W takim modelu prawdopodobieństwo konfiguracji OR wynosi. 0, 21 lub , 79. 6
|
|
- Zdzisław Lipiński
- 7 lat temu
- Przeglądów:
Transkrypt
1 achunek prawdopodobieństwa MP6 Wydiał Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab.. Jurlewic Prykłady do listy : Prestreń probabilistycna. Prawdopodobieństwo klasycne. Prawdopodobieństwo geometrycne. Prykłady do adania. : (a) Pry dwukrotnym rucie monetą aobserwowano, że konfiguracja O (tn. oreł w jednym rutów, reska w drugim) pojawia się w prypadków. Cy moneta, którą wykonywano rut, jest symetrycna? Pryjmujemy Ω = {(O, O), (O, ), (, O), (, )}, F = Ω, P określone pre p = P {(O, O)}, p = P {(O, )}, p = P {(, O)}, p = P {(, )}. Niech p onaca sansę na wyrucenie orła, < p <. Wtedy p ta sansa na reskę. Moneta jest symetrycna, gdy p =,. uty są nieależne, więc mamy p = p, p = p = p( p), p = ( p). (Spr. p i dla i =,,, ora p n = p + p( p) + ( p) = (p + p) =.) W takim modelu prawdopodobieństwo konfiguracji O wynosi i= P (O) = P ((O, ), (, O)) = p + p = p( p). Sukamy takiego p, dla którego P (O) = /. owiąujemy równanie p( p) = /, cyli równanie kwadratowe 6p 6p + =. Otrymujemy =, p =, lub +, (Zauważmy, że wartości p sumują się do. Nie ma w tym nic diwnego. Wynika to symetrycnej roli orła i reski w modelu i badanym dareniu.) W obu prypadkach p,, atem w ramach modelu wnioskujemy, że moneta nie jest symetrycna. (b) Hasło potrebne do uyskania połącenia w sieci komputerowej składa się jednej cyfry i następnie pięciu dużych liter alfabetu angielskiego. Znaleźć prawdopodobieństwo, że osoba postronna odgadnie hasło, jeśli wiadomo, że cyfra jest nieparysta, a wśród liter są dokładnie try litery E. Ω = {(c, l,..., l ), gdie c {,,, 7, 9}, l i to duże litery, dokładnie wśród nich to E}, F = Ω, P - prawdopodobieństwo klasycne. #Ω = () () =, bo jest możliwości wyboru cyfry, ( ) możliwości wyboru miejsc na E, (6 ) możliwości wyboru liter innych niż E na każde dwóch poostałych miejsc darenie, że osoba postronna odgadnie hasło, = {właściwe hasło}, # = P () = # #Ω =,.
2 (c) Użytkownik karty kredytowej używa cterocyfrowego hasła dostępu. Bankomat blokuje kartę, gdy po ra treci hasło ostanie nieprawidłowo podane. Jakie jest prawdopodobieństwo, że łodiej karty dostanie się na nase konto nie nając hasła? Ω = {{h, h, h }, gdie h i to try różne hasła spośród możliwych haseł}. F = Ω, P - prawdopodobieństwo klasycne. = {dostęp do konta} = {{właściwe hasło,h, h }} #Ω = ( ) ( ), # =. P () = # #Ω = ( )!!( )!!( )! ( )! =,. (d) Drewniany seścian, którego wsystkie boki są pomalowane na niebiesko, ropiłowano na 6 = jednakowej wielkości mniejse seścianiki. Seścianiki te dokładnie wymiesano, następnie wylosowano nich. Jakie jest prawdopodobieństwo, że dokładnie jeden wylosowanych seścianików będie miał niebieskie ściany? Odpowiedź uasadnić. Ω = {{s,..., s }, gdie s i to różne seścianiki spośród 6 możliwych} F = Ω, P - prawdopodobieństwo klasycne. = {dokładnie jeden narożny} = {{narożny,s,..., s }, gdie s i nie są narożne} #Ω = ( ( ) 6 ), # = 8 6 )( 9 P () = # #Ω = 97,. 