3. Zapas stabilności układów regulacji 3.1. Wprowadzenie
|
|
- Beata Adamczyk
- 6 lat temu
- Przeglądów:
Transkrypt
1 3. Zapas stabilności układów regulacji 3.. Wprowadenie Dla scharakteryowania apasu stabilności roważymy stabilny układ regulacji o nanym schemacie blokowym: Ws () Gs () Ys () Hs () Rys. 3.. Schemat blokowy układu regulacji
2 Niech funkcja prejścia układu amkniętego pryjmie postać (3 warianty): G (s) T G (s) (T G (s) (T s Ku Ku s ) Ku s )(T T s s ) pry cym T T Z tych funkcji prejścia wynikają charakterystyki: ) Char. oscylacyjna o dużym preregulowaniu i dużym casie regulacji, ) Char. oscylacyjna o małym preregulowaniu i małym casie regulacji, 3) Char. inercyjna o małym casie regulacji, 4) Char. inercyjna o dużym casie regulacji.
3 w A w 0 t y K u A w t Rys. 3.. Charakterystyki casowe ukł. dla skokowego sygnału wymusającego 3
4 Z pokaanych charakterystyk wynika, że nie wsystkie układy regulacji nadają się do praktycnego wykorystania, mianowicie:. Nadaje się układ o charakterystyce lub 3, mówimy, że ma on właściwy apas stabilności.. Nie nadaje się układ o charakterystyce, który ma a mały apas stabilności. 3. Nie nadaje się układ o charakterystyce 4, który ma a duży apas stabilności. 4
5 Wyróżniamy try podstawowe miary apasu stabilności: ) Licba tłumienia dominujących pierwiastków espolonych równania charakterystycnego, ) Zapas wmocnienia i fay w układie otwartym, 3) Amplituda reonansowa układu amkniętego. 5
6 3.. Licba tłumienia dominujących pierwiastków espolonych RCH Wartość kąta Prediał licby tłumienia 0,8 0,4 Preregulowanie 5.4%.5% 6
7 Tabela 3. Zależność preregulowania charakterystyki skokowej od licby tłumienia cłonu drugiego rędu,% Gdy preregulowanie będie niedopuscalne, stosujemy dominujący podwójny pierwiastek recywisty, który powoduje, że: 7
8 3.3. Zapas wmocnienia i fay w układie otwartym Zapas stabilności wyrażamy a pomocą charakterystyk: amplitudowo-faowej, logarytmicnych amplitudowej i faowej, wykresu Blacka (Nicholsa). 8
9 3.3.. Zastosowanie charakterystyki amplitudowo-faowej a π jimh ( j ω ) G ( j ω ) - ReH ( j ω ) G ( j ω ) ω π γ ω φ r = φ ω Rys Fragment charakterystyki amplitudowo-faowej 9
10 Dla pulsacji H(j )G(j ) Kd Z rysunku 3.3 a K d Więc apas wmocnienia K d a K d K d K d dla układów stabilnych, dla układów na granicy stabilności, dla układów niestabilnych, cyli 0 K d. 0
11 Zapas fay (margines faowy) definiowany jest worem 80 pry cym: dla układów stabilnych, dla układów na granicy stabilności, dla układów niestabilnych.
12 W praktyce stosuje się wartości: Kd Zapas fay ma nacenie decydujące, natomiast apas wmocnienia drugorędne.
13 Prykład 3. Za pomocą charakterystyki amplitudowo faowej badać apas stabilności układu regulacji opisanego funkcją prejścia H(s)G(s) s(t s KK )(T s ) dla: KK T T 0.80, 0 [s], [s]. 3
14 Rowiąanie Funkcję prejścia w układie otwartym apisujemy w postaci H(s)G(s) l(s) m(s) gdie: l(s) = KK = 0.8, m(s) = s(t s+)(t s+) = s(0s+)(s+) = a(s)b(s)c(s), a(s) = s, b(s) = 0s+, c(s) = s+. 4
15 W konwencji Matlaba apisemy l = [0.8]; a = [,0]; b = [0,]; c = [,]; m = conv(conv(a,b),c); Następnie wydajemy polecenia można określić akresu pulsacji om=0.5:0.0:5; wykreślenie charakterystyki amplitudowo-faowej: nyquist(l,m,om) 5
16 W celu wynacenia apasu fay (opróc charakterystyki nyquista) należy wykreślić okrąg jednostkowy o środku w pocątku układu współrędnych: hold on w = linspace(0,*pi,800); x = cos(w); y = sin(w); plot(x,y) Następnie korystając funkcji ginput odcytujemy współrędne (x i y) punktu precięcia charakterystyki okręgiem: [x,y] = ginput (); Odcytane współrędne x i y wykorystujemy do oblicenia apasu fay : gama = atand(y/x) 6
17 Wynik diałania poleceń jest następujący: 7
18 Podobnie wynacamy apas stabilności modułu K (odcytujemy współrędną recywistą punktu precięcia charakterystyki osią recywistą): [ ] Rys Charakterystyka amplitudowo faowa w układie otwartym 8
19 Otrymujemy wyniki: K d , Porównując wynik aleceniami projektowymi stwierdamy, że apas wmocnienia i apas fay są a małe. 9
20 3.3.. Zastosowanie charakterystyk logarytmicnych - amplitudowej i faowej Lm H( jω) G( jω) ω φ ω π ΔLm= K 0lg d lg ω ( ω) φ ω φ ω π lg ω ( ω) -π γ Rys Charakterystyki logarytmicne w otoceniu granicy stabilności 0
21 Stosowane wartości apasu wmocnienia i fay: 6dB Lm db Ocywiście achodą ależności: Lm 0 i 0 dla układów stabilnych, Lm 0 i 0 dla układów na granicy stabilności, Lm 0 i 0 dla układów niestabilnych.
