MATEMATYCZNY MODEL SYNCHRONIZOWANEGO AUTOOSCYLATORA W STANIE USTALONYM

Wielkość: px
Rozpocząć pokaz od strony:

Download "MATEMATYCZNY MODEL SYNCHRONIZOWANEGO AUTOOSCYLATORA W STANIE USTALONYM"

Transkrypt

1 Zesyty Naukowe WSInf Vo 5, Nr, 26 Bohdan Mandij,2, Roman Żeak 2 Wyżsa Skoła Informatyki w Łodi, Katedra Teeinformatyki, u. Rgowska 7a, Łódź 2 Poitechnika Lwowska, Instytyt Teekomunikacji, Radioeektroniki i Techniki Eektronicnej u. Profesorska 2, 793, Lwów, emai: bmandiy@oynet.viv.ua MATEMATCZN MODEL SNCHRONIZOWANEGO AUTOOSCLATORA W STANIE USTALONM Strescenie - W artykue roatrono metodę konstruowania matematycnego modeu MM) synchroniowanego autooscyatora harmonicnych drgań w stanie ustaonym. Omawiana metoda bauje na wykorystaniu metody naięć węłowych i asymtotycnej metody małego arametru. W racy redstawiono rykład anaiy tranystorowego autooscyatora w trybie synchroniacji. Wstę Zjawisko synchroniacji autooscyatora ewnętrną siłą harmonicną jest seroko stosowane w systemach teekomunikacyjnych. Zadanie rojektowania autooscyatora renaconego do racy w trybie synchroniacji, w odróżnieniu od autooscyatora niesynchroniowanego autonomicnego), oega nie tyko na wynaceniu wartości arametrów składników jego obwodu aewniających bewarunkową samowbudność obwodu ora okreśoną wartość amitudy i cęstotiwości drgań w stanie ustaonym, ec również na okreśeniu serokości asma cęstotiwości w którym może wystąić jawisko synchroniacji. W racy [] odano metodę konstruowania matematycnego modeu autonomicnego autooscyatora drgań harmonicnych wykorystaniem asymtotycnej metody małego arametru ora metody naięć węłowych. Skonstruowany w taki sosób matematycny mode wgędnie łatwo może być reaiowany a omocą standardowych akietów orogramowania MATCAD, MATLAB, DELPHI i in. ora 9

2 Matematycny mode synchroniowanego autooscyatora... umożiwia efektywną anaię i adowaającą dokładność obiceń. Wsomnianą metodę można stosować do anaiy stanu ustaonego autooscyatora synchroniowanego. Najbardiej skomikowanym adaniem w tym ryadku jest odiał modeu matematycnego autooscyatora na dwie cęści: iniową i nieiniową małą nieiniowością godnie wymogami asymtotycnej metody. W niniejsym artykue odano metodę rowiąania tego adania ora oisano agorytm anaiy stanu ustaonego autooscyatora w trybie synchroniacji ewnętrnym generatorem fai harmonicnej. 2 Zasady ogóne konstruowania matematycnego modeu synchroniowanego autooscyatora w stanie ustaonym Pryjmijmy, że w ryadku nieobecności ewnętrnego generatora synchroniującego autooscyator generuje drgania harmonicne o cęstotiwości usacji) ω. Natomiast gdy na autooscyator diała ewnętrny generator synchroniujący wytwarający faę harmonicną o cęstotiwości ω, wtedy cęstotiwość autooscyatora mienia się w taki sosób, aby równać się cęstotiwością ω. Wystęuje jawisko synchroniacji. Generator synchroniujący może mieniać swą cęstotiwość w akresie od ω min do ω max, ry tym cęstotiwość autooscyatora owtara miany cęstotiwości generatora synchroniującego. Pryjmijmy również, że ocątkowa wartość cęstotiwości autooscyatora jest oisana aeżnością: ω ω max ω min ) / 2. Matematycny mode MM) synchroniowanego autooscyatora aisujemy w ostaci układu n równań wiążących naięcia węłowe: gdie ) U& I& U&, U ) I& ω =, ) ω) - macier kwadratowa o romiare n n esoonych admitancji asywnych iniowych składników obwodu autooscyatora; U & - n-wymiarowy wektor esoonych amitud naięć węłowych w stanie ustaonym; U - n-wymiarowy wektor stałych naięć węłowych w stanie statycnej równowagi; 2

3 B. Mandij, R. Żeak I & U &, U ) -n-wymiarowy esoony wektor uśrednionych rądów nieiniowej cęści autooscyatora; I & - n-wymiarowy wektor, który uwgędnia ewnętrne źródła rądów diałające na autooscyator. Podieimy umownie MM synchroniowanego autooscyatora na iniową i nieiniową cęści. Cęść iniowa oisuje autonomicną konserwatywną cęść obwodu, natomiast cęść nieiniowa oisuje ewnętrny wływ na autooscyator, który owoduje wystąienie stanu ustaonego o adanej cęstotiwości ω : ω) ω) ) U& I& U&, U I& ω ) U & = ) 2) Macier iniowej cęści ω ) tworymy formujemy na odstawie esoonych admitancji asywnych iniowych składników układu autooscyatora ora ewnej cęści uśrednionych admitancji nieiniowych składników obwodu. Pry tym winien być sełniony warunek, aby ry cęstotiwości ω macier oisywała konserwatywny oscyacyjny system, tn. wsomniana macier ma sełniać warunek: det{ )} = 3) ω Zatem tworenie maciery ω ) rerowadamy w dwóch etaach. W ierwsym etaie uwgędniamy w maciery esoone admitancję ω ) asywnych iniowych składników obwodu) ora cęść esoonych admitancji n ω, U ) nieiniowych składników obwodu), które odowiadają wektorowi stałych naięć U. Cęść ta jest roorcjonana do ewnego wsółcynnika μ. Otymaną wartość wsółcynnika μ ot wynacamy na odstawie wiąku: det{ ω ) μ ω, U )} = min 4) ot n Zauważymy, że wartość μ ot musi adowaać warunek μ ot. Fiycny sens woru 4) oega na tym, że uwgędnienie ełnej maciery n ω, U ) w asywnej cęści MM autooscyatora owoduje bytnią komensację energetycnych strat, w wyniku cego amituda drgań wrasta. 2

4 22 Matematycny mode synchroniowanego autooscyatora... W drugim etaie uwgędniamy w maciery ω ) dodatkowo esooną admitancję s ω ) strojonych asywnych składników obwodu, które aewniają sełnienie warunku: det{ ω ) μ ω, U ) ω )} = 5) ot n s Po stworeniu maciery ω ) aisujemy równanie ) w ostaci: gdie: μ ω, U ) ω ) U& ω ) U& = I& U&, U ) I& ) опт n s ω ) = ω ) μ ω, U ) ω ) 7) ot n s Jednoceśnie winien być sełniony warunek: 6) det{ )} = 8) ω Dięki warunkowi 8) osukiwany wektor naięć węłowych możemy aisać w ostaci: U & = A ϕ&, 9) gdie: A uogóniona amituda drgań w stanie ustaonym A ), ϕ& - nietrywiany n-wymiarowy esoony wektor własny, który jest rowiąaniem równania: ω ) ϕ& =. ) Fiycny sens wektora ϕ& oega na tym, że odwiercieda on stosunek międy naięciami węłowymi iniowej cęści obwodu autooscyatora. Uwgędniając wiąek wór 9), możemy redstawić równanie 6) w nastęującej ostaci: μ ω, U ) ω ) A & ϕ ω A & ϕ = & A & ϕ & ) I, U ) I ot s ) ) Równanie ) jest MM synchroniowanego autooscyatora w stanie ustaonym ry cęstotiwości ω, odowiada stanowi synchroniacji. Rowiąanie równania ) rerowadamy iteracyjną metodą mieniając wartość uogónionej amitudy A od era do wartości odowiadającej stanowi ustaonemu. Pry tym uwgędniamy ten fakt, że w nieiniowych składnikach obwodu wystęują harmonicne składowe o cęstotiwościach kω k=,, 2, 3, ). Jednak da cęstotiwości kω k warunek 8) nie jest sełniony. Oróc tego obecność składowej stałej wływa na n-wymiarowy wektor naięć węłowych i na

