Ćwiczenie 13. Wyznaczanie ruchliwości i koncentracji nośników prądu w półprzewodnikach metodą efektu Halla. Cel ćwiczenia

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ćwiczenie 13. Wyznaczanie ruchliwości i koncentracji nośników prądu w półprzewodnikach metodą efektu Halla. Cel ćwiczenia"

Transkrypt

1 Ćwicenie 13 Wynacanie ruchliwości i koncentracji nośników prądu w półprewodnikach metodą efektu alla Cel ćwicenia Celem ćwicenia jest aponanie się e jawiskiem alla, stałoprądowa metoda badania efektu alla, wynacenie ruchliwości nośników prądu i ich koncentracji w półprewodnikach. Wymagane wiadomości teoretycne Zjawisko alla, stała alla, elektromagnes, aleŝności międy gęstością prądu, prewodnością właściwą i ruchliwością nośników, metoda stałoprądowa pomiaru ruchliwości nośników. WyposaŜenie stanowiska Elektromagnes, moduł pomiarowy, krywa cechowania elektromagnesu, próbka do pomiaru. Wykonanie ćwicenia 1. Włącyć do sieci moduł pomiarowy. 2. stawić wartość R na module pomiarowym pry pomocy pokrętła dolnego ( R jest spadkiem napięcia na oporniku R; wartości R podaje prowadący ćwicenia). 3. Włącyć elektromagnes (transformator asilający elektromagnes musi być ustawiony w poycji ero!). 4. Włącyć prycisk na module pomiarowym i wyerować pokrętłem górnym wartość napięcia. 5. Włącyć prycisk C na module pomiarowym i mieryć wartość napięcia C, które jest spadkiem napięcia na próbce. 6. Prełącnikiem e strałką na obudowie elektromagnesu ustawić kierunek prepływu prądu pre elektromagnes.

2 6. stawiać a pomocą pokrętła transformatora adane pre prowadącego wartości prądu płynącego pre uwojenia elektromagnesu i a kaŝdym raem odcytywać na module pomiarowym wartości napięcia. i C. 7. Po dokonaniu pomiarów pry adanym kierunku prepływu prądu pre elektromagnes, ustawić transformator w poycji ero i mienić prełącnikiem e strałką kierunek prepływu prądu na preciwny. 8. Powtóryć pomiary punktu 7. Opracowanie wyników 1. Wykreślić aleŝności = f( c ); = f( R ) dla danych wartości indukcji magnetycnej B ora aleŝność R = f( c ). 2. Wynacyć nachylenia prostych będących wykresami powyŝsych aleŝności. 3. Oblicyć ruchliwość µ, stałą alla R ora prewodność właściwą σ w oparciu o aleŝności: b = µb c, l B R h = R R, Rbh = σ, l R c gdie: R = 1000 Ω, b, l, h wymiary geometrycne próbki: b = (3,7 ± 0,1) 10 3 m, l = (11,5 ± 0,2) 10 3 m, h = (1,7 ± 0,1) 10 3 m, a = (22,4 ± 0,2) 10 3 m. 2

3 a l b h l b a Rys. 1. Wymiary geometrycne próbki 4. W oparciu o stałą alla R wynacyć koncentrację n nośników w próbce. 5. Preprowadić rachunek błędów. 3

4 Zjawisko alla Efekt alla jest źródłem informacji o podstawowych właściwościach fiycnych, które charakteryują badany materiał pod wględem elektrycnym. Efekt ten odkrył E.. all w 1879 roku podcas badań nad naturą sił diałających na nośniki prądu w polu magnetycnym. JeŜeli prewodnik, w którym płynie prąd elektrycny, najduje się w polu magnetycnym o kierunku prostopadłym do kierunku prepływu prądu, to w prewodniku powstaje pole elektrycne, prostopadłe arówno do kierunku prepływu prądu, jak i do kierunku pola magnetycnego. Badanie jawiska alla, preprowadone w serokim akresie temperatur i połącone pomiarem prewodności właściwej, powala określać ruchliwość nośników prądu, ich koncentrację, nak, typ roprasania, serokość prerwy wbronionej ora połoŝenie poiomu akceptorowego lub donorowego. Prąd płynący w próbce moŝna traktować jako ruch nośników o średniej prędkości unosenia v w kierunku pola elektrycnego E (rysunek 1). W polu magnetycnym o indukcji B, prostopadłym do kierunku prądu, nośniki są odchylane w kierunku prostopadłym do B i v. y + elektrony - diury E y I B E, I B + elektrony - diury Rys. 1. Kierunki prądu, pola magnetycnego i pola alla w próbce prostopadłościennej Zgromadony ładunek wytwara pole elektrycne E y, wane równieŝ polem alla. Gromadenie się ładunku na jednej e ścian bocnych próbki trwa dotąd, dopóki siła diałająca na nośniki, pochodąca od pola elektrycnego E y, nie równowaŝy siły 4

5 pochodącej od pola magnetycnego. Ma to miejsce wtedy, gdy składowa siły Lorenta w kierunku osi y jest równa eru: Stąd F = e( E v B ) 0. (1) y y = E = v B (2) y PoniewaŜ gęstość prądu w kierunku osi, j = nev, to 1 E y = jb = R jb (3) ne gdie 1 R = (4) ne naywamy stałą alla. Stała alla powala określać koncentrację nośników w próbce n ora ich nak. Dla elektronów stała ta jest ujemna, natomiast dla diur dodatnia. Wór (4) ostał wyprowadony pry ałoŝeniu, Ŝe prędkość dryfu nośników jest jednakowa dla wsystkich nośników prądu. Z prawa Ohma wynika, Ŝe j = σ E = neµ E (5) gdie: σ jest prewodnością właściwą próbki, a µ d jest ruchliwością nośników, waną ruchliwością dryfu. Podstawiając wyraŝenie (5) do równania (3) otrymamy: d E = R σ E B = Aµ E B. (6) y d Ilocyn Aµ d = µ naywany jest ruchliwością alla. Ruchliwość tę moŝna wynacyć aleŝności: E y 1 µ =. (7) E B Najcęściej stosowaną metodą pomiaru ruchliwości jest metoda klasycna. W metodie tej stosuje się próbkę w kstałcie prostopadłościennym (rysunek 2). 5