22 Prykład 3. Za pomocą charakterystyk logarytmicnych amplitudowej i faowej badać apas stabilności układu opisanego funkcją prejścia H(s)G(s) (T s KK )(T s )(T 3 s ) dla danych: KK T T T , s, s, s.
23 Rowiąanie Funkcję prejścia w układie otwartym apisujemy w postaci H(s)G(s) l(s) m(s) gdie: l(s) = KK = 3, m(s) = (T s+)(t s+)(t 3 s+) = (0.50s+)(0.0s+)(0.05s+), a(s) = 0.50s+, b(s) = 0.0s+, c(s) = 0.05s+. 3
24 W konwencji Matlaba apisemy następująco l=[3.0]; a=[0.50,]; b=[0.0,]; c=[0.05,]; m=conv(conv(a,b),c); Polecenia tworące wykres Określenie akresu pulsacji om=:0.0:00; Charakterystyki logarytmicne amplitudowa i faowa bode(l,m,om) 4
25 Lm H ( j ω ) G ( j ω ) [db] lg ω ( ω)[/s] Rys Charakterystyki logarytmicne lg ω ( ω)[/s] 5
26 Z charakterystyk odcytano: Lm 6.8dB 78 Lm 0lg (Kd) Stąd można oblicyć apas modułu (bewymiarowy): K d = 0 Lm 0 6
27 margin - funkcja Matlaba, która powala wynacyć apasy stabilności, jeżeli nana jest transmitancja otwartego układu regulacji: Funkcja Matlaba: gdie: [Kd,gamma,omega_pi,omega_fi]=margin(l,m) Kd apas modułu (bewymiarowy) gamma apas fay [] omega_pi - cęstotliwość, dla której faa = -[/s], omega_fi cęstotliwość, dla której moduł = 0 [/s]. 7
28 Uproscenie apisu funkcji prejścia układu amkniętego Układy regulacji projektowane według apasu wmocnienia i fay mają dominujące pierwiastki espolone w równaniu charakterystycnym. Można więc astosować apis uproscony G (s) T s Ku T s Wmocnienie K u można wynacyć e woru (.7) lub (.8). 8
29 Dla naleienia poostałych współcynników można posłużyć się wynikami badania cłonu oscylacyjnego drugiego rędu Tabela 3.. Zależność apasu fay i preregulowania od licby tłumienia cłonu drugiego rędu,,% Stała casowa T pry ałożeniu r T - 9
30 3.4. Amplituda reonansowa układu amkniętego Określenie parametrów reonansowych G (s) Uproscony apis funkcji prejścia T s T s W apisie widmowym G (j ) - T j T Moduł licby espolonej G (j ) M - T 4 T 30
31 M M r ζ ζ 0 ω r ω Rys Charakterystyki amplitudowo cęstotliwościowe dla różnych licb tłumienia, pry cym ζ < ζ 3
32 Amplitudą reonansową naywamy maksymalną wartość modułu transmitancji widmowej układu amkniętego. Pulsacją reonansową naywamy pulsację odpowiadającą amplitudie reonansowej. 3
33 Pulsację reonansową najdujemy warunku ekstremum Wtedy Amplituda reonansowa występuje, gdy dm d r 0 - T Amplituda reonansowa wynosi M r - Najcęściej pryjmuje się. Mr.5 33
34 3.4.. Uproscenie apisu funkcji prejścia układu amkniętego Układy regulacji projektowane według amplitudy reonansowej mają dominujące pierwiastki espolone w równaniu charakterystycnym. Można więc astosować apis uproscony G (s) T s Ku T s Wmocnienie K u można wynacyć e woru (.7) lub (.8). 34
35 Dla naleienia poostałych współcynników można posłużyć się wynikami badania cłonu oscylacyjnego drugiego rędu. Tabela 3.3. Zależność amplitudy reonansowej i preregulowania od licby tłumienia cłonu drugiego rędu M r ,% Stała casowa T T - r 35
36 Wynacanie parametrów reonansowych układu amkniętego na podstawie charakterystyk w układie otwartym W () s H( s) G( s) Ys () Rys Schemat blokowy układu prekstałcony do postaci jednostkowym sprężeniem wrotnym Zastępcy sygnał wejściowy W (s) W(s) H(s) Funkcja prejścia układu amkniętego G (s) H(s)G(s) H(s)G(s) 36
37 Transmitancja widmowa układu amkniętego Postać algebraicna transmitancji widmowej układu otwartego, gdie: G (j ) H(j )G(j ) x( ),y( ) H(j )G(j ) H(j )G(j ) x( ) jy( ) - cęść recywista i urojona Wtedy G (j ) x( ) x( ) jy( ) jy( ) Moduł transmitancji M G (j ) ( ) y ( ) widmowej x( ) y ( ) x 37
38 Zakładając, że M jest parametrem otrymujemy po rowikłaniu następujący wór Dla M x( ) - M - M y ( ) M - M Jest to równanie okręgu o następujących parametrach (współrędne środka i promień): M - x y M M 0 rm M M - M 38
39 Zakładając, że M jest parametrem otrymujemy po rowikłaniu następujący wór Dla M x( ) - Jest to równanie prostej pionowej. 39
40 40 M Dla M M ) ( y M M ) x( Jest to równanie okręgu o następujących parametrach (współrędne środka i promień): M M x M 0 y M M M r M Zakładając, że M jest parametrem otrymujemy po rowikłaniu następujący wór
