIALNEGO I BRYŁY SZTYWNEJ, WŁASNOŚCI SPRĘŻYSTE CIAŁ ZAGADNIENIA DO ĆWICZEŃ 1. Warunki równowagi ciał. 2. Praktyczne wykorzystanie warunków równowagi w tzw. maszynach prostych.

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 9 1.XII Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 9 1.XII Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka 1- Mechanika Wykład 9 1.X.016 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Moment bezwładności - koło Krążek wokół osi symetrii: M dm

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka 7. Pole magnetyczne zadania z arkusza I 7.8 7.1 7.9 7.2 7.3 7.10 7.11 7.4 7.12 7.5 7.13 7.6 7.7 7. Pole magnetyczne - 1 - 7.14 7.25 7.15 7.26 7.16 7.17 7.18 7.19 7.20 7.21 7.27 Kwadratową ramkę (rys.)

Bardziej szczegółowo

nawinięty był na części wahadła o średnicy 15 mm. Ciężarek po upuszczeniu przebył drogę 0,5 m w czasie 2,5 s.

nawinięty był na części wahadła o średnicy 15 mm. Ciężarek po upuszczeniu przebył drogę 0,5 m w czasie 2,5 s. Bryła sztywna - powtórka 1. Uczniowie zawiesili ciężarek na sznurku nawiniętym na wahadle Oberbecka (fotografia). Sznurek nawinięty był na części wahadła o średnicy 15 mm. Ciężarek po upuszczeniu przebył

Bardziej szczegółowo

będzie momentem Twierdzenie Steinera

będzie momentem Twierdzenie Steinera Wykład z fizyki, Piotr Posmykiewicz. Niech 90 oznacza moment bezwładności względem osi przechodzącej przez środek masy ciała o masie i niech będzie momentem bezwładności tego ciała względem osi równoległej

Bardziej szczegółowo

A = (A X, A Y, A Z ) A X i + A Y j + A Z k A X e x + A Y e y + A Z e z wektory jednostkowe: i e x j e y k e z.

A = (A X, A Y, A Z ) A X i + A Y j + A Z k A X e x + A Y e y + A Z e z wektory jednostkowe: i e x j e y k e z. Ćwiczenia rachunkowe z fizyki dla I roku Transport Morski. Zestaw zadań nr 1. Zestaw 1. Wielkości i jednostki. Wektory. Zapisać w jednostkach układu SI: 2 doby; 14 minut;2,5 godz.; 3 000 lat; 3 MM (mile

Bardziej szczegółowo

Z przedstawionych poniżej stwierdzeń dotyczących wartości pędów wybierz poprawne. Otocz kółkiem jedną z odpowiedzi (A, B, C, D lub E).

Z przedstawionych poniżej stwierdzeń dotyczących wartości pędów wybierz poprawne. Otocz kółkiem jedną z odpowiedzi (A, B, C, D lub E). Zadanie 1. (0 3) Podczas gry w badmintona zawodniczka uderzyła lotkę na wysokości 2 m, nadając jej poziomą prędkość o wartości 5. Lotka upadła w pewnej odległości od zawodniczki. Jest to odległość o jedną

Bardziej szczegółowo

Lista zadań nr 5 Ruch po okręgu (1h)

Lista zadań nr 5 Ruch po okręgu (1h) Lista zadań nr 5 Ruch po okręgu (1h) Pseudo siły ruch po okręgu Zad. 5.1 Na cząstkę o masie 2 kg znajdującą się w punkcie R=5i+7j działa siła F=3i+4j. Wyznacz moment siły względem początku układu współrzędnych.

Bardziej szczegółowo

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc.

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Przypuśćmy, że wszyscy ludzie na świecie zgromadzili się w jednym miejscu na Ziemi i na daną komendę jednocześnie

Bardziej szczegółowo

PF11- Dynamika bryły sztywnej.

PF11- Dynamika bryły sztywnej. Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych

Bardziej szczegółowo

III Zasada Dynamiki Newtona. Wykład 5: Układy cząstek i bryła sztywna. Przykład. Jak odpowiesz na pytania?