6 l b h A B C E D F I B a Rys. 2. Prostopadłościenna płytka do pomiaru ruchliwości metodą klasycną Elektrody prądowe A i F są podłącone do ewnętrnego źródła asilania. Ze wględu na to, Ŝe w pobliŝu elektrod prądowych pole elektrycne moŝe być niejednorodne, jak równieŝ e wględu na moŝliwość powstania łący prostujących, do pomiaru spadku napięcia wdłuŝ próbki stosuje się elektrody napięciowe B i E umiescone w odległości l od siebie. Po włąceniu pola magnetycnego o indukcji B, prostopadłego do powierchni próbki i do kierunku prepływu pola elektrycnego, pomiędy elektrodami C i D ustali się napięcie alla. Jest ono proporcjonalne do ruchliwości alla µ. Ruchliwość µ, stała alla R i prewodność właściwą σ oblicamy e worów: l 1 µ = = R σ, (8) b B gdie: napięcie alla międy sondami C i D, c spadek napięcia międy sondami napięciowymi B i E, l, b, h wymiary anacone na rysunku 2, J natęŝenie prądu elektrycnego prepływającego pre próbkę. c h R =, (9) J B J 1 σ =, (10) bh c 6

7 Pry wyprowadeniu tych worów ałoŝono, Ŝe pole magnetycne jest słabe, to nacy ( µ B 2 ) 1 (11) i gęstość prądu w całej próbce jest jednakowa. Aby ostatni warunek był spełniony, elektrody prądowe powinny mieć duŝą powierchnię, natomiast elektrody napięciowe powinny być punktowe. Sondy alla C i D powinny być ustawione na jednej linii ekwipotencjalnej tak, aby róŝnica potencjałów międy nimi była równa eru, gdy B = 0. W preciwnym prypadku, opróc napięcia alla, będie istniało napięcie wynikające nieekwipotencjalnego ustawienia sond. Napięcie to treba kompensować pry uŝyciu specjalnego układu elektrycnego. Efekt alla w półprewodnikach moŝna badać stosując stałoprądową technikę pomiarową. Pry pomiare stałoprądowym napięcie alla jest napięciem stałym, co uyskuje się pre astosowanie stałego pola elektrycnego i magnetycnego. Zastosowany w ćwiceniu układ pomiarowy metodą stałego pola magnetycnego i stałego prądu predstawiono na rysunku 3. I R V R B Z P. mv mv C Rys.3. Schemat układu pomiarowego 7

8 W układie tym astosowano stały prąd sterujący płynący pre próbkę I i stałe pole magnetycne B. Do wynacenia ruchliwości, stałej alla i prewodności właściwej koniecny jest pomiar: spadku napięcia c międy sondami napięciowymi, napięcia alla ora natęŝenia prądu I prepływającego pre próbkę. Spadek napięcia c odcytuje się bepośrednio na mierniku napięcia. NatęŜenie prądu prepływającego pre próbkę nie jest wynacane w sposób bepośredni, lec pre pomiar spadku napięcia R na oporniku R, który jest seregowo połącony próbką wtedy I = R /R. 8

9 Krywa cechowania elektromagnesu B [Wb/m2] I [A] 9

Wyznaczanie ruchliwości i koncentracji nośników prądu w półprzewodnikach metodą efektu Halla

Wyznaczanie ruchliwości i koncentracji nośników prądu w półprzewodnikach metodą efektu Halla Ćwicenie 13 Wnacanie ruchliwości i koncentracji nośników prądu w półprewodnikach metodą efektu alla Cel ćwicenia Celem ćwicenia jest aponanie się e jawiskiem alla, stałoprądową metodą badania efektu alla,

Bardziej szczegółowo

F = e(v B) (2) F = evb (3)

F = e(v B) (2) F = evb (3) Sprawozdanie z fizyki współczesnej 1 1 Część teoretyczna Umieśćmy płytkę o szerokości a, grubości d i długości l, przez którą płynie prąd o natężeniu I, w poprzecznym polu magnetycznym o indukcji B. Wówczas

Bardziej szczegółowo

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza Efekt Halla Cel ćwiczenia Celem ćwiczenia jest zbadanie efektu Halla. Wstęp Siła Loretza Na ładunek elektryczny poruszający się w polu magnetycznym w kierunku prostopadłym do linii pola magnetycznego działa

Bardziej szczegółowo

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego.

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego. Transformator Φ r Φ M Φ r i i u u Φ i strumień magnetycny prenikający pre i-ty wój pierwsego uwojenia; siła elektromotorycna indukowana w i-tym woju: dφ ei, licba wojów uwojenia pierwotnego i wtórnego.

Bardziej szczegółowo

Zadanie 106 a, c WYZNACZANIE PRZEWODNICTWA WŁAŚCIWEGO I STAŁEJ HALLA DLA PÓŁPRZEWODNIKÓW. WYZNACZANIE RUCHLIWOŚCI I KONCENTRACJI NOŚNIKÓW.

Zadanie 106 a, c WYZNACZANIE PRZEWODNICTWA WŁAŚCIWEGO I STAŁEJ HALLA DLA PÓŁPRZEWODNIKÓW. WYZNACZANIE RUCHLIWOŚCI I KONCENTRACJI NOŚNIKÓW. Zadanie 106 a, c WYZNACZANIE PRZEWODNICTWA WŁAŚCIWEGO I STAŁEJ HALLA DLA PÓŁPRZEWODNIKÓW. WYZNACZANIE RUCHLIWOŚCI I KONCENTRACJI NOŚNIKÓW. 1. Elektromagnes 2. Zasilacz stabilizowany do elektromagnesu 3.

Bardziej szczegółowo

Badanie transformatora jednofazowego. (Instrukcja do ćwiczenia)

Badanie transformatora jednofazowego. (Instrukcja do ćwiczenia) 1 Badanie transformatora jednofaowego (Instrukcja do ćwicenia) Badanie transformatora jednofaowego. CEL ĆICZENI: Ponanie asady diałania, budowy i właściwości.transformatora jednofaowego. 1 IDOMOŚCI TEORETYCZNE

Bardziej szczegółowo

Badanie własności hallotronu, wyznaczenie stałej Halla (E2)

Badanie własności hallotronu, wyznaczenie stałej Halla (E2) Badanie własności hallotronu, wyznaczenie stałej Halla (E2) 1. Wymagane zagadnienia - ruch ładunku w polu magnetycznym, siła Lorentza, pole elektryczne - omówić zjawisko Halla, wyprowadzić wzór na napięcie

Bardziej szczegółowo

Fizyka 3.3 III. DIODA ZENERA. 1. Zasada pomiaru.

