Sterowanie napędów maszyn i robotów

Wielkość: px
Rozpocząć pokaz od strony:

Download "Sterowanie napędów maszyn i robotów"

Transkrypt

1 Sterowanie napędów maszyn i robotów dr inż. akub ożaryn Wykład Instytut Automatyki i obotyki Wydział echatroniki Politechnika Warszawska, 014 Projekt współfinansowany przez Unię Europejską w ramach Europejskiego unduszu Społecznego Prezentacja dystrybuowana jest bezpłatnie

2 Dobór napędu: kinematyka maszyny i parametry ruchu Dane o kinematyce maszyny: rodzaje osi, rodzaje kinematyki, rodzaje połączeń, rodzaje przekładni. Wymagania dotyczące parametrów ruchu: maksymalna prędkości osi, wymagana siła lub moment obrotowy, parametry optymalnego cyklu pracy. Aspekty statyczne: maksymalna prędkość silnika: n AX, wytwarzany moment obrotowy t, moment tarcia f. Aspekty dynamiczne: momenty bezwładności, moment obrotowy przyśpieszenia: ACC, moment tarcia: f. Prędkość znamionowa: n N > n AX. oment znamionowy: N > t + f. aksymalny moment obrotowy: AX > ACC + f.

3 Dobór napędu: weryfikacja termiczna Na podstawie znajomości przebiegu projektowanego procesu należy narysować przebiegi prędkości i momentu obrotowego w funkcji czasu dla całego cyklu pracy. Średnia prędkość w cyklu pracy. n avg n T i cycle t Ekwiwalentny moment termiczny i th [Nm] Obszar pracy przerywanej B th i² T cycle t i th A n avg n avg n [obr/min] Obszar pracy ciągłej 3

4 Podstawowe zależności dla różnych połączeń kinematycznych θ, ω θ, ω, eduktor,, θ, ω P, D P, N T m B θ, ω, eduktor z paskiem zębatym P, D P, N T

5 Podstawowe zależności dla różnych połączeń kinematycznych θ, ω G, N T θ, ω, Przekładnia zębata obrotowa G, N T m fr X, V P, g C α θ, ω m T S, p Przekładnia śrubowa

6 Podstawowe zależności dla różnych połączeń kinematycznych m fr X, V α P, g m B P3, D P3 Przenośnik (podajnik taśmowy) θ, ω P1, D P1 N TP1, p P, D P θ, ω D G fr m α G, N TG, P G Przekładnia zębata liniowa (listwa zębata + wałek zębaty) X, V P, g m T

7 eduktor θ, ω θ, ω,,, PAAETY SINIKA: : moment bezwładności silnika PAAETY OBCIĄŻENIA: : moment bezwładności obciążenia : bezwładność obciążenia odniesiona do silnika : moment obrotowy obciążenia PAAETY EDUKTOA : moment bezwładności reduktora w odniesieniu do wejścia : przełożenie mechaniczne : sprawność reduktora

8 eduktor θ, ω θ, ω,,, Całkowity moment bezwładności: TOT Zgodnie z zasadą zachowania energii: 1 ω ² 1 ω ² ω ² ω ² ² oment obrotowy w odniesieniu do silnika: ω ω 8

9 θ, ω N N T T P, D P, N T D D P P P, D P, N T θ θ Całkowity moment bezwładności: oment bezwładności odniesiony do silnika: ω ω ² TOT oment obrotowy odniesiony do silnika: eduktor z paskiem zębatym m B θ, ω, : moment bezwładności silnika : moment bezwładności obciążenia : moment obrotowy obciążenia P : moment bezwładność koła pasowego (silnik) D P : średnica koła pasowego (silnik) N T : liczba zębów koła pasowego (silnik) P : moment bezwładność koła pasowego (obciąż.) D P : średnica koła pasowego (obciążenie) N T : liczba zębów koła pasowego (obciąż.) : sprawność reduktora m B : masa pasa : przełożenie mechaniczne P P P P ² DP DP B B m B DP² 4 9

10 Przekładnia zębata obrotowa θ, ω G, N T G, N T θ, ω, : moment bezwładności silnika : moment bezwładności obciążenia : moment obrotowy obciążenia G : bezwładność koła zębatego (silnik) N T : liczba zębów koła zębatego (silnik) G : bezwładność koła zębatego (obciążenie) N T : liczba zębów koła zębatego (obciążenie) : sprawność reduktora : przełożenie mechaniczne Całkowity moment bezwładności: oment bezwładności odniesiony do silnika: oment obrotowy odniesiony do silnika: TOT G ² G G NT NT G ² 10

11 Przekładnia śrubowa m fr : moment bezwładności silnika C : moment bezwładności elementu łączącego C X, V P, g θ α X p θ, ω ω V p m T S, p m : masa obciążenia X : położenie obciążenia V : prędkość obciążenia m T : masa stołu P : siła g : siła grawitacji fr : siła tarcia S : moment bezwładności śruby p: skok śruby (mm/obr) α: kąt pochylenia osi S : sprawność połączenia śrubowego µ: współczynnik tarcia g: przyśpieszenie ziemskie 11

12 Przekładnia śrubowa m fr Całkowity moment bezwładności: TOT C S X, V P, g S, p oment bezwładności odniesiony do silnika: Zgodnie z zasadą zachowania energii: C α θ, ω m T E 1 1 ω² ω² 1 1 E mv² ω m p² π ω v p π mp² 4π² Biorąc pod uwagę dane śruby i stołu otrzymujemy: m m S T p² 4 ² 1

13 Przekładnia śrubowa C m X, V P, g fr m T S, p oment obrotowy odniesiony do silnika: Zgodnie z zasadą zachowania energii: E θ θ X p π E X p π α θ, ω Biorąc pod uwagę dane śruby i stołu otrzymujemy: g fr P g S mt m gsin mt m gµ cos fr p 13

14 Przenośnik (podajnik taśmowy) θ, ω C θ P1 X, V P, g πd X C P1 m P1, D P1 N TP1, p P1 ω N fr P, D P TP1 p V C P1 m B α P3, D P3 : moment bezwładności silnika m : masa obciążenia X : położenie obciążenia V : prędkość obciążenia m B : masa taśmy P : siła g : siła grawitacji fr : siła tarcia Px : moment bezwładności koła pasowego D Px : średnica koła pasowego N TP1 : liczba zębów głównego koła pasowego p: skok koła pasowego (mm/ząb) C P1 : obwód głównego koła pasowego α: kąt pochylenia osi P : sprawność połączenia pas koło pasowe µ: współczynnik tarcia g: przyśpieszenie ziemskie 14

15 Przenośnik (podajnik taśmowy) X, V m fr m B α Całkowity moment bezwładności: P P1 P3 P1 TOT P1 ² ² DP DP3 P D P... D... P, g P1, P, P3 obliczenia jak dla pełnego cylindra. θ, ω P1, D P1 N TP1, p P, D P P3, D P3 oment bezwładności odniesiony do silnika: g fr m P m g P B DP1² 4 oment obrotowy odniesiony do silnika: m mb gsin m mb gµ cos fr D P1 15

16 Przekładnia zębata liniowa (listwa zębata + wałek zębaty) X, V P, g fr m C θ G πd X C m T G G ω θ, ω N TG p G V C G D G α G, N TG, P G : moment bezwładności silnika m : masa obciążenia X : położenie obciążenia V : prędkość obciążenia P : siła g : siła grawitacji fr : siła tarcia G : moment bezwładności przekładni D G : średnica wałka zębatego N TG : liczba zębów wałka zębatego p G : skok przekładni (mm/ząb) C G : obwód wałka zębatego α: kąt pochylenia osi : sprawność przekładni µ: współczynnik tarcia g: przyśpieszenie ziemskie 16

