Obwody prądu przemiennego bez liczb zespolonych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Obwody prądu przemiennego bez liczb zespolonych"

Transkrypt

1 FOTON 94, Jesień 6 45 Obwody prądu przeiennego bez liczb zespolonych Jerzy Ginter Wydział Fizyki Uniwersytetu Warszawskiego Kiedy prowadziłe zajęcia z elektroagnetyzu na Studiu Podyploowy, usiałe oówić obwody prądu przeiennego. Mogłe przy ty posłużyć się eleentai rachunku różniczkowego, ale większość słuchaczy nie znała liczb zespolonych. Po wielu próbach zastosowałe etodę opisu, która wydawała i się najprostsza z ożliwych i w gruncie rzeczy sprowadzała się do wykorzystania wzoru na sinus suy. Może zainteresuje ona Czytelników Fotonu? Dodawanie sinusa i kosinusa Zacznijy od przyponienia prostych właściwości funkcji trygonoetrycznych. May funkcję wyjściową f A (x) = Asinx, gdzie A jest liczba dodatnią, ustaloną na czas naszych rozważań. Do tej funkcji dodajey funkcję f B (x) = Bcosx, gdzie B jest liczbą dowolną. Interesuje nas sua f(x) = Asinx + Bcosx. () Wykres funkcji f(x) jest także sinusoidą. Ma ona aplitudę większą od A i jest w stosunku do f A (x) przesunięta: w lewo, jeżeli B > (rys. a); w prawo, jeżeli B < (rys. b). f(x) sinx cosx sinx cosx π π π π Rys.. Wykresy funkcji f(x): a. A =, B = ; b. A =, B = f(x)

2 46 FOTON 94, Jesień 6 Oznacza to, że funkcję f(x) ożey także przedstawić w postaci: f(x) = C sin(x + ) = Ccos sinx + Csin cosx. () Będziey zakładać, że C jest liczbą dodatnią, a przesunięcie jest zawarte w przedziale π < < π (wzór (7)). Obliczy C i. Porównując () z () widziy, że powinny być spełnione równości: A = Ccos ; (3) B = Csin. (4) Zauważy, że: A + B = (Ccos) + (Csin) = C (cos + sin ) = C ; (5) a stąd C = A + B. (6) Ponadto B sin = = tg. (7) A cos Równanie (7) a nieskończenie wiele rozwiązań, bo tangens jest funkcją periodyczną. Nas będą interesować tylko te, które są zawarte w przedziale π < < π. Zależność C i od B przy ustalony A przedstawia rysunek. Widać, że: dla B aplituda C A (dla ałych B jest to zależność kwadratowa), a (dla ałych B jest to zależność liniowa); dla B + aplituda C B, a π ; dla B aplituda C B, a π. 3A A A π/ C C = B π/ 3A A A A A 3A Rys.. Zależność C i od B B

3 FOTON 94, Jesień 6 47 Wzory (6) i (7) ają prostą interpretację geoetryczną: Rozważy trójkąt prostokątny o przyprostokątnych równych A i B (rys. 3). Z twierdzenia Pitagorasa wynika, że przeciwprostokątna jest równa A + B, czyli C. Na rysunku zaznaczony został także kąt, którego tangens jest równy A B. C = A + B B A Rys. 3. Geoetryczna interpretacja wielkości C i Zieniay układ współrzędnych W dotychczasowy układzie współrzędnych funkcja f A (x) = Asinx znikała dla x =, a funkcja f(x) = C sin(x + ) była równa zeru dla x =. Dla dodatnich funkcja f(x) była przesunięta w lewo w stosunku do wyjściowej funkcji f A (x). Możey wprowadzić nowy układ współrzędnych (rys. 4): Asinx Csin(x +) π x Asin(x ) Csinx π x Rys. 4. Wprowadzay nowy układ współrzędnych

4 48 FOTON 94, Jesień 6 x = x +. (8) Początek układu priowanego jest przesunięty w lewo względe początku okładu niepriowanego o. W nowy układzie funkcja f a postać i znika dla x =. Natoiast funkcja f A przybiera postać f(x ) = Csinx (9) f A (x ) = Asin(x ). () Jest więc w stosunku do początku nowego układu współrzędnych przesunięta w prawo o. Obwód RLC, wyrażenie siły elektrootorycznej źródła przez natężenie prądu Zastosujy uzyskane wzory do obwodu prądu przeiennego RLC. W obwodzie taki połączone są szeregowo: źródło siły elektrootorycznej U, saoindukcja L, pojeność C i opór R (rys. 5). Sybol t oznaczać będzie czas. W obwodzie ay trzy siły elektrootoryczne: R U(t) L. źródła U(t). saoindukcji C Rys. 5. Obwód RLC gdzie I(t) oznacza natężenie prądu elektrycznego. 3. pojeności di ( t) U L ( t) = L ; () dt Q( t) U C ( t) = = I ( t) dt. () C C