III Zasada Dynamiki Newtona. Wykład 5: Układy cząstek i bryła sztywna. Przykład. Jak odpowiesz na pytania? III Zasada Dynamiki Newtona 1:39 Wykład 5: Układy cząstek i bryła sztywna Matematyka Stosowana Ciało A na B: Ciało B na A: 0 0 Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał

Bardziej szczegółowo

Ekpost=mv22. Ekobr=Iω22, mgh =mv22+iω22,

Ekpost=mv22. Ekobr=Iω22, mgh =mv22+iω22, Koło Maxwella Cel ćwiczenia Celem ćwiczenia jest badanie prawa zachowania energii w polu grawitacyjnym, a także zapoznanie się z prawami rządzącymi ruchem obrotowym. Wstęp Wahadło Maxwella Wahadło Maxwella

Bardziej szczegółowo

Kołowrót -11pkt. 1. Zadanie 22. Wahadło balistyczne (10 pkt)

Kołowrót -11pkt. 1. Zadanie 22. Wahadło balistyczne (10 pkt) Kołowrót -11pkt. Kołowrót w kształcie walca, którego masa wynosi 10 kg, zamocowany jest nad studnią (rys.). Na kołowrocie nawinięta jest nieważka i nierozciągliwa linka, której górny koniec przymocowany

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

SPRAWDZIAN NR 1. gruntu energia potencjalna kulki jest równa zero. Zakładamy, że podczas spadku na kulkę nie działają opory ruchu.

SPRAWDZIAN NR 1. gruntu energia potencjalna kulki jest równa zero. Zakładamy, że podczas spadku na kulkę nie działają opory ruchu. SRAWDZIAN NR 1 MAŁGORZATA SZYMAŃSKA IMIĘ I NAZWISKO: KLASA: GRUA A 1. Z wysokości 2 m nad powierzchnią gruntu puszczono swobodnie metalową kulkę. Na poziomie gruntu energia potencjalna kulki jest równa

Bardziej szczegółowo

Cel ćwiczenia: zapoznanie się z wielkościami opisującymi ruch i zastosowanie równań ruchu do opisu rzeczywistych

Cel ćwiczenia: zapoznanie się z wielkościami opisującymi ruch i zastosowanie równań ruchu do opisu rzeczywistych Zestaw 1 KINEMATYKA Cel ćwiczenia: zapoznanie się z wielkościami opisującymi ruch i zastosowanie równań ruchu do opisu rzeczywistych sytuacji. Wiadomości wstępne: wektory i operacje na nich. Rodzaje ruchu,

Bardziej szczegółowo

Ćwiczenie: "Dynamika"

Ćwiczenie: Dynamika Ćwiczenie: "Dynamika" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Układy nieinercjalne

Bardziej szczegółowo

PRZED KONKURSEM CZĘŚĆ 13

PRZED KONKURSEM CZĘŚĆ 13 POWTÓRKA PRZED KONKURSEM CZĘŚĆ 13 Zadanie 1 Przez cewkę przepuszczono prąd elektryczny, podłączając ją do źródła prądu, a nad nią zawieszono magnes sztabkowy na dół biegunem N. Naciąg tej nici A. Zwiększy

Bardziej szczegółowo

We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2

We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2 m We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2. s Zadanie 1. (1 punkt) Pasażer samochodu zmierzył za pomocą stopera w telefonie komórkowym, że mija słupki kilometrowe co

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 10 RUCH JEDNOSTAJNY PUNKTU MATERIALNEGO PO OKRĘGU

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 10 RUCH JEDNOSTAJNY PUNKTU MATERIALNEGO PO OKRĘGU autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 10 RUCH JEDNOSTAJNY PUNKTU MATERIALNEGO PO OKRĘGU Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie 1 1 punkt

Bardziej szczegółowo

FIZYKA Kolokwium nr 4 (e-test)

FIZYKA Kolokwium nr 4 (e-test) FIZYKA Kolokwium nr 4 (e-test) Rozwiązał i opracował: Maciej Kujawa, SKP 2008/09 (więcej informacji na końcu dokumentu) Zad. 1 Pręt jednorodny o długości 1.7m i ciężarze 100N zawieszono poziomo na dwóch

Bardziej szczegółowo

Bryła sztywna. zbiór punktów materialnych utrzymujących stałą odległość między sobą. Deformująca się piłka nie jest bryłą sztywną!

