Stopnie wzmacniające
|
|
- Krystian Walczak
- 6 lat temu
- Przeglądów:
Transkrypt
1 PUAV Wykład 7
2 Najprostszy wzmacniacz R Tranzystor pracuje w zakresie nasycenia Konduktancja jściowa tranzystora do pominięcia: g ds << 1/R Składowa stała napięcia na jściu równa 0,5V DD
3 Najprostszy wzmacniacz R Tranzystor pracuje w zakresie nasycenia Konduktancja jściowa tranzystora do pominięcia: g ds << 1/R Składowa stała napięcia na jściu równa 0,5V DD v = v g m R k u = g m R
4 Najprostszy wzmacniacz R Tranzystor pracuje w zakresie nasycenia Konduktancja jściowa tranzystora do pominięcia: g ds << 1/R Składowa stała napięcia na jściu równa 0,5V DD v = v g m R k u = g m R Przypomnienie: g m = K ( V GS V ) T = K = V GS V T ; K = µ W L
5 Najprostszy wzmacniacz R Tranzystor pracuje w zakresie nasycenia Konduktancja jściowa tranzystora do pominięcia: g ds << 1/R Składowa stała napięcia na jściu równa 0,5V DD v = v g m R k u = g m R Przypomnienie: g m = K ( V GS V ) T = K = V GS V T ; K = µ W L R = V DD k u = V DD V GS V T
6 Najprostszy wzmacniacz R Tranzystor pracuje w zakresie nasycenia Konduktancja jściowa tranzystora do pominięcia: g ds << 1/R Składowa stała napięcia na jściu równa 0,5V DD v = v g m R k u = g m R Przypomnienie: g m = K ( V GS V ) T = K = V GS V T ; K = µ W L R = V DD k u = V DD V GS V T Przy obciążeniu rezystorem nie da się uzyskać dużego wzmocnienia
7 Aktywne obciążenie Idea: zastępujemy rezystor tranzystorem I I Rezystancja obciążająca dla sygnałów o małej amplitudzie i małej częstotliwości: równoległe połączenie rezystancji rds = 1/gds tranzystorów jściogo i obciążającego I I k u = g m g ds + g ds obc
8 Aktywne obciążenie: punkt pracy I I
9 Stopnie wzmacniające Aktywne obciążenie: punkt pracy ua -i(vds) ua (-i(vds)) 45.0 Tr. obciążający 40.0 Tr. jścio I I voltage sep V sep V voltage VDS 0.0
10 Stopnie wzmacniające Aktywne obciążenie: punkt pracy ua -i(vds) ua (-i(vds)) 45.0 Tr. obciążający 40.0 Tr. jścio I I Tr. jścio w zakresie liniom: małe gm, duże gds, małe wzmocnienie, mała amplituda jściowa voltage sep V sep V voltage VDS 0.0
11 Aktywne obciążenie: punkt pracy ua -i(vds) ua (-i(vds)) 45.0 Tr. obciążający 40.0 Tr. jścio 35.0 I I Tr. jścio w zakresie liniom: małe gm, duże gds, małe wzmocnienie, mała amplituda jściowa voltage sep V sep V voltage VDS 0.0 Tr. obciążający w zakresie liniom: duże gds obc, małe wzmocnienie, mała amplituda jściowa
12 Aktywne obciążenie: punkt pracy ua -i(vds) ua (-i(vds)) 45.0 Tr. obciążający 40.0 Tr. jścio 35.0 I I Tr. jścio w zakresie liniom: małe gm, duże gds, małe wzmocnienie, mała amplituda jściowa voltage sep V sep V voltage Najlepszy punkt pracy: oba tranzystory w zakresie nasycenia VDS 0.0 Tr. obciążający w zakresie liniom: duże gds obc, małe wzmocnienie, mała amplituda jściowa
13 Stopnie wzmacniające Aktywne obciążenie: zakres napięcia jściogo ua -i(vds) ua (-i(vds)) 45.0 Tr. obciążający 40.0 Tr. jścio voltage sep V sep V voltage VDS Wierzchołki półokresów sygnału na jściu muszą zmieścić się w zakresie, w którym oba tranzystory są w stanie nasycenia: V DSsat < V < V DD V DSsat obc
14 Aktywne obciążenie: wzmocnienie
15 Aktywne obciążenie: wzmocnienie W g m = K = µ L g ds = λ g dsobc = λ obc
16 Aktywne obciążenie: wzmocnienie W g m = K = µ L g ds = λ g dsobc = λ obc k u = W µ L ( ) λ + λ obc 1
17 Aktywne obciążenie: wzmocnienie W g m = K = µ L g ds = λ g dsobc = λ obc k u = W µ L ( ) λ + λ obc 1 Gdy tranzystor jścio w stanie nasycenia, wzmocnienie maleje ze wzrostem prądu drenu
18 Aktywne obciążenie: wzmocnienie W g m = K = µ L g ds = λ g dsobc = λ obc k u = W µ L ( ) λ + λ obc 1 Gdy tranzystor jścio w stanie nasycenia, wzmocnienie maleje ze wzrostem prądu drenu λ maleje ze wzrostem długości kanału: długie tranzystory - większe wzmocnienie
19 Aktywne obciążenie: wzmocnienie Tranzystor jścio w stanie podprogom
20 Aktywne obciążenie: wzmocnienie Tranzystor jścio w stanie podprogom g m = g ds = λ g dsobc = λ obc n kt q