41 y M= M=0 M=0 M=0.0 M=6.3 - / - x M=0.6 M=4.0 M=0.5 M =.5 M=0.40 M=.6 M= M=0.63 Rys Nomogram Halla (krywe M lub linie stałych wartości modułu) 4
42 jy M=0 M=0.0 - S / - M=0.5 x M=0.6 M=.5 M=0.40 M=.6 M= M=0.63 Rys Wynacenie parametrów reonansowych układu amkniętego 4
43 Dla naleienia parametrów reonansowych układu amkniętego na podstawie charakterystyki amplitudowo-faowej w układie otwartym wykonujemy następujące operacje:. Na nomogram Halla nanosimy charakterystykę amplitudowofaową w układie otwartym.. Posukujemy okręgu stycnego do charakterystyki. 3. Wartość parametru M, dla której jeden okręgów jest stycny do charakterystyki jest posukiwaną amplitudą reonansową. 4. W punkcie stycności S możemy także naleźć pulsację reonansową. Dla punktu stycności S mamy: Mr M s ora r s 43
44 Wykorystanie nomogramu Halla w projektowaniu układów regulacji W projektowaniu układów regulacji posukuje się najcęściej efektywnego współcynnika wmocnienia regulatora. Zadanie to można rowiąać na dwa sposoby:. Metodą prób i błędów.. Zastosowanie właściwości okręgów M = const. Metoda prób i błędów Metoda polega na naleieniu charakterystyki amplitudowo-faowej w układie otwartym, stycnej o okręgu o adanej amplitudie reonansowej układu amkniętego. W tym celu mienia się efektywny współcynnik wmocnienia regulatora K e i obserwuje położenie charakterystyki amplitudowo-faowej wględem adanego kręgu. 44
45 jy x K e K e K e K e K e K e Pry cym K e < K e < K e Pry cym K e < K e < K e Rys. 3.0a. Ilustracja wpływu wmocnienia na położenie charakterystyki 45
46 Z rys. 3.0a wynikają następujące spostreżenia:. Współcynnik wmocnienia K e jest a mały.. Współcynnik wmocnienia K e jest a duży. 3. Współcynnik wmocnienia K e jest odpowiedni. Zastosowanie właściwości okręgów M = const. Okręgi M = const, budowane dla M > mają następujące właściwości wykorystywane w projektowaniu układów amkniętych na podstawie charakterystyk amplitudowofaowych w układie otwartym: 46
47 M > x M x s jimh( jω) G( jω) ReH( jω) G( jω) r M ψ S Rys. 3.. Ilustracja do opisu właściwości okręgów M = const x s arcsin M 47
48 Tabela 3.4. Wartości dla konstrukcji okręgów M = const M x M r M , M x M r M , M x M r M ,
49 Dla prykładu weźmy pod uwagę skorygowany układ regulacji opisany po otwarciu transmitancją H( s )G( s ) s 0.6K e 5s s G ( s )K G r o ( s ) K s T s KK T s e Dla wynacenia wymaganego wmocnienia K e pryjmujemy następujące wartości projektowe M r I oblicamy arcsin arcsin 5. 4 M.8 r 49
50 jy x Ilustracja wykorystania właściwości o- kręgów M = const 50
51 Następnie wykonujemy cynności:. Zakładamy wstępną wartość wmocnienia K ewstepne KK równą na prykład i wykreślamy charakterystykę amplitudowofaową w układie otwartym.. Wykreślamy prostą pod obliconym kątem 5.4 o. 3. Metodą prób konstruujemy okrąg mający środek na ujemnej osi recywistej i jednoceśnie stycny do charakterystyki i wykreślonej prostej. 4. Odcytujemy odciętą punktu stycności x s = Aby wykreślony okrąg był recywiście okręgiem M r =.8, odcięta punktu stycności powinna wynosić x s = -. Należy więc preskalować wykres, co w konsekwencji prowadi do woru K ewymagane (K ewstepne KK x KK s )
3. Zapas stabilności układów regulacji 3.1. Wprowadzenie
3. Zapas stabilności układów regulacji 3.. Wprowadenie Dla scharakteryowania apasu stabilności roważymy stabilny układ regulacji o nanym schemacie blokowym: Ws () Gs () Ys () Hs () Rys. 3.. Schemat blokowy
Ekoenergetyka Matematyka 1. Wykład 1.
Ekoenergetyka Matematyka 1. Wykład 1. Literatura do wykładu M. Gewert, Z. Skocylas, Analia matematycna 1; T. Jurlewic, Z. Skocylas, Algebra liniowa 1; Stankiewic, Zadania matematyki wyżsej dla wyżsych
UKŁADY JEDNOWYMIAROWE. Część II UKŁADY LINIOWE Z OPÓŹNIENIEM
UKŁADY JEDNOWYMIAROWE Część II UKŁADY LINIOWE Z OPÓŹNIENIEM 1 8. Wprowadzenie do części II W praktyce występują układy regulacji, których człony mogą przejawiać opóźnioną reakcję na sygnał wejściowy. Rozróżniamy
ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE
. Oblicyć: ZADANIA Z FUNKCJI ANALITYCZNYCH a) ( 7i) ( 9i); b) (5 i)( + i); c) 4+3i ; LICZBY ZESPOLONE d) 3i 3i ; e) pierwiastki kwadratowe 8 + i.. Narysować biór tych licb espolonych, które spełniają warunek:
Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona.