5 FOTON 94, Jesień 6 49 Znak we wzorze () wyaga koentarza. W obwodzie złożony jedynie ze źródła siły elektrootorycznej i pojeności kondensator zachowuje się jak źródło napięcia włączone odwrotnie niż źródło prawdziwe. Stąd znak ujeny we wzorze (). Oprócz sił elektrootorycznych w obwodzie jest jeszcze opór R. Zastosujy do obwodu RLC drugie prawo Kirchhoffa i napiszy: czyli U(t) + U L (t) + U C (t) = RI(t); (3) di ( t) U ( t) L I ( t) dt = RI ( t) dt C. (4) Wygodnie będzie zebrać po prawej stronie wszystkie człony zawierające I(t): di ( t) U ( t) = RI ( t) + L + I ( t) dt. (5) dt C Przypuśćy, że w obwodzie płynie prąd przeienny o sinusoidalnej zależności natężenia I od czasu: I(t) = I sin(ωt). (6) Podstawy to wyrażenie do wzoru (5). Wyraziy w ten sposób siłę elektrootoryczną źródła U(t) przez natężenie prądu płynącego w obwodzie I(t): U ( t) = RI sin( ) d sin( ) ω t + L I ω t + I dt C = RI sin( t) L I cos( t) ω + ω ω I ω C = RI sin( ) ω t + ω L I cos( ω t). sin( ω t) dt cos( ω t) = Wyrażenie to a identyczny kształt jak funkcja f(x) we wzorze (). Należy podstawić: x = ωt, A = RI, oraz B = L ω I. Możey więc przedstawić funkcję U(t) w postaci: U(t) = U sin(ωt + ) (8) gdzie U a sens stałej C. Wielkości U i obliczyy, korzystając ze wzorów (6) i (7): (7) U = C = A + B = R I + L I = I R + L ω ω ; (9)

6 5 FOTON 94, Jesień 6 ωl tg = B = ωc. () A R Podsuujy: wzór (9) pozwala obliczyć aplitudę siły elektrootorycznej źródła U, jeżeli znay aplitudę natężenia prądu elektrycznego I ; sinusoida zależności U(t) jest przesunięta w stosunku do sinusoidy opisującej zależność I(t) o wartość, określoną wzore (). Wyrażenie natężenia prądu w obwodzie RLC przez siłę elektrootoryczną źródła W praktyce interesuje nas najczęściej zagadnienie odwrotne do oówionego powyżej: znay siłę elektrootoryczną źródła U(t), a chcey obliczyć natężenie płynącego prądu I(t). Aplitudę natężenia prądu elektrycznego I wyraziy przez aplitudę siły elektrootorycznej źródła U, przekształcając wzór (9) do postaci: I = U R + ωl ωc. () Aby opisać przesunięcie natężenia prądu względe siły elektrootorycznej wprowadziy nowy czas t, określony wzore (por. wzór (8)): ωt = ωt +. () Zależność siły elektrootorycznej od czasu t opisana jest funkcją (por. wzór (9)): U(t ) = U sin(ωt ). (3) Natoiast natężenie prądu jest przesunięte w fazie w stosunku do siły elektrootorycznej o, czyli jest opisane wzore (por. wzór ()): I(t ) = I sin(ωt ). (4) Przesunięcie fazowe jest określone wzore (). Jeżeli > przebieg natężenia prądu jest opóźniony względe przebiegu siły elektrootorycznej. Jeżeli < przebieg natężenia prądu wyprzedza przebieg siły elektrootorycznej. Posługując się wzorai (3) i (4) będziey ogli opuszczać znak pri przy sybolu czasu.

7 FOTON 94, Jesień 6 5 Zależność I (ω) i (ω) dla wybranych paraetrów R =,5, L = i C = przypoina rysunek 6. I U R I (ω) U π π ωc ωl (ω) ω Rys. 6. Zależność I (ω) i (ω) dla dowolnie wybranych paraetrów R =,5, L = i C = Podsuujy Ogólnie znane wzory, wyrażające natężenie prądu elektrycznego przez paraetry obwodu RLC i siłę elektrootoryczną źródła uzyskaliśy na drodze dość prostego rozuowania i bez użycia liczb zespolonych. Od Redakcji: W następny zeszycie Fotonu Redakcja zaieści artykuł J. Karczarczuka, w który będzie przedstawione podejście z użycie liczb zespolonych.

Charakterystyki częstotliwościowe elementów pasywnych

Charakterystyki częstotliwościowe elementów pasywnych Charakterystyki częstotliwościowe elementów pasywnych Parametry elementów pasywnych; reaktancji indukcyjnej (XLωL) oraz pojemnościowej (XC1/ωC) zależą od częstotliwości. Ma to istotne znaczenie w wielu

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe

Bardziej szczegółowo

2. Obwody prądu zmiennego

2. Obwody prądu zmiennego . Obwody prądu ziennego.. Definicje i wielkości charakteryzujące Spośród wielu oŝliwych przebiegów ziennych w czasie zajiey się jedynie przebiegai haronicznyi (sinusoidalnyi lub cosinusoidalnyi). Prądy

Bardziej szczegółowo

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC Ćwiczenie 45 BADANE EEKTYZNEGO OBWOD EZONANSOWEGO 45.. Wiadomości ogólne Szeregowy obwód rezonansowy składa się z oporu, indukcyjności i pojemności połączonych szeregowo i dołączonych do źródła napięcia