679 Prykłady do adania. : (a) Losujemy licbę naturalną, tak że sansa na wylosowanie licby i wynosi i. Oblicyć prawdopodobieństwo, że wylosowana licba jest podielna pre 6. Ω = {,,...}, F = Ω, a prawdopodobieństwo P określone jest ciągiem p i = i. (Spr. p i dla każdego i ora p i = (/) i = / i= i= / =.) P (wylosowana licba jest podielna pre 6) = i= p 6i = (/)6 (/) 6 = 6, 9. (b) ucamy monetą tak długo, aż upadnie dwa ray pod rąd na tę samą stronę. Określić Ω i P odpowiadające temu eksperymentowi dla monety symetrycnej. Oblicyć prawdopodobieństwo, że wykonamy mniej niż 7 i więcej niż ruty. Ω = {OO, OO, OOO,...} {, O, O,...}, F = Ω, p n,o = P (n rutów+oo) = ( ) n+, pn, = P (n rutów+) = ( dla monety symetrycnej. Prestreń probabilistycna jest dobre określona, bo p n,o, p n, dla dowolnego n ora (p n,o + p n, ) = ( ) n = n= n= =. P (mniej niż 7 i więcej niż ruty) = P (,, lub 6 rutów) = (p n,o + p n, ) = n= (ilość rutów= n + ). ) n+
3 (c) Niech Ω = {ω n, n =,,...}, F = Ω. Weźmy ciąg p n = c n, n =,,..., gdie > jest ustalone. Dobrać stałą c tak, aby ciąg (p n ) określał prawdopodobieństwo P na biore Ω tak, że p n = P ({ω n }). Oblicyć P ({ω,..., ω }). p n dla każdego n wtedy i tylko wtedy, gdy c p n = c ( ) n = c n= n= = c = wtedy i tylko wtedy, gdy c = Oba warunki na ciąg określający prawdopodobieństwo na Ω są spełnione dla c = P ({ω,..., ω }) = p n = ( ) ( ) n = ( ) n= n= ( ) ( ) = Prykłady do adania. : (a) Na okręgu wybieramy losowo cięciwę. Uściślić na kilka sposobów pojęcie losowo i dla każdego nich oblicyć prawdopodobieństwo, że długość cięciwy będie więksa od promienia okręgu.. sposób Ustalamy kierunek i wybieramy spośród cięciw o tym samym kierunku od średnicy do cięciwy erowej, pry cym nie wyróżniamy żadnej nich. Odpowiada to jednostajnemu wyborowi punktu x odcinka [, ], gdie to promień okręgu... l(x) x Ω = [, ], F to rodina biorów borelowskich tego odcinka, Dla wybranego x długość odpowiadajęcej mu cięciwy wynosi l(x) = x l(x) > wtedy i tylko wtedy, gdy x [, /). Zatem P (l(x) > ) = P ([, / /)) = =.
4 . sposób Ustalamy punkt na okręgu i wybieramy spośród cięciw o punkcie pocątkowym, pry cym nie wyróżniamy żadnej nich. Odpowiada to jednostajnemu wyborowi punktu (końcowego punktu cięciwy) okręgu, albo równoważnie wyborowi kąta ϕ prediału [ π, π], patr rysunek... l(fi) fi Ω = [ π, π], F to rodina biorów borelowskich tego odcinka, Dla wybranego ϕ długość odpowiadajęcej mu cięciwy wynosi l(ϕ) = ( + cos ϕ). l(ϕ) > wtedy i tylko wtedy, gdy ϕ ( π/, π/). Zatem P (l(ϕ) > ) = P (( π/, π/)) = π/ = π.. sposób Wybieramy be wyróżniania punkt koła be środka. Punkt ten potraktowany jako środek cięciwy jednonacnie ją wynaca (wyjątkiem byłby środek koła odpowiadający średnicom, odrucając środek koła na pocątku pryjęliśmy, że prawdopodobieństwo wylosowania średnicy wynosi )... l(). r Ω =koło o promieniu, F to rodina biorów borelowskich na tym kole, Dla wybranego długość odpowiadajęcej mu cięciwy wynosi l() = r, gdie r to odległość punktu od środka koła. l() > wtedy i tylko wtedy, gdy r < /, tn. gdy leży w otwartym kole K() o tym samym środku co Ω i promieniu /. Zatem P (l() > ) = P (K()) = π / π =.