Wykład - LICZBY ZESPOLONE Algebra licb espolonych, repreentacja algebraicna i geometrycna, geometria licb espolonych. Moduł, argument, postać trygonometrycna, wór de Moivre a.' Zbiór Licb Zespolonych Niech
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi
Modelowanie i obliczenia techniczne. Modelowanie matematyczne Metody modelowania
Modelowanie i oblicenia technicne Modelowanie matematycne Metody modelowania Modelowanie matematycne procesów w systemach technicnych Model może ostać tworony dla całego system lb dla poscególnych elementów
4. Właściwości eksploatacyjne układów regulacji Wprowadzenie. Hs () Ys () Ws () Es () Go () s. Vs ()
4. Właściwości eksploatacyjne układów regulacji 4.1. Wprowadzenie Zu () s Zy ( s ) Ws () Es () Gr () s Us () Go () s Ys () Vs () Hs () Rys. 4.1. Schemat blokowy układu regulacji z funkcjami przejścia 1
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi
MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH
MES W ANALIZIE SPRĘŻYS UKŁADÓW PRĘOWYCH Prykłady obliceń Belki Lidia FEDOROWICZ Jan FEDOROWICZ Magdalena MROZEK Dawid MROZEK Gliwice 7r. 6-4 Lidia Fedorowic, Jan Fedorowic, Magdalena Mroek, Dawid Mroek
WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM. Rok szkolny 2015/16
WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM Rok skolny 2015/16 POZIOMY WYMAGAŃ EDUKACYJNYCH: (2) - ocena dopscająca (2); (3) - ocena dostatecna (3); (4) - ocena dobra (4);
Funkcje zespolone. 2 Elementarne funkcje zespolone zmiennej zespolonej
Wyiał Matematyki Stosowanej Zestaw adań nr 8 Akademia Górnico-Hutnica w Krakowie WFiIS, informatyka stosowana, II rok Elżbieta Adamus grudnia 206r. Funkcje espolone Ciągi i seregi licb espolonych Zadanie.
Sposoby modelowania układów dynamicznych. Pytania
Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,
( 1+ s 1)( 1+ s 2)( 1+ s 3)
Kryteria stabilności przykład K T (s)= (s+1)(s+2)(s+3) = K /6 1 1+T (s) = (s+1)(s+2)(s+3) K +6+11s+6s 2 +s 3 ( 1+ s 1)( 1+ s 2)( 1+ s 3) Weźmy K =60: 1 1+T (s) =(s+1)(s+2)(s+3) 66+11s+6s 2 +s =(s+1)(s+2)(s+3)
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)
Opis matematyczny. Równanie modulatora. Charakterystyka statyczna. Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy. dla 0 v c.
Opis matematyczny Równanie modulatora Charakterystyka statyczna d t = v c t V M dla 0 v c t V M D 1 V M V c Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy v c (t )=V c + v c (t ) d (t
Kryterium miejsca geometrycznego pierwiastków
7.5.3. Kryterium miejsca geometrycznego pierwiastków Wprowadzenie Miejsce geometryczne pierwiastków równania charakterystycznego układu zamkniętego (mgp) umożliwia między innymi wyznaczenie wymaganego
Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego.
Transformator Φ r Φ M Φ r i i u u Φ i strumień magnetycny prenikający pre i-ty wój pierwsego uwojenia; siła elektromotorycna indukowana w i-tym woju: dφ ei, licba wojów uwojenia pierwotnego i wtórnego.
Nazwa przedmiotu: Techniki symulacji. Kod przedmiotu: EZ1C Numer ćwiczenia: Ocena wrażliwości i tolerancji układu
P o l i t e c h n i k a B i a ł o s t o c k a W y d i a ł E l e k t r y c n y Nawa predmiotu: Techniki symulacji Kierunek: elektrotechnika Kod predmiotu: EZ1C400 053 Numer ćwicenia: Temat ćwicenia: E47
3. WSPÓŁCZYNNIK ŚCINANIA (KOREKCYJNY)
Cęść 1. WSPÓŁCZYNNIK ŚCINANIA (KOEKCYJNY) 1.. WSPÓŁCZYNNIK ŚCINANIA (KOEKCYJNY).1. Wstęp Współcynnik κ naywany współcynnikiem ścinania jest wielkością ewymiarową, ależną od kstałtu prekroju. Występuje
układu otwartego na płaszczyźnie zmiennej zespolonej. Sformułowane przez Nyquista kryterium stabilności przedstawia się następująco:
Kryterium Nyquista Kryterium Nyquista pozwala na badanie stabilności jednowymiarowego układu zamkniętego na podstawie przebiegu wykresu funkcji G o ( jω) układu otwartego na płaszczyźnie zmiennej zespolonej.