Bardziej szczegółowo

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Drgania w obwodzie L Autorzy: Zbigniew Kąkol Kamil Kutorasiński 016 Drgania w obwodzie L Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Rozpatrzmy obwód złożony z szeregowo połączonych indukcyjności L (cewki)

Bardziej szczegółowo

Prąd przemienny - wprowadzenie

Prąd przemienny - wprowadzenie Prąd przemienny - wprowadzenie Prądem zmiennym nazywa się wszelkie prądy elektryczne, dla których zależność natężenia prądu od czasu nie jest funkcją stałą. Zmienność ta może związana również ze zmianą

Bardziej szczegółowo

2.Rezonans w obwodach elektrycznych

2.Rezonans w obwodach elektrycznych 2.Rezonans w obwodach elektrycznych Celem ćwiczenia jest doświadczalne sprawdzenie podstawowych właściwości szeregowych i równoległych rezonansowych obwodów elektrycznych. 2.1. Wiadomości ogólne 2.1.1

Bardziej szczegółowo

Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC

Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC Ćwiczenie 3 3.1. Cel ćwiczenia BADANE OBWODÓW PRĄD SNSODANEGO Z EEMENTAM RC Zapoznanie się z własnościami prostych obwodów prądu sinusoidalnego utworzonych z elementów RC. Poznanie zasad rysowania wykresów

Bardziej szczegółowo

Siła elektromotoryczna

Siła elektromotoryczna Wykład 5 Siła elektromotoryczna Urządzenie, które wykonuje pracę nad nośnikami ładunku ale różnica potencjałów między jego końcami pozostaje stała, nazywa się źródłem siły elektromotorycznej. Energia zamieniana

Bardziej szczegółowo

Wykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu

Wykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu Wykład 7 7. Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu M d x kx Rozwiązania x = Acost v = dx/ =-Asint a = d x/ = A cost przy warunku = (k/m) 1/. Obwód

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

Pracownia Technik Informatycznych w Inżynierii Elektrycznej

Pracownia Technik Informatycznych w Inżynierii Elektrycznej NWERSYTET RZESZOWSK Pracownia Technik nforatycznych w nżynierii Elektrycznej Ćw. 4 Badanie obwodów szeregowych R Rzeszów 016/017 ię i nazwisko Grupa Rok studiów Data wykonania Podpis Ocena Badanie obwodów

Bardziej szczegółowo

TRYGONOMETRIA. 1. Definicje i własności funkcji trygonometrycznych

TRYGONOMETRIA. 1. Definicje i własności funkcji trygonometrycznych TRYGONOMETRIA. Definicje i własności funkcji trygonometrycznych Funkcje trygonometryczne kąta ostrego można zdefiniować przy użyciu trójkąta prostokątnego: c a α b DEFINICJA. Sinusem kąta ostrego α w trójkącie

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych

Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych ĆWICZENIE 1 Badanie obwodów jednofazowych rozgałęzionych przy wymuszeniu sinusoidalnym Cel ćwiczenia Celem ćwiczenia jest Poznanie podstawowych elementów pasywnych R, L, C, wyznaczenie ich wartości na

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

Ć wiczenie 3 OBWODY JEDNOFAZOWE PRĄDU PRZEMIENNEGO

Ć wiczenie 3 OBWODY JEDNOFAZOWE PRĄDU PRZEMIENNEGO 49 1. Wiadoości ogólne Ć wiczenie 3 OBWODY JEDNOFAZOWE PĄD PZEMENNEGO 1.1. Wielkości opisujące prąd przeienny Wielkości sinusoidalne są jednoznacznie określone przez trzy wielkości: aplitudę, pulsację

Bardziej szczegółowo

13 K A T E D R A F I ZYKI S T O S O W AN E J

13 K A T E D R A F I ZYKI S T O S O W AN E J 3 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 3. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony

Bardziej szczegółowo

TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA SKIEROWANEGO

TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA SKIEROWANEGO TRYGONOMETRIA Trygonometria to dział matematyki, którego przedmiotem badań są związki między bokami i kątami trójkątów oraz tzw. funkcje trygonometryczne. Trygonometria powstała i rozwinęła się głównie

Bardziej szczegółowo

Równania i nierówności trygonometryczne

Równania i nierówności trygonometryczne Równania i nierówności trygonometryczne Piotr Rzonsowski Zadanie 1. Obliczyć równania: Zadania obowiązkowe a) cos x = 1, b) tg x =, c) cos( x + π ) =, d) sin x = 1. Wskazówka: (a) Oblicz cos y = 1 a następnie

Bardziej szczegółowo

Obwody prądu zmiennego

Obwody prądu zmiennego Obwody prądu zmiennego Prąd stały ( ) ( ) i t u t const const ( ) u( t) i t Prąd zmienny, dowolne funkcje czasu i( t) t t u ( t) t t Natężenie prądu i umowny kierunek prądu Prąd stały Q t Kierunek poruszania

Bardziej szczegółowo

? 14. Dana jest funkcja. Naszkicuj jej wykres. Dla jakich argumentów funkcja przyjmuje wartości dodatnie? 15. Dana jest funkcja f x 2 a x