21 Aktywne obciążenie: wzmocnienie Tranzystor jścio w stanie podprogom g m = g ds = λ g dsobc = λ obc n kt q k u = n kt q 1 ( λ + λ ) obc
22 Aktywne obciążenie: wzmocnienie Tranzystor jścio w stanie podprogom g m = g ds = λ g dsobc = λ obc n kt q k u = n kt q 1 ( λ + λ ) obc Gdy tranzystor jścio w stanie podprogom, wzmocnienie nie zależy od prądu drenu W tym stanie gm i wzmocnienie osiąga największą możliwą wartość
23 Aktywne obciążenie: pasmo przenoszenia Małosygnało schemat zastępczy tranzystora (pominięto wpływ polaryzacji podłoża) G CDG vgsgm CGS D S CDB 1/gds CSB B
24 Aktywne obciążenie: pasmo przenoszenia Małosygnało schemat zastępczy tranzystora (pominięto wpływ polaryzacji podłoża) G CDG vgsgm CGS D S CDB 1/gds CSB B Małosygnało schemat zastępczy wzmacniacza G C1 C vgm 1/gds 1/gds obc D, D obc C3 S, B ; S obc
25 Aktywne obciążenie: pasmo przenoszenia G C D, D obc C1 vgm 1/gds 1/gds obc C3 S, B ; S obc CL
26 Aktywne obciążenie: pasmo przenoszenia Węzły uziemione dla składoj zmiennej G C1 C vgm 1/gds 1/gds obc D, D obc C3 S, B ; S obc CL
27 Aktywne obciążenie: pasmo przenoszenia Węzły uziemione dla składoj zmiennej G C1 C vgm 1/gds 1/gds obc D, D obc C3 S, B ; S obc C1: pojemność bramka - źródło CGS CL
28 Aktywne obciążenie: pasmo przenoszenia Węzły uziemione dla składoj zmiennej G C1 C vgm 1/gds 1/gds obc D, D obc C3 S, B ; S obc C1: pojemność bramka - źródło CGS C: pojemność dren - bramka CDG CL
29 Aktywne obciążenie: pasmo przenoszenia Węzły uziemione dla składoj zmiennej G C1 C vgm 1/gds 1/gds obc D, D obc C3 S, B ; S obc C1: pojemność bramka - źródło CGS CL C: pojemność dren - bramka CDG C3: suma pojemności: dren - podłoże CDB, dren - podłoże CDB obc, dren - bramka CDG obc, pojemność obciążająca (zewnętrzna) CL C 3 = C DB + C DB obc + C DG obc + C L
30 Aktywne obciążenie: pasmo przenoszenia G C D, D obc C1 vgm 1/gds 1/gds obc C3 CL S, B ; S obc C można zastąpić dwiema pojemnościami: C = C(1-ku) oraz C = C(1-1/ku) C (efekt Millera) vgm C(1-ku) C1 1/gds 1/gds obc C3 C
31 Aktywne obciążenie: pasmo przenoszenia vgm C(1-ku) C1 1/gds 1/gds obc C3 C Jeżeli źródło sygnału jściogo v jest idealnym źródłem napięcia (ma znikomą impedancję wnętrzną), to pojemność jściowa jest nieistotna
32 Aktywne obciążenie: pasmo przenoszenia vgm C(1-ku) C1 1/gds 1/gds obc C3 C Jeżeli źródło sygnału jściogo v jest idealnym źródłem napięcia (ma znikomą impedancję wnętrzną), to pojemność jściowa jest nieistotna Tr. jścio w zakresie nasycenia: f T = 1 g m = 1 π C + C 3 π W µ L C + C 3
33 Aktywne obciążenie: pasmo przenoszenia vgm C(1-ku) C1 1/gds 1/gds obc C3 C Jeżeli źródło sygnału jściogo v jest idealnym źródłem napięcia (ma znikomą impedancję wnętrzną), to pojemność jściowa jest nieistotna Tr. jścio w zakresie nasycenia: Tr. jścio w stanie podprogom: f T = 1 g m = 1 π C + C 3 π W µ L C + C 3 f T = 1 g m = 1 π C + C 3 π n kt ( q C + C ) 3
34 Aktywne obciążenie: max. szybkość zmiany napięcia na jściu Pojemność jściowa może się ładować prądem nie większym od, natomiast może się rozładować przez tranzystor jścio dowolnie dużym prądem. C + C3 + CL Prąd ogranicza maksymalną szybkość zmiany napięcia na jściu dv dt C + C 3 + C L
35 Aktywne obciążenie: projektowanie
36 Aktywne obciążenie: projektowanie 1. Zakres dynamiki µ (W / L) < V < V DD µ obc (W / L) obc
37 Aktywne obciążenie: projektowanie 1. Zakres dynamiki µ (W / L) < V < V DD µ obc (W / L) obc. Wzmocnienie (zakres nasycenia) k u = W µ L ( ) λ + λ obc 1
38 Aktywne obciążenie: projektowanie 1. Zakres dynamiki µ (W / L) < V < V DD µ obc (W / L) obc. Wzmocnienie (zakres nasycenia) k u = W µ L ( ) λ + λ obc 1 3. Szerokość pasma (zakres nasycenia) f T = 1 π W µ L C + C 3
39 Aktywne obciążenie: projektowanie 1. Zakres dynamiki µ (W / L) < V < V DD µ obc (W / L) obc. Wzmocnienie (zakres nasycenia) k u = W µ L ( ) λ + λ obc 1 3. Szerokość pasma (zakres nasycenia) f T = 1 π W µ L C + C 3 Jeśli k u i f T są zadane, mamy układ dwóch równań z dwoma niewiadomymi - oraz (W/L); ale pojemności zależą od WL, a λ od L.