W takim modelu prawdopodobieństwo konfiguracji OR wynosi. 0, 21 lub , 79. 6
achunek prawdopodobieństwa MP6 Wydiał Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab.. Jurlewic Prykłady do listy : Prestreń probabilistycna. Prawdopodobieństwo klasycne. Prawdopodobieństwo
ORGANIZACJA I ZARZĄDZANIE
P O L I T E C H N I K A W A R S Z A W S K A WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ ORGANIZACJA I ZARZĄDZANIE Optymaliacja transportu wewnętrnego w akładie mechanicnym
Optymalizacja (w matematyce) termin optymalizacja odnosi się do problemu znalezienia ekstremum (minimum lub maksimum) zadanej funkcji celu.
TEMATYKA: Optymaliacja nakładania wyników pomiarów Ćwicenia nr 6 DEFINICJE: Optymaliacja: metoda wynacania najlepsego (sukamy wartości ekstremalnej) rowiąania punktu widenia określonego kryterium (musimy
Zastosowanie funkcji inżynierskich w arkuszach kalkulacyjnych zadania z rozwiązaniami
Tadeus Wojnakowski Zastosowanie funkcji inżynierskich w arkusach kalkulacyjnych adania rowiąaniami Funkcje inżynierskie występują we wsystkich arkusach kalkulacyjnych jak Excel w MS Office Windows cy Gnumeric
Układ regulacji automatycznej (URA) kryteria stabilności
Układ regulacji automatycznej (URA) kryteria stabilności y o e G c (s) z z 2 u G o (s) y () = () ()() () H(s) oraz jego wartością w stanie ustalonym. Transmitancja układu otwartego regulacji: - () = ()
Badanie stabilności liniowych układów sterowania
Badanie stabilności liniowych układów sterowania ver. 26.2-6 (26-2-7 4:6). Badanie stabilności liniowych układów sterowania poprzez analizę równania charakterystycznego. Układ zamknięty liniowy i stacjonarny
Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2017 część 1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe
Ćwiczenie nr 6 Charakterystyki częstotliwościowe
Wstęp teoretyczny Ćwiczenie nr 6 Charakterystyki częstotliwościowe 1 Cel ćwiczenia Celem ćwiczenia jest wyznaczenie charakterystyk częstotliwościowych układu regulacji oraz korekta nastaw regulatora na
PRZESTRZEŃ WEKTOROWA (LINIOWA)
PRZESTRZEŃ WEKTOROWA (LINIOWA) Def. 1 (X, K,, ) X, K - ciało : X X X ( to diałanie wewnętrne w biore X) : K X X ( to diałanie ewnętrne w biore X) Strukturę (X, K,, ) naywamy prestrenią wektorową : 1) Struktura
>> ω z, (4.122) Przybliżona teoria żyroskopu
Prybliżona teoria żyroskopu Żyroskopem naywamy ciało materialne o postaci bryły obrotowej (wirnika), osadone na osi pokrywającej się osią geometrycną tego ciała wanej osią żyroskopową. ζ K θ ω η ω ζ y
Zginanie Proste Równomierne Belki
Zginanie Proste Równomierne Belki Prebieg wykładu : 1. Rokład naprężeń w prekroju belki. Warunki równowagi. Warunki geometrycne 4. Zwiąek fiycny 5. Wskaźnik wytrymałości prekroju na ginanie 6. Podsumowanie
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie
Algorytm projektowania dolnoprzepustowych cyfrowych filtrów Buttlewortha i Czebyszewa
Zadanie: Algorytm projektowania dolnopreputowych cyfrowych filtrów Buttlewortha i Cebyewa Zaprojektować cyfrowe filtry Buttlewortha i Cebyewa o natępujących parametrach: A p = 1,0 db makymalne tłumienie
Podstawowe człony dynamiczne
. Człon proporcjonalny 2. Człony całkujący idealny 3. Człon inercyjny Podstawowe człony dynamiczne charakterystyki czasowe = = = + 4. Człony całkujący rzeczywisty () = + 5. Człon różniczkujący rzeczywisty
Przedmowa 5. Rozdział 1 Przekształcenie Laplace a 7
Spis treści Predmowa 5 Rodiał 1 Prekstałcenie Laplace a 7 Rodiał 2 Wyprowadenie prekstałcenia Z 9 1. Prykładowe adania......................... 10 2. Zadania do samodielnego rowiąania............... 16
Automatyka i robotyka
Automatyka i robotyka Wykład 6 - Odpowiedź częstotliwościowa Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 37 Plan wykładu Wprowadzenie Podstawowe człony
Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych
Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydiał Mechanicny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 3 1. CEL ĆWICZENIA Wybrane
K p. K o G o (s) METODY DOBORU NASTAW Metoda linii pierwiastkowych Metody analityczne Metoda linii pierwiastkowych
METODY DOBORU NASTAW 7.3.. Metody analityczne 7.3.. Metoda linii pierwiastkowych 7.3.2 Metody doświadczalne 7.3.2.. Metoda Zieglera- Nicholsa 7.3.2.2. Wzmocnienie krytyczne 7.3.. Metoda linii pierwiastkowych
REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ. T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia
REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ Y o (s) - E(s) B(s) /T I s K p U(s) Z(s) G o (s) Y(s) T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia
Inżynieria Systemów Dynamicznych (3)
Inżynieria Systemów Dynamicznych (3) Charakterystyki podstawowych członów dynamicznych Piotr Jacek Suchomski Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 grudnia 2010 O czym będziemy mówili?