? 14. Dana jest funkcja. Naszkicuj jej wykres. Dla jakich argumentów funkcja przyjmuje wartości dodatnie? 15. Dana jest funkcja f x 2 a x FUNKCE FUNKCJA LINIOWA Sporządź tabelkę i narysuj wykres funkcji ( ) Dla jakich argumentów wartości funkcji są większe od 5 Podaj warunek równoległości prostych Wyznacz równanie prostej równoległej do

Bardziej szczegółowo

Obwody prądu zmiennego. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Obwody prądu zmiennego. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Obwody prądu ziennego rojekt współfinansowany przez nię Europeją w raach Europejiego Funduszu Społecznego rąd elektryczny: oc lość ciepła wydzielanego na eleencie oporowy określa prawo Joule a: Q t Moc

Bardziej szczegółowo

Pracownia fizyczna i elektroniczna. Wykład lutego Krzysztof Korona

Pracownia fizyczna i elektroniczna. Wykład lutego Krzysztof Korona Pracownia fizyczna i elektroniczna Wykład. Obwody prądu stałego i zmiennego 4 lutego 4 Krzysztof Korona Plan wykładu Wstęp. Prąd stały. Podstawowe pojęcia. Prawa Kirchhoffa. Prawo Ohma ().4 Przykłady prostych

Bardziej szczegółowo

DANE: wartość skuteczna międzyprzewodowego napięcia zasilającego E S = 230 V; rezystancja odbiornika R d = 2,7 Ω; indukcyjność odbiornika.

DANE: wartość skuteczna międzyprzewodowego napięcia zasilającego E S = 230 V; rezystancja odbiornika R d = 2,7 Ω; indukcyjność odbiornika. Zadanie 4. Prostownik mostkowy 6-pulsowy z tyrystorami idealnymi o komutacji natychmiastowej zasilany z sieci 3 400 V, 50 Hz pracuje z kątem opóźnienia załączenia tyrystorów α = 60º. Obciążenie prostownika

Bardziej szczegółowo

1 Funkcje elementarne

1 Funkcje elementarne 1 Funkcje elementarne Funkcje elementarne, które będziemy rozważać to: x a, a x, log a (x), sin(x), cos(x), tan(x), cot(x), arcsin(x), arccos(x), arctan(x), arc ctg(x). 1.1 Funkcje x a. a > 0, oraz a N

Bardziej szczegółowo

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)

Bardziej szczegółowo

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0, Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.

Bardziej szczegółowo

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4) OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu

Bardziej szczegółowo

Podstawy fizyki sezon 2 7. Układy elektryczne RLC

Podstawy fizyki sezon 2 7. Układy elektryczne RLC Podstawy fizyki sezon 2 7. Układy elektryczne RLC Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Układ RC

Bardziej szczegółowo

07 K AT E D R A FIZYKI STOSOWA N E J

07 K AT E D R A FIZYKI STOSOWA N E J 07 K AT E D R A FIZYKI STOSOWA N E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 7a. Pomiary w układzie szeregowym RLC Wprowadzenie Prąd zmienny płynący w

Bardziej szczegółowo

w7 58 Prąd zmienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów zmiennych Opór bierny

w7 58 Prąd zmienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów zmiennych Opór bierny 58 Prąd zienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów ziennych Opór bierny Prąd zienny Prąd zienny 3 Prąd zienny 4 Prąd zienny 5 Prąd zienny Przy stałej prędkości kątowej ω const pola

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

1 Pochodne wyższych rzędów

1 Pochodne wyższych rzędów Pochodne wyższych rzędów Pochodną rzędu drugiego lub drugą pochodną funkcji y = f(x) nazywamy pochodną pierwszej pochodnej tej funkcji. Analogicznie definiujemy pochodne wyższych rzędów, jako pochodne

Bardziej szczegółowo

Podstawy nauk przyrodniczych Matematyka Wstęp

Podstawy nauk przyrodniczych Matematyka Wstęp Podstawy nauk przyrodniczych Matematyka Wstęp Katarzyna Kluzek i Adrian Silesian Zakład Genetyki Molekularnej Człowieka tel. 61 829 58 33 adrian.silesian@amu.edu.pl katarzyna.kluzek@amu.edu.pl Pokój 1.117

Bardziej szczegółowo

Ostatnia aktualizacja: 30 stycznia 2015 r.

Ostatnia aktualizacja: 30 stycznia 2015 r. Ostatnia aktualizacja: 30 stycznia 2015 r. Spis treści 1. Funkcja liniowa 5 2. Funkcja kwadratowa 7 3. Trygonometria 11 4. Ciagi liczbowe 13 5. Wielomiany 15 6. Funkcja wykładnicza 17 7. Funkcja wymierna

Bardziej szczegółowo

Systemy liniowe i stacjonarne

Systemy liniowe i stacjonarne Systemy liniowe i stacjonarne Układ (np.: dwójnik) jest liniowy wtedy i tylko wtedy gdy: Spełnia własność skalowania (jednorodność): T [a x (t )]=a T [ x (t)]=a y (t ) Jeśli wymuszenie zostanie przeskalowane

Bardziej szczegółowo

2 5 C). Bok rombu ma długość: 8 6

2 5 C). Bok rombu ma długość: 8 6 Zadanie 1 W trójkącie prostokątnym o przeciwprostokątnej 6 i przyprostokątnej sinus większego z kątów ostrych ma wartość: C) Zadanie Krótsza przekątna rombu o długości tworzy z bokiem rombu kąt 60 0. Bok

