Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień."

Transkrypt

1 Metoda aalizy hierarchii Saaty ego Ważym problemem podejmowaia decyzji optymalizowaej jest często występująca hierarchiczość zagadień. Istieje wiele heurystyczych podejść do rozwiązaia tego problemu, jedak dzisiaj ajbardziej populare jest stosowaie Metody Aalizy Hierarchii (MAH) Thomasa Saat ego (Aalytic Hierarchy Process), która a przykład w Staach Zjedoczoych jest dziś stadardem. Uiwersalość metody sprawia, iż zajduje oa zastosowaie a uczeliach, w prywatych firmach, a awet w przypadku projektów rządowych. MAH opracowaa przez T. Saaty'ego w roku 977, ma za zadaie wspomagać proces decyzyjy, w którym zachodzi koieczość podjęcia decyzji z uwzględieiem wielu kryteriów. Metoda ma bardzo szerokie zastosowaia - począwszy od ekoomii i bakowości, poprzez logistykę, a szeroko pojętym marketigu skończywszy. Istotym jest, że prostota i uiwersalość metody pozwala a zastosowaie jej w życiu codzieym p. wybierając ajlepszy kredyt, pracowika, kadydata do awasu zawodowego wśród podwładych, sposobu ogrzewaia domu, czy wycey ieruchomości. Istota metody polega a hierarchiczym przedstawieiu elemetów określających ses rozwiązywaego problemu. Metoda składa się z dekompozycji problemu a coraz prostsze składiki i części, a astępie obróbki szeregu opiii osoby podejmującej decyzję za pomocą metody opartej a tzw. macierzy parzystych porówań. W rezultacie wyliczeń a podstawie macierzy oszacuje się względe stopie wzajemych relacji elemetów rozpatrywaych hierarchii oraz zostaje wybraa ajlepsza z puktu widzeia sformułowaego celu alteratywa.

2 Algorytm MAH składa się z pięciu podstawowych etapów: budowy modelu hierarchiczej struktury decyzyjej ocey ważości kryteriów wyboru, ocey alteratyw a podstawie kryterium wyboru, sprawdzeia spójości daych, ocey alteratyw. Budowa modelu hierarchiczej struktury decyzyjej. W ramach MAH powiie być wykoay rozkład problemu decyzyjego w postaci hierarchiczej struktury decyzyjej: określeie celu aalizy, zdefiiowaie kryteriów ocey, określeie alteratyw. Dae do wyboru ajlepszej karty kredytowej Sieć placów ek Oprocetowa ie kredytu Opłaty Sieć bakom a tów Okres ieopro cetowa ego kredytu mbak 9,90% 0 zl 87 4 di Bak Milleiu m 0 6,90 % 8zl 00 di Bak BPH 6.90% 70zl 0 6 di

3 KARTY KREDYT OWE SZEROKA SIEĆ PLACÓWEK NISKIE OPROCENTOWA NIE KREDYTU NISKI KOSZT PROWADZENIA KARTY ILOŚĆ BANKOMATÓW OKRES NIEOPROCENTOW NEGO KREDYTU mbank BANK MILLENIUM BANK BPH Ocea ważości kryteriów wyboru Porówaie kryteriów odbywa się w parach a podstawie subiektywego określeia, które z ich i w jakim stopiu przeważa ad drugim. Przyjmuje się przy tym 9-stopiową skalę oce ważości kryteriów: - oba elemety są rówozacze, - jede elemet ma iewielką przewagę ad drugim, - jede elemet ma umiarkowaą przewagę ad drugim, 4 - jede elemet ma silą przewagę ad drugim, - jede elemet ma zaczą przewagę ad drugim 6 - jede elemet ma silą przewagę ad drugim, 7 - jede elemet ma bardzo silą przewagę ad drugim, 8- jede elemet ma bardzo silą, ale ie absolutą przewagę ad drugim, 9 - jede elemet ma absolutą przewagę ad drugim. Ocey kryteriów o relacjach odwrotych są odwrote do podaych powyżej oce. Ocey te tworzą macierz parzystych porówań, w której wierszom i kolumą odpowiadają kokrete elemety modelu hierarchiczej struktury decyzyjej.

4 W macierzy tej a główej przekątej zajdują się wartości. Liczbę porówań, których ależy dokoać przedstawia wzór: ( ) gdzie: - liczba kryteriów c, () Utworzeie macierzy parzystych porówań kryteriów wiąże się z wyliczeiem ich względej ważości. W tym celu stosuje się wzór a współczyik względej ważości: 4 aij j () j i j a ij Suma współczyików względej ważości musi być rówa lub zbliżoa do liczby kryteriów. j () j Macierz parzystych porówań a ij K K K K4 K K /7 / / K 7 9 K / / K4 / /9 / /7 K / 7

5 Korzystając ze wzoru () liczymy koleje współczyiki: / 7 / / 7 9,96 / / / / 9 / / 7 / 7,06 7,77 4 0,49 7,77,96 7,77 7,77 0,4 7,77,06 7,77 0, ,064 0, 0,, 0, 0,6 0, 0,6 0,64, Ocea alteratyw a podstawie kryterium wyboru W tym kroku macierz parzystych porówań alteratyw tworzoa jest dla każdego kryterium. Skala oce ważości alteratyw jest podoba do stosowaej w przypadku ocey ważości kryteriów: - oba elemety rówozaczie spełiają kryterium, - jede elemet z iewielką przewagą ad drugim spełia kryterium, - jede elemet z umiarkowaą przewagą ad drugim spełia kryterium, 4 - jede elemet z umiarkowaie silą przewagą ad drugim spełia kryterium,