40 Aktywne obciążenie: projektowanie 1. Zakres dynamiki µ (W / L) < V < V DD µ obc (W / L) obc. Wzmocnienie (zakres nasycenia) k u = W µ L ( ) λ + λ obc 1 3. Szerokość pasma (zakres nasycenia) f T = 1 π W µ L C + C 3 Jeśli k u i f T są zadane, mamy układ dwóch równań z dwoma niewiadomymi - oraz (W/L); ale pojemności zależą od WL, a λ od L. Po konaniu obliczeń symulujemy układ, wprowadzamy poprawki
41 Aktywne obciążenie: szumy v n b v n obc v n
42 Aktywne obciążenie: szumy Źródła szumów niezależne (brak korelacji): v n b v n obc v n v n = v n g m + ( v n b + v n obc )g m obc ( g ds + g ) ds obc
43 Aktywne obciążenie: szumy Źródła szumów niezależne (brak korelacji): v n b v n obc v n v n = v n g m + ( v n b + v n obc )g m obc ( g ds + g ) ds obc Zakładamy v n b = v n obc jścia dzieląc przez i odnosimy szum do k u v n jscio = v n 1+ v n obc v n g m obc g m = v n ( 1+ ϑ )
44 Aktywne obciążenie: szumy Źródła szumów niezależne (brak korelacji): v n b v n obc v n v n = v n g m + ( v n b + v n obc )g m obc ( g ds + g ) ds obc Zakładamy v n b = v n obc jścia dzieląc przez i odnosimy szum do k u v n jscio = v n 1+ v n obc v n g m obc g m = v n ( 1+ ϑ ) ϑ = g m obc Dla szumu cieplnego, a dla szumu typu 1/f ϑ = K f obcl g m K f L obc
45 Aktywne obciążenie: szumy Źródła szumów niezależne (brak korelacji): v n b v n obc v n v n = v n g m + ( v n b + v n obc )g m obc ( g ds + g ) ds obc Zakładamy v n b = v n obc jścia dzieląc przez i odnosimy szum do k u v n jscio = v n 1+ v n obc v n g m obc g m = v n ( 1+ ϑ ) ϑ = g m obc Dla szumu cieplnego, a dla szumu typu 1/f ϑ = K f obcl g m K f L obc zatem powinno być: g m obc << g m, K f obc << K f, L obc >> L
Źródła i zwierciadła prądowe
PUAV Wykład 6 Źródła i zwierciadła prądowe Źródła i zwierciadła prądowe Źródło prądowe: element lub układ, który wymusza w jakiejś gałęzi prąd o określonej wartości Źródła i zwierciadła prądowe Źródło
Modelowanie elementów Wprowadzenie
PUAV Wykład 2 Modelowanie elementów Wprowadzenie Modelowanie elementów Wprowadzenie Modelem elementu elektronicznego nazywamy ilościowy opis jego elektrycznych charakterystyk Modelowanie elementów Wprowadzenie
Wzmacniacze operacyjne
e operacyjne Wrocław 2018 Wprowadzenie operacyjny jest wzmacniaczem prądu stałego o dużym wzmocnieniu napięciom (różnicom). ten posiada wejście symetryczne (różnicowe) oraz jście niesymetryczne. N P E
Wzmacniacz operacyjny zastosowania liniowe. Wrocław 2009
Wzmacniacz operacyjny zastosowania linio Wrocław 009 wzmocnienie różnico Pole wzmocnienia 3dB częstotliwość graniczna k D [db] -3dB 0dB/dek 0 db f ca f T Tłumienie sygnału wspólnego - OT ins M[ V / V ]
Wzmacniacze operacyjne
Wzmacniacze operacyjne Wrocław 2015 Wprowadzenie jest wzmacniaczem prądu stałego o dużym wzmocnieniu napięciom (różnicom). Wzmacniacz ten posiada wejście symetryczne (różnicowe) oraz jście niesymetryczne.
Liniowe układy scalone w technice cyfrowej
Liniowe układy scalone w technice cyfrowej Wykład 6 Zastosowania wzmacniaczy operacyjnych: konwertery prąd-napięcie i napięcie-prąd, źródła prądowe i napięciowe, przesuwnik fazowy Konwerter prąd-napięcie
Elementy elektroniczne Wykłady 7: Tranzystory polowe
Elementy elektroniczne Wykłady 7: Tranzystory polowe Podział Tranzystor polowy (FET) Złączowy (JFET) Z izolowaną bramką (GFET) ze złączem m-s (MFET) ze złączem PN (PNFET) Typu MO (MOFET, HEXFET) cienkowarstwowy
Szumy układów elektronicznych, wzmacnianie małych sygnałów
Szumy układów elektronicznych, wzmacnianie małych sygnałów Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Szumy
Vgs. Vds Vds Vds. Vgs
Ćwiczenie 18 Temat: Wzmacniacz JFET i MOSFET w układzie ze wspólnym źródłem. Cel ćwiczenia: Wzmacniacz JFET w układzie ze wspólnym źródłem. Zapoznanie się z konfiguracją polaryzowania tranzystora JFET.