5 B. Mandij, R. Żeak macier uśrednionych esoonych admitancji nieiniowych składników obwodu autooscyatora. Zatem na odstawie równania: [ ω ) μ ω, U ) ω )] опт n = ω ) U& = I& A & ϕ, U s U& = ) I& otrymujemy transcendendentne równanie, które wykorystujemy do wynacenia wektora U & esoonych naięć węłowych: )) I& U& U ) I& ) U & = ω 2), Uwgędniając 9), U& = A ϕ&, możemy redstawić równanie 2) w ostaci transcendentnego jednoarametrycnego równania, które wykorystamy da wynacenia uogónionej amitudy A i wektora esoonych węłowych naięć U & : A U& i ) i) * T = ϕ & ϕ i) i) = A & ϕ ϕ * T i) i) ω )) I& A & ϕ, U ) I& ) с, 3) gdie i-numer iteracji. Aby otrymać rowiąanie równania 3), które odowiada stanowi synchroniacji autooscyatora, otreba na każdym kroku iteracji srawdać sełnienie nastęujących warunków: Im A) = Im μ ot ) = ; μ ; A. Na odstawie oisanej metody można aroonować nastęujący agorytm automatyowanej anaiy stanu ustaonego synchroniowanego autooscyatora: Krok. Wrowadamy dane o tooogii i icbowych wartościach arametrów składników obwodu autooscyatora ora wartość cęstotiwości ω drgań autooscyatora. Również wrowadamy dane o amitudie i akresie mian cęstotiwości synchroniującego generatora. ot Krok 2. Krok 3. Pryjmujemy trywianą wartość uogónionej amitudy A=. worymy macier admitancji ) asywnych składników da rądu stałego ora macier esoonych admitancji ω ) da cęstotiwości ω. 23

6 Matematycny mode synchroniowanego autooscyatora... Krok 4. Pryjmujemy ocątkowe wartości stałych składowych wektora naięcia U ora trywianą wartość wektora U & =. Krok 5. Da koejnych wartości składowych wektorów U i U & wynacamy wartości składników maciery admitancji U, U& ) i wektora & U, U& ). n I Krok 6. Krok 7. Rowiąując a omocą dowonej metody numerycnej równanie ) U = I & & A, ϕ, U ) I& o wynacamy nową wartość wektora U stałych składowych naięć węłowych. Srawdamy warunek osiągnięcia ałożonej dokładności wynacenia składników wektora U. W ryadku niesełnienia warunku wracamy do kroku 5. Krok 8. Da koejnych wartości składników wektorów U i U & wynacamy uśrednione wartości składników maciery esoonych admitancji U, U& n ) ora wektorów & U, U& ) i I & U&, ). I n U Krok 9. Wynacamy wartość μ ot, która sełnia warunek det{ ω ) μ ω, U )} = min ot n Krok. Wynacamy admitancję s ω ), która umożiwia sełnienie warunku det{ ω ) μ ω, U ) ω )} =. ot n s Krok. Wynacamy składniki maciery esoonych admitancji iniowej cęści obwodu autooscyatora da koejnych wartości uogónionej amitudy A ora wektora U : ω ) = ω ) μ ω, U ) ω ) ot n s Krok 2. Wynacamy składniki wektora własnego rowiąania równania ω ) ϕ& = i wektora U & = A ϕ&. Krok 3. Wynacamy składniki wektorów I A ϕ&, U ), I & A, ϕ&, U ) i maciery ω,, A & ϕ ). n U 24

7 B. Mandij, R. Żeak Krok 4. Rowiąując a omocą dowonej metody numerycnej równanie 3), wynacamy nową srecyowaną) wartość uogónionej amitudy A i wektora U & = A ϕ&. Krok 5. Srawdamy warunek osiągnięcia ałożonej dokładności obiceń składników wektora U & = A ϕ&. W ryadku niesełnienia warunku wracamy do kroku 5. Krok 6. Końcymy obicenia uyskując ostatecne wyniki obiceń arametrów U i U & stanu ustaonego. W ryadku, gdy generator synchroniujący jest źródłem naięcia U& a nie rądu), wtedy rownanie ) aisujemy w ostaci: ω ) 2 ω ) U I& U&, U ) 2 ω ) 22 ω ) skąd otrymujemy równanie anaogicne do równania ): & & & & U& ω ) U = I U, U ) 2 U Tutaj ω ), 2 ω ), 2 ω ), 22 ω ) - esoone admitancje asywnej iniowej) cęści autooscyatora. Stosowanie oisanego agorytmu do anaiy stanów ustaonych synchroniowanych autooscyatorów umożiwia otrymanie dostatecnej dokładności obiceń ry oscędaniu casu obiceń. 3 Prykład anaiy tranystorowego autooscyatora w stanie ustaonym Roatrymy rykład anaiy autooscyatora tranystorowego, schemat obwodu odany jest na rys.. Zadana cęstotiwość drgań f =23 3 H ω =,257 6 rad/s). Wartości arametrów składników obwodu aewniające samowbudność autooscyatora na adanej cęstotiwości f są równe: R =6.8 Ω; R 2 =7 Ω; C = -9 F; C 2 = -9 F; L= -3 H; E=V. W obwodie wykorystano tranystor unioarny MOSFET, którego statycna charakterystyka rądu drenu i D w funkcji naięć bramki u B i dren-źródło u D jest aroksymowana równaniem: i D u u ) =.5 ex u VTO) [ ex u ) λ u ] B,, D B = & D, D 25

8 Matematycny mode synchroniowanego autooscyatora... gdie VTO = - 3,6V naięcie aorowe tranystora; λ=8,5-3. Amituda naięcia ewnętrnego synchroniującego generatora E =,V. Zakres mian cęstotiwości od f min =2,5 kh do f max =25 kh. VT I & D L С U & E R С 2 U & 2 R 2 E Rys.. Schemat obwodu autooscyatora W danym obwodie wydieamy 2 naięcia węłowe U ora U 2 rys. ). Odowiednio macier ω ) ryjmuje ostać: 26 C ω, R L R L ) = C2 R L R L R2 gdie onacono: =jω. Pryjmujemy, że w obwodie są nieobecne składniki strojone tn. ω ) = ), w wyniku cego macier ω ) ryjmuje ostać: s

9 B. Mandij, R. Żeak ω ) = C R L μu R L DS C 2 R L R L R 2 μu DD Uśrednione admitancje tranystora w stanie statycnym i ry nikomo małej amitudie drgań są równe: U, U ) =.5 ex U VTO) [ E U )) λ E U )] DB 2 ex U, U ) =.5 ex U VTO) [ E U )) λ E U )] DD 2 ex Na odstawie warunku 4) obicamy mały arametr μ: R L μ = C R L) ) C R L) ) DD DB 2 2 C R L R 2 2 Równoceśnie obicamy składowe wektora własnego ϕ& : 2 2 ϕ& T R ) = ; C L Wektor I & U &, U ) rawej cęści równania 3) ryjmuje ostać: IU & &,U 2π i ) = D U Acos t ),E U A & 2 ϕ 2 cos t )) π ex jt) Anaię stanu ustaonego synchroniowanego autooscyatora rys. ) rerowadono godnie aroonowanym agorytmem. Na rys. 2 okaano aeżność serokości asma synchroniacji od amitudy E naięcia generatora synchroniującego. Na rys. 3 kreskowany obsar odowiada stanowi synchroniacji autooscyatora w łascyźnie mian arametrów reystorów R i R 2 ry amitudie E =,V i serokości asma synchroniacji 2 25kH. Na rys. 4 kreskowany obsar odowiada stanowi synchroniacji odobnie jak na rys. 3, jednak ry douscanym akresie mian amitudy autooscyatora od 2,5 2,25V. dt 27