6 6 - jede elemet ze zaczą przewagą ad drugim spełia kryterium, 6 - jede elemet z silą przewagą ad drugim spełia kryterium, 7 - jede elemet z bardzo silą przewagą ad drugim spełia kryterium, 8 - jede elemet z bardzo silą, ale ie absolutą przewagą ad drugim spełia kryterium, 9 - jede elemet z absolutą przewagą ad drugim spełia kryterium. Ocey alteratyw o relacjach odwrotych podobie jak ocey kryteriów są odwrote do podaych powyżej oce. Liczba porówań: m( m ) c, (4) gdzie: - liczba kryteriów, m - liczba alteratyw. Macierze parzystych porówań alteratyw wykouje się tak samo jak dla kryteriów. Wzór a wyliczeie współczyika względej ważości: m m aij j m () j m m m i j a ij Suma współczyików względej ważości jest rówa lub bliska liczbie alteratyw: j m (6) j

7 7 Ocea alteratyw dla K( szeroka sieć placówek) mbak Milleium BPH mbak / / Milleium / BPH / / 0,4,466,876 0,4,876,876,466,876 0,7 0,774,909 Ocea alteratyw dla K(iskie oprocetowaie kredytu) mbak Milleium BPH mbak / Milleium BPH / /,876,9 0,77 0,4

8 8 Ocea alteratyw dla K(iski koszt prowadzeia karty) mbak Milleium BPH mbak / Milleium 7 BPH / /7 4, 0,78,79 4, 0,6 0,6 4, Ocea alteratyw dla K4(ilość bakomatów) mbak Milleium BPH mbak /7 / Milleium 7 BPH / 0,4,9 0,6 Ocea alteratyw dla K (ajdłuższy okres ieoprocetowaego kredytu) mbak Milleium BPH mbak / Milleium / /7 BPH 7

9 9 0,6 0,4,9 Sprawdzeie spójości daych Sprawdzeie spójości daych odbywa się przy użyciu współczyika iespójości i stosuku iespójości. Jest bardzo ważym etapem budowaia algorytmu, poieważ moża sprawdzić czy ocey dla kryteriów i alteratyw są prawidłowo dobrae. Współczyik iespójości i stosuek iespójości daych sprawdza się za pomocą wzoru (7) i (9) : CI max (7) gdzie: CI - współczyik iespójości, max - maksymala wartość własa macierzy, - liczba porówywaych elemetów Maksymalą wartość własą macierzy: max a ij j, (8) j i gdzie: a ij i j - współczyik względej ważości. - suma wierszy macierzy parzystych porówań, CI CR RI, (9)

10 0 gdzie: CR - stosuek iespójości, CI - współczyik iespójości, RI - współczyik losowej zgodości, którego wartość zależy od liczby porówywaych elemetów (tabela ) Tabela. Współczyik losowej zgodości RI RI 0 0 0, 0,89,,,,40,4,49 Współczyik CI mówi o tym, w jakim stopiu spójie postępują decydeci przy sporządzaiu macierzy parzystych porówań. Thomas Saaty zasugerował, żeby macierz tą odrzucić i proces ustalaia oce kryteriów i alteratyw podjąć a owo, gdy CI i CR przekracza 0,. Wyliczamy max : ( 7 / ) 0,,7 (/7 / /9 /), 4,8 (/ / ) 0,6 6,97 ( 9 7) 0,6 4, max =6,4/=,09, =. (/ / /7 ), 6,47 6,44 Wyliczamy = CI CR,09 4 0,077, 0,077 0, 0,069 0, max odpowiedio dla kolejych kryteriów.

11 Dla K. ( ) 0,7,8 (/ (/ max =9,4/=,04 Dla K. max =,08 CI ) 0,774,4 / ),909,97 9,4 CR CI CR,04 0,0 0,8,08 0,09 0,8 0,0 0, 0,09 0, 0,09 0, 0,0 0, Ocea alteratyw Ocea alteratyw odbywa się a podstawie zestawieia współczyików względej ważości kryteriów wyboru i oce alteratyw w oparciu o kryterium wyboru. Ocea ta pozwala a wybór ajlepszej alteratywy spośród wszystkich rozpatrywaych. Wartości ocey alteratyw określa się przy wykorzystaiu astępującego wzoru: ei ( j j ij ) (0) gdzie: e i - wartość ocey i - tej alteratywy, - liczba kryteriów, j - współczyik względej ważości j - tego kryterium, ij - współczyik względej ważości i - tej alteratywy dla j - tego kryterium

12 e e e 0, 0,7, 0,77 0,6 0,78 0,6 0,4, 0,6,6 0, 0,774,,9 0,6 0,6,9, 0,4 7,04 0,,909, 0,4 0,6 0,6 0,6 0,6,,9 4,69 Odpowiedź Z otrzymaych wyików dostajemy iformację, iż ajkorzystiejsza dla wybierającego jest oferta e, czyli Milleium Bak. Rozpatrywaa MAH posiada dwie poważe wady:. Przy zmiaie ilości alteratyw iezbęde jest tworzeie wszystkich macierzy dla poziomu alteratyw od owa. Niestety przy tym ie jest możliwe skorzystaie z iformacji otrzymaej wcześiej, co z kolei zmusza do kompletego przeliczeia wszystkich kryteriów dla wyboru alteratyw od owa. W przypadku koieczości pracy z dużym i szybko zmieiającym się zbiorem alteratyw (aaliza ofert zapropoowaych dużej hadlowej firmy) ta wada MAH staje się wadą krytyczą.. Przy stosowaiu pierwotej iformacji o alteratywach, iezależie od tego czy miała oa charakter ilościowy, czy też jakościowy, dla tworzeia macierzy porówań parami cała iformacja musi być przekształcoa w typ jakościowy, wyrażający jakościowe ocey jedej alteratywy w stosuku do drugiej. Strata iformacji ilościowej w tym wypadku może powodować błęde, awet fatale rezultaty podczas podejmowaej decyzji.