Tranzystory polowe. Podział. Tranzystor PNFET (JFET) Kanał N. Kanał P. Drain. Gate. Gate. Source. Tranzystor polowy (FET) Z izolowaną bramką (IGFET)
Tranzystory polowe Podział Tranzystor polowy (FET) Złączowy (JFET) Z izolowaną bramką (IFET) ze złączem ms (MFET) ze złączem PN (PNFET) Typu MO (MOFET, HEXFET) cienkowarstwowy (TFT) z kanałem zuobożanym
WZMACNIACZ NAPIĘCIOWY RC
WZMACNIACZ NAPIĘCIOWY RC 1. WSTĘP Tematem ćwiczenia są podstawowe właściwości jednostopniowego wzmacniacza pasmowego z tranzystorem bipolarnym. Zadaniem ćwiczących jest dokonanie pomiaru częstotliwości
Liniowe układy scalone. Wykład 4 Parametry wzmacniaczy operacyjnych
Liniowe układy scalone Wykład 4 Parametry wzmacniaczy operacyjnych 1. Wzmocnienie napięciowe z otwartą pętlą ang. open loop voltage gain Stosunek zmiany napięcia wyjściowego do wywołującej ją zmiany różnicowego
Szumy Wprowadzenie. Źródłem szumu nazywamy źródło napięcia lub prądu, które generuje przebieg o losowej wartości chwilowej napięcia lub prądu
PUAV Wykład 3 Szumy Wprowadzenie Szumy Wprowadzenie Źródłem szumu nazywamy źródło napięcia lub prądu, które generuje przebieg o losowej wartości chwilowej napięcia lub prądu Szumy Wprowadzenie Źródłem
Liniowe układy scalone
Liniowe układy scalone Wykład 3 Układy pracy wzmacniaczy operacyjnych - całkujące i różniczkujące Cechy układu całkującego Zamienia napięcie prostokątne na trójkątne lub piłokształtne (stała czasowa układu)
ELEMENTY ELEKTRONICZNE
AKAEMIA ÓRNICZO-HTNICZA IM. TANIŁAWA TAZICA W KRAKOWIE Wydział Informatyki, Elektroniki i Telekomunikacji Katedra Elektroniki ELEMENTY ELEKTRONICZNE dr inż. iotr ziurdzia paw. C-3, pokój 413; tel. 617-7-,
Tranzystory bipolarne elementarne układy pracy i polaryzacji
Tranzystory bipolarne elementarne układy pracy i polaryzacji Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Układy
Tranzystory bipolarne elementarne układy pracy i polaryzacji
Tranzystory bipolarne elementarne układy pracy i polaryzacji Ryszard J. Barczyński, 2010 2014 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego
Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych
Tranzystorowe wzmacniacze OE OB OC na tranzystorach bipolarnych Wzmacniacz jest to urządzenie elektroniczne, którego zadaniem jest : proporcjonalne zwiększenie amplitudy wszystkich składowych widma sygnału
PODSTAWY ELEKTRONIKI I TECHNIKI CYFROWEJ
1 z 9 2012-10-25 11:55 PODSTAWY ELEKTRONIKI I TECHNIKI CYFROWEJ opracowanie zagadnieo dwiczenie 1 Badanie wzmacniacza ze wspólnym emiterem POLITECHNIKA KRAKOWSKA Wydział Inżynierii Elektrycznej i Komputerowej
Przyrządy półprzewodnikowe część 5 FET
Przyrządy półprzewodnikowe część 5 FET r inż. Bogusław Boratyński Wydział Elektroniki Mikrosystemów i Fotoniki Politechnika Wrocławska 2011 Literatura i źródła rysunków G. Rizzoni, Fundamentals of Electrical
EUROELEKTRA. Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej. Rok szkolny 2012/2013. Zadania dla grupy elektronicznej na zawody II stopnia
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2012/2013 Zadania dla grupy elektronicznej na zawody II stopnia 1. Wykorzystując rachunek liczb zespolonych wyznacz impedancję
Budowa. Metoda wytwarzania
Budowa Tranzystor JFET (zwany też PNFET) zbudowany jest z płytki z jednego typu półprzewodnika (p lub n), która stanowi tzw. kanał. Na jego końcach znajdują się styki źródła (ang. source - S) i drenu (ang.
ELEMENTY ELEKTRONICZNE
AKAEMA ÓRNCZO-HTNCZA M. TANŁAWA TAZCA W KRAKOWE Wydział nformatyki, Elektroniki i Telekomunikacji Katedra Elektroniki ELEMENTY ELEKTRONCZNE dr inż. iotr ziurdzia paw. C-3, pokój 413; tel. 617-7-, piotr.dziurdzia@agh.edu.pl
Laboratorium Elektroniki
Wydział Mechaniczno-Energetyczny Laboratorium Elektroniki Badanie wzmacniaczy tranzystorowych i operacyjnych 1. Wstęp teoretyczny Wzmacniacze są bardzo często i szeroko stosowanym układem elektronicznym.