SYMULACJA UKŁADU REDUKCJI DRGAŃ Z TŁUMIKIEM MAGNETOREOLOGICZNYM I ELEKTROMAGNETYCZNYM PRZETWORNIKIEM ENERGII
MODELOWANIE INŻYNIERSKIE ISSN 9-77X 39, s. 77-, Gliwice SYMULACJA UKŁADU REDUKCJI DRGAŃ Z TŁUMIKIEM MAGNETOREOLOGICZNYM I ELEKTROMAGNETYCZNYM PRZETWORNIKIEM ENERGII BOGDAN SAPIŃSKI, PAWEŁ MARTYNOWICZ,
Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2017 cz.1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 5 BADANIE STABILNOŚCI UKŁADÓW ZE SPRZĘŻENIEM ZWROTNYM 1. Cel ćwiczenia Celem ćwiczenia jest ugruntowanie
Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.
Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Spis treści 1 Cel ćwiczenia 2 2 Podstawy teoretyczne 2 2.1 Charakterystyki częstotliwościowe..........................
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
Matematyka plusem dla gimnajum PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Sterowanie ciągłe. Teoria sterowania układów jednowymiarowych
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Sterowanie ciągłe Teoria sterowania układów jednowymiarowych 1 Informacja o prowadzących zajęcia Studia stacjonarne rok II Automatyka i Robotyka
Fizyka 3.3 III. DIODA ZENERA. 1. Zasada pomiaru.
Fiyka 3.3 III. DIODA ZENERA Cel ćwicenia: Zaponanie się asadą diałania diody Zenera, wynacenie jej charakterystyki statycnej, napięcia wbudowanego ora napięcia Zenera. 1) Metoda punkt po punkcie 1. Zasada
Funkcje pola we współrzędnych krzywoliniowych cd.
Funkcje pola we współrędnych krywoliniowych cd. Marius Adamski 1. spółrędne walcowe. Definicja. Jeżeli M jest rutem punktu P na płascynę xy, a r i ϕ są współrędnymi biegunowymi M, to mienne u = r, v =
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w
Metody dokładne w zastosowaniu do rozwiązywania łańcuchów Markowa
Metody dokładne w astosowaniu do rowiąywania łańcuchów Markowa Beata Bylina, Paweł Górny Zakład Informatyki, Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej Plac Marii Curie-Skłodowskiej 5, 2-31
PAiTM. materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż.
PAiTM materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. Sebastian Korczak Poniższe materiały tylko dla studentów uczęszczających na zajęcia.
Laboratorium z podstaw automatyki
Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Analiza stabilności obiektów automatyzacji, Wpływ sprzężenia zwrotnego na stabilność obiektów Kierunek studiów: Transport,
Własności dynamiczne przetworników pierwszego rzędu
1 ĆWICZENIE 7. CEL ĆWICZENIA. Własności dynamiczne przetworników pierwszego rzędu Celem ćwiczenia jest poznanie własności dynamicznych przetworników pierwszego rzędu w dziedzinie czasu i częstotliwości
PODSTAWY AUTOMATYKI 1 ĆWICZENIA
Automatyka i Robotyka Podtawy Automatyki PODSTAWY AUTOMATYKI ĆWICZENIA lita adań nr Tranformata Laplace a. Korytając wprot definicji naleźć tranformatę Laplace a funkcji: y t y t y t y e t. Dana jet odpowiedź
Teoria sterowania - studia niestacjonarne AiR 2 stopień
Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe
A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)!
Wstęp do rachunku prawdopodobieństwa i statystyki matematycnej MAP037 wykład dr hab. A. Jurlewic WPPT Fiyka, Fiyka Technicna, I rok, II semestr Prykłady - Lista nr : Prestreń probabilistycna. Prawdopodobieństwo
Ćwiczenie 13. Wyznaczanie ruchliwości i koncentracji nośników prądu w półprzewodnikach metodą efektu Halla. Cel ćwiczenia
Ćwicenie 13 Wynacanie ruchliwości i koncentracji nośników prądu w półprewodnikach metodą efektu alla Cel ćwicenia Celem ćwicenia jest aponanie się e jawiskiem alla, stałoprądowa metoda badania efektu alla,
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra InŜynierii Systemów Sterowania Podstawy Automatyki
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra InŜynierii Systemów Sterowania Podstawy Automatyki Stabilność systemów sterowania kryterium Nyquist a Materiały pomocnicze do ćwiczeń termin
Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2015 cz.1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe
Część 1. Transmitancje i stabilność
Część 1 Transmitancje i stabilność Zastosowanie opisu transmitancyjnego w projektowaniu przekształtników impulsowych Istotne jest przewidzenie wpływu zmian w warunkach pracy (m. in. v g, i) i wielkości
PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE. WALCOWE (równoległe) STOŻKOWE (kątowe) ŚLIMAKOWE HIPERBOIDALNE. o zebach prostych. walcowe. o zębach.