13 Przykład. Jeżeli jede dom kosztuje $0 tys. a iy $0 ml, wtedy w macierzy porówań parami w kratce odpowiadającej kryterium kosztu ajprawdopodobiej pojawi się cyfra 9, odzwierciedlająca silą przewagę pierwszego domu ad drugim pod względem cey. Z iej stroy cea domu $0 ml dla przeciętie zamożej rodziy, może być ie tylko mało przyjema, ale po prostu ie do rozważeia. Jedak przy używaiu MAH przy miej więcej pożądaych wartościach iych czyików charakteryzujących jakość domu (w praktyce tak powio być, bo dom o ceie $0 ml musi być względem każdego z kryteriów oprócz fiasowego, lepszym od domu kosztującego $0 tyś) może okazać się, że drugi dom, a który rodzię w ogóle ie stać jest lepszy pod względem kryterium globalego. Jase, że takie wyiki aalizy są po prostu absurdale.

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień.

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień. Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień. Istnieje wiele heurystycznych podejść do rozwiązania tego problemu,

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,

Bardziej szczegółowo

Parametryzacja rozwiązań układu równań

Parametryzacja rozwiązań układu równań Parametryzacja rozwiązań układu rówań Przykład: ozwiąż układy rówań: / 2 2 6 2 5 2 6 2 5 //( / / 2 2 9 2 2 4 4 2 ) / 4 2 2 5 2 4 2 2 Korzystając z postaci schodkowej (środkowa macierz) i stosując podstawiaie

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

MACIERZE STOCHASTYCZNE

MACIERZE STOCHASTYCZNE MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fiasowy gospodarki Zajęcia r 5 Matematyka fiasowa Wartość pieiądza w czasie 1 złoty posiaday dzisiaj jest wart więcej iż 1 złoty posiaday w przyszłości, p. za rok. Powody: Suma posiadaa dzisiaj

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu. Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują

Bardziej szczegółowo

Jak skutecznie reklamować towary konsumpcyjne

Jak skutecznie reklamować towary konsumpcyjne K Stowarzyszeie Kosumetów Polskich Jak skuteczie reklamować towary kosumpcyje HALO, KONSUMENT! Chcesz pozać swoje praw a? Szukasz pomoc y? ZADZWOŃ DO INFOLINII KONSUMENCKIEJ BEZPŁATNY TELEFON 0 800 800

Bardziej szczegółowo

O liczbach naturalnych, których suma równa się iloczynowi

O liczbach naturalnych, których suma równa się iloczynowi O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINOWYCH

UKŁADY RÓWNAŃ LINOWYCH Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a

Bardziej szczegółowo

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów

Bardziej szczegółowo

( ) WŁASNOŚCI MACIERZY

( ) WŁASNOŚCI MACIERZY .Kowalski własości macierzy WŁSNOŚC MCERZY Własości iloczyu i traspozycji a) możeie macierzy jest łącze, tz. (C) ()C, dlatego zapis C jest jedozaczy, b) możeie macierzy jest rozdziele względem dodawaia,

Bardziej szczegółowo

INWESTYCJE MATERIALNE

INWESTYCJE MATERIALNE OCENA EFEKTYWNOŚCI INWESTYCJI INWESTCJE: proces wydatkowaia środków a aktywa, z których moża oczekiwać dochodów pieiężych w późiejszym okresie. Każde przedsiębiorstwo posiada pewą liczbę możliwych projektów

Bardziej szczegółowo

ZADANIA - ZESTAW 2. Zadanie 2.1. Wyznaczyć m (n)

ZADANIA - ZESTAW 2. Zadanie 2.1. Wyznaczyć m (n) ZADANIA - ZESTAW Zadaie.. Wyzaczyć m (), D ( ) dla procesu symetryczego (p = q =,) błądzeia przypadkowego. Zadaie.. Narysuj graf łańcucha Markowa symetrycze (p = q =,) błądzeie przypadkowe z odbiciem.

Bardziej szczegółowo

Scenariusz lekcji: Kombinatoryka utrwalenie wiadomości

Scenariusz lekcji: Kombinatoryka utrwalenie wiadomości Sceariusz lekcji: Kombiatoryka utrwaleie wiadomości 1 1. Cele lekcji a) Wiadomości Uczeń: za pojęcia: permutacja, wariacja i kombiacja, zdarzeie losowe, prawdopodobieństwo, za iezbęde wzory. b) Umiejętości

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E20 BADANIE UKŁADU

Bardziej szczegółowo

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i = Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka

Bardziej szczegółowo

Twierdzenie Cayleya-Hamiltona

Twierdzenie Cayleya-Hamiltona Twierdzeie Cayleya-Hamiltoa Twierdzeie (Cayleya-Hamiltoa): Każda macierz kwadratowa spełia swoje włase rówaie charakterystycze. D: Chcemy pokazać, że jeśli wielomiaem charakterystyczym macierzy A jest