17 Przekładnia zębata liniowa (listwa zębata + wałek zębaty) Przekładnia zębata liniowa (listwa zębata + wałek zębaty) Całkowity moment bezwładności: θ, ω D G TOT G X, V P, g fr m m T α G, N TG, P G oment bezwładności odniesiony do silnika: g fr m m P T D G² 4 oment obrotowy odniesiony do silnika: g mt m gsin mt m gµ cos fr D G 17

18 Przeciętne sprawności mechanizmów Śruba (gw. trapezowy) / nakrętka z mosiądzu: od 0.35 do 0.65 Śruba (gw. trapezowy) / nakrętka z plastiku: od 0.50 do 0.85 Śruba kulowa: od 0.75 do 0.85 Przekładnia zębata czołowa: ok Przekładnia zębata stożkowa: od 0.90 do 0.95 Przekładnia ślimakowa: od 0.45 do 0.85 Koło zębate i łańcuch: ok. 0.95, 0.98 Pasy zębate: ok. 0.96, 0.98 Łożyska: ok

19 Współczynniki tarcia dla wybranych połączeń stal / stal: ~ 0.58 stal / stal (smarowane) : ~ 0.15 aluminium / stal: ~ 0.45 mosiądz / stal: ~ 0.35 miedź /stal: ~ 0.58 plastik / stal: ~ 0.15,

20 Przykładowe momenty bezwładności różnych elementów 0

21 Przykład: dobór silnika dla taśmociągu Dane: - Wał silnika (mp): D : 14 [cm] m : 3,6 [Kg] - Wał przekładni (gp): D : 1 [cm] m : 10 [Kg] - asa pasa: 50 [g] - Przekładnia: 8,5 - oment bezwładności (gb): 0,01 [Kg.m ] - Sprawność : 98% - Główny wał (md): D : 0 [cm] m : 9, [Kg] - asa obciążenia (ładunku): 700 [Kg] - asa pasa taśmociągu: 4,5 [Kg] - Współczynnik tarcia: 0,1 1

22 Przykład: dobór silnika dla taśmociągu Przypadki nachylenia Oś pozioma Oś pionowa Pod katem 45 Profil trójkątny prędkości Droga : 6 [m] Czas : 5 [s] Czas prędkości stałej : 0 [s] Droga do osiągnięcia V max : 3 [m] Prędkość [obr/min] Czas [s]

23 3 m BCv 3 md D 4 m md BCv m D 4 md md Bezwładność głównego wału przenośnika: cylinder pełny (walec) t3 3 BCv3 md3 md 0, x 4 md D 8 m md 4,5 0, x 1 4 D 8 md3 7[kg.m 9, 0, x 1 8 md ] 0,045[kg.m 9, 0, x 1 8 ] 0,046 [kg.m Bezwładność drugiego wału przenośnika: cylinder pełny (walec), te same średnice wałów) Bezwładność całkowita dla punktu 3: Przykład: dobór silnika dla taśmociągu oment bezwładności działający na silnik: 3 Ładunek + Przenośnik oment bezwładności ładunku względem punktu 3: wirująca masa oment bezwładność masy przenośnika względem punktu 3: wirująca masa ] 0,046 [kg.m 7 0,045 x 0,046 7,137 [kg.m ] ] 3

24 Przykład: dobór silnika dla taśmociągu oment bezwładności działający na silnik: Ładunek + Przenośnik + eduktor oment bezwładności ładunku + przenośnika względem punktu : gb 0,01[kg.m 7,137 8,5 x 0,98 t3 3 oment bezwładności reduktora względem punktu : Całkowity moment bezwładności liczony względem punktu : t 3 gb ] 0,107 [kg.m 0,107 0,01 0,18[kg.m ] ] 4

25 oment bezwładności działający na silnik: 1 Ładunek + Przenośnik + eduktor + Pas / Koło pasowe Dgp 1 1,5 D 14 Przełożenie przekładni pasowej: oment bezwładności ładunku + przenośnika + przekładni względem punktu 1: reduktor mp 0,18 1,5 x 1 t 1 oment bezwładności pasa względem punktu 1: wirująca masa b1 mp m m b mp mp D 4 Koło pasowe silnika: pełny cylinder (walec) Przykład: dobór silnika dla taśmociągu mp D 8 0, [kg.m 0,05 0,14 x 1 4 3,6 0,14 x 1 8 ] 0,00045 [kg.m 0,0088 [kg.m ] ] oment bezwładności koła pasowego przekładni: pełny cylinder (walec) gp m gp gp D ,1 x 1 8 0,05515 [kg.m ] gp1 gp 0, ,5 x 1 0,045[kg.m 5 ]

26 Przykład: dobór silnika dla taśmociągu oment bezwładności działający na silnik: 1 Ładunek + Przenośnik + eduktor + Pas / Koło pasowe Całkowity moment bezwładności dla punktu 1: t1 mp b1 gp ,0088 0,045 0, ,05689 Warto porównać z momentem bezwładności dla punktu 3: t3 7,137 [kg.m ] 0, [kg.m ] 6

27 Przykład: dobór silnika dla taśmociągu oment obrotowy przenoszony przez silnik: w osi X (poziomo) punkt 3: Ładunek + Przenośnik g g fr fr m m m B (700 4,5) 3 m B g gsin (700 4,5) x 9,81x 0 0[N] gµ cos x 9,81 x 0,1x 1 fr D md 0 punkt : Ładunek + Przenośnik + eduktor 69, ,5 x 0,98 691,1145 [N] 691, , x 8,5481[Nm] 69,11145 [Nm] punkt 1: Ładunek + Przenośnik + eduktor + Pas / Koło pasowe = oment sił tarcia fr1 1 8,5481 1,5 x 1 5,6987 [Nm] 7

28 g fr oment obrotowy przenoszony przez silnik: w osi Y (pionowo) punkt 3: Ładunek + Przenośnik m m gsin (700 4,5) x 9,81 x ,145 [N] m m 3 B B gµ cos (700 4,5) x 9,81 x 0,1x 0 0[N] g fr D md punkt : Ładunek + Przenośnik + eduktor Przykład: dobór silnika dla taśmociągu 6911, ,1145 8,5 x 0, ,481 1,5 x , x 85,481[Nm] 56,987 [Nm] 691,1145 punkt 1: Ładunek + Przenośnik + eduktor + Pas / Koło pasowe = oment sił tarcia [Nm] 8

29 Przykład: dobór silnika dla taśmociągu oment obrotowy przenoszony przez silnik: pod kątem 45º punkt 3: Ładunek + Przenośnik g fr m m m m 3 B B gsin (700 4,5) gµ cos (700 4,5) g fr D md x 9,81 x x 9,81 x 0,1x 4886, , ,917 [N] 0, x 488,6917 [N] 537,5609 [Nm] punkt : Ładunek + Przenośnik + eduktor 537,5609 8,5 x 0, ,489 [Nm] punkt 1: Ładunek + Przenośnik + eduktor + Pas / Koło pasowe = oment sił tarcia 66,489 1,5 x ,35[Nm] 9

30 Przykład: dobór silnika dla taśmociągu Profil trójkątny prędkości Droga : 6 [m] Czas : 5 [s] Czas prędkości stałej : 0 [s] Droga do osiągnięcia V max : 3 [m] Prędkość [obr/min] Czas [s] Obliczenia V max 1 vmax x γ t, gdzie γ t 1 vmax vmax x t t t x 3 vmax,4 m/s t,5 30

31 Przykład: dobór silnika dla taśmociągu Prędkość silnika umożliwiająca osiągnięcie prędkości ruchu,4 m/s,4 m/s Prędkość obrotowa w punkcie 3: v,4 n 3 x 60 x 60 9,183 [obr/min] π D π x 0, md Prędkość obrotowa w punkcie : n 3 n x 9,183 x 8,5 1890,761[obr/min] Prędkość obrotowa w punkcie 1 = Prędkość silnika: Dgp 0,1 n1 n x 1890,761 x Dmp 0,14 836,141[obr/min] 31