Analogowy układ mnożący
PUAV Wykład 12 Pomiar mocy: P = V I R I V 2 = IR Pomiar poboru mocy: V V 1 V 1 V 2 = VIR Odb. Pomiar kwadratu amplitudy sygnału (np. szumów): v n v n v n v n 2 Inne operacje nieliniowe na sygnałach Dzielenie
Układy i Systemy Elektromedyczne
UiSE - laboratorium Układy i Systemy Elektromedyczne Laboratorium 3 Elektroniczny stetoskop - mikrofon elektretowy. Opracował: dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej, Instytut Metrologii
Wydział Elektryczny. Temat i plan wykładu. Politechnika Białostocka. Wzmacniacze
Politechnika Białostocka Temat i plan wykładu Wydział Elektryczny Wzmacniacze 1. Wprowadzenie 2. Klasyfikacja i podstawowe parametry 3. Wzmacniacz w układzie OE 4. Wtórnik emiterowy 5. Wzmacniacz róŝnicowy
Komparator napięcia. Komparator a wzmacniacz operacyjny. Vwe1. Vwy. Vwe2
PUAV Wykład 11 Komparator a wzmacniacz operacyjny Vwe1 Vwe2 + Vwy Komparator a wzmacniacz operacyjny Vwe1 Vwe2 + Vwy Wzmacniacz operacyjny ( ) V wy = k u V we2 V we1 Komparator a wzmacniacz operacyjny
ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI
1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności
Wzmacniacze operacyjne
Wzmacniacze operacyjne Cel ćwiczenia Celem ćwiczenia jest badanie podstawowych układów pracy wzmacniaczy operacyjnych. Wymagania Wstęp 1. Zasada działania wzmacniacza operacyjnego. 2. Ujemne sprzężenie
ĆWICZENIE 14 BADANIE SCALONYCH WZMACNIACZY OPERACYJNYCH
1 ĆWICZENIE 14 BADANIE SCALONYCH WZMACNIACZY OPERACYJNYCH 14.1. CEL ĆWICZENIA Celem ćwiczenia jest pomiar wybranych charakterystyk i parametrów określających podstawowe właściwości statyczne i dynamiczne
Ćwiczenie A7 : Tranzystor unipolarny JFET i jego zastosowania
Ćwiczenie A7 : Tranzystor unipolarny JFET i jego zastosowania Jacek Grela, Radosław Strzałka 3 maja 9 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i definicje, których używaliśmy w obliczeniach.
Układy akwizycji danych. Komparatory napięcia Przykłady układów
Układy akwizycji danych Komparatory napięcia Przykłady układów Komparatory napięcia 2 Po co komparator napięcia? 3 Po co komparator napięcia? Układy pomiarowe, automatyki 3 Po co komparator napięcia? Układy
11. Wzmacniacze mocy. Klasy pracy tranzystora we wzmacniaczach mocy. - kąt przepływu
11. Wzmacniacze mocy 1 Wzmacniacze mocy są układami elektronicznymi, których zadaniem jest dostarczenie do obciążenia wymaganej (na ogół dużej) mocy wyjściowej przy możliwie dużej sprawności i małych zniekształceniach
Ćwiczenie nr 8. Podstawowe czwórniki aktywne i ich zastosowanie cz. 1
Ćwiczenie nr Podstawowe czwórniki aktywne i ich zastosowanie cz.. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się ze sposobem realizacji czwórników aktywnych opartym na wzmacniaczu operacyjnym µa, ich
ZŁĄCZOWY TRANZYSTOR POLOWY
L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE ZŁĄCZOWY TRANZYSTOR POLOWY RE. 2.0 1. CEL ĆWICZENIA - Pomiary charakterystyk prądowo-napięciowych tranzystora. - Wyznaczenie podstawowych parametrów tranzystora
Wzmacniacz jako generator. Warunki generacji
Generatory napięcia sinusoidalnego Drgania sinusoidalne można uzyskać Poprzez utworzenie wzmacniacza, który dla jednej częstotliwości miałby wzmocnienie równe nieskończoności. Poprzez odtłumienie rzeczywistego
Wzmacniacze, wzmacniacze operacyjne
Wzmacniacze, wzmacniacze operacyjne Schemat ideowy wzmacniacza Współczynniki wzmocnienia: - napięciowy - k u =U wy /U we - prądowy - k i = I wy /I we - mocy - k p = P wy /P we >1 Wzmacniacz w układzie
ĆWICZENIE NR 1 TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem unipolarnym
ĆWICZENIE NR 1 TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem unipolarnym 4. PRZEBIE ĆWICZENIA 4.1. Wyznaczanie parametrów wzmacniacza z tranzystorem unipolarnym złączowym w
LABORATORIUM ELEKTRONICZNYCH UKŁADÓW POMIAROWYCH I WYKONAWCZYCH. Badanie detektorów szczytowych
LABORATORIM ELEKTRONICZNYCH KŁADÓW POMIAROWYCH I WYKONAWCZYCH Badanie detektorów szczytoch Cel ćwiczenia Poznanie zasady działania i właściwości detektorów szczytoch Wyznaczane parametry Wzmocnienie detektora
Nanoeletronika. Temat projektu: Wysokoomowa i o małej pojemności sonda o dużym paśmie przenoszenia (DC-200MHz lub 1MHz-200MHz). ang.
Nanoeletronika Temat projektu: Wysokoomowa i o małej pojemności sonda o dużym paśmie przenoszenia (DC-200MHz lub 1MHz-200MHz). ang. Active probe Wydział EAIiE Katedra Elektroniki 17 czerwiec 2009r. Grupa:
PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 12/12
PL 219586 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 219586 (13) B1 (21) Numer zgłoszenia: 392996 (51) Int.Cl. H03F 1/30 (2006.01) H04R 3/06 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej
ĆWICZENIE LABORATORYJNE. TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem bipolarnym (2 h)
ĆWCZENE LORTORYJNE TEMT: znaczanie parametrów i charakterystyk wzmacniacza z tranzystorem bipolarnym (2 h) 1. WPROWDZENE Przedmiotem ćwiczenia jest zapoznanie się z budową i zasadą działania podstawoch
Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera.