5 (b) Oblicyć prawdopodobieństwo tego, że wybrany losowo punkt kwadratu x <, y < leży na ewnątr koła x + y <. Ω = {(x, y) : x <, y < } - kwadrat, F to borelowskie podbiory Ω, P - prawdopod. geometrycne. = {(x, y) : x + y < } - koło. P ( c ) = P () = pole pole Ω = π 6, 9. c Ω (c) W prypadkowych chwilach prediału casu [, 6] minut mogą nadejść do odbiornika dwa sygnały. Odbiornik ostaje uskodony, jeśli różnica w casie międy tymi dwoma sygnałami jest mniejsa od minut. Oblicyć prawdopodobieństwo uskodenia odbiornika. Ω = {(t, t ) : t, t [, 6]}, F to borelowskie podbiory Ω, P - prawdopod. geometrycne. - darenie, że odbiornik ostał uskodony. = {(t, t ) Ω : t t < } P () = pole pole Ω = 6 8 6, 6. 6 t Ω t =t + t =t t 6
A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)!
Wstęp do rachunku prawdopodobieństwa i statystyki matematycnej MAP037 wykład dr hab. A. Jurlewic WPPT Fiyka, Fiyka Technicna, I rok, II semestr Prykłady - Lista nr : Prestreń probabilistycna. Prawdopodobieństwo
W takim modelu prawdopodobieństwo konfiguracji OR wynosi. 0, 21 lub , 79. 6
Rachunek prawdopodobieństwa MAP5 Wydział Elektroniki, rok akad. /, sem. letni Wykładowca: dr hab. A. Jurlewicz Przykłady do listy : Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo
Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona.
Wykład - LICZBY ZESPOLONE Algebra licb espolonych, repreentacja algebraicna i geometrycna, geometria licb espolonych. Moduł, argument, postać trygonometrycna, wór de Moivre a.' Zbiór Licb Zespolonych Niech
Metody dokładne w zastosowaniu do rozwiązywania łańcuchów Markowa
Metody dokładne w astosowaniu do rowiąywania łańcuchów Markowa Beata Bylina, Paweł Górny Zakład Informatyki, Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej Plac Marii Curie-Skłodowskiej 5, 2-31
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Prawdopodobieństwo geometryczne
Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w
Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa
Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa Rozdział 2.3: Przykłady przestrzeni probabilistycznych. Katarzyna Rybarczyk-Krzywdzińska Przestrzeń probabilistyczna Przestrzeń
Metody probabilistyczne
Metody probabilistyczne 2. Aksjomatyczna definicja prawdopodobieństwa Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 10.10.2017 1 / 33 Klasyczna definicja prawdopodobieństwa
Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego.
Transformator Φ r Φ M Φ r i i u u Φ i strumień magnetycny prenikający pre i-ty wój pierwsego uwojenia; siła elektromotorycna indukowana w i-tym woju: dφ ei, licba wojów uwojenia pierwotnego i wtórnego.
Wykład 4: Fraktale deterministyczne i stochastyczne
Wykład 4: Fraktale deterministycne i stochastycne Fiyka komputerowa 005 Kataryna Weron, kweron@ift.uni.wroc.pl Co to jest fraktal? Złożona budowa dowolnie mały jego fragment jest równie skomplikowany jak
Optymalizacja (w matematyce) termin optymalizacja odnosi się do problemu znalezienia ekstremum (minimum lub maksimum) zadanej funkcji celu.
TEMATYKA: Optymaliacja nakładania wyników pomiarów Ćwicenia nr 6 DEFINICJE: Optymaliacja: metoda wynacania najlepsego (sukamy wartości ekstremalnej) rowiąania punktu widenia określonego kryterium (musimy
PRZESTRZEŃ WEKTOROWA (LINIOWA)
PRZESTRZEŃ WEKTOROWA (LINIOWA) Def. 1 (X, K,, ) X, K - ciało : X X X ( to diałanie wewnętrne w biore X) : K X X ( to diałanie ewnętrne w biore X) Strukturę (X, K,, ) naywamy prestrenią wektorową : 1) Struktura
Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.
Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 162005 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Na rysunku przedstawiono
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 155364 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Dla jakiej wartości
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM ROZSZERZONY 25 LUTEGO 2017 CZAS PRACY: 180 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 15! jest podzielna
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 22 KWIETNIA 2017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 2 8 7 3 6 7
ORGANIZACJA I ZARZĄDZANIE
P O L I T E C H N I K A W A R S Z A W S K A WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ ORGANIZACJA I ZARZĄDZANIE Optymaliacja transportu wewnętrnego w akładie mechanicnym
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 4 MARCA 201 CZAS PRACY: 10 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Suma sześciu kolejnych liczb
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM. Etap Wojewódzki
Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki Drogi Uczniu, witaj na III etapie konkursu matematycznego. Przeczytaj uważnie
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 196324 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Rozwiazaniem
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 149196 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Losujemy jeden
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A06 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Wartość wyrażenia 1 3 + 1 + 3
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 4 CZERWCA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę Instrukcja dla zdającego EGZAMIN MATURALNY Z MATEMATYKI
2015-01-15. Edycja pierwsza 2014/1015. dla kierunku fizyka medyczna, I rok, studia magisterskie
05-0-5. Opis różnicę pomiędy błędem pierwsego rodaju a błędem drugiego rodaju Wyniki eksperymentu składamy w dwie hipotey statystycne: H0 versus H, tak, by H0 odrucić i pryjąć H. Jeśli decydujemy, że pryjmujemy
NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2019 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 4 czerwca 2019
Przykłady do zadania 8.1 : 0 dla x 1, c x 4/3 dla x > 1. (b) Czy można dobrać stałą c tak, aby funkcja f(x) = była gęstością pewnego
Rachunek prawdopodobieństwa MAP64 Wydział Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab. A. Jurlewicz Przykłady do listy 8: Zmienne losowe typu ciągłego. Gęstość prawdopodobieństwa. Rozkład
Fraktale - wprowadzenie
Fraktale - wprowadenie Próba definici fraktala Jak określamy biory naywane fraktalami? Prykłady procedur konstrukci fraktali W aki sposób b diała aą algorytmy generaci nabardie nanych fraktali? Jakie własnow
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 10 MARCA 2018 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 4 7 8 25 0, 5
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI Instrukcja
Rachunek Prawdopodobieństwa MAP1064, 2008/09
1 Rachunek Prawdopodobieństwa MAP1064, 2008/09 Wydział Elektroniki Wykładowca: dr hab. Agnieszka Jurlewicz Listy zadań nr 4-6 Opracowanie: dr hab. Agnieszka Jurlewicz Literatura: [1] A. Plucińska, E. Pluciński,
c) ( 13 (1) (2) Zadanie 2. Losując bez zwracania kolejne litery ze zbioru AAAEKMMTTY, jakie jest prawdopodobieństwo Odp.
Zadania na kolokwium nr Zadanie. Spośród kart w tali wylosowano. Jakie jest prawdopodobieństwo: pików, kierów, trefli i karo otrzymania wszystkich kolorów otrzymania dokładnie pików a ( b ( ( c ( ( ( (
EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL dyskalkulia miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI
UZUPEŁNIA ZDAJĄCY miejsce na naklejkę
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 22 sierpnia
L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω)
ZADANIA - ZESTAW 1 Zadanie 1.1 Rzucamy trzy razy monetą. A i - zdarzenie polegające na tym, że otrzymamy orła w i - tym rzucie. Określić zbiór zdarzeń elementarnych. Wypisać zdarzenia elementarne sprzyjające
METODY PROBABILISTYCZNE I STATYSTYKA
Andrzej Marciniak METODY PROBABILISTYCZNE I STATYSTYKA Wykłady dla studentów kierunku informatyka Państwowej Wyższej Szkoły Zawodowej w Kaliszu Wykłady są przeznaczone wyłącznie do indywidualnego użytku
LUBELSKA PRÓBA PRZED MATURĄ 2016 poziom podstawowy M A T E M A T Y K A 09 MARCA Instrukcja dla zdającego Czas pracy: 170 minut
M A T E M A T Y K A 09 MARCA 016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 14 stron (zadania 1-4). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin..