32 Przykład: dobór silnika dla taśmociągu Przyspieszenie silnika do osiągnięcia prędkości profilu trójkątnego Prędkość silnika w rad/s: n1 836,141 ω 1 x π x π 97 rd/s Przyspieszenie kątowe: ω' ω t 97, ,8 rd/s Wymagany moment przyspieszenia (nie uwzględniając tarcia): rac 0, ,8 10, Nm 3

33 oment termiczny Przykład: dobór silnika dla taśmociągu oment przyspieszenia: aac rac fr1 10,746 5,699 16,445 Nm oment opóźnienia: dec rac fr1 10,746 5,699 5,067 Nm Zastępczy moment termiczny: th T i cycle t i acc t T acc cycle dec t dec th th (16,445) 1,168 Nm x,5 (-5,067) 5 x,5 33

34 Przykład: dobór silnika dla taśmociągu Weryfikacja termiczna Średnia prędkość w cyklu pracy. n avg n T i cycle t i 836,141[ rpm] Ekwiwalentny moment termiczny [Nm] Obszar pracy przerywanej B th i² t T cycle i 1,168[ Nm] th th A n [obr/min] n avg n avg Obszar pracy ciągłej 34

35 Projektowanie Dobór układu kinematycznego i kinetycznego wybranej maszyny lub robota : Analiza zachowań statycznych i dynamicznych napędzanego członu mechanizmu kinematycznego wybranej maszyny lub robota na przykładzie zadanych obciążeń masowych i siłowych oraz parametrów ruchu. (temat wydawany po 3 wykładzie). Dobór urządzenia wykonawczego (aktuatora) wybranego członu mechanizmu maszyny lub robota: Wybór rodzaju i dobór elementów urządzenia wykonawczego: silnika lub siłownika, mechanizmu przekładniowego, sensorów i procesu działania. Szkic dokumentacji projektowej urządzenia wykonawczego. (temat wydawany po 5 wykładzie). Wybór koncepcji i dobór nastaw układu sterowania wybranego urządzenia wykonawczego: Opracowanie modelu zachowań dynamicznych urządzenia wykonawczego. Wybór koncepcji i struktury układu sterowania. Dobór nastaw sterowania. Sprawdzenie poprawności działania układu z wykorzystaniem wybranego oprogramowania symulacyjnego. (temat wydawany po 8 wykładzie). Zadania projektowe są wykonywane przez 1 osobę lub w zespole osobowym. 35

36 Dziękuję za uwagę

Sterowanie napędów maszyn i robotów

Sterowanie napędów maszyn i robotów Sterowanie napędów maszyn i robotów dr inż. akub ożaryn Wykład. Instytut Automatyki i obotyki Wydział echatroniki Politechnika Warszawska, 014 Projekt współfinansowany przez Unię Europejską w ramach Europejskiego

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 2 - Dobór napędów Instytut Automatyki i Robotyki Warszawa, 2017 Wstępny dobór napędu: dane o maszynie Podstawowe etapy projektowania Krok 1: Informacje o kinematyce maszyny Krok 2: Wymagania dotyczące

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 2 - Dobór napędów Instytut Automatyki i Robotyki Warszawa, 2017 Wstępny dobór napędu: dane o maszynie Podstawowe etapy projektowania Krok 1: Informacje o kinematyce maszyny Krok 2: Wymagania dotyczące

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 2 - Dobór napędów Instytut Automatyki i Robotyki Warszawa, 2015 Wstępny dobór napędu: dane o maszynie Podstawowe etapy projektowania Krok 1: Informacje o kinematyce maszyny Krok 2: Wymagania dotyczące

Bardziej szczegółowo

Dobór silnika serwonapędu. (silnik krokowy)

Dobór silnika serwonapędu. (silnik krokowy) Dobór silnika serwonapędu (silnik krokowy) Dane wejściowe napędu: Masa całkowita stolika i przedmiotu obrabianego: m = 40 kg Współczynnik tarcia prowadnic = 0.05 Współczynnik sprawności przekładni śrubowo

Bardziej szczegółowo

Sterowanie napędów maszyn i robotów

Sterowanie napędów maszyn i robotów Sterowanie napędów maszyn i robotów dr inż. Jakub Możaryn Wykład 1 Instytut Automatyki i Robotyki Wydział Mechatroniki Politechnika Warszawska, 2014 Projekt współfinansowany przez Unię Europejską w ramach

Bardziej szczegółowo

Napęd pojęcia podstawowe

Napęd pojęcia podstawowe Napęd pojęcia podstawowe Równanie ruchu obrotowego (bryły sztywnej) moment - prędkość kątowa Energia kinetyczna Praca E W k Fl Fr d de k dw d ( ) Równanie ruchu obrotowego (bryły sztywnej) d ( ) d d d

Bardziej szczegółowo

NAPĘDY MASZYN TECHNOLOGICZNYCH

NAPĘDY MASZYN TECHNOLOGICZNYCH WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA Instytut Technologii Mechanicznej ul. Piotrowo 3, 60-965 Poznań, tel. +48 61 665 2203, fax +48 61 665 2200 e-mail: office_mt@put.poznan.pl, www.put.poznan.pl MATERIAŁY

Bardziej szczegółowo

Wyznaczenie równowagi w mechanizmie. Przykład 6

Wyznaczenie równowagi w mechanizmie. Przykład 6 Wyznaczenie równowagi w mechanizmie Przykład 6 3 m, J Dane: m, J masa, masowy moment bezwładności prędkość kątowa członu M =? Oraz siły reakcji 0 M =? M b F ma b a M J b F b M b Para sił F b M b F b h

Bardziej szczegółowo

Napęd pojęcia podstawowe

Napęd pojęcia podstawowe Napęd pojęcia podstawowe Równanie ruchu obrotowego (bryły sztywnej) suma momentów działających na bryłę - prędkość kątowa J moment bezwładności d dt ( J ) d dt J d dt dj dt J d dt dj d Równanie ruchu obrotowego

Bardziej szczegółowo

Napędy elektromechaniczne urządzeń precyzyjnych - projektowanie. Ćwiczenie 3 Dobór mikrosilnika prądu stałego do układu pozycjonującego

Napędy elektromechaniczne urządzeń precyzyjnych - projektowanie. Ćwiczenie 3 Dobór mikrosilnika prądu stałego do układu pozycjonującego Napędy elektromechaniczne urządzeń precyzyjnych - projektowanie Dobór mikrosilnika prądu stałego do układu pozycjonującego Precyzyjne pozycjonowanie robot chirurgiczny (2009) 39 silników prądu stałego

Bardziej szczegółowo

Siłownik liniowy z serwonapędem

Siłownik liniowy z serwonapędem Siłownik liniowy z serwonapędem Zastosowanie: przemysłowe systemy automatyki oraz wszelkie aplikacje wymagające bardzo dużych prędkości przy jednoczesnym zastosowaniu dokładnego pozycjonowania. www.linearmech.it

Bardziej szczegółowo

Egzamin 1 Strona 1. Egzamin - AR egz Zad 1. Rozwiązanie: Zad. 2. Rozwiązanie: Koła są takie same, więc prędkości kątowe też są takie same

Egzamin 1 Strona 1. Egzamin - AR egz Zad 1. Rozwiązanie: Zad. 2. Rozwiązanie: Koła są takie same, więc prędkości kątowe też są takie same Egzamin 1 Strona 1 Egzamin - AR egz1 2005-06 Zad 1. Rozwiązanie: Zad. 2 Rozwiązanie: Koła są takie same, więc prędkości kątowe też są takie same Zad.3 Rozwiązanie: Zad.4 Rozwiązanie: Egzamin 1 Strona 2