10 Matematycny mode synchroniowanego autooscyatora... E s,v f,kh Rys. 2. Zaeżność serokości asma synchroniacji od amitudy E naięcia generatora synchroniującego R 2,Ω R,Ω Rys. 3. Obsar synchroniacji autooscyatora w łascyźnie mian arametrów reystorów R i R 2. 28

11 B. Mandij, R. Żeak R 2,Ω R,Ω Rys. 4. Obsar synchroniacji ry douscanym akresie mian amitudy autooscyatora od 2,5 2,25V. 4 Wnioski Stosowanie aroonowanej w artykue metody do anaiy stanu ustaonego autooscyatora w stanie synchroniacji umożiwia rowiąanie seregu adań, będących w akresie ainteresowania rojektantów odowiednich obwodów. Literatura [] B. Mandij, R. Żeak. Matematycny mode autooscyatora w stanie ustaonym. IV Symojum Modeowanie i Symuacja Komuterowa w Technice, Lódź 25, str

12 Matematycny mode synchroniowanego autooscyatora... MATHEMATICAL MODEL OF SNCHRONIZED AUTOOSCILLATOR IN STEAD STATE Summary In the aer the method of mathematica mode MM) buiding of synchronied autoosciator of harmonic vibration in steady state was resented. The method is based on the method of node votage and asymtotic method of sma arameters. Furthermore, the exame of anaysis of transistoried autoosciator working in synchronied mode was resented. 3

Parametry pracy adiabatycznego modelu łożyska krótkiego z panewką pływającą

Parametry pracy adiabatycznego modelu łożyska krótkiego z panewką pływającą Parametry racy adiabatycnego modelu łożyska krótkiego anewką ływającą 5 ZGDNIENI EKSPOCJI MSZYN Zesyt (5) 7 EKSNDE MZUKOW Parametry racy adiabatycnego modelu łożyska krótkiego anewką ływającą Słowa klucowe

Bardziej szczegółowo

WŁAŚCIWOŚCI METROLOGICZNE PRZEKŁADNIKA BROOKSA I HOLTZA

WŁAŚCIWOŚCI METROLOGICZNE PRZEKŁADNIKA BROOKSA I HOLTZA race Naukowe nstytutu Masyn, Naędów i omiarów Elektrycnych Nr 66 olitechniki Wrocławskiej Nr 66 Studia i Materiały Nr 3 Daniel DUSZA* rekładnik rądowy, omiar rądu WŁAŚCWOŚC METROLOGCZNE RZEKŁADNKA BROOKSA

Bardziej szczegółowo

PROBLEMY IDENTYFIKACJI I STEROWANIA NAPĘDAMI ELEKTROHYDRAULICZNYMI

PROBLEMY IDENTYFIKACJI I STEROWANIA NAPĘDAMI ELEKTROHYDRAULICZNYMI Rodiał 4 PROBLEMY IDENTYFIKACJI I STEROWANIA NAPĘDAMI ELEKTROHYDRAULICZNYMI 4.. Wrowadenie Układy elektrohydraulicne mają serokie astosowanie remysłowe, głównie jako układy regulacji ołożenia i rędkości

Bardziej szczegółowo

Wydział Budownictwa Lądowego i Wodnego, Politechnika Wrocławska, Wrocław **

Wydział Budownictwa Lądowego i Wodnego, Politechnika Wrocławska, Wrocław ** Górnictwo i Geoinżynieria Rok 33 Zesyt 1 2009 Adrian Różański*, Maciej Sobótka** WARUNKI OPTYMALIZACJI KSZTAŁTU WYROBISK PODZIEMNYCH 1. Wstę Zagadnienie otymaliacji kstałtu wyrobisk odiemnych o ra ierwsy

Bardziej szczegółowo

Przykład 6.3. Uogólnione prawo Hooke a

Przykład 6.3. Uogólnione prawo Hooke a Prkład 6 Uogónione prawo Hooke a Zwiąki międ odkstałceniami i naprężeniami w prpadku ciała iotropowego opisuje uogónione prawo Hooke a: ] ] ] a Rowiąując równania a wgędem naprężeń otrmujem wiąki: b W

Bardziej szczegółowo

Optymalizacja (w matematyce) termin optymalizacja odnosi się do problemu znalezienia ekstremum (minimum lub maksimum) zadanej funkcji celu.

Optymalizacja (w matematyce) termin optymalizacja odnosi się do problemu znalezienia ekstremum (minimum lub maksimum) zadanej funkcji celu. TEMATYKA: Optymaliacja nakładania wyników pomiarów Ćwicenia nr 6 DEFINICJE: Optymaliacja: metoda wynacania najlepsego (sukamy wartości ekstremalnej) rowiąania punktu widenia określonego kryterium (musimy

Bardziej szczegółowo

UKŁADY TENSOMETRII REZYSTANCYJNEJ

UKŁADY TENSOMETRII REZYSTANCYJNEJ Ćwicenie 8 UKŁADY TESOMETII EZYSTACYJEJ Cel ćwicenia Celem ćwicenia jest ponanie: podstawowych właściwości metrologicnych tensometrów, asad konstrukcji pretworników siły, ora budowy stałoprądowych i miennoprądowych

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Modelowanie matematyczne Metody modelowania

Modelowanie i obliczenia techniczne. Modelowanie matematyczne Metody modelowania Modelowanie i oblicenia technicne Modelowanie matematycne Metody modelowania Modelowanie matematycne procesów w systemach technicnych Model może ostać tworony dla całego system lb dla poscególnych elementów

Bardziej szczegółowo

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE . Oblicyć: ZADANIA Z FUNKCJI ANALITYCZNYCH a) ( 7i) ( 9i); b) (5 i)( + i); c) 4+3i ; LICZBY ZESPOLONE d) 3i 3i ; e) pierwiastki kwadratowe 8 + i.. Narysować biór tych licb espolonych, które spełniają warunek:

Bardziej szczegółowo

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego.

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego. Transformator Φ r Φ M Φ r i i u u Φ i strumień magnetycny prenikający pre i-ty wój pierwsego uwojenia; siła elektromotorycna indukowana w i-tym woju: dφ ei, licba wojów uwojenia pierwotnego i wtórnego.

Bardziej szczegółowo

MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH

MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH MES W ANALIZIE SPRĘŻYS UKŁADÓW PRĘOWYCH Prykłady obliceń Belki Lidia FEDOROWICZ Jan FEDOROWICZ Magdalena MROZEK Dawid MROZEK Gliwice 7r. 6-4 Lidia Fedorowic, Jan Fedorowic, Magdalena Mroek, Dawid Mroek

Bardziej szczegółowo

M O D E L R U C H U W Y R Z U T N I O K RĘTOWEJ O P I S A N Y P R Z E Z T R A N S F O R M A C J E U K Ł A D Ó W W S P Ó Ł R ZĘ D N Y C H

M O D E L R U C H U W Y R Z U T N I O K RĘTOWEJ O P I S A N Y P R Z E Z T R A N S F O R M A C J E U K Ł A D Ó W W S P Ó Ł R ZĘ D N Y C H ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK LIV NR 3 (194) 213 DO I: 1.564/86889X/186925 Zbigniew Dioa Politechnika Świętokryska Wydiał Mechatroniki i Budowy Masyn, Katedra Technik Komuterowych i Ubrojenia

Bardziej szczegółowo

3. WSPÓŁCZYNNIK ŚCINANIA (KOREKCYJNY)

3. WSPÓŁCZYNNIK ŚCINANIA (KOREKCYJNY) Cęść 1. WSPÓŁCZYNNIK ŚCINANIA (KOEKCYJNY) 1.. WSPÓŁCZYNNIK ŚCINANIA (KOEKCYJNY).1. Wstęp Współcynnik κ naywany współcynnikiem ścinania jest wielkością ewymiarową, ależną od kstałtu prekroju. Występuje