ĆWICZENIE 5 Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera. I. Cel ćwiczenia Badanie właściwości dynamicznych wzmacniaczy tranzystorowych pracujących w układzie
Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki
Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Na podstawie instrukcji Wtórniki Napięcia,, Laboratorium układów Elektronicznych Opis badanych układów Spis Treści 1. CEL ĆWICZENIA... 2 2.
Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia
Wrocław, 21.03.2017 r. Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia Podczas testu kompetencji studenci powinni wykazać się znajomością zagadnień określonych w kartach kursów
Temat: Wzmacniacze selektywne
Temat: Wzmacniacze selektywne. Wzmacniacz selektywny to układy, których zadaniem jest wzmacnianie sygnałów o częstotliwości zawartej w wąskim paśmie wokół pewnej częstotliwości środkowej f. Sygnały o częstotliwości
Realizacja regulatorów analogowych za pomocą wzmacniaczy operacyjnych. Instytut Automatyki PŁ
ealizacja regulatorów analogowych za pomocą wzmacniaczy operacyjnych W6-7/ Podstawowe układy pracy wzmacniacza operacyjnego Prezentowane schematy podstawowych układów ze wzmacniaczem operacyjnym zostały
Zespół Szkół Łączności w Krakowie. Badanie parametrów wzmacniacza mocy. Nr w dzienniku. Imię i nazwisko
Klasa Imię i nazwisko Nr w dzienniku espół Szkół Łączności w Krakowie Pracownia elektroniczna Nr ćw. Temat ćwiczenia Data Ocena Podpis Badanie parametrów wzmacniacza mocy 1. apoznać się ze schematem aplikacyjnym
10. Tranzystory polowe (unipolarne FET)
PRZYPOMNIJ SOBIE! Elektronika: Co to jest półprzewodnik unipolarny (pod rozdz. 4.4). Co dzieje się z nośnikiem prądu w półprzewodniku (podrozdz. 4.4). 10. Tranzystory polowe (unipolarne FET) Tranzystory
Wzmacniacz operacyjny zastosowania liniowe i nieliniowe
Wzmacniacz operacyjny zastosowania linio i nielinio Wrocław 03 Wzmacniacz operacyjny WO dzięki sj unirsalności znajdują powszechne zastosowanie do realizacji różnorodnych układów analogoch szczególnie:
Wykład 2 Projektowanie cyfrowych układów elektronicznych
Wykład 2 Projektowanie cyfrowych układów elektronicznych Mgr inż. Łukasz Kirchner Lukasz.kirchner@cs.put.poznan.pl http://www.cs.put.poznan.pl/lkirchner Sztuka Elektroniki - P. Horowitz, W.Hill kłady półprzewodnikowe.tietze,
Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Badanie tranzystorów unipolarnych typu JFET i MOSFET
Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej TIA ZIENNE LAORATORIM PRZYRZĄÓW PÓŁPRZEWONIKOWYCH Ćwiczenie nr 8 adanie tranzystorów unipolarnych typu JFET i MOFET I. Zagadnienia
, , ,
Filtry scalone czasu ciągłego laboratorium Organizacja laboratorium W czasie laboratorium należy wykonać 5 ćwiczeń symulacyjnych z użyciem symulatora PSPICE a wyniki symulacji należy przesłać prowadzącemu
Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude
Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe
Podstawowe układy pracy tranzystora bipolarnego
L A B O A T O I U M A N A L O G O W Y C H U K Ł A D Ó W E L E K T O N I C Z N Y C H Podstawowe układy pracy tranzystora bipolarnego Ćwiczenie opracował Jacek Jakusz 4. Wstęp Ćwiczenie umożliwia pomiar
Podstawy Elektroniki dla Informatyki. Tranzystory unipolarne MOS
AGH Katedra Elektroniki Podstawy Elektroniki dla Informatyki Tranzystory unipolarne MOS Ćwiczenie 3 2014 r. 1 1. Wstęp. Celem ćwiczenia jest zapoznanie się z działaniem i zastosowaniami tranzystora unipolarnego
Liniowe układy scalone. Budowa scalonego wzmacniacza operacyjnego
Liniowe układy scalone Budowa scalonego wzmacniacza operacyjnego Wzmacniacze scalone Duża różnorodność Powtarzające się układy elementarne Układy elementarne zbliżone do odpowiedników dyskretnych, ale
1 Dana jest funkcja logiczna f(x 3, x 2, x 1, x 0 )= (1, 3, 5, 7, 12, 13, 15 (4, 6, 9))*.
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 0/0 Odpowiedzi do zadań dla grupy elektronicznej na zawody II stopnia (okręgowe) Dana jest funkcja logiczna f(x 3, x,
Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający
Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości wzmacniaczy operacyjnych i ich podstawowych
Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude
Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 1 Podstawowe prawa obwodów elektrycznych Prąd elektryczny definicja fizyczna Prąd elektryczny powstaje jako uporządkowany ruch
Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora.
I. Cel ćwiczenia ĆWICZENIE 6 Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora. Badanie właściwości wzmacniaczy tranzystorowych pracujących w układzie wspólnego kolektora. II.