Bardziej szczegółowo

Napędy urządzeń mechatronicznych - projektowanie. Ćwiczenie 1 Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych

Napędy urządzeń mechatronicznych - projektowanie. Ćwiczenie 1 Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych Napędy urządzeń mechatronicznych - projektowanie Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych Miniaturowy siłownik liniowy (Oleksiuk, Nitu 1999) Śrubowy mechanizm zamiany

Bardziej szczegółowo

Spis treści. Przedmowa 11

Spis treści. Przedmowa 11 Przykłady obliczeń z podstaw konstrukcji maszyn. [Tom] 2, Łożyska, sprzęgła i hamulce, przekładnie mechaniczne / pod redakcją Eugeniusza Mazanka ; autorzy: Andrzej Dziurski, Ludwik Kania, Andrzej Kasprzycki,

Bardziej szczegółowo

Instytut Konstrukcji Maszyn, Instytut Pojazdów Szynowych 1

Instytut Konstrukcji Maszyn, Instytut Pojazdów Szynowych 1 1. SPRZĘGŁO TULEJOWE. Sprawdzić nośność sprzęgła z uwagi na naciski powierzchniowe w rowkach wpustowych. Przyjąć, że p dop = 60 Pa. Zaproponować sposób zabezpieczenia tulei przed przesuwaniem się wzdłuż

Bardziej szczegółowo

Podstawy Konstrukcji Maszyn. Wykład nr. 13 Przekładnie zębate

Podstawy Konstrukcji Maszyn. Wykład nr. 13 Przekładnie zębate Podstawy Konstrukcji Maszyn Wykład nr. 13 Przekładnie zębate 1. Podział PZ ze względu na kształt bryły na której wykonano zęby A. walcowe B. stożkowe i inne 2. Podział PZ ze względu na kształt linii zębów

Bardziej szczegółowo

Podstawy Konstrukcji Urządzeń Precyzyjnych

Podstawy Konstrukcji Urządzeń Precyzyjnych Podstawy Konstrukcji Urządzeń Precyzyjnych Materiały pomocnicze do ćwiczeń projektowych. Zespół napędu liniowego - 1 Algorytm obliczeń wstępnych Preskrypt: Opracował dr inż. Wiesław Mościcki Warszawa 2018

Bardziej szczegółowo

Napędy urządzeń mechatronicznych - projektowanie. Ćwiczenie 3 Dobór silnika skokowego do pracy w obszarze rozruchowym

Napędy urządzeń mechatronicznych - projektowanie. Ćwiczenie 3 Dobór silnika skokowego do pracy w obszarze rozruchowym Napędy urządzeń mechatronicznych - projektowanie Dobór silnika skokowego do pracy w obszarze rozruchowym Precyzyjne pozycjonowanie (Velmix 2007) Temat ćwiczenia - stolik urządzenia technologicznego (Szykiedans,

Bardziej szczegółowo

WENTYLATORY PROMIENIOWE JEDNOSTRUMIENIOWE TYPOSZEREG: WWOax

WENTYLATORY PROMIENIOWE JEDNOSTRUMIENIOWE TYPOSZEREG: WWOax WENTYLATORY PROMIENIOWE JEDNOSTRUMIENIOWE TYPOSZEREG: WWOax Wentylatory serii WWOax to typoszereg wysokosprawnych wentylatorów ogólnego i specjalnego przeznaczenia. Zalecane są się do przetłaczania czynnika

Bardziej szczegółowo

Zasady doboru mikrosilników prądu stałego

Zasady doboru mikrosilników prądu stałego Jakub Wierciak Zasady doboru Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Typowy profil prędkości w układzie napędowym (Wierciak

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 2. Analiza kinematyczna napędu z przekładniami

INSTRUKCJA DO ĆWICZENIA NR 2. Analiza kinematyczna napędu z przekładniami INSTRUKCJA DO ĆWICZENIA NR 2 Analiza kinematyczna napędu z przekładniami 1. Wprowadzenie Układ roboczy maszyny, cechuje się swoistą charakterystyką ruchowoenergetyczną, często odmienną od charakterystyki

Bardziej szczegółowo

Przenośnik zgrzebłowy - obliczenia

Przenośnik zgrzebłowy - obliczenia Przenośnik zgrzebłowy - obliczenia Katedra Maszyn Górniczych, Przeróbczych i Transportowych Przenośnik zgrzebłowy - obliczenia Dr inż. Piotr Kulinowski pk@imir.agh.edu.pl tel. (67) 0 7 B- parter p.6 konsultacje:

Bardziej szczegółowo

OSIE ELEKTRYCZNE SERII SHAK GANTRY

OSIE ELEKTRYCZNE SERII SHAK GANTRY OSIE ELEKTRYCZNE SERII SHAK GANTRY 1 OSIE ELEKTRYCZNE SERII SHAK GANTRY Osie elektryczne serii SHAK GANTRY stanowią zespół zmontowanych osi elektrycznych SHAK zapewniający obsługę dwóch osi: X oraz Y.

Bardziej szczegółowo

SIŁOWNIKI ŚRUBOWE FIRMY INKOMA - GROUP

SIŁOWNIKI ŚRUBOWE FIRMY INKOMA - GROUP - 2 - Spis treści 1. Siłowniki śrubowe KSH z przekładnią stożkową o dużej prędkości podnoszenia - informacje ogólne... - 3-2. Siłowniki śrubowe KSH z przekładnią stożkową o dużej prędkości podnoszenia

Bardziej szczegółowo

PRZEKŁADNIE CIERNE PRZEKŁADNIE MECHANICZNE ZĘBATE CIĘGNOWE CIERNE ŁAŃCUCHOWE. a) o przełożeniu stałym. b) o przełożeniu zmiennym

PRZEKŁADNIE CIERNE PRZEKŁADNIE MECHANICZNE ZĘBATE CIĘGNOWE CIERNE ŁAŃCUCHOWE. a) o przełożeniu stałym. b) o przełożeniu zmiennym PRZEKŁADNIE CIERNE PRZEKŁADNIE MECHANICZNE ZĘBATE CIĘGNOWE CIERNE PASOWE LINOWE ŁAŃCUCHOWE a) o przełożeniu stałym a) z pasem płaskim a) łańcych pierścieniowy b) o przełożeniu zmiennym b) z pasem okrągłym

Bardziej szczegółowo

Projekt wału pośredniego reduktora

Projekt wału pośredniego reduktora Projekt wału pośredniego reduktora Schemat kinematyczny Silnik elektryczny Maszyna robocza P Grudziński v10d MT1 1 z 4 n 3 wyjście z 1 wejście C y n 1 C 1 O z 3 n M koło czynne O 1 z z 1 koło bierne P

Bardziej szczegółowo

Stanowisko napędów mechanicznych

Stanowisko napędów mechanicznych Stanowisko napędów mechanicznych Światowe zapotrzebowanie na wykwalifikowanych mechaników w przemyśle stale wzrasta. Polegamy na ich pracy przy montażu, konserwacji, naprawach i wymianach wyposażenia mechanicznego.

Bardziej szczegółowo

Roboty manipulacyjne i mobilne. Roboty przemysłowe zadania i elementy

Roboty manipulacyjne i mobilne. Roboty przemysłowe zadania i elementy Roboty manipulacyjne i mobilne Wykład II zadania i elementy Janusz Jakubiak IIAiR Politechnika Wrocławska Informacja o prawach autorskich Materiały pochodzą z książek: J. Honczarenko.. Budowa i zastosowanie.