Fizyka 3.3 III. DIODA ZENERA. 1. Zasada pomiaru. Fiyka 3.3 III. DIODA ZENERA Cel ćwicenia: Zaponanie się asadą diałania diody Zenera, wynacenie jej charakterystyki statycnej, napięcia wbudowanego ora napięcia Zenera. 1) Metoda punkt po punkcie 1. Zasada

Bardziej szczegółowo

Ćwiczenie nr 43: HALOTRON

Ćwiczenie nr 43: HALOTRON Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel

Bardziej szczegółowo

Analiza transformatora

Analiza transformatora ĆWICZENIE 4 Analia transformatora. CEL ĆWICZENIA Celem ćwicenia jest ponanie bodowy, schematu astępcego ora ocena pracy transformatora.. PODSTAWY TEORETYCZNE. Budowa Podstawowym adaniem transformatora

Bardziej szczegółowo

UKŁADY TENSOMETRII REZYSTANCYJNEJ

UKŁADY TENSOMETRII REZYSTANCYJNEJ Ćwicenie 8 UKŁADY TESOMETII EZYSTACYJEJ Cel ćwicenia Celem ćwicenia jest ponanie: podstawowych właściwości metrologicnych tensometrów, asad konstrukcji pretworników siły, ora budowy stałoprądowych i miennoprądowych

Bardziej szczegółowo

Efekt Halla w germanie.

Efekt Halla w germanie. E-1/2. Efekt Halla w germanie. 1. Efekt Halla. Materiały przewodzące, jak na przykład metale, czy półprzewodniki, których nośniki ładunku mają róŝną od zera prędkość dryfu V, wykazują, w zewnętrznym polu

Bardziej szczegółowo

Badanie transformatora jednofazowego

Badanie transformatora jednofazowego BADANIE TRANSFORMATORA JEDNOFAZOWEGO Cel ćwicenia Ponanie budowy i asady diałania ora metod badania i podstawowych charakterystyk transformatora jednofaowego. I. WIADOMOŚCI TEORETYCZNE Budowa i asada diałania

Bardziej szczegółowo

6. Zjawisko Halla w metalach

6. Zjawisko Halla w metalach 6. Zjawisko Halla w metalach I. Zagadnienia do kolokwium. 1. Opis i wyjaśnienie zjawiska Halla. 2. Normalny i anomalny efekt Halla. 3. Definicja współczynnika Halla i jego jednostki. 4. Metody wyznaczania

Bardziej szczegółowo

SERIA III ĆWICZENIE 3_1A. Temat ćwiczenia: Badanie transformatora jednofazowego. Wiadomości do powtórzenia:

SERIA III ĆWICZENIE 3_1A. Temat ćwiczenia: Badanie transformatora jednofazowego. Wiadomości do powtórzenia: SER ĆCZENE 3_1 Temat ćwicenia: Badanie transformatora jednofaowego. iadomości do powtórenia: 1. Budowa i dane namionowe transformatora jednofaowego. 1 U 1 U 1 ansformator jest urądeniem prenaconym do pretwarania

Bardziej szczegółowo

Sprawdzanie transformatora jednofazowego

Sprawdzanie transformatora jednofazowego Sprawdanie transformatora jednofaowego SPRAWDZANIE TRANSFORMATORA JEDNOFAZOWEGO Cel ćwicenia Ponanie budowy i asady diałania ora metod badania i podstawowych charakterystyk transformatora jednofaowego.

Bardziej szczegółowo

Rurka Pitota Model FLC-APT-E, wersja wyjmowana Model FLC-APT-F, wersja stała

Rurka Pitota Model FLC-APT-E, wersja wyjmowana Model FLC-APT-F, wersja stała Pomiar prepływu Rurka Pitota Model FLC-APT-E, wersja wyjmowana Model FLC-APT-F, wersja stała Karta katalogowa WIKA FL 10.05 FloTec Zastosowanie Produkcja i rafinacja oleju Udatnianie i dystrybucja wody

Bardziej szczegółowo

Zjawisko Halla Referujący: Tomasz Winiarski

Zjawisko Halla Referujący: Tomasz Winiarski Plan referatu Zjawisko Halla Referujący: Tomasz Winiarski 1. Podstawowe definicje ffl wektory: E, B, ffl nośniki ładunku: elektrony i dziury, ffl podział ciał stałych ze względu na własności elektryczne:

Bardziej szczegółowo

Badanie rozkładu pola elektrycznego

Badanie rozkładu pola elektrycznego Ćwiczenie E1 Badanie rozkładu pola elektrycznego E1.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie rozkładu pola elektrycznego dla różnych układów elektrod i ciał nieprzewodzących i przewodzących umieszczonych

Bardziej szczegółowo

Ćwiczenie 10. Wyznaczanie współczynnika rozpraszania zwrotnego promieniowania beta.

Ćwiczenie 10. Wyznaczanie współczynnika rozpraszania zwrotnego promieniowania beta. Ćwicenie 1 Wynacanie współcynnika roprasania wrotnego promieniowania beta. Płytki roprasające Ustawienie licnika Geigera-Műllera w ołowianym domku Student winien wykaać się najomością następujących agadnień:

Bardziej szczegółowo

ε (1) ε, R w ε WYZNACZANIE SIŁY ELEKTROMOTOTYCZNEJ METODĄ KOMPENSACYJNĄ

ε (1) ε, R w ε WYZNACZANIE SIŁY ELEKTROMOTOTYCZNEJ METODĄ KOMPENSACYJNĄ WYZNACZANIE SIŁY ELEKTROMOTOTYCZNEJ METODĄ KOMPENSACYJNĄ I. Cel ćwiczenia: wyznaczanie metodą kompensacji siły elektromotorycznej i oporu wewnętrznego kilku źródeł napięcia stałego. II. Przyrządy: zasilacz

Bardziej szczegółowo

ĆWICZENIE 5 BADANIE ZASILACZY UPS

ĆWICZENIE 5 BADANIE ZASILACZY UPS ĆWICZENIE 5 BADANIE ZASILACZY UPS Cel ćwicenia: aponanie budową i asadą diałania podstawowych typów asilacy UPS ora pomiar wybranych ich parametrów i charakterystyk. 5.1. Podstawy teoretycne 5.1.1. Wstęp

Bardziej szczegółowo

Rozdział 22 Pole elektryczne

Rozdział 22 Pole elektryczne Rozdział 22 Pole elektryczne 1. NatęŜenie pola elektrycznego jest wprost proporcjonalne do A. momentu pędu ładunku próbnego B. energii kinetycznej ładunku próbnego C. energii potencjalnej ładunku próbnego

Bardziej szczegółowo

POMIARY ELEKTRYCZNE WIELKOŚCI NIEELEKTRYCZNYCH 2

POMIARY ELEKTRYCZNE WIELKOŚCI NIEELEKTRYCZNYCH 2 Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu POMIARY ELEKTRYCZNE WIELKOŚCI NIEELEKTRYCZNYC 2 Kod przedmiotu:

Bardziej szczegółowo

ĆWICZENIE NR 93. WŁASNOŚCI OŚRODKÓW DYSPERSYJNYCH Pomiar dyspersji materiałów za pomocą refraktometru Abbe go, typ RL1, prod. PZO

ĆWICZENIE NR 93. WŁASNOŚCI OŚRODKÓW DYSPERSYJNYCH Pomiar dyspersji materiałów za pomocą refraktometru Abbe go, typ RL1, prod. PZO ĆWICZENIE NR 93 WŁSNOŚCI OŚRODKÓW DYSPERSYJNYCH Pomiar dyspersji materiałów a pomocą refraktometru bbe go, typ RL1, prod. PZO I. Zestaw pryrądów 1. Refraktometr bbe go 2. Oświetlac światła białego asilacem

Bardziej szczegółowo

Diody Zenera, Schottky ego, SiC

Diody Zenera, Schottky ego, SiC POLITECHNIKA BIAŁOSTOCKA Temat i plan wykładu WYDZIAŁ ELEKTRYCZNY Diody Zenera, Schottky ego, SiC charakterystyki prądowo-napięciowe, parametry podstawowe układy diodami Zenera łąca metal-półprewodnik

Bardziej szczegółowo

TRANSFORMATORY. Transformator jednofazowy. Zasada działania. Dla. mamy. Czyli. U 1 = E 1, a U 2 = E 2. Ponieważ S. , mamy: gdzie: z 1 E 1 E 2 I 1

TRANSFORMATORY. Transformator jednofazowy. Zasada działania. Dla. mamy. Czyli. U 1 = E 1, a U 2 = E 2. Ponieważ S. , mamy: gdzie: z 1 E 1 E 2 I 1 TRANSFORMATORY Transformator jednofaowy Zasada diałania E E Z od Rys Transformator jednofaowy Dla mamy Cyli e ω ( t) m sinωt cosωt ω π sin ωt + m m π E ω m f m 4, 44 f m E 4, 44 f E m 4, 44 f m E, a E

Bardziej szczegółowo

BADANIE EFEKTU HALLA

BADANIE EFEKTU HALLA Ćwiczenie 57 BADANIE EFEKTU HALLA Cel ćwiczenia: wyznaczenie charakterystyk statycznych i stałej hallotronu oraz określenie typu przewodnictwa i koncentracji swobodnych nośników ładunku. Zagadnienia: zjawisko

Bardziej szczegółowo

Badanie rozkładu pola elektrycznego

Badanie rozkładu pola elektrycznego Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni

Bardziej szczegółowo

Wybrane stany nieustalone transformatora:

Wybrane stany nieustalone transformatora: Wybrane stany nieustalone transformatora: Założenia: - amplituda napięcia na aciskach pierwotnych ma wartość stałą nieależnie od jawisk achodących w transformatore - warcie występuje równoceśnie na wsystkich

Bardziej szczegółowo

Ćwiczenie 71. INDUKCJA ELEKROMAGNETYCZNA Wyznaczanie indukcyjności solenoidu

Ćwiczenie 71. INDUKCJA ELEKROMAGNETYCZNA Wyznaczanie indukcyjności solenoidu I. Wstęp Ćwicenie 71 INDUKCJA ELEKROMAGNETYCZNA Wynacanie indukcyjności solenoidu Niech w jednorodnym polu magnetycnym o indukcji B, patr rys. 1, porusa się prędkością v prewodnik. Pod wpływem siły Lorenta

Bardziej szczegółowo

BADANIE EFEKTU HALLA. Instrukcja wykonawcza

BADANIE EFEKTU HALLA. Instrukcja wykonawcza ĆWICZENIE 57 BADANIE EFEKTU HALLA Instrukcja wykonawcza I. Wykaz przyrządów 1. Zasilacz elektromagnesu ZT-980-4 2. Zasilacz hallotronu 3. Woltomierz do pomiaru napięcia Halla U H 4. Miliamperomierz o maksymalnym

Bardziej szczegółowo

SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ KATEDRA TECHNIKI POŻARNICZEJ

SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ KATEDRA TECHNIKI POŻARNICZEJ SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ KATEDRA TECHNIKI POŻARNICZEJ ZAKŁAD ELEKTROENERGETYKI Ćwicenie: URZĄDZENIA PRZECIWWYBUCHOWE BADANIE TRANSFORMATORA JEDNOFAZOWEGO Opracował: kpt.dr inż. R.Chybowski Warsawa

Bardziej szczegółowo

Badanie rozkładu pola elektrycznego

Badanie rozkładu pola elektrycznego Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni

Bardziej szczegółowo

Optymalizacja (w matematyce) termin optymalizacja odnosi się do problemu znalezienia ekstremum (minimum lub maksimum) zadanej funkcji celu.