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 5 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 01 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę Instrukcja dla zdającego EGZAMIN MATURALNY Z MATEMATYKI
3. Zapas stabilności układów regulacji 3.1. Wprowadzenie
3. Zapas stabilności układów regulacji 3.. Wprowadenie Dla scharakteryowania apasu stabilności roważymy stabilny układ regulacji o nanym schemacie blokowym: Ws () Gs () Ys () Hs () Rys. 3.. Schemat blokowy
MATEMATYKA ZBIÓR ZADAŃ MATURALNYCH. Lata Poziom podstawowy. Uzupełnienie Zadania z sesji poprawkowej z sierpnia 2019 r.
MATEMATYKA ZBIÓR ZADAŃ MATURALNYH Lata 010 019 Poziom podstawowy Uzupełnienie 019 Zadania z sesji poprawkowej z sierpnia 019 r. Opracował Ryszard Pagacz Spis treści Zadania maturalne.........................................................
ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE
. Oblicyć: ZADANIA Z FUNKCJI ANALITYCZNYCH a) ( 7i) ( 9i); b) (5 i)( + i); c) 4+3i ; LICZBY ZESPOLONE d) 3i 3i ; e) pierwiastki kwadratowe 8 + i.. Narysować biór tych licb espolonych, które spełniają warunek:
UZUPEŁNIA ZDAJĄCY miejsce na naklejkę
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 5 maja 017 r.
Matematyka rozszerzona matura 2017
Matematyka rozszerzona matura 017 Zadanie 1 Liczba ( 3 + 3) jest równa A. B. 4 C. 3 D. 3 ( 3 + 3) = 3 ( 3)( + 3) + + 3 = A. 3 4 3 + + 3 = 4 1 = 4 = Zadanie. Nieskończony ciąg liczbowy jest określony wzorem
3. Zapas stabilności układów regulacji 3.1. Wprowadzenie
3. Zapas stabilności układów regulacji 3.. Wprowadenie Dla scharakteryowania apasu stabilności roważymy stabilny układ regulacji o nanym schemacie blokowym: Ws () Gs () Ys () Hs () Rys. 3.. Schemat blokowy
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
Algorytm projektowania dolnoprzepustowych cyfrowych filtrów Buttlewortha i Czebyszewa
Zadanie: Algorytm projektowania dolnopreputowych cyfrowych filtrów Buttlewortha i Cebyewa Zaprojektować cyfrowe filtry Buttlewortha i Cebyewa o natępujących parametrach: A p = 1,0 db makymalne tłumienie
LUBELSKA PRÓBA PRZED MATURĄ 2016 poziom podstawowy M A T E M A T Y K A 09 MARCA Instrukcja dla zdającego Czas pracy: 170 minut
LUBELSKA PRÓBA PRZED MATURĄ 016 poziom podstawowy M A T E M A T Y K A 09 MARCA 016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 14 stron (zadania 1-4). Ewentualny brak
Lista 1. Prawdopodobieństwo klasyczne i geometryczne
Metody statystyczne. Lista 1. 1 Lista 1. Prawdopodobieństwo klasyczne i geometryczne 1. Jakie jest prawdopodobieństwo, że (a) z talii zawierającej 52 karty wybierzemy losowo asa? (b) z talii zawierającej
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 7 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 203 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę Instrukcja dla zdającego EGZAMIN MATURALNY Z MATEMATYKI
Wielokryteriowa optymalizacja liniowa (WPL)
arek isyński BO UŁ 007 - Wielokryteriowa optymaliaja liniowa (WPL) -. Wielokryteriowa optymaliaja liniowa (WPL) Zadaniem WPL naywamy następująe adanie optymaliaji liniowej: a a m L O L L O L L a a n n
Wskazówki do zadań testowych. Matura 2016
Wskazówki do zadań testowych. Matura 2016 Zadanie 1 la każdej dodatniej liczby a iloraz jest równy.. C.. Korzystamy ze wzoru Zadanie 2 Liczba jest równa.. 2 C.. 3 Zadanie 3 Liczby a i c są dodatnie. Liczba
ARKUSZ X
www.galileusz.com.pl ARKUSZ X W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Liczba 3 2 jest równa A) 5 2 B) 6 2 C) 6 2 D) 2 Zadanie 2. (0-1 pkt) Kurtka zimowa
XI Olimpiada Matematyczna Gimnazjalistów
XI Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (24 września 2015 r.) Rozwiązania zadań testowych 1. Dane są takie dodatnie liczby a i b, że 30% liczby a
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3.