Bryła sztywna. zbiór punktów materialnych utrzymujących stałą odległość między sobą. Deformująca się piłka nie jest bryłą sztywną! Bryła sztywna Ciało złożone z cząstek (punktów materialnych), które nie mogą się względem siebie przemieszczać. Siły utrzymujące punkty w stałych odległościach są siłami wewnętrznymi bryły sztywnej. zbiór

Bardziej szczegółowo

Opis ruchu obrotowego

Opis ruchu obrotowego Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają

Bardziej szczegółowo

Egzamin z fizyki Informatyka Stosowana

Egzamin z fizyki Informatyka Stosowana Egzamin z fizyki Informatyka Stosowana 1) Dwie kulki odległe od siebie o d=8m wystrzelono w tym samym momencie czasu z prędkościami v 1 =4m/s i v 2 =8m/s, jak pokazano na rysunku. v 1 8 m v 2 α a) kulka

Bardziej szczegółowo

Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia.

Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Grupa 1. Kinematyka 1. W ciągu dwóch sekund od wystrzelenia z powierzchni ziemi pocisk przemieścił się o 40 m w poziomie i o 53

Bardziej szczegółowo

Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe

Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy bryły sztywnej Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy ruch po okręgu P, t 1 P 1, t 1 θ 1 θ Ruch obrotowy ruch po okręgu P,

Bardziej szczegółowo

14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (od początku do grawitacji)

14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (od początku do grawitacji) Włodzimierz Wolczyński 14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY (od początku do grawitacji) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY LISTOPAD 01 Czas pracy: 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i

Bardziej szczegółowo

II. Redukcja układów sił. A. Układy płaskie. II.A.1. Wyznaczyć siłę równoważną (wypadkową) podanemu układowi sił zdefiniowanychw trzy różne sposoby.

II. Redukcja układów sił. A. Układy płaskie. II.A.1. Wyznaczyć siłę równoważną (wypadkową) podanemu układowi sił zdefiniowanychw trzy różne sposoby. II. Redukcja układów sił A. Układy płaskie II.A.1. Wyznaczyć siłę równoważną (wypadkową) podanemu układowi sił zdefiniowanychw trzy różne sposoby. II.A.2. Słup AB podtrzymywany jest w pozycji pionowej

Bardziej szczegółowo

Bąk wirujący wokół pionowej osi jest w równowadze. Momenty działających sił są równe zero (zarówno względem środka masy S jak i punktu podparcia O).

Bąk wirujący wokół pionowej osi jest w równowadze. Momenty działających sił są równe zero (zarówno względem środka masy S jak i punktu podparcia O). Bryła sztywna (2) Bąk Równowaga Rozważmy bąk podparty wirujący do okoła pionowej osi. Z zasady zachowania mementu pędu wynika, że jeśli zapewnimy znikanie momentów sił to kierunek momentu pędu pozostanie

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne.

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. PRACA Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. Rozważmy sytuację, gdy w krótkim czasie działająca siła spowodowała przemieszczenie ciała o bardzo małą wielkość Δs Wtedy praca wykonana

Bardziej szczegółowo

PRZYRZĄD DO BADANIA RUCHU JEDNOSTAJNEGO l JEDNOSTANIE ZMIENNEGO V 5-143

PRZYRZĄD DO BADANIA RUCHU JEDNOSTAJNEGO l JEDNOSTANIE ZMIENNEGO V 5-143 Przyrząd do badania ruchu jednostajnego i jednostajnie zmiennego V 5-43 PRZYRZĄD DO BADANIA RUCHU JEDNOSTAJNEGO l JEDNOSTANIE ZMIENNEGO V 5-43 Oprac. FzA, IF US, 2007 Rys. Przyrząd stanowi równia pochyła,

Bardziej szczegółowo

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu

Bardziej szczegółowo

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 11 Praca, moc, energia Prowadzący: dr Krzysztof Polko PRACA MECHANICZNA SIŁY STAŁEJ Pracą siły stałej na prostoliniowym przemieszczeniu w kierunku działania siły nazywamy iloczyn

Bardziej szczegółowo

Zakład Dydaktyki Fizyki UMK

Zakład Dydaktyki Fizyki UMK Toruński poręcznik do fizyki I. Mechanika Materiały dydaktyczne Krysztof Rochowicz Zadania przykładowe Dr Krzysztof Rochowicz Zakład Dydaktyki Fizyki UMK Toruń, czerwiec 2012 1. Samochód jadący z prędkością

Bardziej szczegółowo

Praca domowa nr 3. WPPT, kierunek IB., gdyby praca na rzecz siły tarcia wyniosłaby 10% początkowej wartości energii mechanicznej?