Bardziej szczegółowo

OSIE ELEKTRYCZNE SERII SVAK

OSIE ELEKTRYCZNE SERII SVAK OSIE ELEKTRYCZNE SERII SVAK 1 OSIE ELEKTRYCZNE SERII SVAK Jednostka liniowa serii SVAK to napęd paskowy ze stałym wózkiem i ruchomym profilem. Uzupełnia ona gamę osi elektrycznych Metal Work ułatwiając

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie OB-2 BUDOWA I MOŻLIWOŚCI TECHNOLOGICZNE FREZARKI OBWIEDNIOWEJ

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie OB-2 BUDOWA I MOŻLIWOŚCI TECHNOLOGICZNE FREZARKI OBWIEDNIOWEJ POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN Ćwiczenie OB-2 Temat: BUDOWA I MOŻLIWOŚCI TECHNOLOGICZNE FREZARKI OBWIEDNIOWEJ Opracował: mgr inż. St. Sucharzewski Zatwierdził: prof.

Bardziej szczegółowo

Maszyny transportowe rok IV GiG

Maszyny transportowe rok IV GiG Ćwiczenia rok akademicki 2010/2011 Strona 1 1. Wykaz ważniejszych symboli i oznaczeo B szerokośd taśmy, [mm] C współczynnik uwzględniający skupione opory ruchu przenośnika przy nominalnym obciążeniu, D

Bardziej szczegółowo

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne

Bardziej szczegółowo

Opis ruchu obrotowego

Opis ruchu obrotowego Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają

Bardziej szczegółowo

SERIA AT. Precyzyjne Przekładnie Kątowe

SERIA AT. Precyzyjne Przekładnie Kątowe SERIA AT Precyzyjne Przekładnie Kątowe Seria AT Charakterystyka Obudowa wykonana z jednego kawałka stali nierdzewnej zapewnia wysoką sztywność i odporność na korozję. Wielokrotna precyzyjna obróbka powierzchni

Bardziej szczegółowo

Ćwiczenie 2 Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych

Ćwiczenie 2 Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych Napędy elektromechaniczne urządzeń precyzyjnych - projektowanie Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych Miniaturowy siłownik liniowy (Oleksiuk, Nitu 1999) Śrubowy

Bardziej szczegółowo

Teoria maszyn mechanizmów

Teoria maszyn mechanizmów Adam Morecki - Jan Oderfel Teoria maszyn mechanizmów Państwowe Wydawnictwo Naukowe SPIS RZECZY Przedmowa 9 Część pierwsza. MECHANIKA MASZYN I MECHANIZMÓW Z CZŁONAMI SZTYWNYMI 13 1. Pojęcia wstępne do teorii

Bardziej szczegółowo

Konstrukcje Maszyn Elektrycznych

Konstrukcje Maszyn Elektrycznych Konstrukcje Maszyn Elektrycznych Konspekt wykładu: dr inż. Krzysztof Bieńkowski GpK p.16 tel. 761 K.Bienkowski@ime.pw.edu.pl www.ime.pw.edu.pl/zme/ 1. Zakres wykładu, literatura. 2. Parametry konstrukcyjne

Bardziej szczegółowo

1. Zasady konstruowania elementów maszyn

1. Zasady konstruowania elementów maszyn 3 Przedmowa... 10 O Autorów... 11 1. Zasady konstruowania elementów maszyn 1.1 Ogólne zasady projektowania.... 14 Pytania i polecenia... 15 1.2 Klasyfikacja i normalizacja elementów maszyn... 16 1.2.1.

Bardziej szczegółowo

Przenośniki Układy napędowe

Przenośniki Układy napędowe Przenośniki układy napędowe Katedra Maszyn Górniczych, Przeróbczych i Transportowych AGH Przenośniki Układy napędowe Dr inż. Piotr Kulinowski pk@imir.agh.edu.pl tel. (12617) 30 74 B-2 parter p.6 konsultacje:

Bardziej szczegółowo

WENTYLATORY PROMIENIOWE TRANSPORTOWE TYPOSZEREG: WPT 20 WPT 63

WENTYLATORY PROMIENIOWE TRANSPORTOWE TYPOSZEREG: WPT 20 WPT 63 WENTYLATORY PROMIENIOWE TRANSPORTOWE TYPOSZEREG: WPT 20 WPT 63 Wentylatory serii WPT to typoszereg wentylatorów promieniowych do transportu pneumatycznego.zalecane są się do przetłaczania czynnika o stężeniu

Bardziej szczegółowo

napęd łańcuchem, dwa wałki rozrządu w głowicy, popychacze hydrauliczne, 4 zawory na cylinder

napęd łańcuchem, dwa wałki rozrządu w głowicy, popychacze hydrauliczne, 4 zawory na cylinder Dane techniczne 100 MultiJet Kod typu 4HV Pojemność skokowa (cm 3 ) 2198 Stopień sprężania 17,5:1 Moc maks. CE kw (KM) przy obr./min 74 (100) przy 2900 Maks. moment obr. CE: Nm (kgm) przy obr./min 250

Bardziej szczegółowo

SIŁOWNIKI ŚRUBOWE FIRMY INKOMA - GROUP

SIŁOWNIKI ŚRUBOWE FIRMY INKOMA - GROUP - 2 - Spis treści 1. Siłowniki śrubowe HSGK - Informacje ogólne... - 3-2. Siłowniki śrubowe HSGK - warianty wykonania... - 4-3. Siłowniki śrubowe HSGK - śruba trapezowa wykonanie ze śrubą obrotową (R)...

Bardziej szczegółowo

SIŁOWNIKI ŚRUBOWE FIRMY INKOMA - GROUP

SIŁOWNIKI ŚRUBOWE FIRMY INKOMA - GROUP - 2 - Spis treści 1. Siłowniki śrubowe ALBERT typ SGT 5 SGT 1000 ze śrubą toczną lub śrubą z gwintem trapezowym symetrycznym... - 3-2. Siłowniki śrubowe ALBERT typ SGT 5 SGT 1000 - warianty wykonania...

Bardziej szczegółowo

Ćwiczenie 1 Dobór mikrosilnika prądu stałego do napędu bezpośredniego przy pracy w warunkach ustalonych

Ćwiczenie 1 Dobór mikrosilnika prądu stałego do napędu bezpośredniego przy pracy w warunkach ustalonych Napędy elektromechaniczne urządzeń mechatronicznych - projektowanie Dobór mikrosilnika prądu stałego do napędu bezpośredniego przy pracy w warunkach ustalonych Przykłady napędów bezpośrednich - twardy

Bardziej szczegółowo

Elementy dynamiki mechanizmów

Elementy dynamiki mechanizmów Elementy dynamiki mechanizmów Dynamika pojęcia podstawowe Dynamika dział mechaniki zajmujący się ruchem ciał materialnych pod działaniem sił. Głównym zadaniem dynamiki jest opis ruchu ciał pod działaniem

Bardziej szczegółowo

Dynamika mechanizmów

Dynamika mechanizmów Dynamika mechanizmów napędy zadanie odwrotne dynamiki zadanie proste dynamiki ogniwa maszyny 1 Modelowanie dynamiki mechanizmów wymuszenie siłowe od napędów struktura mechanizmu, wymiary ogniw siły przyłożone

Bardziej szczegółowo

SPRZĘGŁA MIMOŚRODOWE INKOMA TYP KWK Inkocross

SPRZĘGŁA MIMOŚRODOWE INKOMA TYP KWK Inkocross - 2 - Spis treści 1.1 Sprzęgło mimośrodowe INKOMA Inkocross typ KWK - Informacje ogólne... - 3-1.2 Sprzęgło mimośrodowe INKOMA Inkocross typ KWK - Informacje techniczne... - 4-1.3 Sprzęgło mimośrodowe