Bardziej szczegółowo

PODSTAWY MATEMATYKI FINANSOWEJ

PODSTAWY MATEMATYKI FINANSOWEJ PODSTAWY MATEMATYKI INANSOWEJ WZORY I POJĘCIA PODSTAWOWE ODSETKI, A STOPA PROCENTOWA KREDYTU (5) ODSETKI OD KREDYTU KWOTA KREDYTU R R- rocza stopa oprocetowaia kredytu t - okres trwaia kredytu w diach

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

Elementy rach. macierzowego Materiały pomocnicze do MES Strona 1 z 7. Elementy rachunku macierzowego

Elementy rach. macierzowego Materiały pomocnicze do MES Strona 1 z 7. Elementy rachunku macierzowego Elemety rach macierzowego Materiały pomocicze do MES Stroa z 7 Elemety rachuku macierzowego Przedstawioe poiżej iformacje staowią krótkie przypomieie elemetów rachuku macierzowego iezbęde dla zrozumieia

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n 4n n 1

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n 4n n 1 30. Obliczyć wartość graicy ( 0 ( ( ( 4 +1 + 1 4 +3 + 4 +9 + 3 4 +7 +...+ 1 4 +3 + 1 ( ( 4 +3. Rozwiązaie: Ozaczmy sumę występującą pod zakiem graicy przez b. Zamierzamy skorzystać z twierdzeia o trzech

Bardziej szczegółowo

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa Matematyka fiasowa 8.05.0 r. Komisja Egzamiacyja dla Aktuariuszy LX Egzami dla Aktuariuszy z 8 maja 0 r. Część I Matematyka fiasowa WERJA EU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut

Bardziej szczegółowo

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja Iwestycja Wykład Celowo wydatkowae środki firmy skierowae a powiększeie jej dochodów w przyszłości. Iwestycje w wyiku użycia środków fiasowych tworzą lub powiększają majątek rzeczowy, majątek fiasowy i

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

Wykład 11. a, b G a b = b a,

Wykład 11. a, b G a b = b a, Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada

Bardziej szczegółowo

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN ZAŁĄCZNIK B GENERALNA DYREKCJA DRÓG PUBLICZNYCH Biuro Studiów Sieci Drogowej SYSTEM OCENY STANU NAWIERZCHNI SOSN WYTYCZNE STOSOWANIA - ZAŁĄCZNIK B ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2012 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2012 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY Cetrala Komisja Egzamiacyja Arkusz zawiera iformacje prawie chroioe do mometu rozpoczęcia egzamiu. Układ graficzy CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce a aklejkę z kodem EGZAMIN MATURALNY Z INFORMATYKI

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy

Bardziej szczegółowo

D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assignment Problem)

D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assignment Problem) D. Miszczyńska, M.Miszczyński KBO UŁ, Badaia operacyje (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assigmet Problem) Bliskim "krewiakiem" ZT (w sesie podobieństwa modelu decyzyjego) jest zagadieie

Bardziej szczegółowo

Jak obliczać podstawowe wskaźniki statystyczne?

Jak obliczać podstawowe wskaźniki statystyczne? Jak obliczać podstawowe wskaźiki statystycze? Przeprowadzoe egzamiy zewętrze dostarczają iformacji o tym, jak ucziowie w poszczególych latach opaowali umiejętości i wiadomości określoe w stadardach wymagań

Bardziej szczegółowo

Egzamin maturalny z matematyki CZERWIEC 2011

Egzamin maturalny z matematyki CZERWIEC 2011 Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr

Bardziej szczegółowo

TRANSFORMACJA DO UKŁADU 2000 A PROBLEM ZGODNOŚCI Z PRG

TRANSFORMACJA DO UKŁADU 2000 A PROBLEM ZGODNOŚCI Z PRG Tomasz ŚWIĘTOŃ 1 TRANSFORMACJA DO UKŁADU 2000 A ROBLEM ZGODNOŚCI Z RG Na mocy rozporządzeia Rady Miistrów w sprawie aństwowego Systemu Odiesień rzestrzeych już 31 grudia 2009 roku upływa termi wykoaia

Bardziej szczegółowo

Kolektory słoneczne Jeden dach, jedno wzornictwo idealne dopasowanie

Kolektory słoneczne Jeden dach, jedno wzornictwo idealne dopasowanie Kolektory słoecze Jede dach, jedo wzorictwo ideale dopasowaie Oferta waża od 01.0.010 Atrakcyjy wygląd i fukcjoalość VELUX od blisko 70 lat rozwija swoje produkty, zapewiając ich harmoije połączeie z architekturą

Bardziej szczegółowo

Struktura czasowa stóp procentowych (term structure of interest rates)

Struktura czasowa stóp procentowych (term structure of interest rates) Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,

Bardziej szczegółowo

Artykuł techniczny CVM-NET4+ Zgodny z normami dotyczącymi efektywności energetycznej

Artykuł techniczny CVM-NET4+ Zgodny z normami dotyczącymi efektywności energetycznej 1 Artykuł techiczy Joatha Azañó Dział ds. Zarządzaia Eergią i Jakości Sieci CVM-ET4+ Zgody z ormami dotyczącymi efektywości eergetyczej owy wielokaałowy aalizator sieci i poboru eergii Obeca sytuacja Obece

Bardziej szczegółowo

ANALIZA DANYCH DYSKRETNYCH

ANALIZA DANYCH DYSKRETNYCH ZJAZD ESTYMACJA Jest to metoda wioskowaia statystyczego. Umożliwia oa oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej estymatorem,