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3. ZMIENNA LOSOWA JEDNOWYMIAROWA. Zmienną losową X nazywamy funkcję (praktycznie każdą) przyporządkowującą zdarzeniom elementarnym liczby rzeczywiste. X : Ω R (dokładniej:
A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla
Zadanie 1 Liczba jest równa A. B. C. 10 D. Odpowiedź B. Zadanie 2 Liczba jest równa A. 3 B. 2 C. D. Odpowiedź D. Zadanie 3. Liczba jest równa Odpowiedź D. Zadanie 4. Liczba osobników pewnego zagrożonego
PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE. WALCOWE (równoległe) STOŻKOWE (kątowe) ŚLIMAKOWE HIPERBOIDALNE. o zebach prostych. walcowe. o zębach.
CZOŁOWE OWE PRZEKŁADNIE STOŻKOWE PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE WALCOWE (równoległe) STOŻKOWE (kątowe) HIPERBOIDALNE ŚLIMAKOWE o ebach prostych o ębach prostych walcowe walcowe o ębach śrubowych o
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 013 KO WPISUJE ZJĄY PESEL Miejsce na naklejkę z kodem dysleksja Instrukcja dla zdającego EGZMIN MTURLNY Z
a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.);
03DRAP - Przykłady przestrzeni probabilistycznych Definicja 1 Przestrzeń probabilistyczna to trójka (Ω, F, P), gdzie Ω zbiór zdarzeń elementarnych, F σ ciało zdarzeń (podzbiorów Ω), P funkcja prawdopodobieństwa/miara
UZUPEŁNIA ZDAJĄCY miejsce na naklejkę
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9 maja 2017
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZMIN MTURLNY Z MTEMTYKI ZESTW PRZYGOTOWNY PRZEZ SERWIS WWW.ZDNI.INFO POZIOM PODSTWOWY 7 KWIETNI 2018 ZS PRY: 170 MINUT 1 Zadania zamknięte ZDNIE 1 (1 PKT) Wyrażenie x+3 1 x dla x < 1 ma wartość
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 013 KO WPISUJE ZJĄY PESEL Miejsce na naklejkę z kodem dysleksja EGZMIN MTURLNY Z MTEMTYKI Instrukcja dla zdającego
UZUPEŁNIA ZDAJĄCY miejsce na naklejkę
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9 maja 2017
ZADANIE 2 Czy istnieje taki wielokat, który ma 2 razy więcej przekatnych niż boków?