Ćwiczenie nr 65. Badanie wzmacniacza mocy
Ćwiczenie nr 65 Badanie wzmacniacza mocy 1. Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych parametrów wzmacniaczy oraz wyznaczenie charakterystyk opisujących ich właściwości na przykładzie wzmacniacza
Wzmacniacze. Klasyfikacja wzmacniaczy Wtórniki Wzmacniacz różnicowy Wzmacniacz operacyjny
Wzmacniacze Klasyfikacja wzmacniaczy Wtórniki Wzmacniacz różnicowy Wzmacniacz operacyjny Zasilanie Z i I we I wy E s M we Wzmacniacz wy Z L Masa Wzmacniacze 2 Podział wzmacniaczy na klasy Klasa A ηmax
Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU
REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza
1. Zarys właściwości półprzewodników 2. Zjawiska kontaktowe 3. Diody 4. Tranzystory bipolarne
Spis treści Przedmowa 13 Wykaz ważniejszych oznaczeń 15 1. Zarys właściwości półprzewodników 21 1.1. Półprzewodniki stosowane w elektronice 22 1.2. Struktura energetyczna półprzewodników 22 1.3. Nośniki
Co było na ostatnim wykładzie?
Co było na ostatnim wykładzie? Rzeczywiste źródło napięcia: Demonstracja: u u s (t) R u= us R + RW Zależy od prądu i (czyli obciążenia) w.2, p.1 Podłączamy różne obciążenia (różne R). Co dzieje się z u?
Ćwiczenie 5. Zastosowanie tranzystorów bipolarnych cd. Wzmacniacze MOSFET
Ćwiczenie 5 Zastosowanie tranzystorów bipolarnych cd. Wzmacniacze MOSFET Układ Super Alfa czyli tranzystory w układzie Darlingtona Zbuduj układ jak na rysunku i zaobserwuj dla jakiego położenia potencjometru
Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający
Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości wzmacniaczy operacyjnych i ich podstawowych
Wzmacniacz operacyjny
Wzmacniacz operacyjny opisywany jest jako wzmacniacz prądu stałego, czyli wzmacniacz o sprzężeniach bezpośrednich, który charakteryzuje się bardzo dużym wzmocnieniem, wejściem różnicowym (symetrycznym)
5 Filtry drugiego rzędu
5 Filtry drugiego rzędu Cel ćwiczenia 1. Zrozumienie zasady działania i charakterystyk filtrów. 2. Poznanie zalet filtrów aktywnych. 3. Zastosowanie filtrów drugiego rzędu z układem całkującym Podstawy
Liniowe układy scalone. Komparatory napięcia i ich zastosowanie
Liniowe układy scalone Komparatory napięcia i ich zastosowanie Komparator Zadaniem komparatora jest wytworzenie sygnału logicznego 0 lub 1 na wyjściu w zależności od znaku różnicy napięć wejściowych Jest
Laboratorium Elektroniczna aparatura Medyczna
EAM - laboratorium Laboratorium Elektroniczna aparatura Medyczna Ćwiczenie REOMETR IMPEDANCYJY Opracował: dr inŝ. Piotr Tulik Zakład InŜynierii Biomedycznej Instytut Metrologii i InŜynierii Biomedycznej
Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I)
Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I) Celem ćwiczenia jest wyznaczenie parametrów typowego wzmacniacza operacyjnego. Ćwiczenie ma pokazać w jakich warunkach
Co było na ostatnim wykładzie?
Co było na ostatnim wykładzie? Elektronika używa wyidealizowanych obiektów, np.: idealne źródło napięcia, rezystor, kondenstor, cewka, wzmacniacz operacyjny, bramki logiczne etc. Dowolne urządzenie elektroniczne
WSTĘP DO ELEKTRONIKI
WSTĘP DO ELEKTRONIKI Część VI Sprzężenie zwrotne Wzmacniacz operacyjny Wzmacniacz operacyjny w układach z ujemnym i dodatnim sprzężeniem zwrotnym Janusz Brzychczyk IF UJ Sprzężenie zwrotne Sprzężeniem
Laboratorium KOMPUTEROWE PROJEKTOWANIE UKŁADÓW
Laboratorium KOMPUTEROWE PROJEKTOWANIE UKŁADÓW SYMULACJA UKŁADÓW ELEKTRONICZNYCH Z ZASTOSOWANIEM PROGRAMU SPICE Opracował dr inż. Michał Szermer Łódź, dn. 03.01.2017 r. ~ 2 ~ Spis treści Spis treści 3
Pracownia Fizyczna i Elektroniczna 2017
Pracownia Fizyczna i Elektroniczna 7 http://pe.fw.ed.pl/ Wojciech DOMNK Strktra kład doświadczalnego Strktra kład doświadczalnego EKSPEYMENT EEKTONNY jawisko przyrodnicze detektor rządzenie pomiaro rządzenie
Ćwiczenie 4. Parametry statyczne tranzystorów polowych JFET i MOSFET
Ćwiczenie 4 Parametry statyczne tranzystorów polowych JFET i MOSFET Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie charakterystyk statycznych tranzystorów polowych złączowych oraz z izolowaną
Obwody prądu zmiennego
Obwody prądu zmiennego Prąd stały ( ) ( ) i t u t const const ( ) u( t) i t Prąd zmienny, dowolne funkcje czasu i( t) t t u ( t) t t Natężenie prądu i umowny kierunek prądu Prąd stały Q t Kierunek poruszania
Lekcja 19. Temat: Wzmacniacze pośrednich częstotliwości.
Lekcja 19 Temat: Wzmacniacze pośrednich częstotliwości. Wzmacniacze pośrednich częstotliwości zazwyczaj są trzy- lub czterostopniowe, gdyż sygnał na ich wejściu musi być znacznie wzmocniony niż we wzmacniaczu
Tranzystory w pracy impulsowej
Tranzystory w pracy impulsowej. Cel ćwiczenia Celem ćwiczenia jest poznanie właściwości impulsowych tranzystorów. Wyniki pomiarów parametrów impulsowych tranzystora będą porównane z parametrami obliczonymi.