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM RACHUNEK EKONOMICZNY W ELEKTROENERGETYCE INSTRUKCJA DO ĆWICZENIA

Bardziej szczegółowo

Coraz większe wymagania jakości produkcji oraz

Coraz większe wymagania jakości produkcji oraz Dobór oprogramowaia do modelowaia i symulacji procesów wytwarzaia Ryszard Zdaowicz* Ogrome zapotrzebowaie a programy symulacyje powoduje ich ciągły rozwój, ale także coraz większą różorodość oprogramowaia

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

Analiza potencjału energetycznego depozytów mułów węglowych

Analiza potencjału energetycznego depozytów mułów węglowych zaiteresowaia wykorzystaiem tej metody w odiesieiu do iych droboziaristych materiałów odpadowych ze wzbogacaia węgla kamieego ależy poszukiwać owych, skutecziej działających odczyików. Zdecydowaie miej

Bardziej szczegółowo

ŚLĄSKA LIGA BIZNESOWA CASE BIZNESOWY: PODSTAWY ANALIZ FINANSOWYCH ORAZ SZACUNKI PRZYCHODÓW I KOSZTÓW ZADANIE BIZNESOWE NR 5

ŚLĄSKA LIGA BIZNESOWA CASE BIZNESOWY: PODSTAWY ANALIZ FINANSOWYCH ORAZ SZACUNKI PRZYCHODÓW I KOSZTÓW ZADANIE BIZNESOWE NR 5 ŚLĄSKA LIGA BIZNESOWA CASE BIZNESOWY: PODSTAWY ANALIZ FINANSOWYCH ORAZ SZACUNKI PRZYCHODÓW I KOSZTÓW ZADANIE BIZNESOWE NR 5 Pierwszym etapem prac jest określeie polityki ceowej i progoz sprzedaży (wypełij

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki Marzec 2012

Materiał ćwiczeniowy z matematyki Marzec 2012 Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0

Bardziej szczegółowo

WIELOATRYBUTOWE PODEJMOWANIE DECYZJI: ANALYTIC HIERARCHY PROCESS

WIELOATRYBUTOWE PODEJMOWANIE DECYZJI: ANALYTIC HIERARCHY PROCESS WIELOATRYBUTOWE PODEJMOWANIE DECYZJI: ANALYTIC HIERARCHY PROCESS 1.1. ISTOTA METODY AHP... 1 Rysunek 1. Etapy rozwiązywania problemów z pomocą AHP... 3 Rysunek 2. Hierarchia decyzyjna AHP... 4 Tabela 1.

Bardziej szczegółowo

KOMPETENCJE EKSPERTÓW W INFORMATYCZNYM SYSTEMIE WSPOMAGANIA DECYZJI

KOMPETENCJE EKSPERTÓW W INFORMATYCZNYM SYSTEMIE WSPOMAGANIA DECYZJI KOMPETENCJE EKSPERTÓW W INFORMATYCZNYM SYSTEMIE WSPOMAGANIA DECYZJI Ryszard Budziński, Marta Fukacz, Jarosław Becker, Uiwersytet Szczeciński, Wydział Nauk Ekoomiczych i Zarządzaia, Istytut Iformatyki w

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy 12. Dowieść, że istieje ieskończeie wiele par liczb aturalych k < spełiających rówaie ( ) ( ) k. k k +1 Stosując wzór a wartość współczyika dwumiaowego otrzymujemy ( ) ( )!! oraz k k! ( k)! k +1 (k +1)!

Bardziej szczegółowo

Wpływ religijności na ukształtowanie postawy wobec eutanazji The impact of religiosity on the formation of attitudes toward euthanasia

Wpływ religijności na ukształtowanie postawy wobec eutanazji The impact of religiosity on the formation of attitudes toward euthanasia Ewelia Majka, Katarzya Kociuba-Adamczuk, Mariola Bałos Wpływ religijości a ukształtowaie postawy wobec eutaazji The impact of religiosity o the formatio of attitudes toward euthaasia Ewelia Majka 1, Katarzya

Bardziej szczegółowo

1.3. Największa liczba naturalna (bez znaku) zapisana w dwóch bajtach to a) b) 210 c) d) 32767

1.3. Największa liczba naturalna (bez znaku) zapisana w dwóch bajtach to a) b) 210 c) d) 32767 Egzami maturaly z iformatyki Zadaie. (0 pkt) Każdy z puktów tego zadaia zawiera stwierdzeie lub pytaie. Zazacz (otaczając odpowiedią literę kółkiem) właściwą kotyuację zdaia lub poprawą odpowiedź. W każdym

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

Statystyka opisowa - dodatek

Statystyka opisowa - dodatek Statystyka opisowa - dodatek. *Jak obliczyć statystyki opisowe w dużych daych? Liczeie statystyk opisowych w dużych daych może sprawiać problemy. Dla przykładu zauważmy, że aiwa implemetacja średiej arytmetyczej

Bardziej szczegółowo

Harmonogramowanie linii montażowej jako element projektowania cyfrowej fabryki

Harmonogramowanie linii montażowej jako element projektowania cyfrowej fabryki 52 Sławomir Herma Sławomir HERMA atedra Iżyierii Produkcji, ATH w Bielsku-Białej E mail: slawomir.herma@gmail.com Harmoogramowaie liii motażowej jako elemet projektowaia cyfrowej fabryki Streszczeie: W

Bardziej szczegółowo

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D. Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)

Bardziej szczegółowo

TESTY LOSOWOŚCI. Badanie losowości próby - test serii.