CZOŁOWE OWE PRZEKŁADNIE STOŻKOWE PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE WALCOWE (równoległe) STOŻKOWE (kątowe) HIPERBOIDALNE ŚLIMAKOWE o ebach prostych o ębach prostych walcowe walcowe o ębach śrubowych o
Katedra Geotechniki i Budownictwa Drogowego. WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Mazurski
Katedra Geotechniki i Budownictwa Drogowego WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Maurski Mechanika Gruntów dr inż. Ireneus Dyka http://pracownicy.uwm.edu.pl/i.dyka e-mail: i.dyka@uwm.edu.pl
Sterowanie Napędów Maszyn i Robotów
Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi
PODSTAWY AUTOMATYKI. Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki. Materiały pomocnicze do
Podstawy Automatyki. Wykład 3 - Charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 -, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp określają zachowanie się elementu (układu) pod wpływem ciągłych sinusoidalnych sygnałów wejściowych. W analizie
TEMAT: Próba statyczna rozciągania metali. Obowiązująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1
ĆWICZENIE NR 1 TEMAT: Próba statycna rociągania metali. Obowiąująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1 Podać nacenie następujących symboli: d o -.....................................................................
Podstawowe zastosowania wzmacniaczy operacyjnych. Układ całkujący i różniczkujący
Podstawowe zastosowania wzmacniaczy operacyjnych. kład całkujący i różniczkujący. el ćwiczenia elem ćwiczenia jest praktyczne poznanie układów ze wzmacniaczami operacyjnymi stosownych do liniowego przekształcania
Interpolacja, aproksymacja całkowanie. Interpolacja Krzywa przechodzi przez punkty kontrolne
Interpolacja, aproksymacja całkowanie Interpolacja Krzywa przechodzi przez punkty kontrolne Aproksymacja Punkty kontrolne jedynie sterują kształtem krzywej INTERPOLACJA Zagadnienie interpolacji można sformułować
ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów
ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów. Cel ćwiczenia Badanie układów pierwszego rzędu różniczkującego, całkującego
PROTOKÓŁ POMIAROWY - SPRAWOZDANIE
PROTOKÓŁ POMIAROWY - SPRAWOZDANIE LABORATORIM PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI Grupa Podgrupa Numer ćwiczenia 5 Nazwisko i imię Data wykonania. ćwiczenia. Prowadzący ćwiczenie Podpis Ocena sprawozdania
1. Pojęcie równania różniczkowego jest to pewne równanie funkcyjne, które zapisać można w postaci ogólnej
1 Równania różnickowe pojęcie 1 Pojęcie równania różnickowego jest to pewne równanie funkcyjne, które apisać można w postaci ogólnej "! (1) lub w postaci normalnej #%$ & ' () (2) Rąd najwyżsej pochodnej
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ eoria maszyn i podstawy automatyki semestr zimowy 2016/2017
Ćw. S-III.3 ELEMENTY ANALIZY I SYNTEZY UAR Badanie stabilności liniowego UAR
Dr inż Michał Chłędowski PODSTAWY AUTOMATYKI I ROBOTYKI LABORATORIUM Ćw S-III3 ELEMENTY ANALIZY I SYNTEZY UAR Badanie stabilności liniowego UAR Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z pojęciem
ĆWICZENIE 5 BADANIE ZASILACZY UPS
ĆWICZENIE 5 BADANIE ZASILACZY UPS Cel ćwicenia: aponanie budową i asadą diałania podstawowych typów asilacy UPS ora pomiar wybranych ich parametrów i charakterystyk. 5.1. Podstawy teoretycne 5.1.1. Wstęp
Badanie transformatora jednofazowego
BADANIE TRANSFORMATORA JEDNOFAZOWEGO Cel ćwicenia Ponanie budowy i asady diałania ora metod badania i podstawowych charakterystyk transformatora jednofaowego. I. WIADOMOŚCI TEORETYCZNE Budowa i asada diałania
Filtry aktywne filtr środkowoprzepustowy
Filtry aktywne iltr środkowoprzepustowy. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości iltrów aktywnych, metod ich projektowania oraz pomiaru podstawowych parametrów iltru.. Budowa
DWUCZĘŚCIOWE ŁOŻYSKO POROWATE
PROBLEMY NIEKONWENCJONALNYCH UKŁADÓW ŁOŻYSKOWYCH Łódź, 1 14 maja 1999 r. Karol Kremiński Politechnika Warsawska DWUCZĘŚCIOWE ŁOŻYSKO POROWATE SŁOWA KLUCZOWE: łożysko śligowe, tuleja porowata, prepuscalność
Sterowanie Napędów Maszyn i Robotów
Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi
Równanie Schrödingera dla elektronu w atomie wodoru Równanie niezależne od czasu w trzech wymiarach współrzędne prostokątne
Równanie Schrödingera dla elektronu w atomie wodoru Równanie nieależne od casu w trech wymiarach współrędne prostokątne ψ ψ ψ h V m + + x y + ( x, y, ) ψ = E ψ funkcja falowa ψ( x, y, ) Energia potencjalna
UKŁADY TENSOMETRII REZYSTANCYJNEJ
Ćwicenie 8 UKŁADY TESOMETII EZYSTACYJEJ Cel ćwicenia Celem ćwicenia jest ponanie: podstawowych właściwości metrologicnych tensometrów, asad konstrukcji pretworników siły, ora budowy stałoprądowych i miennoprądowych