Bardziej szczegółowo

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 8

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 8 Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 8 Analiza właściwości zmiennoprądowych materiałów i elementów elektronicznych I. Zagadnienia do przygotowania:. Wykonanie i przedstawienie

Bardziej szczegółowo

Przyjmuje się umowę, że:

Przyjmuje się umowę, że: MODELE OPERATOROWE Modele operatorowe elementów obwodów wyprowadza się wykorzystując znane zależności napięciowo-prądowe dla elementów R, L, C oraz źródeł idealnych. Modele te opisują zależności pomiędzy

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach

Bardziej szczegółowo

Dr inż. Agnieszka Wardzińska pokój: 105 Polanka Advisor hours: Tuesday: Thursday:

Dr inż. Agnieszka Wardzińska pokój: 105 Polanka Advisor hours: Tuesday: Thursday: Dr inż. Agnieszka Wardzińska pokój: 105 Polanka agnieszka.wardzinska@put.poznan.pl cygnus.et.put.poznan.pl/~award Advisor hours: Tuesday: 10.00-10.45 Thursday: 10.30-11.15 Literatura podstawowa: 1. Podstawy

Bardziej szczegółowo

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu 7 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A F I Z Y K I Ćw. 7. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony z połączonych: kondensatora C cewki L i opornika R

Bardziej szczegółowo

1. Równania i nierówności liniowe

1. Równania i nierówności liniowe Równania i nierówności liniowe Wykonać działanie: Rozwiązać równanie: ( +x + ) x a) 5x 5x+ 5 = 50 x 0 b) 6(x + x + ) = (x + ) (x ) c) x 0x (0 x) 56 = 6x 5 5 ( x) Rozwiązać równanie: a) x + x = 4 b) x x

Bardziej szczegółowo

BADANIE REZONANSU W SZEREGOWYM OBWODZIE LC

BADANIE REZONANSU W SZEREGOWYM OBWODZIE LC BADANE EZONANSU W SZEEGOWYM OBWODZE LC NALEŻY MEĆ ZE SOBĄ: kalkulator naukowy, ołówek, linijkę, papier milimetrowy. PYTANA KONTOLNE. ównanie różniczkowe drgań wymuszonych. Postać równania drgań wymuszonych

Bardziej szczegółowo

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html DRGANIA HARMONICZNE

Bardziej szczegółowo

Matematyka kompendium 2

Matematyka kompendium 2 Matematyka kompendium 2 Spis treści Trygonometria Funkcje trygonometryczne Kąt skierowany Kąt skierowany umieszczony w układzie współrzędnych Wartości funkcji trygonometrycznych kątów 30 o, 45 o, 60 o

Bardziej szczegółowo

4.2 Analiza fourierowska(f1)

4.2 Analiza fourierowska(f1) Analiza fourierowska(f1) 179 4. Analiza fourierowska(f1) Celem doświadczenia jest wyznaczenie współczynników szeregu Fouriera dla sygnałów okresowych. Zagadnienia do przygotowania: szereg Fouriera; sygnał

Bardziej szczegółowo

Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa.

Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa. Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa. Monotoniczność i różnowartościowość. Definicja 1 Niech f : X R, X R. Funkcję f nazywamy rosnącą w

Bardziej szczegółowo

Induktor i kondensator. Warunki początkowe. oraz ciągłość warunków początkowych

Induktor i kondensator. Warunki początkowe. oraz ciągłość warunków początkowych Termin AREK73C Induktor i kondensator. Warunki początkowe Przyjmujemy t, u C oraz ciągłość warunków początkowych ( ) u ( ) i ( ) i ( ) C L L Prąd stały i(t) R u(t) u( t) Ri( t) I R RI i(t) L u(t) u() t

Bardziej szczegółowo

Funkcje trygonometryczne w trójkącie prostokątnym

Funkcje trygonometryczne w trójkącie prostokątnym Funkcje trygonometryczne w trójkącie prostokątnym Oznaczenia boków i kątów trójkąta prostokątnego użyte w definicjach Sinus Sinusem kąta ostrego w trójkącie prostokątnym nazywamy stosunek przyprostokątnej

Bardziej szczegółowo

w5 58 Prąd d zmienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów w zmiennych Opór r bierny Podstawy elektrotechniki

w5 58 Prąd d zmienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów w zmiennych Opór r bierny Podstawy elektrotechniki 58 Prąd d zienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów w ziennych Opór r bierny Prąd d zienny Prąd d zienny 3 Prąd d zienny 4 Prąd d zienny 5 Prąd d zienny Przy stałej prędkości kątowej

Bardziej szczegółowo

29 PRĄD PRZEMIENNY. CZĘŚĆ 2

29 PRĄD PRZEMIENNY. CZĘŚĆ 2 Włodzimierz Wolczyński 29 PRĄD PRZEMIENNY. CZĘŚĆ 2 Opory bierne Indukcyjny L - indukcyjność = Szeregowy obwód RLC Pojemnościowy C pojemność = = ( + ) = = = = Z X L Impedancja (zawada) = + ( ) φ R X C =

Bardziej szczegółowo

Pracownia fizyczna i elektroniczna. Wykład 1. 9 marca Krzysztof Korona

Pracownia fizyczna i elektroniczna. Wykład 1. 9 marca Krzysztof Korona Pracownia fizyczna i elektroniczna Wykład. Obwody prądu stałego i zmiennego 9 marca 5 Krzysztof Korona Plan wykładu Wstęp. Prąd stały. Podstawowe pojęcia. Prawa Kirchhoffa. Prawo Ohma ().4 Przykłady prostych

Bardziej szczegółowo

Wyprowadzenie wzorów na impedancję w dwójniku RLC. ( ) Przez dwójnik przepływa przemienny prąd elektryczny sinusoidalnie zmienny opisany równaniem:

Wyprowadzenie wzorów na impedancję w dwójniku RLC. ( ) Przez dwójnik przepływa przemienny prąd elektryczny sinusoidalnie zmienny opisany równaniem: Wyprowadzenie wzorów na impedancję w dwójniku RLC. Dwójnik zbudowany jest z rezystora, kondensatora i cewki. Do zacisków dwójnika przyłożone zostało napięcie sinusoidalnie zmienne. W wyniku przyłożonego

Bardziej szczegółowo

Definicje funkcji trygonometrycznych kąta ostrego

Definicje funkcji trygonometrycznych kąta ostrego 1 Definicje funkcji trygonometrycznych kąta ostrego Sinusem kąta ostrego w trójkącie prostokątnym nazywamy stosunek długości przyprostokątnej leżącej naprzeciw tego kąta do długości przeciwprostokątnej.

Bardziej szczegółowo

u (0) = 0 i(0) = 0 Obwód RLC Odpowiadający mu schemat operatorowy E s 1 sc t = 0 i(t) w u R (t) E u C (t) C

u (0) = 0 i(0) = 0 Obwód RLC Odpowiadający mu schemat operatorowy E s 1 sc t = 0 i(t) w u R (t) E u C (t) C Obwód RLC t = 0 i(t) R L w u R (t) u L (t) E u C (t) C Odpowiadający mu schemat operatorowy R I Dla zerowych warunków początkowych na cewce i kondensatorze 1 sc sl u (0) = 0 C E s i(0) = 0 Prąd I w obwodzie

Bardziej szczegółowo

SPRAWDZIAN Z 1. SEMESTRU KLASY 2 ROZSZ

SPRAWDZIAN Z 1. SEMESTRU KLASY 2 ROZSZ www.zadania.info NJWIEKSZY INTERNETOWY ZIÓR ZŃ Z MTEMTYKI SPRWZIN Z 1. SEMESTRU KLSY 2 ROZSZ ZNIE 1 (5 PKT) Funkcja f określona jest wzorem f (x) = (3m 5)x 2 (2m 1)x + 0, 25(3m 5). Wyznacz te wartości

Bardziej szczegółowo

) I = dq. Obwody RC. I II prawo Kirchhoffa: t = RC (stała czasowa) IR V C. ! E d! l = 0 IR +V C. R dq dt + Q C V 0 = 0. C 1 e dt = V 0.

) I = dq. Obwody RC. I II prawo Kirchhoffa: t = RC (stała czasowa) IR V C. ! E d! l = 0 IR +V C. R dq dt + Q C V 0 = 0. C 1 e dt = V 0. Obwody RC t = 0, V C = 0 V 0 IR 0 V C C I II prawo Kirchhoffa: " po całym obwodzie zamkniętym E d l = 0 IR +V C V 0 = 0 R dq dt + Q C V 0 = 0 V 0 R t = RC (stała czasowa) Czas, po którym prąd spadnie do

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi. Podanie dziedziny funkcji f:

Bardziej szczegółowo

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres

Bardziej szczegółowo

zestaw DO ĆWICZEŃ z matematyki

zestaw DO ĆWICZEŃ z matematyki zestaw DO ĆWICZEŃ z matematyki poziom podstawowy rozumowanie i argumentacja karty pracy ZESTAW II Zadanie. Wiadomo, że,7 jest przybliżeniem liczby 0,5 z zaokrągleniem do miejsc po przecinku. Wyznacz przybliżenie

Bardziej szczegółowo

KO OF Szczecin:

KO OF Szczecin: OF_I_ Źródło: XX OLIMPIADA FIZYCZNA (97/97). Stopień I, zadanie teoretyczne Nazwa zadania: Działy: Słowa kluczowe: Koitet Główny Olipiady Fizycznej; Waldear Gorzkowski: Olipiady fizyczne XIX i XX. WSiP,

Bardziej szczegółowo

Przygotowanie do poprawki klasa 1li

Przygotowanie do poprawki klasa 1li Zadanie Rozwiąż równanie x 6 5 x 4 Przygotowanie do poprawki klasa li Zadanie Rozwiąż nierówność x 4 x 5 Zadanie Oblicz: a) 9 b) 6 5 c) 64 4 d) 6 0 e) 8 f) 7 5 6 Zadanie 4 Zapisz podane liczby bez znaku

Bardziej szczegółowo

Zakres na egzamin poprawkowy w r. szk. 2013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY

Zakres na egzamin poprawkowy w r. szk. 2013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY MATEMATYKA Klasa TMB Zakres na egzamin poprawkowy w r. szk. 013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY (zakres rozszerzony - czcionką pogrubioną) Hasła programowe Wymagania

Bardziej szczegółowo

Promieniowanie dipolowe

Promieniowanie dipolowe Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A

Bardziej szczegółowo

XVI Warmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl grudniowy Poziom: szkoły ponadgimnazjalne

XVI Warmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl grudniowy Poziom: szkoły ponadgimnazjalne XVI Warmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl grudniowy Poziom: szkoły ponadgimnazjalne Zadanie. 4 Rozwiąż równanie 07 sin( ). Wiadomo, że: wyrażenie 4 przyjmuje wartości nieujemne dla każdego

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY (TECHNIKUM) 4 MARCA 205 CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT) Liczba 3 25 2 : 5

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2, lato 2016/17

Jarosław Wróblewski Analiza Matematyczna 2, lato 2016/17 41. Niech z = 5 + 4i. Dla podanych liczb m, n podać taką liczbę całkowitą k, aby 5 zachodziła równość z m z n =z k. Uwaga na sprzężenie w drugim czynniku po lewej stronie. a) m = 1, n = 1, k = 9 ; b) m

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA wykład 7 Janusz Andrzejewski Niedoceniany geniusz Nikola Tesla Nikola Tesla wynalazł (lub znakomicie ulepszył) większość urządzeń, które spowodowały to, że prąd zmienny wyparł z naszych domów prąd

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

Funkcje Andrzej Musielak 1. Funkcje

Funkcje Andrzej Musielak 1. Funkcje Funkcje Andrzej Musielak 1 Funkcje Funkcja liniowa Funkcja liniowa jest postaci f(x) = a x + b, gdzie a, b R Wartość a to tangens nachylenia wykresu do osi Ox, natomiast b to wartość funkcji w punkcie

Bardziej szczegółowo

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008 Zajęcia fakultatywne z matematyki 008 WYRAŻENIA ARYTMETYCZNE I ALGEBRAICZNE. Wylicz b z równania a) ba + a = + b; b) a = b ; b+a c) a b = b ; d) a +ab =. a b. Oblicz a) [ 4 (0, 5) ] + ; b) 5 5 5 5+ 5 5

Bardziej szczegółowo

30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY

30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY 30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY Magnetyzm Indukcja elektromagnetyczna Prąd przemienny Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt

Bardziej szczegółowo

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie

Bardziej szczegółowo

FUNKCJA LINIOWA. A) B) C) D) Wskaż, dla którego funkcja liniowa określona wzorem jest stała. A) B) C) D)

FUNKCJA LINIOWA. A) B) C) D) Wskaż, dla którego funkcja liniowa określona wzorem jest stała. A) B) C) D) FUNKCJA LINIOWA 1. Funkcja jest rosnąca, gdy 2. Wskaż, dla którego funkcja liniowa jest rosnąca Wskaż, dla którego funkcja liniowa określona wzorem jest stała. 3. Funkcja liniowa A) jest malejąca i jej

Bardziej szczegółowo

REZONANS W UKŁADZIE SZEREGOWYM RLC WYZNACZANIE WARTOŚCI REZYSTANCJI, INDUKCJI I POJEMNOŚCI.

REZONANS W UKŁADZIE SZEREGOWYM RLC WYZNACZANIE WARTOŚCI REZYSTANCJI, INDUKCJI I POJEMNOŚCI. EZONANS W KŁADZIE SZEEGOWYM WYZNAZANIE WATOŚI EZYSTANJI, INDKJI I POJEMNOŚI. ele ćwiczenia:. Wyznaczenie krzywych rezonansowych dla szeregowego obwodu elektrycznego,. Określenie paraetrów krzywej rezonansowej,

Bardziej szczegółowo

Wykład FIZYKA II. 4. Indukcja elektromagnetyczna. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 4. Indukcja elektromagnetyczna.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 4. Indukcja elektromagnetyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ PRAWO INDUKCJI FARADAYA SYMETRIA W FIZYCE

Bardziej szczegółowo

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna Arkusz A01 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba log 1 3 3 27 jest równa:

Bardziej szczegółowo

Otrzymaliśmy w ten sposób ograniczenie na wartości parametru m.

Otrzymaliśmy w ten sposób ograniczenie na wartości parametru m. Dla jakich wartości parametru m dziedziną funkcji f ( x) = x + mx + m 1 jest zbiór liczb rzeczywistych? We wzorze funkcji f(x) pojawia się funkcja kwadratowa, jednak znajduje się ona pod pierwiastkiem.