TESTY LOSOWOŚCI. Badanie losowości próby - test serii. TESTY LOSOWOŚCI Badaie losowości próby - test serii. W wielu zagadieiach wioskowaia statystyczego istotym założeiem jest losowość próby. Prostym testem do weryfikacji tej własości jest test serii. 1 Dla

Bardziej szczegółowo

8. Optymalizacja decyzji inwestycyjnych

8. Optymalizacja decyzji inwestycyjnych 8. Optymalizacja decyzji iwestycyjych 8. Wprowadzeie W wielu różych sytuacjach, w tym rówież w czasie wyboru iwestycji do realizacji, podejmujemy decyzje. Sytuacje takie azywae są sytuacjami decyzyjymi.

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI Miejsce a aklejkę z kodem szkoły dysleksja MIN-R_P-072 EGZAMIN MATURALNY Z INFORMATYKI MAJ ROK 2007 POZIOM ROZSZERZONY CZĘŚĆ I Czas pracy 90 miut Istrukcja dla zdającego. Sprawdź, czy arkusz egzamiacyjy

Bardziej szczegółowo

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej 3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi

Bardziej szczegółowo

Wprowadzenie. metody elementów skończonych

Wprowadzenie. metody elementów skończonych Metody komputerowe Wprowadzeie Podstawy fizycze i matematycze metody elemetów skończoych Literatura O.C.Ziekiewicz: Metoda elemetów skończoych. Arkady, Warszawa 972. Rakowski G., acprzyk Z.: Metoda elemetów

Bardziej szczegółowo

40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40.

40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40. Portfele polis Poieważ składka jest ustalaa jako wartość oczekiwaa rzeczywistego, losowego kosztu ubezpieczeia, więc jest tym bliższa średiej wydatków im większa jest liczba ubezpieczoych Polisy grupuje

Bardziej szczegółowo

Definicja interpolacji

Definicja interpolacji INTERPOLACJA Defiicja iterpolacji Defiicja iterpolacji 3 Daa jest fukcja y = f (x), x[x 0, x ]. Zamy tablice wartości tej fukcji, czyli: f ( x ) y 0 0 f ( x ) y 1 1 Defiicja iterpolacji Wyzaczamy fukcję

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = =

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = = WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Wprowadzeie. Przy przejśiu światła z jedego ośrodka do drugiego występuje zjawisko załamaia zgodie z prawem Selliusa siα

Bardziej szczegółowo

EKONOMETRIA. Temat wykładu: Co to jest model ekonometryczny? Dobór zmiennych objaśniających w modelu ekonometrycznym CZYM ZAJMUJE SIĘ EKONOMETRIA?

EKONOMETRIA. Temat wykładu: Co to jest model ekonometryczny? Dobór zmiennych objaśniających w modelu ekonometrycznym CZYM ZAJMUJE SIĘ EKONOMETRIA? EKONOMETRIA Temat wykładu: Co to jest model ekoometryczy? Dobór zmieych objaśiających w modelu ekoometryczym Prowadzący: dr iż. Zbigiew TARAPATA e-mail: Zbigiew.Tarapata Tarapata@isi.wat..wat.edu.pl http://

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2 (LUX), lato 2017/18. a n n = 10.

Jarosław Wróblewski Analiza Matematyczna 2 (LUX), lato 2017/18. a n n = 10. Czy istieje ciąg (a ) taki, że (podać przykład lub dowieść, że ie istieje) : 576. a > 1 dla ieskończeie wielu, a > 0, szereg a jest zbieży. N 577. a = 1 2 dla ieskończeie wielu, a = 10. 578. a 2 = 1 N,

Bardziej szczegółowo

Zeszyty naukowe nr 9

Zeszyty naukowe nr 9 Zeszyty aukowe r 9 Wyższej Szkoły Ekoomiczej w Bochi 2011 Piotr Fijałkowski Model zależości otowań giełdowych a przykładzie otowań ołowiu i spółki Orzeł Biały S.A. Streszczeie Niiejsza praca opisuje próbę

Bardziej szczegółowo

Miary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy.

Miary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy. MIARY POŁOŻENIA I ROZPROSZENIA WYNIKÓW SERII POMIAROWYCH Miary położeia (tedecji cetralej) to tzw. miary przecięte charakteryzujące średi lub typowy poziom wartości cechy. Średia arytmetycza: X i 1 X i,

Bardziej szczegółowo

I. Podzielność liczb całkowitych

I. Podzielność liczb całkowitych I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE. Strona 1

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE.  Strona 1 KURS STATYSTYKA Lekcja 3 Parametrycze testy istotości ZADANIE DOMOWE www.etrapez.pl Stroa Część : TEST Zazacz poprawą odpowiedź (tylko jeda jest prawdziwa). Pytaie Statystykę moża rozumieć jako: a) próbkę

Bardziej szczegółowo

Niepewności pomiarowe

Niepewności pomiarowe Niepewości pomiarowe Obserwacja, doświadczeie, pomiar Obserwacja zjawisk fizyczych polega a badaiu ych zjawisk w warukach auralych oraz a aalizie czyików i waruków, od kórych zjawiska e zależą. Waruki

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia

Bardziej szczegółowo

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem:

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem: Relacje rekurecyje Defiicja: Niech =,,,... będzie astępująco zdefiiowaym ciągiem: () = r, = r,..., k = rk, gdzie r, r,..., r k są skalarami, () dla k, = a + a +... + ak k, gdzie a, a,..., ak są skalarami.