Bardziej szczegółowo

MIESZANY PROBLEM POCZĄTKOWO-BRZEGOWY W TEORII TERMOKONSOLIDACJI. ZAGADNIENIE POCZĄTKOWE

MIESZANY PROBLEM POCZĄTKOWO-BRZEGOWY W TEORII TERMOKONSOLIDACJI. ZAGADNIENIE POCZĄTKOWE Górnictwo i Geoinżynieria ok 33 Zesyt 1 9 Jan Gasyński* MIESZANY POBLEM POCZĄKOWO-BZEGOWY W EOII EMOKONSOLIDACJI. ZAGADNIENIE POCZĄKOWE 1. Wstęp Analia stanów naprężenia i odkstałcenia w gruncie poostaje

Bardziej szczegółowo

3. Zapas stabilności układów regulacji 3.1. Wprowadzenie

3. Zapas stabilności układów regulacji 3.1. Wprowadzenie 3. Zapas stabilności układów regulacji 3.. Wprowadenie Dla scharakteryowania apasu stabilności roważymy stabilny układ regulacji o nanym schemacie blokowym: Ws () Gs () Ys () Hs () Rys. 3.. Schemat blokowy

Bardziej szczegółowo

Instalacje pompowe. Zadania do samodzielnego rozwiązania v ,1. dr inż. Michał Strzeszewski,

Instalacje pompowe. Zadania do samodzielnego rozwiązania v ,1. dr inż. Michał Strzeszewski, dr inż. Michał Stresewski, 00-008 Instalacje omowe Zadania do samodielnego rowiąania v. 1.5 Zadanie 1 Obli wymaganą wydajność omy obiegowej ry nastęujących ałożeniach: oblieniowa moc cielna instalacji

Bardziej szczegółowo

Wielokryteriowa optymalizacja liniowa (WPL)

Wielokryteriowa optymalizacja liniowa (WPL) arek isyński BO UŁ 007 - Wielokryteriowa optymaliaja liniowa (WPL) -. Wielokryteriowa optymaliaja liniowa (WPL) Zadaniem WPL naywamy następująe adanie optymaliaji liniowej: a a m L O L L O L L a a n n

Bardziej szczegółowo

3. Zapas stabilności układów regulacji 3.1. Wprowadzenie

3. Zapas stabilności układów regulacji 3.1. Wprowadzenie 3. Zapas stabilności układów regulacji 3.. Wprowadenie Dla scharakteryowania apasu stabilności roważymy stabilny układ regulacji o nanym schemacie blokowym: Ws () Gs () Ys () Hs () Rys. 3.. Schemat blokowy

Bardziej szczegółowo

Zginanie Proste Równomierne Belki

Zginanie Proste Równomierne Belki Zginanie Proste Równomierne Belki Prebieg wykładu : 1. Rokład naprężeń w prekroju belki. Warunki równowagi. Warunki geometrycne 4. Zwiąek fiycny 5. Wskaźnik wytrymałości prekroju na ginanie 6. Podsumowanie

Bardziej szczegółowo

Nazwa przedmiotu: Techniki symulacji. Kod przedmiotu: EZ1C Numer ćwiczenia: Ocena wrażliwości i tolerancji układu

Nazwa przedmiotu: Techniki symulacji. Kod przedmiotu: EZ1C Numer ćwiczenia: Ocena wrażliwości i tolerancji układu P o l i t e c h n i k a B i a ł o s t o c k a W y d i a ł E l e k t r y c n y Nawa predmiotu: Techniki symulacji Kierunek: elektrotechnika Kod predmiotu: EZ1C400 053 Numer ćwicenia: Temat ćwicenia: E47

Bardziej szczegółowo

KONCEPCJA AKTYWNEJ ELIMINACJI DRGAŃ W PROCESIE FREZOWANIA

KONCEPCJA AKTYWNEJ ELIMINACJI DRGAŃ W PROCESIE FREZOWANIA KONCEPCJA AKTYWNEJ ELIMINACJI DRGAŃ W PROCESIE FREZOWANIA Andrej WEREMCZUK, Rafał RUSINEK, Jery WARMIŃSKI 3. WSTĘP Obróbka skrawaniem jest jedną najbardiej ropowsechnionych metod kstałtowania cęści masyn.

Bardziej szczegółowo

Rys.1.2 Zasada pomiaru rezystywności gruntu 1

Rys.1.2 Zasada pomiaru rezystywności gruntu 1 Idea omiaru reystywności runtu ostała okaana na rysunku 1.. Schemat układu omiaroweo składa się elektrod wkoanych w runt, źródła rądu remienneo ora mierników natężenia rądu elektrycneo ora naięcia elektrycneo.

Bardziej szczegółowo

Ekoenergetyka Matematyka 1. Wykład 1.

Ekoenergetyka Matematyka 1. Wykład 1. Ekoenergetyka Matematyka 1. Wykład 1. Literatura do wykładu M. Gewert, Z. Skocylas, Analia matematycna 1; T. Jurlewic, Z. Skocylas, Algebra liniowa 1; Stankiewic, Zadania matematyki wyżsej dla wyżsych

Bardziej szczegółowo

METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING

METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING Maszyna Wektorów Nośnych Suort Vector Machine SVM Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 14, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 14, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fiyki IV Optyka elementami fiyki współcesnej wykład 4, 30.03.0 wykład: pokay: ćwicenia: Cesław Radewic Radosław Chrapkiewic, Filip Oimek Ernest Grodner Wykład 3 - prypomnienie płasko-równoległy

Bardziej szczegółowo

SERIA III ĆWICZENIE 3_1A. Temat ćwiczenia: Badanie transformatora jednofazowego. Wiadomości do powtórzenia:

SERIA III ĆWICZENIE 3_1A. Temat ćwiczenia: Badanie transformatora jednofazowego. Wiadomości do powtórzenia: SER ĆCZENE 3_1 Temat ćwicenia: Badanie transformatora jednofaowego. iadomości do powtórenia: 1. Budowa i dane namionowe transformatora jednofaowego. 1 U 1 U 1 ansformator jest urądeniem prenaconym do pretwarania

Bardziej szczegółowo

Laboratorium Dynamiki Maszyn

Laboratorium Dynamiki Maszyn Laboratorium Dynamiki Maszyn Laboratorium nr 5 Temat: Badania eksperymentane drgań wzdłużnych i giętnych układów mechanicznych Ce ćwiczenia:. Zbudować mode o jednym stopniu swobody da zadanego układu mechanicznego.

Bardziej szczegółowo

Układy równań - Przykłady

Układy równań - Przykłady Układy równań - Prykłady Dany układ równań rowiąać trea sposobai: (a) korystając e worów Craera, (b) etodą aciery odwrotnej, (c) etodą eliinacji Gaussa, + y + = y = y = (a) Oblicy wynacnik deta aciery

Bardziej szczegółowo

SYMULACJA UKŁADU REDUKCJI DRGAŃ Z TŁUMIKIEM MAGNETOREOLOGICZNYM I ELEKTROMAGNETYCZNYM PRZETWORNIKIEM ENERGII

SYMULACJA UKŁADU REDUKCJI DRGAŃ Z TŁUMIKIEM MAGNETOREOLOGICZNYM I ELEKTROMAGNETYCZNYM PRZETWORNIKIEM ENERGII MODELOWANIE INśYNIERSKIE ISSN 1896-771X 37, s. 1-2, Gliwice 29 SYMULACJA UKŁADU REDUKCJI DRGAŃ Z TŁUMIKIEM MAGNETOREOLOGICZNYM I ELEKTROMAGNETYCZNYM PRZETWORNIKIEM ENERGII BOGDAN SAPIŃSKI 1, PAWEŁ MARTYNOWICZ

Bardziej szczegółowo

ZASTOSOWANIE GRANICZNYCH ZAGADNIEŃ ODWROTNYCH DO OKREŚLANIA DOPUSZCZALNYCH STĘŻEŃ SUBSTANCJI CHEMICZNYCH NA POWIERZCHNI TERENU

ZASTOSOWANIE GRANICZNYCH ZAGADNIEŃ ODWROTNYCH DO OKREŚLANIA DOPUSZCZALNYCH STĘŻEŃ SUBSTANCJI CHEMICZNYCH NA POWIERZCHNI TERENU Zastosowanie granicnych agadnień INFRASTRUKTURA I EKOLOGIA TERENÓW WIEJSKICH INFRASTRUCTURE AND ECOLOGY OF RURAL AREAS Nr 9/2008, POLSKA AKADEMIA NAUK, Oddiał w Krakowie, s. 217 226 Komisja Technicnej

Bardziej szczegółowo

WYKŁAD 5 TRANZYSTORY BIPOLARNE

WYKŁAD 5 TRANZYSTORY BIPOLARNE 43 KŁAD 5 TRANZYSTORY IPOLARN Tranzystor biolarny to odowiednie ołączenie dwu złącz n : n n n W rzeczywistości budowa tranzystora znacznie różni się od schematu okazanego owyżej : (PRZYKŁAD TRANZYSTORA

Bardziej szczegółowo

3. Kinematyka podstawowe pojęcia i wielkości

3. Kinematyka podstawowe pojęcia i wielkości 3. Kinematya odstawowe ojęcia i wielości Kinematya zajmuje się oisem ruchu ciał. Ruch ciała oisujemy w ten sosób, że odajemy ołożenie tego ciała w ażdej chwili względem wybranego uładu wsółrzędnych. Porawny

Bardziej szczegółowo

ROZKŁAD BŁĘDÓW PRZY PROJEKTOWANIU POŚREDNIEGO OŚWIETLENIA ELEKTRYCZNEGO ZA POMOCĄ OPRAW KWADRATOWYCH

ROZKŁAD BŁĘDÓW PRZY PROJEKTOWANIU POŚREDNIEGO OŚWIETLENIA ELEKTRYCZNEGO ZA POMOCĄ OPRAW KWADRATOWYCH Andrej PAWLAK Krystof ZAREMBA ROZKŁAD BŁĘDÓW PRZY PROJEKTOWANIU POŚREDNIEGO OŚWIETLENIA ELEKTRYCZNEGO ZA POMOCĄ OPRAW KWADRATOWYCH STRESZCZENIE W wielkoowierchniowych instalacjach oświetlenia ośredniego

Bardziej szczegółowo

PRZEKSZTAŁCENIE ZET. definicja. nst. Stąd po dokonaniu podstawienia zgodnie z definicją otrzymamy wyrażenie jak dla ciągu.

PRZEKSZTAŁCENIE ZET. definicja. nst. Stąd po dokonaniu podstawienia zgodnie z definicją otrzymamy wyrażenie jak dla ciągu. CPS 6/7 PREKSTAŁCENIE ET Defiicja rekstałceia Prekstałceie ET jest w diediie casu dyskretego odowiedikiem ciągłego rekstałceia Lalace a w diediie casu ciągłego. Podamy dwie rówoważe defiicje rekstałceia

Bardziej szczegółowo

>> ω z, (4.122) Przybliżona teoria żyroskopu

>> ω z, (4.122) Przybliżona teoria żyroskopu Prybliżona teoria żyroskopu Żyroskopem naywamy ciało materialne o postaci bryły obrotowej (wirnika), osadone na osi pokrywającej się osią geometrycną tego ciała wanej osią żyroskopową. ζ K θ ω η ω ζ y

Bardziej szczegółowo

CHARAKTERYSTYKI KINEMATYCZNE MECHANIZMÓW PŁASKICH PODSTAWY SYNTEZY GEOMETRYCZNEJ MECHANIZMÓW PŁASKICH.

CHARAKTERYSTYKI KINEMATYCZNE MECHANIZMÓW PŁASKICH PODSTAWY SYNTEZY GEOMETRYCZNEJ MECHANIZMÓW PŁASKICH. Podstawy modeowania i syntezy mechanizmów. CHARAKTERYSTYKI KINEMATYCZNE MECHANIZMÓW PŁASKICH PODSTAWY SYNTEZY GEOMETRYCZNEJ MECHANIZMÓW PŁASKICH. Charakterystyki kinematyczne to zapis parametrów ruchu

Bardziej szczegółowo

Ciśnienie i nośność w płaskim łożysku ślizgowym przy niestacjonarnym laminarnym smarowaniu

Ciśnienie i nośność w płaskim łożysku ślizgowym przy niestacjonarnym laminarnym smarowaniu TRIBOOGIA ZAGADNIENIA EKSPOATACJI MASZYN Zesyt (5) 7 PAWEŁ KRASOWSKI Ciśnienie i nośność w łasim łożysu śligowym ry niestacjonarnym laminarnym smarowaniu Słowa lucowe Płasie łożyso śligowe, laminarne niestacjonarne

Bardziej szczegółowo

Rozdział 2. Krzywe stożkowe. 2.1 Elipsa. Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie

Rozdział 2. Krzywe stożkowe. 2.1 Elipsa. Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie Rozdział Krzywe stożkowe Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie x + By + Cxy + Dx + Ey + F = 0. (.) W zależności od relacji pomiędzy współczynnikami otrzymujemy elipsę,

Bardziej szczegółowo

J. Szantyr Wykład nr 25 Przepływy w przewodach zamkniętych I

J. Szantyr Wykład nr 25 Przepływy w przewodach zamkniętych I J. Szantyr Wykład nr 5 Przeływy w rzewodach zamkniętych I Przewód zamknięty kanał o dowonym kształcie rzekroju orzecznego, ograniczonym inią zamkniętą, całkowicie wyełniony łynem (bez swobodnej owierzchni)

Bardziej szczegółowo

czyli politropa jest w tym przypadku przemianą przy stałym ciśnieniu nazywaną izobarą. Równanie przemiany izobarycznej ma postać (2.

czyli politropa jest w tym przypadku przemianą przy stałym ciśnieniu nazywaną izobarą. Równanie przemiany izobarycznej ma postać (2. remiany_gau_dosk Charakterystyne remiany gau doskonałego. Premiana oitroowa Premianą oitroową naywamy remianę o równaniu idem (. ub V idem (. gdie V / m. W równaniah (. i (. jest wykładnikiem oitroy. Podstawowe

Bardziej szczegółowo

INTERPRETACJA WYNIKÓW BADANIA WSPÓŁCZYNNIKA PARCIA BOCZNEGO W GRUNTACH METODĄ OPARTĄ NA POMIARZE MOMENTÓW OD SIŁ TARCIA

INTERPRETACJA WYNIKÓW BADANIA WSPÓŁCZYNNIKA PARCIA BOCZNEGO W GRUNTACH METODĄ OPARTĄ NA POMIARZE MOMENTÓW OD SIŁ TARCIA Górnictwo i Geoinżynieria Rok 3 Zeszyt 008 Janusz aczmarek* INTERPRETACJA WYNIÓW BADANIA WSPÓŁCZYNNIA PARCIA BOCZNEGO W GRUNTACH METODĄ OPARTĄ NA POMIARZE MOMENTÓW OD SIŁ TARCIA 1. Wstę oncecję laboratoryjnego

Bardziej szczegółowo

DODATEK 6. Pole elektryczne nieskończenie długiego walca z równomiernie rozłożonym w nim ładunkiem objętościowym. Φ = = = = = π

DODATEK 6. Pole elektryczne nieskończenie długiego walca z równomiernie rozłożonym w nim ładunkiem objętościowym. Φ = = = = = π DODATEK 6 Pole elektycne nieskońcenie długiego walca ównomienie ołożonym w nim ładunkiem objętościowym Nieskońcenie długi walec o pomieniu jest ównomienie naładowany ładunkiem objętościowym o stałej gęstości