Bardziej szczegółowo

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 01/18. WIESŁAW FIEBIG, Wrocław, PL WUP 08/18 RZECZPOSPOLITA POLSKA

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 01/18. WIESŁAW FIEBIG, Wrocław, PL WUP 08/18 RZECZPOSPOLITA POLSKA RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 229701 (13) B1 (21) Numer zgłoszenia: 419686 (51) Int.Cl. F16F 15/24 (2006.01) F03G 7/08 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

WENTYLATORY PROMIENIOWE JEDNOSTRUMIENIOWE TYPOSZEREG: WPPO

WENTYLATORY PROMIENIOWE JEDNOSTRUMIENIOWE TYPOSZEREG: WPPO WENTYLATORY PROMIENIOWE JEDNOSTRUMIENIOWE TYPOSZEREG: WPPO Wentylatory serii WPPO to typoszereg wysokosprawnych wentylatorów ogólnego i specjalnego przeznaczenia. Zalecane są się do przetłaczania czynnika

Bardziej szczegółowo

WYDZIAŁ ZARZĄDZANIA PODSTAWY TECHNIKI I TECHNOLOGII

WYDZIAŁ ZARZĄDZANIA PODSTAWY TECHNIKI I TECHNOLOGII POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ZARZĄDZANIA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: PODSTAWY TECHNIKI I TECHNOLOGII Kod przedmiotu: ISO1123, I NO1123 Numer ćwiczenia:

Bardziej szczegółowo

Bezluzowe sprzęgła przeciążeniowe SAFEMAX

Bezluzowe sprzęgła przeciążeniowe SAFEMAX Bezluzowe sprzęgła SAFEMAX Spis treści Bezluzowe sprzęgła SAFEMAX Str. Opis 73 Cechy 74 Symbol 74 Bezluzowe sprzęgła SAFEMAX SIT GLS/SG/N 75 Bezluzowe sprzęgła SAFEMAX SIT GLS/SG/N ze sprzęgłami TRASCO

Bardziej szczegółowo

Reduktor 2-stopniowy, walcowy.

Reduktor 2-stopniowy, walcowy. Reduktor 2-stopniowy, walcowy. 1. Dane wejściowe Projektowana przekładnia należy do grupy reduktorów walcowych. Funkcję sprzęgła pełni przekładnia pasowa na wejściu, która charakteryzuje się pewną elastycznością

Bardziej szczegółowo

Eliminacja drgań przy wykorzystaniu dynamicznego tłumika drgań z inerterem o zmiennej inertancji

Eliminacja drgań przy wykorzystaniu dynamicznego tłumika drgań z inerterem o zmiennej inertancji Eliminacja drgań przy wykorzystaniu dynamicznego tłumika drgań z inerterem o zmiennej inertancji Przemysław Perlikowski Katedra Dynamiki Maszyn Politechnika Łódzka 23.06.2017 IPPT PAN Warszawa Współautorzy

Bardziej szczegółowo

LABORATORIUM PKM. Katedra Konstrukcji i Eksploatacji Maszyn. Badanie statycznego i kinetycznego współczynnika tarcia dla wybranych skojarzeń ciernych

LABORATORIUM PKM. Katedra Konstrukcji i Eksploatacji Maszyn. Badanie statycznego i kinetycznego współczynnika tarcia dla wybranych skojarzeń ciernych LABORATORIUM PKM Badanie statycznego i kinetycznego współczynnika tarcia dla wybranych skojarzeń ciernych Katedra Konstrukcji i Eksploatacji Maszyn Katedra Konstrukcji i Eksploatacji Maszyn BUDOWA STANOWISKA

Bardziej szczegółowo

LABORATORIUM PKM. Katedra Konstrukcji i Eksploatacji Maszyn. Badanie statycznego i kinetycznego współczynnika tarcia dla wybranych skojarzeń ciernych

LABORATORIUM PKM. Katedra Konstrukcji i Eksploatacji Maszyn. Badanie statycznego i kinetycznego współczynnika tarcia dla wybranych skojarzeń ciernych LABORATORIUM PKM Badanie statycznego i kinetycznego współczynnika tarcia dla wybranych skojarzeń ciernych Katedra Konstrukcji i Eksploatacji Maszyn Katedra Konstrukcji i Eksploatacji Maszyn Opracowanie

Bardziej szczegółowo

Młody inżynier robotyki

Młody inżynier robotyki Młody inżynier robotyki Narzędzia pracy Klocki LEGO MINDSTORMS NXT Oprogramowanie służące do programowanie kostki programowalnej robora LEGO Mindstorms Nxt v2.0 LEGO Digital Designer - program przeznaczony

Bardziej szczegółowo

LL Fx Fx max + Fz. Mx Mx max + Mz Mz max 1. My My max + LF= Fz max +

LL Fx Fx max + Fz. Mx Mx max + Mz Mz max 1. My My max + LF= Fz max + LL Prowadnica liniowa z obiegowymi łożyskami kulowymi Opatentowane łożysko Łatwy montaż oraz niska cena Kilka możliwości montażu za pomocą nakrętek teowych Wiele dodatkowych akcesoriów Dostępna każda długość,

Bardziej szczegółowo

Elementy dynamiki mechanizmów

Elementy dynamiki mechanizmów Elementy dynamiki mechanizmów Dynamika pojęcia podstawowe Dynamika dział mechaniki zajmujący się ruchem ciał materialnych pod działaniem sił. Głównym zadaniem dynamiki jest opis ruchu ciał pod działaniem

Bardziej szczegółowo

Trójfazowe silniki indukcyjne. serii dskgw do napędu organów urabiających kombajnów górniczych. 2006 Wkładka katalogowa nr 11a

Trójfazowe silniki indukcyjne. serii dskgw do napędu organów urabiających kombajnów górniczych. 2006 Wkładka katalogowa nr 11a Trójfazowe silniki indukcyjne serii dskgw do napędu organów urabiających kombajnów górniczych 2006 Wkładka katalogowa nr 11a ZASTOSOWANIE Silniki indukcyjne górnicze serii dskgw przeznaczone są do napędu

Bardziej szczegółowo

12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa

12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa Włodzimierz Wolczyński Przyspieszenie kątowe 1 RUCH OROTOWY RYŁY SZTYWNEJ I = = ε przyspieszenie kątowe [ ] ω prędkość kątowa = = T okres, = - częstotliwość s=αr v=ωr a=εr droga = kąt x promień prędkość

Bardziej szczegółowo

Przekładnie podnośnikowe

Przekładnie podnośnikowe Przekładnie podnośnikowe 1 Przekładnie śrubowe przegląd System modułowy przegląd Cechy produktów Przegląd produktów Przekładnie śrubowe serii Z z gwintem trapezowym Tr Przekładnie śrubowe serii Z z gwintem

Bardziej szczegółowo

Podnośniki śrubowe o budowie modularnej

Podnośniki śrubowe o budowie modularnej Podnośniki śrubowe o budowie modularnej Spis Treści 1. Podnośniki (dźwigniki) śrubowe o budowie modularnej... 4 1.1. Zastosowanie podnośników (dźwigników) śrubowych SG... 4 1.2. Opis produktów... 4 1.3.