Optymalizacja (w matematyce) termin optymalizacja odnosi się do problemu znalezienia ekstremum (minimum lub maksimum) zadanej funkcji celu. TEMATYKA: Optymaliacja nakładania wyników pomiarów Ćwicenia nr 6 DEFINICJE: Optymaliacja: metoda wynacania najlepsego (sukamy wartości ekstremalnej) rowiąania punktu widenia określonego kryterium (musimy

Bardziej szczegółowo

Projekt efizyka. Multimedialne środowisko nauczania fizyki dla szkół ponadgimnazjalnych. Zjawisko Halla. Ćwiczenie wirtualne

Projekt efizyka. Multimedialne środowisko nauczania fizyki dla szkół ponadgimnazjalnych. Zjawisko Halla. Ćwiczenie wirtualne Projekt efizyka Multimedialne środowisko nauczania fizyki dla szkół ponadgimnazjalnych. Zjawisko Halla Ćwiczenie wirtualne Marcin Zaremba 2014-06-30 Projekt współfinansowany przez Unię Europejską w ramach

Bardziej szczegółowo

W siła działająca na bryłę zredukowana do środka masy ( = 0

W siła działająca na bryłę zredukowana do środka masy ( = 0 Popęd i popęd bryły Bryła w ruchu posępowym. Zasada pędu i popędu ma posać: p p S gdie: p m v pęd bryły w ruchu posępowym S c W d popęd siły diałającej na bryłę w ruchu posępowym aś: v c prędkość środka

Bardziej szczegółowo

3. WSPÓŁCZYNNIK ŚCINANIA (KOREKCYJNY)

3. WSPÓŁCZYNNIK ŚCINANIA (KOREKCYJNY) Cęść 1. WSPÓŁCZYNNIK ŚCINANIA (KOEKCYJNY) 1.. WSPÓŁCZYNNIK ŚCINANIA (KOEKCYJNY).1. Wstęp Współcynnik κ naywany współcynnikiem ścinania jest wielkością ewymiarową, ależną od kstałtu prekroju. Występuje

Bardziej szczegółowo

EFEKT HALLA W PÓŁPRZEWODNIKACH.

EFEKT HALLA W PÓŁPRZEWODNIKACH. Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki I P Andrzej Kubiaczyk 30 EFEKT HALLA W PÓŁPRZEWODNIKACH. 1. Podstawy fizyczne 1.1. Ruch ładunku w polu elektrycznym i magnetycznym Na ładunek

Bardziej szczegółowo

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się Ładunki elektryczne Ładunki jednoimienne odpychają się Ładunki różnoimienne przyciągają się q = ne n - liczba naturalna e = 1,60 10-19 C ładunek elementarny Ładunek jest cechąciała i nie można go wydzielićz

Bardziej szczegółowo

SPRAWDZENIE PRAWA OHMA POMIAR REZYSTANCJI METODĄ TECHNICZNĄ

SPRAWDZENIE PRAWA OHMA POMIAR REZYSTANCJI METODĄ TECHNICZNĄ Laboratorium Podstaw Elektroniki Marek Siłuszyk Ćwiczenie M 4 SPWDZENE PW OHM POM EZYSTNCJ METODĄ TECHNCZNĄ opr. tech. Mirosław Maś niwersytet Przyrodniczo - Humanistyczny Siedlce 2013 1. Wstęp Celem ćwiczenia

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA NWERSYTET TECHNOLOGCZNO-RZYRODNCZY W BYDGOSZCZY WYDZAŁ NŻYNER MECHANCZNEJ NSTYTT EKSLOATACJ MASZYN TRANSORT ZAKŁAD STEROWANA ELEKTROTECHNKA ELEKTRONKA ĆWCZENE: E BADANE TRANSFORMATORA JEDNOFAZOWEGO iotr

Bardziej szczegółowo

Katedra Geotechniki i Budownictwa Drogowego. WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Mazurski

Katedra Geotechniki i Budownictwa Drogowego. WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Mazurski Katedra Geotechniki i Budownictwa Drogowego WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Maurski Mechanika Gruntów dr inż. Ireneus Dyka http://pracownicy.uwm.edu.pl/i.dyka e-mail: i.dyka@uwm.edu.pl

Bardziej szczegółowo

I. Cel ćwiczenia: Poznanie własności oraz metody badania diod półprzewodnikowych.

I. Cel ćwiczenia: Poznanie własności oraz metody badania diod półprzewodnikowych. Zespół Skół Technicnych w Skarżysku-Kamiennej Sprawodanie PACOWNA ELEKTYCZNA ELEKTONCZNA imię i nawisko ćwicenia nr Temat ćwicenia: BADANE DOD PÓŁPZEWODNKOWYCH rok skolny klasa grupa data wykonania. Cel

Bardziej szczegółowo

Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych.

Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych. Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych. Ćwiczenie ma następujące części: 1 Pomiar rezystancji i sprawdzanie prawa Ohma, metoda najmniejszych kwadratów. 2 Pomiar średnicy pręta.

Bardziej szczegółowo

PRACOWNIA FIZYKI MORZA

PRACOWNIA FIZYKI MORZA PRACOWNIA FIZYKI MORZA INSTRUKCJA DO ĆWICZENIA NR 8 TEMAT: BADANIE PRZEWODNICTWA ELEKTRYCZNEGO WODY MORSKIEJ O RÓŻNYCH ZASOLENIACH Teoria Przewodnictwo elektryczne wody morskiej jest miarą stężenia i rodzaju

Bardziej szczegółowo

FIZYKA LABORATORIUM prawo Ohma

FIZYKA LABORATORIUM prawo Ohma FIZYKA LABORATORIUM prawo Ohma dr hab. inż. Michał K. Urbański, Wydział Fizyki Politechniki Warszawskiej, pok 18 Gmach Fizyki, murba@if.pw.edu.pl www.if.pw.edu.pl/ murba strona Wydziału Fizyki www.fizyka.pw.edu.pl

Bardziej szczegółowo

Transformator jednofazowy (cd) Rys. 1 Stan jałowy transformatora. Wartość tego prądu zwykle jest mniejsza niż 5% prądu znamionowego:

Transformator jednofazowy (cd) Rys. 1 Stan jałowy transformatora. Wartość tego prądu zwykle jest mniejsza niż 5% prądu znamionowego: Transformator jednofaowy (cd) W transformatore pracującym be obciążenia (stan jałowy) wartość prądu po stronie wtórna jest równy eru (Rys. 1). W takim prypadku pre uwojenie strony pierwotnej prepływa tylko

Bardziej szczegółowo

ORGANIZACJA I ZARZĄDZANIE

ORGANIZACJA I ZARZĄDZANIE P O L I T E C H N I K A W A R S Z A W S K A WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ ORGANIZACJA I ZARZĄDZANIE Optymaliacja transportu wewnętrnego w akładie mechanicnym

Bardziej szczegółowo

Ćwiczenie 63. INDUKCJA ELEKROMAGNETYCZNA Charakterystyka żarówki

Ćwiczenie 63. INDUKCJA ELEKROMAGNETYCZNA Charakterystyka żarówki I. Wstęp Ćwicenie 63 INDUKCJA ELEKROMAGNETYCZNA Charakterystyka żarówki Niech w jednorodnym polu magnetycnym o indukcji B, patr rys. 1, porusa się prędkością v prewodnik. Pod wpływem siły Lorenta F = ev