PLANIMETRIA 2 ZADANIE 1 W rombie jedna z przekatnych jest dłuższa od drugiej o 3 cm. Dla jakich długości przekatnych pole rombu jest większe od 5cm 2? 1 ZADANIE 2 Czy istnieje taki wielokat, który ma 2
Zmienne losowe i ich rozkłady
Zmienne losowe i ich rozkłady 29 kwietnia 2019 Definicja: Zmienną losową nazywamy mierzalną funkcję X : (Ω, F, P) (R n, B(R n )). Definicja: Niech A będzie zbiorem borelowskim. Rozkładem zmiennej losowej
Radomski Ośrodek Doskonalenia Nauczycieli, Radomski Oddział SNM Test diagnostyczny dla uczniów klas pierwszych szkół ponadgimnazjalnych Wersja A
Radomski Ośrodek Doskonalenia Nauczycieli, Radomski Oddział SNM Test diagnostyczny dla uczniów klas pierwszych szkół ponadgimnazjalnych Wersja A Imię i nazwisko. Klasa. Drogi uczniu! Masz przed sobą test
TRANSFORMATORY. Transformator jednofazowy. Zasada działania. Dla. mamy. Czyli. U 1 = E 1, a U 2 = E 2. Ponieważ S. , mamy: gdzie: z 1 E 1 E 2 I 1
TRANSFORMATORY Transformator jednofaowy Zasada diałania E E Z od Rys Transformator jednofaowy Dla mamy Cyli e ω ( t) m sinωt cosωt ω π sin ωt + m m π E ω m f m 4, 44 f m E 4, 44 f E m 4, 44 f m E, a E
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 11 MARCA 2017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Dla każdej dodatniej
KONKURS PRZEDMIOTOWY Z MATEMATYKI Finał 7 marca 2008 r.
KOD Nr zad. 1 2 3 4 5 6 7 8 9 10 11 12 Razem Max liczba pkt. 3 3 3 3 3 3 3 3 5 3 4 4 40 Liczba pkt. Kuratorium Oświaty w Katowicach KONKURS PRZEDMIOTOWY Z MATEMATYKI Finał 7 marca 2008 r. Przeczytaj uważnie
VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH
VIII. ZIÓR PRZYKŁDOWYCH ZDŃ MTURLNYCH ZDNI ZMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0.. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa.. 9 C. D. 5 Zadanie. ( pkt) Liczba log jest równa.
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY
NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 209 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 7 maja 209 r.
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 18 KWIETNIA 2015 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Dla każdej liczby
KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM
pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI Drogi Uczniu Witaj na II etapie konkursu matematycznego. Przeczytaj
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 3 MARCA 2018 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Adam kupił 2 owoce mango
NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2019 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 20 sierpnia
n4 Instrukcja dla zdającego
Miejsce na naklejkę z kodem KOD ZDAJĄCEGO MMA-P1D1P-021 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZRRZONY Arkusz II Czas pracy 180 minut ARKUSZ II n4 Instrukcja dla zdającego 1. Proszę sprawdzić, czy arkusz
Matura z matematyki 1920 r.
Matura z matematyki 1920 r. (źródło: Sprawozdanie Dyrekcji Państwowego Gimnazjum im. Karola Marcinkowskiego w Poznaniu: za 1-sze dziesięciolecie zakładu w niepodległej i wolnej ojczyźnie: 1919-1929) Żelazna
Szkice rozwiązań zadań z arkuszy maturalnych zamieszczonych w 47. numerze Świata Matematyki, który można nabyć w sklepie na
Szkice rozwiązań zadań z arkuszy maturalnych zamieszczonych w 47. numerze Świata Matematyki, który można nabyć w sklepie na www.swiatmatematyki.pl 1. Wypiszmy początkowe potęgi liczby Zestaw podstawowy
Zasady rekrutacji uczniów do I Liceum Ogólnokształcącego im. Tadeusza Kościuszki na rok szkolny 2015/2016
Zasady rekrutacji ucniów do I Liceum Ogólnokstałcącego im. Tadeusa Kościuski na rok skolny 201/2016 Podstawa prawna: Roporądenie Ministra Edukacji Narodowej i Sportu dnia 20 lutego 2004 roku w sprawie
Wersja testu A 18 czerwca 2009 r.
Wersja testu A 18 czerwca 2009 r. 1. a. T b. N c. T d. N 2. a. T b. N c. N d. T 3. a. N b. T c. N d. T 4. a. T b. T c. N d. T 5. a. T b. T c. N d. N 6. a. T b. T c. T d. N 7. a. N b. T c. N d. T 8. a.