Bardziej szczegółowo

Przykładowe zadania z matematyki na poziomie podstawowym wraz z rozwiązaniami

Przykładowe zadania z matematyki na poziomie podstawowym wraz z rozwiązaniami 8 Liczba 9 jest równa A. B. C. D. 9 5 C Przykładowe zadania z matematyki na oziomie odstawowym wraz z rozwiązaniami Zadanie. (0-) Liczba log jest równa A. log + log 0 B. log 6 + log C. log 6 log D. log

Bardziej szczegółowo

Wybrane stany nieustalone transformatora:

Wybrane stany nieustalone transformatora: Wybrane stany nieustalone transformatora: Założenia: - amplituda napięcia na aciskach pierwotnych ma wartość stałą nieależnie od jawisk achodących w transformatore - warcie występuje równoceśnie na wsystkich

Bardziej szczegółowo

Zadania z AlgebryIIr

Zadania z AlgebryIIr Zadania AlgebrIIr Seria () Rowia ι ać uk lad równań: + + t = + = 7 + + t = ; + + = ; + 7 6t = + = 7 + + = 8 = 8 + + t = + 9 = 9 ; + 7t = + = 7 + + t = + 8 7 = () Podać bae ι prestreni rowia ι ań uk ladu:

Bardziej szczegółowo

( n) Łańcuchy Markowa X 0, X 1,...

( n) Łańcuchy Markowa X 0, X 1,... Łańcuchy Markowa Łańcuchy Markowa to rocesy dyskretne w czasie i o dyskretnym zbiorze stanów, "bez amięci". Zwykle będziemy zakładać, że zbiór stanów to odzbiór zbioru liczb całkowitych Z lub zbioru {,,,...}

Bardziej szczegółowo

Stopnie wzmacniające

Stopnie wzmacniające PUAV Wykład 7 Najprostszy wzmacniacz R Tranzystor pracuje w zakresie nasycenia Konduktancja jściowa tranzystora do pominięcia: g ds

Bardziej szczegółowo

W takim modelu prawdopodobieństwo konfiguracji OR wynosi. 0, 21 lub , 79. 6

W takim modelu prawdopodobieństwo konfiguracji OR wynosi. 0, 21 lub , 79. 6 achunek prawdopodobieństwa MP6 Wydiał Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab.. Jurlewic Prykłady do listy : Prestreń probabilistycna. Prawdopodobieństwo klasycne. Prawdopodobieństwo

Bardziej szczegółowo

WYZNACZENIE OKRESU RÓWNOWAGI I STABILIZACJI DŁUGOOKRESOWEJ

WYZNACZENIE OKRESU RÓWNOWAGI I STABILIZACJI DŁUGOOKRESOWEJ Anna Janiga-Ćmiel WYZNACZENIE OKRESU RÓWNOWAGI I STABILIZACJI DŁUGOOKRESOWEJ Wrowadzenie W rozwoju każdego zjawiska niezależnie od tego, jak rozwój ten jest ukształtowany rzez trend i wahania, można wyznaczyć

Bardziej szczegółowo

Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona.

Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona. Wykład - LICZBY ZESPOLONE Algebra licb espolonych, repreentacja algebraicna i geometrycna, geometria licb espolonych. Moduł, argument, postać trygonometrycna, wór de Moivre a.' Zbiór Licb Zespolonych Niech

Bardziej szczegółowo

Fizyka 3.3 III. DIODA ZENERA. 1. Zasada pomiaru.

Fizyka 3.3 III. DIODA ZENERA. 1. Zasada pomiaru. Fiyka 3.3 III. DIODA ZENERA Cel ćwicenia: Zaponanie się asadą diałania diody Zenera, wynacenie jej charakterystyki statycnej, napięcia wbudowanego ora napięcia Zenera. 1) Metoda punkt po punkcie 1. Zasada

Bardziej szczegółowo

Rozważa się dwa typy odwzorowań: 1. Parametryzacja prosta

Rozważa się dwa typy odwzorowań: 1. Parametryzacja prosta WYKŁAD MODELOWANIE I WIZUALIZACJA TEKSTURY. Co to jest tekstra obiekt T(,, (,, t( =... tn(,,,, Plan wkład: Co to jest tekstra? Generowanie worów tekstr Wialiaja tekstr Filtrowanie tekstr Co może oiswać

Bardziej szczegółowo

UTRATA STATECZNOŚCI. O charakterze układu decyduje wielkośćobciążenia. powrót do pierwotnego położenia. stabilnego do stanu niestabilnego.

UTRATA STATECZNOŚCI. O charakterze układu decyduje wielkośćobciążenia. powrót do pierwotnego położenia. stabilnego do stanu niestabilnego. Metody obiczeniowe w biomechanice UTRATA STATECZNOŚCI STATECZNOŚĆ odpornośćna małe zaburzenia. Układ stabiny po małym odchyeniu od stanu równowagi powrót do pierwotnego położenia. Układ niestabiny po małym

Bardziej szczegółowo

TERMODYNAMIKA PROCESOWA I TECHNICZNA

TERMODYNAMIKA PROCESOWA I TECHNICZNA ERMODYNAMIKA PROCESOWA I ECHNICZNA Wykład II Podstawowe definicje cd. Podstawowe idealizacje termodynamiczne I i II Zasada termodynamiki Proste rzemiany termodynamiczne Prof. Antoni Kozioł, Wydział Chemiczny

Bardziej szczegółowo

ORGANIZACJA I ZARZĄDZANIE

ORGANIZACJA I ZARZĄDZANIE P O L I T E C H N I K A W A R S Z A W S K A WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ ORGANIZACJA I ZARZĄDZANIE Optymaliacja transportu wewnętrnego w akładie mechanicnym

Bardziej szczegółowo

Jakie nowe możliwości daje właścicielom i zarządcom budynków znowelizowana Ustawa termomodrnizacyjna

Jakie nowe możliwości daje właścicielom i zarządcom budynków znowelizowana Ustawa termomodrnizacyjna dr inż. Wiesław Sarosiek mgr inż. Beata Sadowska mgr inż. Adam Święcicki Katedra Podstaw Budownictwa i Fiyki Budowli Politechniki Białostockiej Narodowa Agencja Posanowania Energii S.A. Filia w Białymstoku

Bardziej szczegółowo

Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów

Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Obóz Naukowy Olimiady Matematycznej Gimnazjalistów Liga zadaniowa 01/01 Seria VII styczeń 01 rozwiązania zadań 1. Udowodnij, że dla dowolnej dodatniej liczby całkowitej n liczba n! jest odzielna rzez n!

Bardziej szczegółowo

Pracownia elektryczna i elektroniczna

Pracownia elektryczna i elektroniczna Pracownia elektryczna i elektroniczna Srawdzanie skuteczności ochrony rzeciworażeniowej 1.... 2.... 3.... Klasa: Grua: Data: Ocena: 1. Cel ćwiczenia: Celem ćwiczenia jest zaoznanie ze sosobami srawdzania

Bardziej szczegółowo

Ćwiczenie 13. Wyznaczanie ruchliwości i koncentracji nośników prądu w półprzewodnikach metodą efektu Halla. Cel ćwiczenia

Ćwiczenie 13. Wyznaczanie ruchliwości i koncentracji nośników prądu w półprzewodnikach metodą efektu Halla. Cel ćwiczenia Ćwicenie 13 Wynacanie ruchliwości i koncentracji nośników prądu w półprewodnikach metodą efektu alla Cel ćwicenia Celem ćwicenia jest aponanie się e jawiskiem alla, stałoprądowa metoda badania efektu alla,

Bardziej szczegółowo

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki): Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy

Bardziej szczegółowo

Fale skrętne w pręcie

Fale skrętne w pręcie ae skrętne w ręcie + -(+) eement ręta R π 4 R π 4 d r π ) ( 4 Lokane skręcenie o () moment skręcając moduł stwności r romień ręta r 4 ) ( π Pod włwem wadkowego momentu eement ręta uskuje rsiesenie kątowe