TRANSFORMATORY. Transformator jednofazowy. Zasada działania. Dla. mamy. Czyli. U 1 = E 1, a U 2 = E 2. Ponieważ S. , mamy: gdzie: z 1 E 1 E 2 I 1
TRANSFORMATORY Transformator jednofaowy Zasada diałania E E Z od Rys Transformator jednofaowy Dla mamy Cyli e ω ( t) m sinωt cosωt ω π sin ωt + m m π E ω m f m 4, 44 f m E 4, 44 f E m 4, 44 f m E, a E
Automatyka i robotyka
Automatyka i robotyka Wykład 5 - Stabilność układów dynamicznych Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 43 Plan wykładu Wprowadzenie Stabilność modeli
Laboratorium grafiki komputerowej i animacji. Ćwiczenie III - Biblioteka OpenGL - wprowadzenie, obiekty trójwymiarowe: punkty, linie, wielokąty
Laboratorium grafiki komputerowej i animacji Ćwicenie III - Biblioteka OpenGL - wprowadenie, obiekty trójwymiarowe: punkty, linie, wielokąty Prygotowanie do ćwicenia: 1. Zaponać się ogólną charakterystyką
MATERIA LY DO ĆWICZEŃ Z ANALIZY ZESPOLONEJ Literatura: [Ch] J. Cha
MATERIA LY DO ĆWICZEŃ Z ANALIZY ZESPOLONEJ Literatura: [Ch] J Cha dyński Wste p do analiy espolonej wyd VII Wyd U L Lódź 993 [Kr]J Kryż Zbiór adań funkcji analitycnych PWN Warsawa 975 [Ku] K Kuratowski
Fraktale - wprowadzenie
Fraktale - wprowadenie Próba definici fraktala Jak określamy biory naywane fraktalami? Prykłady procedur konstrukci fraktali W aki sposób b diała aą algorytmy generaci nabardie nanych fraktali? Jakie własnow
Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 8
Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 8 Analiza właściwości zmiennoprądowych materiałów i elementów elektronicznych I. Zagadnienia do przygotowania:. Wykonanie i przedstawienie
Analiza właściwości filtrów dolnoprzepustowych
Ćwiczenie Analiza właściwości filtrów dolnoprzepustowych Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra dolnoprzepustowego (DP) rzędu i jego parametrami.. Analiza widma sygnału prostokątnego.
FILTRY AKTYWNE. Politechnika Wrocławska. Instytut Telekomunikacji, Teleinformatyki i Akustyki. Instrukcja do ćwiczenia laboratoryjnego
Politechnika Wrocławska Instytut Telekomunikacji, Teleinormatyki i Akustyki Zakład Układów Elektronicznych Instrukcja do ćwiczenia laboratoryjnego FILTY AKTYWNE . el ćwiczenia elem ćwiczenia jest praktyczne
VIII Skalmierzycki Konkurs Interdyscyplinarny Z matematyka w XXI wieku
Zadanie 3 Zad. 1 Skreśli licby, które są jednoceśnie podielne pre 2 i 3. Odcytaj litery, które najdją się pod skreślonymi licbami, tworą one bardo ważne słowa, o których wsyscy powinni pamiętać na co dień.
Kompensacja wyprzedzająca i opóźniająca fazę. dr hab. inż. Krzysztof Patan, prof. PWSZ
Kompensacja wyprzedzająca i opóźniająca fazę dr hab. inż. Krzysztof Patan, prof. PWSZ Kształtowanie charakterystyki częstotliwościowej Kształtujemy charakterystykę układu otwartego aby uzyskać: pożądane
Wykład 4: Fraktale deterministyczne i stochastyczne
Wykład 4: Fraktale deterministycne i stochastycne Fiyka komputerowa 005 Kataryna Weron, kweron@ift.uni.wroc.pl Co to jest fraktal? Złożona budowa dowolnie mały jego fragment jest równie skomplikowany jak
Katedra Elektrotechniki Teoretycznej i Informatyki
atedra Eletrotechnii Teoretycnej i Informatyi Predmiot: Zintegrowane Paiety Obliceniowe W Zastosowaniach InŜyniersich Numer ćwicenia: 7 Temat: Signal Processing Toolbox - filtry cyfrowe, transformacja
cos(w o. t) + jsin(w Q. 3S(u t) - jsinfw t). Obydwa rozwiązania (6.39) są zespolone. Jeżeli teraz przyjmie
- 156 - Podstawiając (6.38) do (6.37), znaleziono j
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PROCESOWEJ, MATERIAŁOWEJ I FIZYKI STOSOWANEJ POLITECHNIKA CZĘSTOCHOWSKA ĆWICZENIE NR MR-2
INTYTUT FIZYKI WYDZIAŁ INŻYNIERII PROCEOWEJ, MATERIAŁOWEJ I FIZYKI TOOWANEJ POLITECHNIKA CZĘTOCHOWKA LABORATORIUM Z PRZEDMIOTU METODY REZONANOWE ĆWICZENIE NR MR- EPR JONÓW Ni W FLUOROKRZEMIANIE NIKLU I.
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 7. Metoda projektowania
Technika regulacji automatycznej
Technika regulacji automatycznej Wykład 3 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 32 Plan wykładu Wprowadzenie Układ pierwszego rzędu Układ drugiego
Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem:
PPS 2 kartkówka 1 RÓWNANIE RÓŻNICOWE Jest to dyskretny odpowiednik równania różniczkowego. Równania różnicowe to pewne związki rekurencyjne określające w sposób niebezpośredni wartość danego wyrazu ciągu.
Automatyka i robotyka
Automatyka i robotyka Wykład 8 - Regulator PID Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 29 Plan wykładu regulator PID 2 z 29 Kompensator wyprzedzająco-opóźniający
Laboratorium z automatyki
Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z automatyki Algebra schematów blokowych, wyznaczanie odpowiedzi obiektu na sygnał zadany, charakterystyki częstotliwościowe Kierunek studiów: