WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA ĆWICZENIE
|
|
- Witold Michalak
- 8 lat temu
- Przeglądów:
Transkrypt
1 ĆWICZENIE 1 WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA Cel ćwiczenia: Doświadczalne potwierdzenie twierdzenia Steinera, wyznaczenie momentu bezwładności różnych brył względem osi środkowych Zagadnienia: Dynamika bryły sztywnej, twierdzenie Steinera, wahadło fizyczne 1 Wprowadzenie: Celem tego ćwiczenia jest doświadczalne wyznaczenie momentu bezwładności ciała oraz eksperymentalne potwierdzenie słuszności twierdzenia Steinera. Nim jednak przejdziemy do opisu doświadczenia musimy zapoznać się z kilkoma zagadnieniami dotyczącymi dynamiki szczególnego przypadku układu punktów materialnych jakim jest bryła sztywna. Pod pojęciem bryły sztywnej rozumiemy ciało, które nie ulega odkształceniom pod wpływem działających sił. Inaczej mówiąc odległości pomiędzy poszczególnymi punktami materialnymi tworzącymi ciało są niezmienne. Oczywiście ciała rzeczywiste są tylko mniej lub bardziej zbliżone do wyidealizowanego pojęcia bryły sztywnej, np. stal i drewno odkształcaj się w znikomym stopniu pod wpływem zewnętrznych sił, w tym samym czasie galaretka odkształca się już pod wpływem znikomej siły. Dowolny ruch bryły sztywnej można rozłożyć na dwa rodzaje ruchu: ruch postępowy i obrotowy. Ruchem postępowym bryły sztywnej nazywamy ruch w którym w dowolnej chwili czasu odcinek łączący dwa dowolne punkty bryły sztywnej pozostaje równoległy do siebie w różnych chwilach czasu. W ruchu postępowym bryły sztywnej wszystkie punkty tworzące tę bryłę poruszają się z taką samą prędkością i przyspieszeniem, dlatego też ruch postępowy można sprowadzić do ruchu środka masy bryły. Środek masy bryły definiuje się jako: Rys. 1 Przykładowe położenie środka ciężkości dla trzech różnych mas r s = m ir (1) m i W przypadku jednorodnych brył środek masy jest ich środkiem geometrycznym. Środek masy ma tę własność, że (w wypadku ruchu postępowego) porusza się tak jak punkt materialny o masie całkowitej układu, na który działa siła będąca wypadkową sił zewnętrznych. Ruch obrotowy bryły sztywnej charakteryzuje się tym, że wszystkie punkty bryły poruszają się po okręgach, których środki leżą na jednej prostej. Prostą tą nazywamy osią obrotu. Poszczególne punkty bryły charakteryzują się tą samą prędkością kątową i przyspieszeniem kątowym, równocześnie prędkości liniowe poszczególnych punktów bryły są różne i zależą od odległości od osi obrotu R, prędkość liniowa v poszczególnych punktów opisana jest zależnością v = ωr gdzie ω to prędkość kątowa. To w jaki sposób poruszać się będzie ciało pod wpływem przyłożonej siły opisuje druga zasada dynamiki, w przypadku ruchu postępowego wyrażona jest ona poprzez następujące równanie ma = F () gdzie a jest przyśpieszeniem liniowym ciała o masie m a F wypadkową siłą działającą na to ciało. W przeciwieństwie do zasady dynamiki dla punktu materialnego, napisanie tej zasady dynamiki dla bryły sztywnej w przypadku ogólnym nie jest proste. Ograniczając się do przypadku, gdy oś obrotu nie porusza się możemy zapisać zasadę dynamiki w postaci: 1