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 1 i 2

STATYSTYKA OPISOWA WYKŁAD 1 i 2 STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest

Bardziej szczegółowo

Wybór systemu klasy ERP metod AHP

Wybór systemu klasy ERP metod AHP BIULETYN INSTYTUTU SYSTEMÓW INFORMATYCZNYCH 5 3-22 (200) Wybór systemu klasy ERP metod AHP A. CHOJNACI, O. SZWEDO e-mail: adrzej.chojacki@wat.edu.pl Wydzia Cyberetyki WAT ul. S. aliskiego 2, 00-908 Warszawa

Bardziej szczegółowo

Internetowe Kółko Matematyczne 2004/2005

Internetowe Kółko Matematyczne 2004/2005 Iteretowe Kółko Matematycze 2004/2005 http://www.mat.ui.toru.pl/~kolka/ Zadaia dla szkoły średiej Zestaw I (20 IX) Zadaie 1. Daa jest liczba całkowita dodatia. Co jest większe:! czy 2 2? Zadaie 2. Udowodij,

Bardziej szczegółowo

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r.

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r. Matematyka fiasowa 08.10.2007 r. Komisja Egzamiacyja dla Aktuariuszy XLIII Egzami dla Aktuariuszy z 8 paździerika 2007 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:...

Bardziej szczegółowo

BADANIA DOCHODU I RYZYKA INWESTYCJI

BADANIA DOCHODU I RYZYKA INWESTYCJI StatSoft Polska, tel. () 484300, (60) 445, ifo@statsoft.pl, www.statsoft.pl BADANIA DOCHODU I RYZYKA INWESTYCJI ZA POMOCĄ ANALIZY ROZKŁADÓW Agieszka Pasztyła Akademia Ekoomicza w Krakowie, Katedra Statystyki;

Bardziej szczegółowo

*Q019* Deklaracja przystąpienia do grupowego ubezpieczenia na życie z rozszerzoną ankietą medyczną. Ubezpieczający. Ubezpieczony

*Q019* Deklaracja przystąpienia do grupowego ubezpieczenia na życie z rozszerzoną ankietą medyczną. Ubezpieczający. Ubezpieczony *Q019* Deklaracja przystąpieia do grupowego ubezpieczeia a życie z rozszerzoą akietą medyczą Nr polisy ubezpieczeia Nr podgrupy Ubezpieczający Nazwa firmy Ubezpieczoy Pracowik Małżoek Pełoletie Dziecko

Bardziej szczegółowo

Wytwarzanie energii odnawialnej

Wytwarzanie energii odnawialnej Adrzej Nocuñ Waldemar Ostrowski Adrzej Rabszty Miros³aw bik Eugeiusz Miklas B³a ej yp Wytwarzaie eergii odawialej poprzez współspalaie biomasy z paliwami podstawowymi w PKE SA W celu osi¹giêcia zawartego

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA NAUKI I SZKOLNICTWA WYŻSZEGO 1) z dnia 21 października 2011 r.

ROZPORZĄDZENIE MINISTRA NAUKI I SZKOLNICTWA WYŻSZEGO 1) z dnia 21 października 2011 r. Dzieik Ustaw Nr 251 14617 Poz. 1508 1508 ROZPORZĄDZENIE MINISTRA NAUKI I SZKOLNICTWA WYŻSZEGO 1) z dia 21 paździerika 2011 r. w sprawie sposobu podziału i trybu przekazywaia podmiotowej dotacji a dofiasowaie

Bardziej szczegółowo

1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o

1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o 1. Wioskowaie statystycze. W statystyce idetyfikujemy: Cecha-Zmiea losowa Rozkład cechy-rozkład populacji Poadto miaem statystyki określa się także fukcje zmieych losowych o tym samym rozkładzie. Rozkłady

Bardziej szczegółowo

Kluczowy aspekt wyszukiwania informacji:

Kluczowy aspekt wyszukiwania informacji: Wyszukiwaieiformacjitoproceswyszukiwaiawpewymzbiorze tychwszystkichdokumetów,którepoświęcoesąwskazaemuw kweredzietematowi(przedmiotowi)lubzawierająiezbędedla Wg M. A. Kłopotka: użytkowikafaktyiiformacje.

Bardziej szczegółowo

Metody oceny projektów inwestycyjnych

Metody oceny projektów inwestycyjnych Metody ocey projektów iwestycyjych PRZEDMIIOT : EFEKTYWNOŚĆ SYSTEMÓW IINFORMATYCZNYCH Pla wykładu Temat: Metody ocey projektów iwestycyjych 5 FINANSOWE METODY OCENY PROJEKTÓW INWESTYCYJNYCH... 4 5.1. WPROWADZENIE...

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji ( ) : m f x = Ax ( A) { Ax x } = Defiicja: Zakresem macierzy A Œ âm azywamy

Bardziej szczegółowo

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to

Bardziej szczegółowo

Algorytmy I Struktury Danych Prowadząca: dr Hab. inż. Małgorzata Sterna. Sprawozdanie do Ćwiczenia 1 Algorytmy sortowania (27.02.