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 16 lutego 2018 Czas 90 minut Rozwiązania i punktacja
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 6 lutego 208 Czas 90 minut Rozwiązania i punktacja ZADANIA ZAMKNIĘTE Zadanie. ( punkt) Odległość między miastami A i B na mapie wynosi
Instrukcja dla zdaj cego Czas pracy: 180 minut
1 Kod ucznia Nazwisko i imię MATEMATYKA Klasa I 23 Maja 2018 Instrukcja dla zdaj cego Czas pracy: 180 minut 1. Sprawdź, czy arkusz zawiera 16 stron (zadania 1-16). Ewentualny brak zgłoś przewodniczącemu
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 12 MARCA 2016 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Wskaż rysunek, na którym
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 18 MARCA 2017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 86 7 5 56 5 jest
a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.);
03DRAP - Przykłady przestrzeni probabilistycznych A Zadania na ćwiczenia Zadanie A1 (wskazówka: pierwsze ćwicznia i rozdział 23 przykł 1 i 2) Zbuduj model przestrzeni klasycznej (czyli takiej, w której
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZMIN MTURLNY Z MTEMTYKI ZESTW PRZYGOTOWNY PRZEZ SERWIS WWW.ZDNI.INFO POZIOM PODSTWOWY 24 MRC 2018 CZS PRCY: 170 MINUT 1 Zadania zamknięte ZDNIE 1 (1 PKT) Niech a = 2, b = 1 i c = 3. Wartość wyrażenia
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom podstawowy
KRYTERIA OCENIANIA ODPOWIEDZI Matematyka Poziom podstawowy Marzec 09 Zadania zamknięte Za każdą poprawną odpowiedź zdający otrzymuje punkt. Poprawna odpowiedź. D 8 9 8 7. D. C 9 8 9 8 8 9 8 9 8 ( 89 )
Próbny Egzamin Gimnazjalny z Matematyki Zestaw przygotowany przez serwis 24 marca 2012 Czas pracy: 90 minut
Strona 1 /Gimnazjum/Egzamin gimnazjalny Próbny Egzamin Gimnazjalny z Matematyki Zestaw przygotowany przez serwis www.zadania.info 24 marca 2012 Czas pracy: 90 minut Zadanie 1 (1 pkt.) Która równość jest
MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH
MES W ANALIZIE SPRĘŻYS UKŁADÓW PRĘOWYCH Prykłady obliceń Belki Lidia FEDOROWICZ Jan FEDOROWICZ Magdalena MROZEK Dawid MROZEK Gliwice 7r. 6-4 Lidia Fedorowic, Jan Fedorowic, Magdalena Mroek, Dawid Mroek
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 1 MAJA 2010 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Rozwiazaniem nierówności
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 5 MARCA 016 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 3 4 3 + 3 9 jest
EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY 9 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę Instrukcja dla zdającego EGZAMIN MATURALNY Z MATEMATYKI
KONKURS PRZEDMIOTOWY Z MATEMATYKI Finał 12 marca 2009 r.
KOD Nr zad. 1 2 3 4 5 6 7 8 9 10 11 12 Razem Max liczba pkt. 3 3 3 3 3 3 3 3 4 3 3 6 40 Liczba pkt. Kuratorium Oświaty w Katowicach KONKURS PRZEDMIOTOWY Z MATEMATYKI Finał 12 marca 2009 r. Przeczytaj uważnie
( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x
Arkusz I Zadanie. Wartość bezwzględna Rozwiąż równanie x + 3 x 4 x 7. Naszkicujmy wykresy funkcji f ( x) x + 3 oraz g ( x) x 4 uwzględniając tylko ich miejsca zerowe i monotoniczność w ten sposób znajdziemy
KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI
KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI PRACA KONTROLNA nr 1 październik 1999 r 1. Stop składa się z 40% srebra próby 0,6, 30% srebra próby 0,7 oraz 1 kg srebra próby 0,8. Jaka jest waga i jaka
Prawdopodobieństwo geometryczne
Prawdopodobieństwo geometryczne Krzysztof Jasiński Wydział Matematyki i Informatyki UMK, Toruń V Lieceum Ogólnokształące im. Jana Pawała II w Toruniu 13.03.2014 Krzysztof Jasiński (WMiI UMK) Prawdopodobieństwo
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2011 KOD UCZNIA UZUPEŁNIA UCZEŃ PESEL miejsce na naklejkę z kodem E W KLASIE