2 Iε = M (3) gdzie I jest momentem bezwładności, ε przyśpieszeniem kątowym a M momentem siły. Moment siły jest analogiem siły w ruchu postępowym, mówi nam on o tym z jakim przyśpieszeniem kątowym będzie poruszała się bryła sztywna o określonym momencie bezwładności. Moment siły definiujemy jako iloczyn wektorowy wektora wodzącego r od osi obrotu do punktu przyłożenia siły F i tej siły: M = r F (4) Z definicji iloczynu wektorowego wartość momentu siły jest równa iloczynowi długości wektora r i F oraz sinusa kąta pomiędzy nim M = r F sin (θ) (5) Wektor momentu bezwładności jest prostopadły do płaszczyzny wyznaczonej przez wektory r i F. Moment bezwładności opisuje rozmieszczenie masy wokół osi obrotu. Definiuje się go jako sumę iloczynów mas poszczególnych punktów bryły (mi) i kwadratów odległości od danej osi (ri): I = m i r i (6) Sens fizyczny momentu bezwładności jest analogiczny do sensu fizycznego masy i informuje nas o bezwładności ciała czyli o tym jak trudno zmienić jego ruch obrotowy czyli nadać określone przyśpieszenie kątowe (przyśpieszenie kątowe jest odwrotnie proporcjonalne do momentu bezwładności). Należy zauważyć, że o ile w przypadku ruchu postępowego bezwładność zależy tylko od całkowitej masy ciała, to w przypadku ruchu obrotowego odpowiednikiem bezwładności jest moment bezwładności, który zależy również od rozmieszczenia masy wokół osi obrotu. Momenty bezwładności dwóch ciał o tej samej masie ale różnych wymiarach przestrzennych mogą być zupełnie różne. Równocześnie zmieniając oś obrotu wokół której obraca się ciało zmieniamy jego moment bezwładności. W tabeli poniżej zaprezentowane są wartości momentu bezwładności kilku brył o jednorodnym rozkładzie masy względem wybranych osi symetrii przechodzących przez środek masy: Bryła Rodzaj osi Moment bezwładności Kula o promieniu R Oś przechodząca przez środek 5 mr Walec o promieniu R Podłużna oś symetrii 1 mr Pręt o długość l Oś prostopadła do pręta 1 przechodząca przez jego 1 ml środek Obręcz o promieniu R Oś prostopadła do mr płaszczyzny obręczy przechodząca przez jej Wydrążony walec o promieniu R w i R z środek Podłużna oś symetrii 1 m(r z R w )
3 Jak to już zostało wspominanie moment bezwładności danej bryły sztywnej zależy od wyboru osi obrotu. Przy obliczaniu momentu bezwładności względem niektórych osi obrotu pomocne jest twierdzenie Steinera: Moment bezwładności I bryły względem dowolnej osi obrotu równoległej do osi obrotu przechodzącej przez środek masy ciała jest równy sumie momentu bezwładności I 0 względem osi obrotu przechodzącej przez środek masy oraz iloczynu masy m tej bryły i kwadratu odległości d pomiędzy osiami obrotu: Rys. Ilustracja twierdzenie I = I 0 + md (7) Steinera gdy ciało obraca się wokół swojej osi symetrii (zielona linia przerywana) oraz osi oddalonej od niej o d (kolor Zasada pomiaru i układ pomiarowy czerwony). O ile w przypadku prostych brył sztywnych moment bezwładności można wyliczyć z definicji to w przypadku bardziej skomplikowanych kształtów i ciał niejednorodnych zadanie to staje się problematyczne. Wówczas pozostaje eksperymentalne wyznaczenie momentu bezwładności bryły. Jedną z metod φ d wyznaczania momentu bezwładności ciała jest pomiar okresu drgań wahadła fizycznego - czyli ciała wahającego się wokół osi nie przechodzącej przez środek masy ciał. Jak to za chwilę pokażemy okres drgań wahadła jest F bezpośrednio związany z jego momentem bezwładności. Rysunek poniżej przedstawia wahadło fizyczne obracające