A-3. Wzmacniacze operacyjne w układach liniowych
A-3. Wzmacniacze operacyjne w kładach liniowych I. Zakres ćwiczenia wyznaczenia charakterystyk amplitdowych i częstotliwościowych oraz parametrów czasowych:. wtórnika napięcia. wzmacniacza nieodwracającego
Układy zasilania tranzystorów
kłady zasilania tranzystorów Wrocław 2 Punkt pracy tranzystora B BQ Q Q Q BQ B Q Punkt pracy tranzystora Tranzystor unipolarny SS Q Q Q GS p GSQ SQ S opuszczalny obszar pracy (safe operating conditions
PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH
L B O R T O R I U M ELEMENTY ELEKTRONICZNE PRMETRY MŁOSYGNŁOWE TRNZYSTORÓW BIPOLRNYCH REV. 1.0 1. CEL ĆWICZENI - celem ćwiczenia jest zapoznanie się z metodami pomiaru i wyznaczania parametrów małosygnałowych
Technika regulacji automatycznej
Technika regulacji automatycznej Wykład 3 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 32 Plan wykładu Wprowadzenie Układ pierwszego rzędu Układ drugiego
Szybkie metody projektowania filtrów aktywnych
Szybkie metody projektowania filtrów aktywnych Aby szybko rozpocząć projektowanie układów filtrów aktywnych należy znać: Wartości dostępnych źródeł zasilania: zasilanie plus/minus (symetryczne) czy tylko
Sygnał vs. szum. Bilans łącza satelitarnego. Bilans energetyczny łącza radiowego. Paweł Kułakowski. Zapewnienie wystarczającej wartości SNR :
Sygnał vs. szum Bilans łącza satelitarnego Paweł Kułakowski Bilans energetyczny łącza radiowego Zapewnienie wystarczającej wartości SNR : 1 SNR i E b /N 0 moc sygnału (czasem określana jako: moc nośnej
Demonstracja: konwerter prąd napięcie
Demonstracja: konwerter prąd napięcie i WE =i i WE i v = i WE R R=1 M Ω i WE = [V ] 10 6 [Ω] v + Zasilanie: +12, 12 V wy( ) 1) Oświetlanie o stałym natężeniu: =? (tryb DC) 2) Oświetlanie przez lampę wstrząsoodporną:
TEORIA TRANZYSTORÓW MOS. Charakterystyki statyczne
TEORIA TRANZYSTORÓW MOS Charakterystyki statyczne n Aktywne podłoże, a napięcia polaryzacji złącz tranzystora wzbogacanego nmos Obszar odcięcia > t, = 0 < t Obszar liniowy (omowy) Kanał indukowany napięciem
R 1 = 20 V J = 4,0 A R 1 = 5,0 Ω R 2 = 3,0 Ω X L = 6,0 Ω X C = 2,5 Ω. Rys. 1.
EROELEKR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 9/ Rozwiązania zadań dla grupy elektrycznej na zawody stopnia adanie nr (autor dr inŝ. Eugeniusz RoŜnowski) Stosując twierdzenie
Zaznacz właściwą odpowiedź
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 20/202 Zadania dla grupy elektronicznej na zawody I stopnia Zaznacz właściwą odpowiedź Zad. Dany jest obwód przedstawiony
PL 217306 B1. AZO DIGITAL SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Gdańsk, PL 27.09.2010 BUP 20/10. PIOTR ADAMOWICZ, Sopot, PL 31.07.
PL 217306 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 217306 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 387605 (22) Data zgłoszenia: 25.03.2009 (51) Int.Cl.
PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 14/12
PL 218560 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 218560 (13) B1 (21) Numer zgłoszenia: 393408 (51) Int.Cl. H03F 3/18 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:
Uniwersytet Pedagogiczny
Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie Laboratorium elektroniki Ćwiczenie nr 4 Temat: PRZYRZĄDY PÓŁPRZEWODNIKOWE TRANZYSTOR UNIPOLARNY Rok studiów Grupa Imię i nazwisko Data
Wzmacniacz na tranzystorze J FET
Wzmacniacz na tranzystorze J FET Najprostszym wzmacniaczem sygnałów w. cz. jest tranzystorowy wzmacniacz oporowy. Można go zrealizować zarówno na tranzystorze bipolarnym jak i na polowym (JFET, MOSFET).
Wzmacniacze prądu stałego
PUAV Wykład 13 Wzmacniacze prądu stałego Idea Problem: wzmacniacz prądu stałego (lub sygnałów o bardzo małej częstotliwości, rzędu ułamków Hz) zrealizowany konwencjonalnie wprowadza błąd wynikający z wejściowego
Wzmacniacz operacyjny
parametry i zastosowania Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego (klasyka: Fairchild ua702) 1965 Wzmacniacze
Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8
Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 1. Cel ćwiczenia Celem ćwiczenia jest dynamiczne badanie wzmacniacza operacyjnego, oraz zapoznanie się z metodami wyznaczania charakterystyk częstotliwościowych.
Technologia BiCMOS Statystyka procesów produkcji
Technologia BiCMOS Statystyka procesów produkcji 1 Technologia BiCMOS 2 Technologia CMOS i BiCMOS Tranzystor nmos Tranzystor pmos M2 (Cu) M3 (Cu) M1 (Cu) S Poli typu n D M1 (Cu) D Poli typu p S M1 (Cu)