Bardziej szczegółowo

Przyrządy i Układy Półprzewodnikowe

Przyrządy i Układy Półprzewodnikowe VI. Prostownik jedno i dwupołówkowy Cel ćwiczenia: Poznanie zasady działania układu prostownika jedno i dwupołówkowego. A) Wstęp teoretyczny Prostownik jest układem elektrycznym stosowanym do zamiany prądu

Bardziej szczegółowo

Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna

Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna Wprowadzenie. Prawo Stefana Boltzmanna Φ λ nm Rys.1. Prawo Plancka. Pole pod każdą krzywą to całkowity strumień: Φ c = σs T 4

Bardziej szczegółowo

Zginanie Proste Równomierne Belki

Zginanie Proste Równomierne Belki Zginanie Proste Równomierne Belki Prebieg wykładu : 1. Rokład naprężeń w prekroju belki. Warunki równowagi. Warunki geometrycne 4. Zwiąek fiycny 5. Wskaźnik wytrymałości prekroju na ginanie 6. Podsumowanie

Bardziej szczegółowo

Podstawy fizyki ciała stałego półprzewodniki domieszkowane

Podstawy fizyki ciała stałego półprzewodniki domieszkowane Podstawy fizyki ciała stałego półprzewodniki domieszkowane Półprzewodnik typu n IV-Ge V-As Jeżeli pięciowartościowy atom V-As zastąpi w sieci atom IV-Ge to cztery elektrony biorą udział w wiązaniu kowalentnym,

Bardziej szczegółowo

Automatyczna kompensacja mocy biernej z systemem monitorowania kopalnianej sieci 6 kv

Automatyczna kompensacja mocy biernej z systemem monitorowania kopalnianej sieci 6 kv dr inż MARIAN HYLA Politechnika Śląska w Gliwicach Automatycna kompensacja mocy biernej systemem monitorowania kopalnianej sieci 6 kv W artykule predstawiono koncepcję, realiację ora efekty diałania centralnego

Bardziej szczegółowo

UKŁADY KONDENSATOROWE

UKŁADY KONDENSATOROWE UKŁADY KONDENSATOROWE 3.1. Wyprowadzić wzory na: a) pojemność kondensatora sferycznego z izolacją jednorodną (ε), b) pojemność kondensatora sferycznego z izolacją warstwową (ε 1, ε 2 ) c) pojemność odosobnionej

Bardziej szczegółowo

Ćw. 5. Określenie współczynnika strat mocy i sprawności przekładni ślimakowej.

Ćw. 5. Określenie współczynnika strat mocy i sprawności przekładni ślimakowej. Laboratorium Podstaw Konstrukcji Masyn - - Ćw. 5. Określenie współcynnika strat mocy i sprawności prekładni ślimakowej.. Podstawowe wiadomości i pojęcia. Prekładnie ślimakowe są to prekładnie wichrowate,

Bardziej szczegółowo

BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘśEŃ BADANIE ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO METODĄ STATYCZNĄ. POMIAR MAŁYCH DEFORMACJI

BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘśEŃ BADANIE ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO METODĄ STATYCZNĄ. POMIAR MAŁYCH DEFORMACJI BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘśEŃ BADANIE ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO METODĄ STATYCZNĄ. POMIAR MAŁYCH DEFORMACJI Zagadnienia: - Pojęcie zjawiska piezoelektrycznego

Bardziej szczegółowo

Dioda półprzewodnikowa

Dioda półprzewodnikowa COACH 10 Dioda półprzewodnikowa Program: Coach 6 Projekt: na MN060c CMA Coach Projects\PTSN Coach 6\ Elektronika\dioda_2.cma Przykład wyników: dioda2_2.cmr Cel ćwiczenia - Pokazanie działania diody - Wyznaczenie

Bardziej szczegółowo

5. (2 pkt) Uczeń miał za zadanie skonstruował zwojnicę do wytwarzania pola magnetycznego o wartości indukcji

5. (2 pkt) Uczeń miał za zadanie skonstruował zwojnicę do wytwarzania pola magnetycznego o wartości indukcji Magnetyzm Dane ogólne do zadań: ładunek elektronu: masa elektronu: masa protonu: masa neutronu: 1,6 19 9,11 C 31 1,67 1,675 kg 7 7 kg kg Własności magnetyczne substancji 1. (1 pkt). ( pkt) 3. ( pkt) Jaka

Bardziej szczegółowo

Informacje uzupełniające: Wyboczenie z płaszczyzny układu w ramach portalowych. Spis treści

Informacje uzupełniające: Wyboczenie z płaszczyzny układu w ramach portalowych. Spis treści S032a-PL-EU Informacje uupełniające: Wybocenie płascyny układu w ramach portalowych Ten dokument wyjaśnia ogólną metodę (predstawioną w 6.3.4 E1993-1-1 sprawdania nośności na wybocenie płascyny układu

Bardziej szczegółowo

Wyznaczanie przenikalności magnetycznej i krzywej histerezy

Wyznaczanie przenikalności magnetycznej i krzywej histerezy Ćwiczenie E8 Wyznaczanie przenikalności magnetycznej i krzywej histerezy E8.1. Cel ćwiczenia Celem ćwiczenia jest pomiar zależności B(I) dla cewki z rdzeniem stalowym lub żelaznym, wykreślenie krzywej

Bardziej szczegółowo

Badanie rozkładu pola magnetycznego przewodników z prądem

Badanie rozkładu pola magnetycznego przewodników z prądem Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze

Bardziej szczegółowo

Badanie wymiennika ciepła typu płaszczowo-rurowy

Badanie wymiennika ciepła typu płaszczowo-rurowy Badanie wymiennika ciepła typu płascowo-rurowy opracował Damian Joachimiak . Rodaje wymienników ciepła. Wymiennik ciepła (prenośnik ciepła) jest to urądenie, w którym ciepło prekaywane jest od jednego

Bardziej szczegółowo

Wykład 8 ELEKTROMAGNETYZM

Wykład 8 ELEKTROMAGNETYZM Wykład 8 ELEKTROMAGNETYZM Równania Maxwella dive = ρ εε 0 prawo Gaussa dla pola elektrycznego divb = 0 rote = db dt prawo Gaussa dla pola magnetycznego prawo indukcji Faradaya rotb = μμ 0 j + εε 0 μμ 0