Praca domowa nr 3. WPPT, kierunek IB., gdyby praca na rzecz siły tarcia wyniosłaby 10% początkowej wartości energii mechanicznej? Praca domowa nr 3. WPPT, kierunek IB. Grupa1. Praca i energia mechaniczna, tw. o pracy i energii, zasada zachowania energii mechanicznej. Równania ruchu (cd). 1. A) Z wysokości 11,5 m spadł pionowo lecący

Bardziej szczegółowo

14-TYP-2015 POWTÓRKA PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ROZSZERZONY

14-TYP-2015 POWTÓRKA PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ROZSZERZONY Włodzimierz Wolczyński 14-TYP-2015 POWTÓRKA PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ROZSZERZONY Obejmuje działy u mnie wyszczególnione w konspektach jako 10 RUCH JEDNOSTAJNY PO OKRĘGU 11 POWTÓRKA

Bardziej szczegółowo

I. DYNAMIKA PUNKTU MATERIALNEGO

I. DYNAMIKA PUNKTU MATERIALNEGO I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć

Bardziej szczegółowo

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/

Bardziej szczegółowo

Zestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła :

Zestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła : Zestaw zadań na I etap konkursu fizycznego Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła : A) 5m/s B) 10m/s C) 20m/s D) 40m/s. Zad.2 Samochód o masie 1 tony poruszał

Bardziej szczegółowo

14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY. Obejmuje u mnie działy od początku do POLE GRAWITACYJNE

14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY. Obejmuje u mnie działy od początku do POLE GRAWITACYJNE Włodzimierz Wolczyński 14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY Obejmuje u mnie działy od początku do POLE GRAWITACYJNE 01 WEKTORY, KINEMATYKA. RUCH JEDNOSTAJNY

Bardziej szczegółowo

b) Oblicz ten ułamek dla zderzeń z jądrami ołowiu, węgla. Iloraz mas tych jąder do masy neutronu wynosi: 206 dla ołowiu i 12 dla węgla.

b) Oblicz ten ułamek dla zderzeń z jądrami ołowiu, węgla. Iloraz mas tych jąder do masy neutronu wynosi: 206 dla ołowiu i 12 dla węgla. Zadanie 1 Szybkie neutrony, powstające w reaktorze jądrowym, muszą zostać spowolnione, by mogły wydajnie uczestniczyć w łańcuchowej reakcji rozszczepienia jąder. W tym celu doprowadza się do ich zderzeń

Bardziej szczegółowo

Ruch obrotowy. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Ruch obrotowy. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Ruch obrotowy Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Ruch jednostajny po okręgu y v W ruchu jednostajnym po okręgu prędkość punktu materialnego jest

Bardziej szczegółowo

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m.

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m. Segment B.XIV Prądy zmienne Przygotowała: dr Anna Zawadzka Zad. 1 Obwód drgający składa się z pojemności C = 4 nf oraz samoindukcji L = 90 µh. Jaki jest okres, częstotliwość, częstość kątowa drgań oraz

Bardziej szczegółowo

14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY

14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY 14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY Ruch jednostajny po okręgu Dynamika bryły sztywnej Pole grawitacyjne Rozwiązanie zadań należy zapisać w wyznaczonych

Bardziej szczegółowo

Klasa 3.Graniastosłupy.

Klasa 3.Graniastosłupy. Klasa 3.Graniastosłupy. 1. Uzupełnij nazwy odcinków oznaczonych literami: a........................................................... b........................................................... c...........................................................

Bardziej szczegółowo

ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE!

ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE! Imię i nazwisko: Kl. Termin oddania: Liczba uzyskanych punktów: /50 Ocena: ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE! 1. /(0-2) Przelicz jednostki szybkości:

Bardziej szczegółowo

Tarcie poślizgowe

Tarcie poślizgowe 3.3.1. Tarcie poślizgowe Przy omawianiu więzów w p. 3.2.1 reakcję wynikającą z oddziaływania ciała na ciało B (rys. 3.4) rozłożyliśmy na składową normalną i składową styczną T, którą nazwaliśmy siłą tarcia.

Bardziej szczegółowo

Podstawy mechaniki 2018_2019. Równowaga bryły sztywnej

Podstawy mechaniki 2018_2019. Równowaga bryły sztywnej Podstawy mechaniki 2018_2019 Równowaga bryły sztywnej Równowaga bryły sztywnej Ogólne warunki równowagi Przypadek płaskiego (dwuwymiarowego) układu sił Obiekty w równowadze Podpory i ich modele O czym

Bardziej szczegółowo

Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka

Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka SPIS TREŚCI Przedmowa... 7 1. PODSTAWY MECHANIKI... 11 1.1. Pojęcia podstawowe... 11 1.2. Zasada d Alemberta... 18 1.3. Zasada prac

Bardziej szczegółowo

Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił.

Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił. Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy Obliczyć wektor główny i moment główny tego układu sił. Wektor główny układu sił jest równy Moment główny układu wynosi Przykład

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXII: Porównanie ruchu obrotowego z ruchem postępowym. Bak Precesja Żyroskop

Bryła sztywna. Fizyka I (B+C) Wykład XXII: Porównanie ruchu obrotowego z ruchem postępowym. Bak Precesja Żyroskop Bryła sztywna Wykład XXII: Fizyka I (B+C) Porównanie ruchu obrotowego z ruchem postępowym Bak Precesja Żyroskop Ogólne wyrażenie na moment pędu Tensor momentu bezwładności Osie główne Porównanie Punkt

Bardziej szczegółowo

Mechanika bryły sztywnej

Mechanika bryły sztywnej WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA INNOWACYJNY PROGRAM NAUCZANIA FIZYKI W SZKOŁACH PONADGIMNAZJALNYCH Moduł dydaktyczny: fizyka - informatyka Mechanika bryły sztywnej Elżbieta Kawecka

Bardziej szczegółowo

Test powtórzeniowy nr 1

Test powtórzeniowy nr 1 Test powtórzeniowy nr 1 Grupa B... imię i nazwisko ucznia...... data klasa W zadaniach 1. 19. wstaw krzyżyk w kwadracik obok wybranej odpowiedzi. Informacja do zadań 1. 5. Wykres przedstawia zależność

Bardziej szczegółowo

Mechanika bryły sztywnej

Mechanika bryły sztywnej WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA INNOWACYJNY PROGRAM NAUCZANIA FIZYKI W SZKOŁACH PONADGIMNAZJALNYCH Moduł dydaktyczny: fizyka - informatyka Mechanika bryły sztywnej Elżbieta Kawecka

Bardziej szczegółowo

Rozwiązania zadań egzaminacyjnych (egzamin poprawkowy) z Mechaniki i Szczególnej Teorii Względności

Rozwiązania zadań egzaminacyjnych (egzamin poprawkowy) z Mechaniki i Szczególnej Teorii Względności Rozwiązania zadań egzaminacyjnych (egzamin poprawkowy) z Mechaniki i Szczególnej Teorii Względności Zadanie 1 (7 pkt) Cząstka o masie m i prędkości v skierowanej horyzontalnie wpada przez bocznąściankę

Bardziej szczegółowo

CZĘŚĆ A 18 pkt. 3. Które z poniższych brył A, B, C, D przedstawiają bryłę zaznaczoną kolorem szarym?