Bardziej szczegółowo

cz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321

cz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 Wkład 8: Brła stwna c. Dr inż. Zbigniew Sklarski Katedra Elektroniki, paw. C-, pok.3 skla@agh.edu.pl http://laer.uci.agh.edu.pl/z.sklarski/ 05.04.08 Wdiał nformatki, Elektroniki i Telekomunikacji - Teleinformatka

Bardziej szczegółowo

MODEL MATEMATYCZNY I ANALIZA UKŁADU NAPĘDOWEGO SILNIKA INDUKCYJNEGO Z DŁUGIM ELEMENTEM SPRĘŻYSTYM DLA PARAMETRÓW ROZŁOŻONYCH

MODEL MATEMATYCZNY I ANALIZA UKŁADU NAPĘDOWEGO SILNIKA INDUKCYJNEGO Z DŁUGIM ELEMENTEM SPRĘŻYSTYM DLA PARAMETRÓW ROZŁOŻONYCH Prace Naukowe Instytutu Maszyn, Naędów i Pomiarów Elektrycznych Nr 66 Politechniki Wrocławskiej Nr 66 Studia i Materiały Nr 3 1 Andriy CZABAN*, Marek LIS** zasada Hamiltona, równanie Euler Lagrange a,

Bardziej szczegółowo

SPIS TREŚCI WIADOMOŚCI OGÓLNE 2. ĆWICZENIA

SPIS TREŚCI WIADOMOŚCI OGÓLNE 2. ĆWICZENIA SPIS TEŚCI 1. WIADOMOŚCI OGÓLNE... 6 1.2. Elektryczne rzyrządy omiarowe... 18 1.3. Określanie nieewności omiarów... 45 1.4. Pomiar rezystancji, indukcyjności i ojemności... 53 1.5. Organizacja racy odczas

Bardziej szczegółowo

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3 ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +

Bardziej szczegółowo

Wymiana ciepła przez żebra

Wymiana ciepła przez żebra Katedra Silników Spalinowych i Pojadów TH ZKŁD TERMODYNMIKI Wymiana ciepła pre era - - Cel ćwicenia Celem ćwicenia jet adanie wpływu atoowania eer na intenywność wymiany ciepła. Badanie preprowada ię na

Bardziej szczegółowo

Pierwsze prawo Kirchhoffa

Pierwsze prawo Kirchhoffa Pierwsze rawo Kirchhoffa Pierwsze rawo Kirchhoffa dotyczy węzłów obwodu elektrycznego. Z oczywistej właściwości węzła, jako unktu obwodu elektrycznego, który: a) nie może być zbiornikiem ładunku elektrycznego

Bardziej szczegółowo

2. ELEMENTY TEORII PRĘTÓW SILNIE ZAKRZYWIONYCH (Opracowano na podstawie [9, 11, 13, 34, 51])

2. ELEMENTY TEORII PRĘTÓW SILNIE ZAKRZYWIONYCH (Opracowano na podstawie [9, 11, 13, 34, 51]) P Litewka Efektywny eement skońcony o dżej krywiźnie ELEENTY TEOII PĘTÓW SILNIE ZKZYWIONYCH (Opracowano na podstawie [9,, 3, 34, 5]) Premiescenia i odkstałcenia osiowe Pre pręty sinie akrywione romie się

Bardziej szczegółowo

Równanie Schrödingera dla elektronu w atomie wodoru Równanie niezależne od czasu w trzech wymiarach współrzędne prostokątne

Równanie Schrödingera dla elektronu w atomie wodoru Równanie niezależne od czasu w trzech wymiarach współrzędne prostokątne Równanie Schrödingera dla elektronu w atomie wodoru Równanie nieależne od casu w trech wymiarach współrędne prostokątne ψ ψ ψ h V m + + x y + ( x, y, ) ψ = E ψ funkcja falowa ψ( x, y, ) Energia potencjalna

Bardziej szczegółowo

Metoda oceny efektywności realizacji międzynarodowej usługi transportowej

Metoda oceny efektywności realizacji międzynarodowej usługi transportowej RÓŻOWICZ Jan 1 JAKOWLEWA Irena 2 Metoda oceny efektywności realiacji międynarodowej usługi transortowej WSĘP Jednym odstawowych agadnień międynarodowej usługi transortowej jest ocena efektywności realiacji

Bardziej szczegółowo

Rozdział 3: Badanie i interpretacja drgań na płaszczyźnie fazowej. Część 1 Odwzorowanie drgań oscylatora liniowego na płaszczyźnie fazowej

Rozdział 3: Badanie i interpretacja drgań na płaszczyźnie fazowej. Część 1 Odwzorowanie drgań oscylatora liniowego na płaszczyźnie fazowej WYKŁAD 5 Rozdział 3: Badanie i interpretacja drgań na płaszczyźnie fazowej Część 1 Odwzorowanie drgań oscyatora iniowego na płaszczyźnie fazowej 3.1. Płaszczyzna fazowa, trajektoria fazowa, obraz fazowy

Bardziej szczegółowo

DWUCZĘŚCIOWE ŁOŻYSKO POROWATE

DWUCZĘŚCIOWE ŁOŻYSKO POROWATE PROBLEMY NIEKONWENCJONALNYCH UKŁADÓW ŁOŻYSKOWYCH Łódź, 1 14 maja 1999 r. Karol Kremiński Politechnika Warsawska DWUCZĘŚCIOWE ŁOŻYSKO POROWATE SŁOWA KLUCZOWE: łożysko śligowe, tuleja porowata, prepuscalność

Bardziej szczegółowo

Postać Jordana macierzy

Postać Jordana macierzy Rodiał 8 Postać Jordana macier 8.1. Macier Jordana Niech F = R lub F = C. Macier J r () F r r postaci 1. 1... J r () =..........,.... 1 gdie F, nawam klatką Jordana stopnia r. Ocwiście J 1 () = [. Definicja

Bardziej szczegółowo

ALGORYTM STRAŻAKA W WALCE Z ROZLEWAMI OLEJOWYMI

ALGORYTM STRAŻAKA W WALCE Z ROZLEWAMI OLEJOWYMI JOLANTA MAZUREK Akademia Morska w Gdyni Katedra Matematyki ALGORYTM STRAŻAKA W WALCE Z ROZLEWAMI OLEJOWYMI W artykule rzedstawiono model wykorzystujący narzędzia matematyczne do ustalenia reguł oraz rozwiązań,

Bardziej szczegółowo

Drgania układu o wielu stopniach swobody

Drgania układu o wielu stopniach swobody Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach

Bardziej szczegółowo

ZJAWISKO SYNCHRONIZACJI DRGAŃ I WZBUDZENIA ASYNCHRONICZNEGO W OSCYLATORZE LIENARDA

ZJAWISKO SYNCHRONIZACJI DRGAŃ I WZBUDZENIA ASYNCHRONICZNEGO W OSCYLATORZE LIENARDA JAN ŁUCZKO ZJAWISKO SYNCHRONIZACJI DRGAŃ I WZBUDZENIA ASYNCHRONICZNEGO W OSCYLATORZE LIENARDA SYNCHRONIZATION OF VIBRATION AND ASYNCHRONIC EXCITATION IN LIENARD S OSCILLATOR Streszczenie Abstract W niniejszym

Bardziej szczegółowo

Funkcje pola we współrzędnych krzywoliniowych cd.