Bardziej szczegółowo

>> ω z, (4.122) Przybliżona teoria żyroskopu

>> ω z, (4.122) Przybliżona teoria żyroskopu Prybliżona teoria żyroskopu Żyroskopem naywamy ciało materialne o postaci bryły obrotowej (wirnika), osadone na osi pokrywającej się osią geometrycną tego ciała wanej osią żyroskopową. ζ K θ ω η ω ζ y

Bardziej szczegółowo

Wymiana ciepła przez żebra

Wymiana ciepła przez żebra Katedra Silników Spalinowych i Pojadów TH ZKŁD TERMODYNMIKI Wymiana ciepła pre era - - Cel ćwicenia Celem ćwicenia jet adanie wpływu atoowania eer na intenywność wymiany ciepła. Badanie preprowada ię na

Bardziej szczegółowo

Klasyczny efekt Halla

Klasyczny efekt Halla Klasyczny efekt Halla Rysunek pochodzi z artykułu pt. W dwuwymiarowym świecie elektronów, autor: Tadeusz Figielski, Wiedza i Życie, nr 4, 1999 r. Pełny tekst artykułu dostępny na stronie http://archiwum.wiz.pl/1999/99044800.asp

Bardziej szczegółowo

Zalecenia projektowe i montaŝowe dotyczące ekranowania. Wykład Podstawy projektowania A.Korcala

Zalecenia projektowe i montaŝowe dotyczące ekranowania. Wykład Podstawy projektowania A.Korcala Zalecenia projektowe i montaŝowe dotyczące ekranowania Wykład Podstawy projektowania A.Korcala Mechanizmy powstawania zakłóceń w układach elektronicznych. Głównymi źródłami zakłóceń są: - obce pola elektryczne

Bardziej szczegółowo

Dielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych

Dielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych Dielektryki Dielektryk- ciało gazowe, ciekłe lub stałe niebędące przewodnikiem prądu elektrycznego (ładunki elektryczne wchodzące w skład każdego ciała są w dielektryku związane ze sobą) Jeżeli do dielektryka

Bardziej szczegółowo

UKŁAD ZASILANIA SILNIKA BLDC Z UWZGLĘDNIENIEM SPECYFIKI NAPĘDU POJAZDU DROGOWEGO

UKŁAD ZASILANIA SILNIKA BLDC Z UWZGLĘDNIENIEM SPECYFIKI NAPĘDU POJAZDU DROGOWEGO Zesyty Problemowe Masyny Elektrycne Nr 3/212 (96) 7 Andrej Sikora, Adam Zielonka Politechnika Śląska, Gliwice UKŁAD ZASILANIA SILNIKA BLDC Z UWZGLĘDNIENIEM SPECYFIKI NAPĘDU POJAZDU DROGOWEGO BLDC MOTOR

Bardziej szczegółowo

POMIARY REZYSTANCJI. Cel ćwiczenia. Program ćwiczenia

POMIARY REZYSTANCJI. Cel ćwiczenia. Program ćwiczenia Pomiary rezystancji 1 POMY EZYSTNCJI Cel ćwiczenia Celem ćwiczenia jest poznanie typowych metod pomiaru rezystancji elementów liniowych i nieliniowych o wartościach od pojedynczych omów do kilku megaomów,

Bardziej szczegółowo

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA E1. OBWODY PRĄDU STŁEGO WYZNCZNIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁ tekst opracowała: Bożena Janowska-Dmoch Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych wywołany

Bardziej szczegółowo

Metody dokładne w zastosowaniu do rozwiązywania łańcuchów Markowa

Metody dokładne w zastosowaniu do rozwiązywania łańcuchów Markowa Metody dokładne w astosowaniu do rowiąywania łańcuchów Markowa Beata Bylina, Paweł Górny Zakład Informatyki, Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej Plac Marii Curie-Skłodowskiej 5, 2-31

Bardziej szczegółowo

Wyznaczanie stosunku e/m elektronu

Wyznaczanie stosunku e/m elektronu Ćwiczenie 27 Wyznaczanie stosunku e/m elektronu 27.1. Zasada ćwiczenia Elektrony przyspieszane w polu elektrycznym wpadają w pole magnetyczne, skierowane prostopadle do kierunku ich ruchu. Wyznacza się

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE W S E i Z W WASZAWE WYDZAŁ.. LABOATOUM FZYCZNE Ćwiczenie Nr 10 Temat: POMA OPOU METODĄ TECHNCZNĄ. PAWO OHMA Warszawa 2009 Prawo Ohma POMA OPOU METODĄ TECHNCZNĄ Uporządkowany ruch elektronów nazywa się

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Podstawy teorii pasmowej. 2. Klasyfikacja ciał stałych w oparciu o teorię pasmową.

Bardziej szczegółowo

BADANIE TRANSFORMATORA JEDNOFAZOWEGO (opracował: Jan Sienkiewicz)

BADANIE TRANSFORMATORA JEDNOFAZOWEGO (opracował: Jan Sienkiewicz) BADANIE TRANSFORMATORA JEDNOFAZOWEGO (opracował: Jan Sienkiewic) Cel ćwicenia: ponanie budowy, asady diałania i własności transformatora ora achodących w nim jawisk w stanie jałowym, pry próbie warcia

Bardziej szczegółowo

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest

Bardziej szczegółowo

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A.

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A. Prąd elektryczny Dotychczas zajmowaliśmy się zjawiskami związanymi z ładunkami spoczywającymi. Obecnie zajmiemy się zjawiskami zachodzącymi podczas uporządkowanego ruchu ładunków, który często nazywamy

Bardziej szczegółowo

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII

Bardziej szczegółowo

TEMAT: Próba statyczna rozciągania metali. Obowiązująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1

TEMAT: Próba statyczna rozciągania metali. Obowiązująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1 ĆWICZENIE NR 1 TEMAT: Próba statycna rociągania metali. Obowiąująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1 Podać nacenie następujących symboli: d o -.....................................................................