CZĘŚĆ A 18 pkt. 3. Które z poniższych brył A, B, C, D przedstawiają bryłę zaznaczoną kolorem szarym? WYDZIAŁ ARCHITEKTURY POLITECHNIKI GDAŃSKIEJ T E S T K W A L I F I K A C Y J N Y Z P R E D Y S P O Z Y C J I D O Z A W O D U A R C H I T E K T A GDAŃSK, 6 CZERWCA 2009, CZAS TRWANIA TESTU (CZĘŚĆ A + B +

Bardziej szczegółowo

Drgania - zadanka. (b) wyznacz maksymalne położenie, prędkość i przyspieszenie ciała,

Drgania - zadanka. (b) wyznacz maksymalne położenie, prędkość i przyspieszenie ciała, Zadania do przeliczenia na lekcji. Drgania - zadanka 1. Ciało o masie m = 0.5kg zawieszono na nieważkiej nitce o długości l = 1m a następne wychylono o 2cm z położenia równowagi (g = 10 m s 2), (a) oblicz

Bardziej szczegółowo

Przykładowe zdania testowe I semestr,

Przykładowe zdania testowe I semestr, Przykładowe zdania testowe I semestr, 2015-2016 Rozstrzygnij, które z podanych poniżej zdań są prawdziwe, a które nie. Podstawy matematyczno-fizyczne. Działania na wektorach. Zagadnienia kluczowe: Układ

Bardziej szczegółowo

FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego)

FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego) 2019-09-01 FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego) Treści z podstawy programowej przedmiotu POZIOM ROZSZERZONY (PR) SZKOŁY BENEDYKTA Podstawa programowa FIZYKA KLASA 1 LO (4-letnie po szkole

Bardziej szczegółowo

Zadanie 2 Narysuj wykres zależności przemieszczenia (x) od czasu(t) dla ruchu pewnego ciała. m Ruch opisany jest wzorem x( t)

Zadanie 2 Narysuj wykres zależności przemieszczenia (x) od czasu(t) dla ruchu pewnego ciała. m Ruch opisany jest wzorem x( t) KINEMATYKA Zadanie 1 Na spotkanie naprzeciw siebie wyszło dwóch kolegów, jeden szedł z prędkością 2m/s, drugi biegł z prędkością 4m/s po prostej drodze. Spotkali się po 10s. W jakiej maksymalnej odległości

Bardziej szczegółowo

1. Kinematyka 8 godzin

1. Kinematyka 8 godzin Plan wynikowy (propozycja) część 1 1. Kinematyka 8 godzin Wymagania Treści nauczania (tematy lekcji) Cele operacyjne podstawowe ponadpodstawowe Uczeń: konieczne podstawowe rozszerzające dopełniające Jak

Bardziej szczegółowo

Podstawy fizyki. [T.] 1 / David Halliday, Robert Resnick, Jearl Walker. wyd. 2. Warszawa, Spis treści

Podstawy fizyki. [T.] 1 / David Halliday, Robert Resnick, Jearl Walker. wyd. 2. Warszawa, Spis treści Podstawy fizyki. [T.] 1 / David Halliday, Robert Resnick, Jearl Walker. wyd. 2. Warszawa, 2015 Spis treści Od Wydawcy do drugiego wydania polskiego Przedmowa Podziękowania xi xiii xxi 1. Pomiar 1 1.1.

Bardziej szczegółowo

FIZYKA Kolokwium nr 2 (e-test)

FIZYKA Kolokwium nr 2 (e-test) FIZYKA Kolokwium nr 2 (e-test) Rozwiązał i opracował: Maciej Kujawa, SKP 2008/09 (więcej informacji na końcu dokumentu) Zad. 1 Cegłę o masie 2kg położono na chropowatej desce. Następnie jeden z końców

Bardziej szczegółowo

Ćwiczenie: "Ruch po okręgu"

Ćwiczenie: Ruch po okręgu Ćwiczenie: "Ruch po okręgu" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Kinematyka

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Kaliszu

Państwowa Wyższa Szkoła Zawodowa w Kaliszu Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie Wyznaczanie parametrów ruchu obrotowego bryły sztywnej Kalisz, luty 005 r. Opracował: Ryszard Maciejewski Natura jest

Bardziej szczegółowo

SPRAWDZIAN NR Merkury krąży wokół Słońca po orbicie, którą możemy uznać za kołową.

SPRAWDZIAN NR Merkury krąży wokół Słońca po orbicie, którą możemy uznać za kołową. SPRAWDZIAN NR 1 IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Merkury krąży wokół Słońca po orbicie, którą możemy uznać za kołową. Zaznacz poprawne dokończenie zdania. Siłę powodującą ruch Merkurego wokół Słońca

Bardziej szczegółowo