Funkcje pola we współrzędnych krzywoliniowych cd. Funkcje pola we współrędnych krywoliniowych cd. Marius Adamski 1. spółrędne walcowe. Definicja. Jeżeli M jest rutem punktu P na płascynę xy, a r i ϕ są współrędnymi biegunowymi M, to mienne u = r, v =

Bardziej szczegółowo

Zjawisko Comptona opis pół relatywistyczny

Zjawisko Comptona opis pół relatywistyczny FOTON 33, Lato 06 7 Zjawisko Comtona ois ół relatywistyczny Jerzy Ginter Wydział Fizyki UW Zderzenie fotonu ze soczywającym elektronem Przy omawianiu dualizmu koruskularno-falowego jako jeden z ięknych

Bardziej szczegółowo

Wykład 4: Fraktale deterministyczne i stochastyczne

Wykład 4: Fraktale deterministyczne i stochastyczne Wykład 4: Fraktale deterministycne i stochastycne Fiyka komputerowa 005 Kataryna Weron, kweron@ift.uni.wroc.pl Co to jest fraktal? Złożona budowa dowolnie mały jego fragment jest równie skomplikowany jak

Bardziej szczegółowo

Rozrusznik gwiazda-trójkąt

Rozrusznik gwiazda-trójkąt nr AB_02 str. 1/6 Sis treści: 1 Rozruch bezosredni str.1 2 Rozruch za omocą rozrusznika stycznikowego / str.2 rzeznaczenie str. 4 Budowa str. 5 Schemat ołączeń str.4 6 asada działania str.4 7 Sosób montaŝu

Bardziej szczegółowo

x od położenia równowagi

x od położenia równowagi RUCH HARMONICZNY Ruch powtarając się w regularnch odstępach casu nawa ruche okresow. Jeżeli w taki ruchu seroko rouiane odchlenie od stanu równowagi ( np. odchlenie as podcepionej do sprężn, wartość wektora

Bardziej szczegółowo

Teoria informacji i kodowania Ćwiczenia Sem. zimowy 2016/2017

Teoria informacji i kodowania Ćwiczenia Sem. zimowy 2016/2017 Teoria informacji i kodowania Ćwiczenia Sem. zimowy 06/07 Źródła z amięcią Zadanie (kolokwium z lat orzednich) Obserwujemy źródło emitujące dwie wiadomości: $ oraz. Stwierdzono, że częstotliwości wystęowania

Bardziej szczegółowo

Równanie zachowania energii (równanie Bernoulliego)

Równanie zachowania energii (równanie Bernoulliego) Moę rewiieć ruch ciał niebieskich ae ruchu kroi woy nie. Gaieo Gaiei Równanie achowania enerii (równanie Bernouieo) Prewiywanie achowania się ukłaów fiycnych awse arątało łowy naukowców. Aby można było

Bardziej szczegółowo

J. Szantyr - Wykład 7 Ruch ogólny elementu płynu

J. Szantyr - Wykład 7 Ruch ogólny elementu płynu J. Santr - Wkład 7 Rch ogóln element płn Rch ogóln ciała stwnego można predstawić jako smę premiescenia liniowego i obrot. Ponieważ płn nie mają stwności postaciowej, w rch płn dochodi dodatkowo do odkstałcenia

Bardziej szczegółowo

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice.

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. 1 Wahadło matematyczne. Wahadłem matematycznym nazywamy punkt materialny o masie m zawieszony na długiej, cienkiej

Bardziej szczegółowo

Ćwiczenia do wykładu Fizyka Statystyczna i Termodynamika

Ćwiczenia do wykładu Fizyka Statystyczna i Termodynamika Ćwiczenia do wykładu Fizyka tatystyczna i ermodynamika Prowadzący dr gata Fronczak Zestaw 5. ermodynamika rzejść fazowych: równanie lausiusa-laeyrona, własności gazu Van der Waalsa 3.1 Rozważ tyowy diagram

Bardziej szczegółowo

Pracownia elektryczna i elektroniczna

Pracownia elektryczna i elektroniczna Pracownia elektryczna i elektroniczna Srawdzanie skuteczności ochrony rzeciworażeniowej 1.... 2.... 3.... Klasa: Grua: Data: Ocena: 1. Cel ćwiczenia: Celem ćwiczenia jest zaoznanie ze sosobami srawdzania

Bardziej szczegółowo

Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych

Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydiał Mechanicny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 3 1. CEL ĆWICZENIA Wybrane

Bardziej szczegółowo

Złożone działanie sił wewnętrznych w prętach prostych

Złożone działanie sił wewnętrznych w prętach prostych Złożone diałanie sił wewnętrnch w rętach rostch Jeżeli sił wewnętrne nie redukują się włącnie do sił odłużnej N, orecnej T i momentu gnącego Mg c momentu skręcającego Ms, to radki takie nawa się łożonmi

Bardziej szczegółowo

Promieniowanie dipolowe

Promieniowanie dipolowe Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A

Bardziej szczegółowo

Funkcje zespolone. 2 Elementarne funkcje zespolone zmiennej zespolonej

Funkcje zespolone. 2 Elementarne funkcje zespolone zmiennej zespolonej Wyiał Matematyki Stosowanej Zestaw adań nr 8 Akademia Górnico-Hutnica w Krakowie WFiIS, informatyka stosowana, II rok Elżbieta Adamus grudnia 206r. Funkcje espolone Ciągi i seregi licb espolonych Zadanie.

Bardziej szczegółowo

Katedra Geotechniki i Budownictwa Drogowego. WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Mazurski

Katedra Geotechniki i Budownictwa Drogowego. WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Mazurski Katedra Geotechniki i Budownictwa Drogowego WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Maurski Mechanika Gruntów dr inż. Ireneus Dyka http://pracownicy.uwm.edu.pl/i.dyka e-mail: i.dyka@uwm.edu.pl

Bardziej szczegółowo

Linia długa w obrazkach

Linia długa w obrazkach Linia dłua w obrazach A. Linia dłua jao czwórni I I I E U U U Rys.1 Tyowa raca linii dłuiej. Podstawowe wielości s imedancja alowa =, s = R + jωl, Y r = G + jωc, Y r dzie R, G, L, C- arametry jednostowe

Bardziej szczegółowo

Projekt 9: Dyfuzja ciepła - metoda Cranck-Nicloson.

Projekt 9: Dyfuzja ciepła - metoda Cranck-Nicloson. Projekt 9: Dyfuzja ciepła - metoda Cranck-Nicoson. Tomasz Chwiej stycznia 9 Wstęp n y ρ j= i= n x Rysunek : Siatka węzłów użyta w obiczeniach z zaznaczonymi warunkami brzegowymi: Diricheta (czerwony) i

Bardziej szczegółowo

Obliczanie i badanie obwodów prądu trójfazowego 311[08].O1.05

Obliczanie i badanie obwodów prądu trójfazowego 311[08].O1.05 - 0 - MINISTERSTWO EDUKACJI i NAUKI Teresa Birecka Obliczanie i badanie obwodów rądu trójazowego 3[08].O.05 Poradnik dla ucznia Wydawca Instytut Technologii Eksloatacji Państwowy Instytut Badawczy Radom

Bardziej szczegółowo

Obwody prądu zmiennego

Obwody prądu zmiennego Obwody prądu zmiennego Prąd stały ( ) ( ) i t u t const const ( ) u( t) i t Prąd zmienny, dowolne funkcje czasu i( t) t t u ( t) t t Natężenie prądu i umowny kierunek prądu Prąd stały Q t Kierunek poruszania

Bardziej szczegółowo

Andrzej Leśnicki Laboratorium CPS Ćwiczenie 8 1/9 ĆWICZENIE 8. Próbkowanie i rekonstrukcja sygnałów

Andrzej Leśnicki Laboratorium CPS Ćwiczenie 8 1/9 ĆWICZENIE 8. Próbkowanie i rekonstrukcja sygnałów Andrzej Leśnicki Laboratorium CPS Ćwiczenie 8 1/9 ĆWICZENIE 8 Próbkowanie i rekonstrukcja sygnałów 1. Cel ćwiczenia Pierwotnymi nośnikami informacji są w raktyce głównie sygnały analogowe. Aby umożliwić

Bardziej szczegółowo

WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład IV Twierdzenia całkowe

WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład IV Twierdzenia całkowe 4. Twierdenie Greena. Wykład IV Twierdenia całkowe Płascyną orientowaną będiemy określać płascynę wyróżnionym na nie obrotem, wanym obrotem dodatnim. Orientację płascyny preciwną wględem danej orientacji

Bardziej szczegółowo