Bardziej szczegółowo

Amortyzatory Przemysłowe SHOCK ABSORBER

Amortyzatory Przemysłowe SHOCK ABSORBER Amortyzatory Przemysłowe SHOCK ABSORBER Amortyzatory przemysłowe Miniaturowa Seria PTC nienastawne M8... M12 Nowa Seria PTC nienastawne M8... M27 Seria PTC nienastawne z nakładką Seria PTD nastawne z nakładką

Bardziej szczegółowo

IV MŁODZIEŻOWY KONKURS MECHANICZNY PŁOCK ZESTAW PYTAŃ zawody II stopnia (ogólnopolskie)

IV MŁODZIEŻOWY KONKURS MECHANICZNY PŁOCK ZESTAW PYTAŃ zawody II stopnia (ogólnopolskie) IV MŁODZIEŻOWY KONKURS MECHANICZNY PŁOCK 2011.. ZESTAW PYTAŃ zawody II stopnia (ogólnopolskie). imię i nazwisko szkoła Drogi uczestniku konkursu! Przed przystąpieniem do udzielania odpowiedzi przeczytaj

Bardziej szczegółowo

SZKOŁA POLICEALNA dla dorosłych

SZKOŁA POLICEALNA dla dorosłych SZKOŁA POLICEALNA dla dorosłych Kierunek kształcenia w zawodzie: dr inż. Janusz Walkowiak Przedmiot: I semestr Tematyka zajęć Ustalenie numeru identyfikacyjnego i odczytywanie danych z tablicy znamionowej

Bardziej szczegółowo

LABORATORIUM DYNAMIKI MASZYN. Redukcja momentów bezwładności do określonego punktu redukcji

LABORATORIUM DYNAMIKI MASZYN. Redukcja momentów bezwładności do określonego punktu redukcji LABORATORIUM DYNAMIKI MASZYN Wydział Budowy Maszyn i Zarządzania Kierunek: Mechanika i Budowa Maszyn Zakład Wibroakustyki i Bio-Dynamiki Systemów Ćwiczenie nr 2 Redukcja momentów bezwładności do określonego

Bardziej szczegółowo

Ćwiczenie: "Silnik prądu stałego"

Ćwiczenie: Silnik prądu stałego Ćwiczenie: "Silnik prądu stałego" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Zasada

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA KONSTRUKCJI I EKSPLOATACJI MASZYN

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA KONSTRUKCJI I EKSPLOATACJI MASZYN POLITECHNIKA GDAŃSKA WYDZIAŁ ECHANICZNY KATEDRA KONSTRUKCJI I EKSPLOATACJI ASZYN WYZNACZANIE CZASU ROZRUCHU UKŁADU NAPĘDOWEGO ASZYNY ROBOCZEJ O DUŻY ASOWY OENCIE BEZWŁADNOŚCI ĆWICZENIE LABORATORYJNE NR

Bardziej szczegółowo

WENTYLATORY PROMIENIOWE JEDNOSTRUMIENIOWE TYPOSZEREG: WPWs

WENTYLATORY PROMIENIOWE JEDNOSTRUMIENIOWE TYPOSZEREG: WPWs WENTYLATORY PROMIENIOWE JEDNOSTRUMIENIOWE TYPOSZEREG: WPWs Wentylatory serii WPWs to typoszereg wysokosprawnych wentylatorów ogólnego i specjalnego przeznaczenia. Zalecane są się do przetłaczania czynnika

Bardziej szczegółowo

ności od kinematyki zazębie

ności od kinematyki zazębie Klasyfikacja przekładni zębatych z w zależno ności od kinematyki zazębie bień PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE WALCOWE (równoległe) STOŻKOWE (kątowe) HIPERBOIDALNE ŚLIMAKOWE o zebach prostych o zębach

Bardziej szczegółowo

SPRZĘGŁA MIMOŚRODOWE INKOMA TYP LFK Lineflex

SPRZĘGŁA MIMOŚRODOWE INKOMA TYP LFK Lineflex - 2 - Spis treści 1.1 Sprzęgło mimośrodowe INKOMA Lineflex typ LFK - Informacje ogólne... - 3-1.2 Sprzęgło mimośrodowe INKOMA Lineflex typ LFK - Informacje techniczne... - 4-1.3 Sprzęgło mimośrodowe INKOMA

Bardziej szczegółowo

BADANIE ZJAWISK PRZEMIESZCZANIA WSTRZĄSOWEGO

BADANIE ZJAWISK PRZEMIESZCZANIA WSTRZĄSOWEGO BADANIE ZJAWISK PRZEMIESZCZANIA WSTRZĄSOWEGO 1. Cel ćwiczenia Celem ćwiczenia jest poznanie kinematyki i dynamiki ruchu w procesie przemieszczania wstrząsowego oraz wyznaczenie charakterystyki użytkowej

Bardziej szczegółowo

LABORATORIUM PKM. Katedra Konstrukcji i Eksploatacji Maszyn. Badanie statycznego i kinetycznego współczynnika tarcia dla wybranych skojarzeń ciernych

LABORATORIUM PKM. Katedra Konstrukcji i Eksploatacji Maszyn. Badanie statycznego i kinetycznego współczynnika tarcia dla wybranych skojarzeń ciernych LABORATORIUM PKM Badanie statycznego i kinetycznego współczynnika tarcia dla wybranych skojarzeń ciernych Katedra Konstrukcji i Eksploatacji Maszyn Katedra Konstrukcji i Eksploatacji Maszyn Opracowanie

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

Podnośniki śrubowe o budowie modularnej

Podnośniki śrubowe o budowie modularnej Podnośniki śrubowe o budowie modularnej Spis Treści 1. Podnośniki (dźwigniki) śrubowe o budowie modularnej... 4 1.1. Zastosowanie podnośników (dźwigników) śrubowych SG... 4 1.2. Opis produktów... 4 1.3.

Bardziej szczegółowo

Mikrosilniki prądu stałego cz. 2

Mikrosilniki prądu stałego cz. 2 Jakub Wierciak Mikrosilniki cz. 2 Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Mikrosilnik z komutacją bezzestykową 1 - wałek,

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

DOSTAWA WYPOSAŻENIA HAMOWNI MASZYN ELEKTRYCZNYCH DLA LABORATORIUM LINTE^2 OPIS PRZEDMIOTU ZAMÓWIENIA

DOSTAWA WYPOSAŻENIA HAMOWNI MASZYN ELEKTRYCZNYCH DLA LABORATORIUM LINTE^2 OPIS PRZEDMIOTU ZAMÓWIENIA ZAŁĄCZNIK Z1.A do Specyfikacji Istotnych Warunków Zamówienia, postępowanie nr ZP/220/014/D/15 DOSTAWA WYPOSAŻENIA HAMOWNI MASZYN ELEKTRYCZNYCH DLA LABORATORIUM LINTE^2 OPIS PRZEDMIOTU ZAMÓWIENIA CZĘŚĆ

Bardziej szczegółowo

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 19/10

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 19/10 PL 218159 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 218159 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 387380 (22) Data zgłoszenia: 02.03.2009 (51) Int.Cl.

Bardziej szczegółowo

Zmiana punktu pracy wentylatorów dużej mocy z regulowaną prędkością obrotową w obiektach wytwarzających energię cieplną lub elektryczną

Zmiana punktu pracy wentylatorów dużej mocy z regulowaną prędkością obrotową w obiektach wytwarzających energię cieplną lub elektryczną Zmiana punktu pracy wentylatorów dużej mocy z regulowaną prędkością obrotową w obiektach wytwarzających energię cieplną lub elektryczną Zbigniew Szulc 1. Wstęp Wentylatory dużej mocy (powyżej 500 kw stosowane

Bardziej szczegółowo

OSIE ELEKTRYCZNE Z NAPĘDEM PASKOWYM SERII ELEKTRO BK

OSIE ELEKTRYCZNE Z NAPĘDEM PASKOWYM SERII ELEKTRO BK OSIE ELEKTRYCZNE Z NAPĘDEM PASKOWYM SERII ELEKTRO BK Osie elektryczne z paskiem zębatym serii BK zostały oparte o bardzo wytrzymały a przy tym wyjątkowo lekki profil aluminiowy. Dolna płaszczyzna profilu

Bardziej szczegółowo

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/

Bardziej szczegółowo

Ćwiczenie 6 IZOLACJA DRGAŃ MASZYNY. 1. Cel ćwiczenia

Ćwiczenie 6 IZOLACJA DRGAŃ MASZYNY. 1. Cel ćwiczenia Ćwiczenie 6 IZOLACJA DRGAŃ MASZYNY 1. Cel ćwiczenia Przeprowadzenie izolacji drgań przekładni zębatej oraz doświadczalne wyznaczenie współczynnika przenoszenia drgań urządzenia na fundament.. Wprowadzenie

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw udowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2016/2017

Bardziej szczegółowo

Dynamika ruchu obrotowego

Dynamika ruchu obrotowego Dynamika ruchu obrotowego 1. Mając dane r = îx + ĵy + ˆkz i = î x + ĵ y + ˆk z znaleźć moment siły τ = r. Pokazać, że jeżeli r i leżą w danej płaszczyźnie, to τ nie ma składowych w tej płaszczyźnie. 2.