Algorytmy I Struktury Danych Prowadząca: dr Hab. inż. Małgorzata Sterna. Sprawozdanie do Ćwiczenia 1 Algorytmy sortowania (27.02. Poiedziałki 11.45 Grupa I3 Iformatyka a wydziale Iformatyki Politechika Pozańska Algorytmy I Struktury Daych Prowadząca: dr Hab. iż. Małgorzata Stera Sprawozdaie do Ćwiczeia 1 Algorytmy sortowaia (27.2.12)

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów

KADD Metoda najmniejszych kwadratów Metoda ajmiejszych kwadratów Pomiary bezpośredie o rówej dokładości o różej dokładości średia ważoa Pomiary pośredie Zapis macierzowy Dopasowaie prostej Dopasowaie wielomiau dowolego stopia Dopasowaie

Bardziej szczegółowo

5. Zasada indukcji matematycznej. Dowody indukcyjne.

5. Zasada indukcji matematycznej. Dowody indukcyjne. Notatki do lekcji, klasa matematycza Mariusz Kawecki, II LO w Chełmie 5. Zasada idukcji matematyczej. Dowody idukcyje. W rozdziale sformułowaliśmy dla liczb aturalych zasadę miimum. Bezpośredią kosekwecją

Bardziej szczegółowo

Wpływ warunków eksploatacji pojazdu na charakterystyki zewnętrzne silnika

Wpływ warunków eksploatacji pojazdu na charakterystyki zewnętrzne silnika POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ MECHANICZNY Katedra Budowy i Eksploatacji Maszy Istrukcja do zajęć laboratoryjych z przedmiotu: EKSPLOATACJA MASZYN Wpływ waruków eksploatacji pojazdu a charakterystyki

Bardziej szczegółowo

AUDYT SYSTEMU GRZEWCZEGO

AUDYT SYSTEMU GRZEWCZEGO Wytycze do audytu wykoao w ramach projektu Doskoaleie poziomu edukacji w samorządach terytorialych w zakresie zrówoważoego gospodarowaia eergią i ochroy klimatu Ziemi dzięki wsparciu udzieloemu przez Isladię,

Bardziej szczegółowo

Ekonometria Mirosław Wójciak

Ekonometria Mirosław Wójciak Ekoometria Mirosław Wójciak Literatura obowiązkowa Barczak A, ST. Biolik J, Podstawy Ekoometrii, Wydawictwo AE Katowice, Katowice 1998 Dziechciarz J. Ekoometria Metody, przykłady, zadaia (wyd. ) Kukuła

Bardziej szczegółowo

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW.

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW. Statytycza ocea wyików pomiaru STATYSTYCZNA OCENA WYNIKÓW POMIARÓW CEL ĆWICZENIA Celem ćwiczeia jet: uświadomieie tudetom, że każdy wyik pomiaru obarczoy jet błędem o ie zawze zaej przyczyie i wartości,

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA. Wykład wstępy. Teoria prawdopodobieństwa i elemety kombiatoryki 3. Zmiee losowe 4. Populacje i próby daych 5. Testowaie hipotez i estymacja parametrów 6. Test t 7. Test 8. Test

Bardziej szczegółowo

Optymalizacja sieci powiązań układu nadrzędnego grupy kopalń ze względu na koszty transportu

Optymalizacja sieci powiązań układu nadrzędnego grupy kopalń ze względu na koszty transportu dr hab. iż. KRYSTIAN KALINOWSKI WSIiZ w Bielsku Białej, Politechika Śląska dr iż. ROMAN KAULA Politechika Śląska Optymalizacja sieci powiązań układu adrzędego grupy kopalń ze względu a koszty trasportu

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY Cetrala Komisja Egzamiacyja Arkusz zawiera iformacje prawie chroioe do mometu rozpoczęcia egzamiu. Układ graficzy CKE 2010 KOD WISUJE ZDAJĄCY ESEL Miejsce a aklejkę z kodem EGZAMIN MATURALNY Z INORMATYKI

Bardziej szczegółowo

obie z mocy ustawy. owego.

obie z mocy ustawy. owego. Kwartalik Prawo- o-ekoomia 3/015 Aa Turczak Separacja po faktycza lub prawa obie z mocy ustawy cza, ie ozacza defiitywego owego 1 75 1 61 3 Art 75 88 Kwartalik Prawo- o-ekoomia 3/015 zaspokajaia usp iedostatku

Bardziej szczegółowo

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA 1. ZAMAWIAJĄCY TALEX S.A., ul. Karpia 27 d, 61 619 Pozań, e mail: cetrumit@talex.pl 2. INFORMACJE OGÓLNE 2.1. Talex S.A. zaprasza do udziału w postępowaiu przetargowym,

Bardziej szczegółowo

1 Układy równań liniowych

1 Układy równań liniowych Katarzya Borkowska, Wykłady dla EIT, UTP Układy rówań liiowych Defiicja.. Układem U m rówań liiowych o iewiadomych azywamy układ postaci: U: a x + a 2 x 2 +... + a x =b, a 2 x + a 22 x 2 +... + a 2 x =b

Bardziej szczegółowo

Zarządzanie finansami

Zarządzanie finansami STOWARZYSZENIE KSIĘGOWYCH W POLSCE ODDZIAŁ W POZNANIU Zarządzaie fiasami DR LESZEK CZAPIEWSKI - POZNAŃ - WARTOŚĆ PIENIĄDZA W CZASIE Pieiądze posiadają określoą wartość. Wartość w diu dzisiejszym omialej

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadaie 1 Rzucamy 4 kości do gry (uczciwe). Prawdopodobieństwo zdarzeia iż ajmiejsza uzyskaa a pojedyczej kości liczba oczek wyiesie trzy (trzy oczka mogą wystąpić a więcej iż jedej kości) rówe jest: (A)

Bardziej szczegółowo

Liczby pierwsze o szczególnym. rozmieszczeniu cyfr:

Liczby pierwsze o szczególnym. rozmieszczeniu cyfr: Liczby pierwsze o szczególym rozmieszczeiu cyfr Adrzej Nowicki Wydział Matematyki i Iformatyki, Uiwersytetu M. Koperika w Toruiu. (aow @ mat.ui.toru.pl) 30 paździerika 1999 M. Szurek w książce [4] podaje

Bardziej szczegółowo