się wokół osi (niebieska kropka) oddalonej o wektor d od środka masy. Siła ciężkości przyłożone jest w środku masy. Środek masy, oznaczony czerwoną kropką, wychylony jest o kąt φ od położenia równowagi. Na wahadło działa siła ciężkości F = mg skierowana w dół. Z siłą tą związany jest moment siły M = d F, który stara się obrócić wahadło w stronę położenia równowagi oraz przeciwnie do wychylenia. Równanie ruchu dla naszego wahadła przyjmie następującą postać: I 0 I 0 + md Iε = md g (8) Równanie to można przekształcić do następującej postaci skalarnej Iε = mgdsin (φ) (9) Gdzie, znak minus związany jest z tym że wypadkowy moment siły stara się zawrócić wahadło do położenia równowagi. Dla małych kątów (np. dla rad czyli 9 o sin(φ) różni się od φ o mniej niż 0.5%) wówczas można przyjąć że sin(φ) φ. Pamiętając, że przyśpieszenie kątowe to nic innego jak druga pochodna kąta po czasie możemy równanie (9) zapisać jako: I d φ = mgdφ (10) dt Co po drobnych przekształceniach przyjmuje postać równania oscylatora harmonicznego: d φ + mgd φ = 0 dt (11) I Rozwiązaniem tego równania są drgania harmoniczne, których zależność od czasu opisana jest następującą funkcją φ A sin (ωt + δ), gdzie φ A jest maksymalnym kątem wychylenia wahadła, a δ fazą drgań. Ważną cechą drgań harmonicznych jest to, że okres ich drgań T jest niezależny od amplitudy drgań φ A ani od fazy początkowej δ. Współczynnik mgd w równaniu 1 jest niczym innym I jak kwadratem częstości kołowej (ω = π ), zatem okres drgań T wahadła fizycznego wynosi: T d Rys. 3 Schemat wahadła fizycznego, niebieska kropka oznacza oś obrotu, a czerwona środek masy. 3
4 4 T = π I mgd Znając masę bryły, odległość środka ciężkości od osi obrotu oraz okres drgań można wyznaczyć moment bezwładności: I = T mgd 4π (13) Należy zauważyć że stosując tę metodę nie jesteśmy w stanie wyznaczyć momentu bezwładności względem osi przechodzącej przez środek masy gdyż wówczas nasze wahadło nie będzie drgało (d=0 a zatem i moment siły wynosi 0). W takiej sytuacji możemy skorzystać z twierdzenia Steinera i wyliczyć moment bezwładności względem osi przechodzącej przez środek masy. Wiemy już jak obliczyć moment bezwładności posługując się wahadłem fizycznym jednakże jednym z celów tego ćwiczenia jest również eksperymentalne potwierdzenie słuszności twierdzenia Steinera. Jeżeli twierdzenie Steinera jest słuszne to moment bezwładności badanej bryły możemy wyrazić jako I = I 0 + md, a wzór na okres drgań wahadła jako: T = π I 0+md mgd Podnosząc to równanie stronami do kwadratu i dokonując kilku drobnych przekształceń otrzymujemy następującą zależność: T gd 4π d = 4π I m 0 = const = C (15) Widać że dla danej bryły wielkość T gd 4π d jest stała i nie zależy od wybranej osi obrotu jest to tak zwany niezmiennik wahadła fizycznego. Jeżeli twierdzenie Steinera jest słuszne to wielkość C obliczona dla różnych osi obrotu powinna być jednakowa w granicy niepewności pomiarowej. Równocześnie na podstawie wielkości C możemy wyznaczyć moment bezwładności względem osi przechodzącej przez środek ciężkości: I 0 = m C (16) 4π Twierdzenie Steinera możemy również potwierdzić w inny sposób, równanie 14 można przekształcić do postaci: (1) (14) d T = 4π mg I 0 + 4π g d (17) Oznaczając dt = y, d = x, możemy równanie (17) zapisać w postaci równania linii