Bardziej szczegółowo

Wentylatory promieniowe średnioprężne typu WWWOax

Wentylatory promieniowe średnioprężne typu WWWOax Wentylatory promieniowe średnioprężne typu WWWOax Wentylatory serii WWWOax są wysokosprawnymi wentylatorami ogólnego i specjalnego przeznaczenia. Stosowane są do wentylacji pomieszczeń, podmuchu kotłów,

Bardziej szczegółowo

Dane techniczne samochodów Fiat Panda Trekking i Fiat Panda 4x4.

Dane techniczne samochodów Fiat Panda Trekking i Fiat Panda 4x4. Dane techniczne samochodów Fiat Panda Trekking i Fiat Panda 4x4. Trekking 4x4 1.3 MultiJet 75 KM 0.9 85 KM TwinAir 0.9 80 KM CNG TwinAir 1.3 MultiJet 75 KM 0.9 85 KM TwinAir SILNIK Liczba i układ cylindrów

Bardziej szczegółowo

INSTRUKCJA PRZEKŁADNI NGM50-28-230V, NGM70-56, NGM75-15, NGM75-23, NGM75-28, NGM80-46

INSTRUKCJA PRZEKŁADNI NGM50-28-230V, NGM70-56, NGM75-15, NGM75-23, NGM75-28, NGM80-46 INSTRUKCJA PRZEKŁADNI NGM50-28-230V, NGM70-56, NGM75-15, NGM75-23, NGM75-28, NGM80-46 Nassau Polska Sp. z o.o. ul. Trakt Lubelski 137 04-790 Warszawa Tel.: +48 22 673 02 57 Faks: +48 22 673 02 59 E-mail:

Bardziej szczegółowo

PROJEKT TECHNICZNY MECHANIZMU CHWYTAKA TYPU P-(O-O-O)

PROJEKT TECHNICZNY MECHANIZMU CHWYTAKA TYPU P-(O-O-O) PROJEKT TECHNICZNY MECHANIZMU CHWYTAKA TYPU P-(O-O-O) ZADANIE PROJEKTOWE: Zaprojektować chwytak do manipulatora przemysłowego wg zadanego schematu kinematycznego spełniający następujące wymagania: a) w

Bardziej szczegółowo

układ materialny wytworzony przez człowieka, wykonujący użyteczne działanie dzięki energii doprowadzonej z zewnątrz

układ materialny wytworzony przez człowieka, wykonujący użyteczne działanie dzięki energii doprowadzonej z zewnątrz Maszyna układ materialny wytworzony przez człowieka, wykonujący użyteczne działanie dzięki energii doprowadzonej z zewnątrz Pod względem energetycznym podział na: SILNIKI - pobierają energię z zewnętrznego

Bardziej szczegółowo

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna

Bardziej szczegółowo

Teoria maszyn i mechanizmów Kod przedmiotu

Teoria maszyn i mechanizmów Kod przedmiotu Teoria maszyn i mechanizmów - opis przedmiotu Informacje ogólne Nazwa przedmiotu Teoria maszyn i mechanizmów Kod przedmiotu 06.1-WM-MiBM-P-54_15gen Wydział Kierunek Wydział Mechaniczny Mechanika i budowa

Bardziej szczegółowo

Z-ETI-1027 Mechanika techniczna II Technical mechanics II. Stacjonarne. Katedra Inżynierii Produkcji Dr inż. Stanisław Wójcik

Z-ETI-1027 Mechanika techniczna II Technical mechanics II. Stacjonarne. Katedra Inżynierii Produkcji Dr inż. Stanisław Wójcik Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego Z-ETI-1027 Mechanika

Bardziej szczegółowo

Laboratorium Maszyny CNC. Nr 3

Laboratorium Maszyny CNC. Nr 3 1 Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium Maszyny CNC Nr 3 Przekładnia elektroniczna Opracował Dr inż. Wojciech Ptaszyński Poznań, 18 kwietnia 016 1. Cel pracy Celem ćwiczenia

Bardziej szczegółowo

STANOWISKOWE BADANIE ZESPOŁU PRZENIESIENIA NAPĘDU NA PRZYKŁADZIE WIELOSTOPNIOWEJ PRZEKŁADNI ZĘBATEJ

STANOWISKOWE BADANIE ZESPOŁU PRZENIESIENIA NAPĘDU NA PRZYKŁADZIE WIELOSTOPNIOWEJ PRZEKŁADNI ZĘBATEJ Postępy Nauki i Techniki nr 12, 2012 Jakub Lisiecki *, Paweł Rosa *, Szymon Lisiecki * STANOWISKOWE BADANIE ZESPOŁU PRZENIESIENIA NAPĘDU NA PRZYKŁADZIE WIELOSTOPNIOWEJ PRZEKŁADNI ZĘBATEJ Streszczenie.

Bardziej szczegółowo

siłowniki śrubowe katalog 2017

siłowniki śrubowe katalog 2017 siłowniki śrubowe katalog 2017 Mechanika Maszyn Andrzej Kacperek 01-141 Warszawa ul. Wolska 82a tel. 22 632-24-4 fax 22 631-17-78 wewn. 24 www.kacperek.pl e-mail: kacperek@kacperek.pl Uwaga! W związku

Bardziej szczegółowo

Dutchi Motors. Moc jest naszym towarem Świat jest naszym rynkiem INFORMACJE OGÓLNE

Dutchi Motors. Moc jest naszym towarem Świat jest naszym rynkiem INFORMACJE OGÓLNE INFORMACJE OGÓLNE Niniejsza karta katalogowa dotyczy trójfazowych silników asynchronicznych, niskiego napięcia, z wirnikiem klatkowym - serii DM1 w kadłubach odlewanych żeliwnych, budowy zamkniętej IP,

Bardziej szczegółowo

PL B1. POLITECHNIKA WARSZAWSKA, Warszawa, PL BUP 12/14. ANTONI SZUMANOWSKI, Warszawa, PL PAWEŁ KRAWCZYK, Ciechanów, PL

PL B1. POLITECHNIKA WARSZAWSKA, Warszawa, PL BUP 12/14. ANTONI SZUMANOWSKI, Warszawa, PL PAWEŁ KRAWCZYK, Ciechanów, PL PL 222644 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 222644 (13) B1 (21) Numer zgłoszenia: 401778 (51) Int.Cl. F16H 55/56 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

Analiza wpływu tarcia na reakcje w parach kinematycznych i sprawność i mechanizmów.

Analiza wpływu tarcia na reakcje w parach kinematycznych i sprawność i mechanizmów. Automatyka i Robotyka. Podstawy modelowania i syntezy mechanizmów arcie w parach kinematycznych mechanizmów 1 ARCIE W PARACH KINEMAYCZNYCH MECHANIZMÓW Analiza wpływu tarcia na reakcje w parach kinematycznych

Bardziej szczegółowo