Bardziej szczegółowo

Ćwiczenie nr 31: Modelowanie pola elektrycznego

Ćwiczenie nr 31: Modelowanie pola elektrycznego Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko.. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr : Modelowanie pola

Bardziej szczegółowo

SPRAWDZANIE SŁUSZNOŚCI PRAWA OHMA DLA PRĄDU STAŁEGO

SPRAWDZANIE SŁUSZNOŚCI PRAWA OHMA DLA PRĄDU STAŁEGO SPRWDZNE SŁSZNOŚC PRW OHM DL PRĄD STŁEGO Cele ćwiczenia: Doskonalenie umiejętności posługiwania się miernikami elektrycznymi (stała miernika, klasa miernika, optymalny zakres wychyleń). Zapoznanie się

Bardziej szczegółowo

Pomiar indukcji pola magnetycznego w szczelinie elektromagnesu

Pomiar indukcji pola magnetycznego w szczelinie elektromagnesu Ćwiczenie E5 Pomiar indukcji pola magnetycznego w szczelinie elektromagnesu E5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar siły elektrodynamicznej (przy pomocy wagi) działającej na odcinek przewodnika

Bardziej szczegółowo

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika

Bardziej szczegółowo

E wektor natęŝenia pola, a dr element obwodu, którego zwrot określa przyjęty kierunek obchodzenia danego oczka.

E wektor natęŝenia pola, a dr element obwodu, którego zwrot określa przyjęty kierunek obchodzenia danego oczka. Lista 9. do kursu Fizyka; rok. ak. 2012/13 sem. letni W. InŜ. Środ.; kierunek InŜ. Środowiska Tabele wzorów matematycznych (http://www.if.pwr.wroc.pl/~wsalejda/mat-wzory.pdf) i fizycznych (http://www.if.pwr.wroc.pl/~wsalejda/wzf1.pdf;

Bardziej szczegółowo

PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE. WALCOWE (równoległe) STOŻKOWE (kątowe) ŚLIMAKOWE HIPERBOIDALNE. o zebach prostych. walcowe. o zębach.

PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE. WALCOWE (równoległe) STOŻKOWE (kątowe) ŚLIMAKOWE HIPERBOIDALNE. o zebach prostych. walcowe. o zębach. CZOŁOWE OWE PRZEKŁADNIE STOŻKOWE PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE WALCOWE (równoległe) STOŻKOWE (kątowe) HIPERBOIDALNE ŚLIMAKOWE o ebach prostych o ębach prostych walcowe walcowe o ębach śrubowych o

Bardziej szczegółowo

IA. Fotodioda. Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody.

IA. Fotodioda. Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody. 1 A. Fotodioda Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody. Zagadnienia: Efekt fotowoltaiczny, złącze p-n Wprowadzenie Fotodioda jest urządzeniem półprzewodnikowym w którym zachodzi

Bardziej szczegółowo

Pole elektromagnetyczne

Pole elektromagnetyczne Pole elektromagnetyczne Pole magnetyczne Strumień pola magnetycznego Jednostką strumienia magnetycznego w układzie SI jest 1 weber (1 Wb) = 1 N m A -1. Zatem, pole magnetyczne B jest czasem nazywane gęstością

Bardziej szczegółowo

cz. 1. dr inż. Zbigniew Szklarski

cz. 1. dr inż. Zbigniew Szklarski Wykład 14: Pole magnetyczne cz. 1. dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Wektor indukcji pola magnetycznego, siła Lorentza v F L Jeżeli na dodatni ładunek

Bardziej szczegółowo

Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą.

Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą. Ćwiczenie nr 9 Pomiar rezystancji metodą porównawczą. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne poznanie różnych metod pomiaru rezystancji, a konkretnie zapoznanie się z metodą porównawczą. 2. Dane

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 11

Instrukcja do ćwiczenia laboratoryjnego nr 11 Instrukcja do ćwiczenia laboratoryjnego nr 11 Temat: Charakterystyki i parametry tyrystora Cel ćwiczenia. Celem ćwiczenia jest poznanie właściwości elektrycznych tyrystora. I. Wymagane wiadomości. 1. Podział

Bardziej szczegółowo

Powtórzenie wiadomości z klasy II. Przepływ prądu elektrycznego. Obliczenia.

Powtórzenie wiadomości z klasy II. Przepływ prądu elektrycznego. Obliczenia. Powtórzenie wiadomości z klasy II Przepływ prądu elektrycznego. Obliczenia. Prąd elektryczny 1. Prąd elektryczny uporządkowany (ukierunkowany) ruch cząstek obdarzonych ładunkiem elektrycznym, nazywanych

Bardziej szczegółowo

3. Zapas stabilności układów regulacji 3.1. Wprowadzenie

3. Zapas stabilności układów regulacji 3.1. Wprowadzenie 3. Zapas stabilności układów regulacji 3.. Wprowadenie Dla scharakteryowania apasu stabilności roważymy stabilny układ regulacji o nanym schemacie blokowym: Ws () Gs () Ys () Hs () Rys. 3.. Schemat blokowy

Bardziej szczegółowo

5. Badanie transformatora jednofazowego

5. Badanie transformatora jednofazowego 5. Badanie transformatora jednofaowego Celem ćwicenia jest ponanie budowy i asady diałania transformatora jednofaowego, jego metod badania i podstawowych charakterystyk. 5.. Wiadomości ogólne 5... Budowa

Bardziej szczegółowo

Człowiek najlepsza inwestycja

Człowiek najlepsza inwestycja Człowiek najlepsza inwestycja Fizyka ćwiczenia F6 - Prąd stały, pole magnetyczne magnesów i prądów stałych Prowadzący: dr Edmund Paweł Golis Instytut Fizyki Konsultacje stałe dla projektu; od Pn. do Pt.

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM. Rok szkolny 2015/16

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM. Rok szkolny 2015/16 WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM Rok skolny 2015/16 POZIOMY WYMAGAŃ EDUKACYJNYCH: (2) - ocena dopscająca (2); (3) - ocena dostatecna (3); (4) - ocena dobra (4);

Bardziej szczegółowo

Ćwiczenie nr 10. Pomiar rezystancji metodą techniczną. Celem ćwiczenia jest praktyczne zapoznanie się z różnymi metodami pomiaru rezystancji.

Ćwiczenie nr 10. Pomiar rezystancji metodą techniczną. Celem ćwiczenia jest praktyczne zapoznanie się z różnymi metodami pomiaru rezystancji. Ćwiczenie nr 10 Pomiar rezystancji metodą techniczną. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne zapoznanie się z różnymi metodami pomiaru rezystancji. 2. Dane znamionowe Przed przystąpieniem do

Bardziej szczegółowo