Bardziej szczegółowo

Wstęp do ćwiczeń na pracowni elektronicznej

Wstęp do ćwiczeń na pracowni elektronicznej Wstęp do ćwiczeń na pracowni elektronicznej Katarzyna Grzelak listopad 2011 K.Grzelak (IFD UW) listopad 2011 1 / 25 Zajęcia na pracowni elektronicznej Na kolejnych zajęciach spotykamy się na pracowni elektronicznej

Bardziej szczegółowo

Ćwiczenie 25. Temat: Obwód prądu przemiennego RC i RL. Cel ćwiczenia

Ćwiczenie 25. Temat: Obwód prądu przemiennego RC i RL. Cel ćwiczenia Temat: Obwód prądu przemiennego RC i RL. Cel ćwiczenia Ćwiczenie 25 Poznanie własności obwodu szeregowego RC w układzie. Zrozumienie znaczenia reaktancji pojemnościowej, impedancji kąta fazowego. Poznanie

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 1 Podstawowe prawa obwodów elektrycznych Prąd elektryczny definicja fizyczna Prąd elektryczny powstaje jako uporządkowany ruch

Bardziej szczegółowo

MATEMATYKA 8. Funkcje trygonometryczne kąta ostrego (α < 90 ). Stosunki długości boków trójkąta prostokątnego nazywamy funkcjami trygonometrycznymi.

MATEMATYKA 8. Funkcje trygonometryczne kąta ostrego (α < 90 ). Stosunki długości boków trójkąta prostokątnego nazywamy funkcjami trygonometrycznymi. INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 017/018 www.medicus.edu.pl tel. 501 38 39 55 MATEMATYKA 8 FUNKCJE TRYGONOMETRYCZNE. Funkcje trygonometryczne kąta ostrego

Bardziej szczegółowo

A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla

A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla Zadanie 1 Liczba jest równa A. B. C. 10 D. Odpowiedź B. Zadanie 2 Liczba jest równa A. 3 B. 2 C. D. Odpowiedź D. Zadanie 3. Liczba jest równa Odpowiedź D. Zadanie 4. Liczba osobników pewnego zagrożonego

Bardziej szczegółowo

OBWODY JEDNOFAZOWE PRĄDU PRZEMIENNEGO

OBWODY JEDNOFAZOWE PRĄDU PRZEMIENNEGO OBWODY JEDNOFAZOWE PRĄDU PRZEMIENNEGO mgr inż. Grzegorz Strzeszewski ZespółSzkółnrwWyszkowie 01 r. Nauka jest dla tych, którzy chcą być mądrzejsi, którzy chcą wykorzystywać swój umysł do poznawania otaczającego

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie

Bardziej szczegółowo

Impedancje i moce odbiorników prądu zmiennego

Impedancje i moce odbiorników prądu zmiennego POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE Impedancje i moce odbiorników prądu zmiennego (E 6) Opracował: Dr inż.

Bardziej szczegółowo

W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1

W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1 W. Guzicki Próbna matura, grudzień 01 r. poziom rozszerzony 1 Próbna matura rozszerzona (jesień 01 r.) Zadanie 18 kilka innych rozwiązań Wojciech Guzicki Zadanie 18. Okno na poddaszu ma mieć kształt trapezu

Bardziej szczegółowo

KATEDRA ELEKTROTECHNIKI LABORATORIUM ELEKTROTECHNIKI

KATEDRA ELEKTROTECHNIKI LABORATORIUM ELEKTROTECHNIKI KTEDR ELEKTROTECHNIKI LBORTORIUM ELEKTROTECHNIKI =================================================================================================== Temat ćwiczenia POMIRY OBODCH SPRZĘŻONYCH MGNETYCZNIE

Bardziej szczegółowo

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna Arkusz A04 2 Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba π spełnia nierówność: A. + 1 > 5 B. 1 < 2 C. + 2 3 4

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Próna Matura z OPERONEM Matematyka Poziom rozszerzony Listopad W ni niej szym sche ma cie oce nia nia za dań otwar tych są pre zen to wa ne przy kła do we po praw ne od po

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

MATEMATYKA Przed próbną maturą. Sprawdzian 3. (poziom podstawowy) Rozwiązania zadań

MATEMATYKA Przed próbną maturą. Sprawdzian 3. (poziom podstawowy) Rozwiązania zadań MTMTYK Przed próbną maturą. Sprawdzian. (poziom podstawowy) Rozwiązania zadań Zadanie. ( pkt) P.. Uczeń używa wzorów skróconego mnożenia na (a ± b) oraz a b. Zapisujemy równość w postaci (a b) + (c d)

Bardziej szczegółowo

ĆWICZENIE 5 Badanie stanów nieustalonych w obwodach szeregowych RLC przy wymuszeniu sinusoidalnie zmiennym

ĆWICZENIE 5 Badanie stanów nieustalonych w obwodach szeregowych RLC przy wymuszeniu sinusoidalnie zmiennym ĆWIZENIE 5 Badanie stanów nieustalonych w obwodach szeregowych R przy wyuszeniu sinusoidaie zienny. el ćwiczenia Zapoznanie się z rozpływe prądów, rozkłade w stanach nieustalonych w obwodach szeregowych

Bardziej szczegółowo

na postać kanoniczną, podaj współrzędne wierzchołka paraboli i określ czy jej ramiona są skierowane w górę czy w dół.

na postać kanoniczną, podaj współrzędne wierzchołka paraboli i określ czy jej ramiona są skierowane w górę czy w dół. Zadania na poprawkę dla sa f x x 1x na postać kanoniczną, podaj współrzędne wierzchołka paraboli i określ czy jej ramiona są skierowane w górę czy w dół. 1. Zamień postać ogólną funkcji kwadratowej 5.

Bardziej szczegółowo