prostej y = ax + b gdzie a = 4π 4π, a b = I g mg 0. Zatem jeżeli twierdzenie Steinera jest słuszne to wykres zależności d T od d powinien być linią prostą. Co więcej współczynnik przecięcia z osią y wynoszący b = 4π I mg 0 pozwala na określenie momentu bezwładności badanej bryły względem osi przechodzącej przez środek masy: I 0 = bmg 4π (18) Dodatkowo współczynnik kierunkowy a jest bezpośrednio związany z przyśpieszeniem ziemskim i nie zależy od kształtu bryły, co pozwala dodatkowo zweryfikować poprawność pomiarów tudzież słuszność twierdzenia Steinera. Zatem w celu sprawdzenia poprawności twierdzenia Steinera należy przeprowadzić pomiary okresu drgań wahadła fizycznego dla kilku osi obrotu w różnych odległościach od środka ciężkości. Następnie należy wyrysować wykres zależności dt od d. Jeżeli wykres ten będzie linią prostą dowodzi to słuszności twierdzenia Steinera. Dodatkowym czynnikiem weryfikującym poprawność teorii i pomiarów będzie wartość współczynnika kierunkowego prostej, który powinien wynosić 4π g i w ogóle nie zależeć od kształtu bryły. W części A, B i C ćwiczenia należy potwierdzić twierdzenie Steinera na podstawie pomiaru okresu drgań tarczy, obręczy oraz pręta metalowego zawieszonych w różnych odległościach od środka masy
5 oraz wyznaczyć ich moment bezwładności względem środka masy na podstawie niezmiennika drgań wahadła fizycznego. W części dodatkowej dla wybranej bryły należy potwierdzić twierdzenie Steinera oraz wyznaczyć moment bezwładności I 0 na podstawie wykresu zależności 17 w odpowiednim układzie współrzędnych. 3 Zadania do wykonania Prowadzący wskazuje dla których brył należy wykonać pomiary. Część A-tarcza z otworami: a) Określić masę tarczy za pomocą wagi laboratoryjnej b) Zmierzyć podwojone odległości Di pomiędzy osiami obrotu na pryzmie a środkiem masy tarczy. Jest to pomiar bezpośredni więc należy wykonać go kilkukrotnie (6-7 razy chyba że prowadzący wskaże inaczej) dla każdej z pary otworów. c) Zawiesić tarczę na pryzmie na jednym z wybranych otworów, po czym dokonać pomiaru czasu 100 wahnięć. Należy pamiętać aby nie wychylać wahadła o kąt większy niż kilka stopni. d) Pomiary czasu wahnięć powtórzyć 5 razy. e) Punktu 3 i 4 powtórzyć dla pozostałych par otworów w tarczy. Część B-metalowy pierścień: a) Określić masę m pierścienia za pomocą wagi laboratoryjnej. b) Za pomocą suwmiarki wyznaczyć średnicę d wewnętrzną i zewnętrzną D pierścienia. c) Wyznaczyć czas 100 wahnięć pierścienia zawieszonego na pryzmie; pomiar powtórzyć kilkukrotnie. Cześć C-pręt metalowy: a) Określić masę pręta za pomocą wagi laboratoryjnej b) Określić długość pręta l za pomocą suwmiarki (pomiar powtórzyć 6-7 razy) c) Wyznaczyć odległość osi obrotu d i od środka masy pręta (pomiary powtórzyć 6-7 razy) d) Zmierzyć czas 50 wahnięć pręta e) Pomiar czasu wahnięć powtórzyć 5 krotnie. f) Punkty 3-5 powtórzyć dal 4 innych odległości d i osi obrotu od środka masy 4 Opracowanie wyników: Sposób opracowania wyników wskazuje prowadzący Wariant I Część A (tarcza metalowa): a) Na podstawie wielokrotnych pomiarów D1, D, D3 określić niepewność u(d1), u(d), u(d3)... b) Określić odległość osi obrotu od środka masy d i = D i oraz jej niepewnośću(d i) = 1 u(d i) c) Na podstawie pomiarów czasu t 100 wahnięć dla danej osi obrotu obliczyć uśredniony czas t 100 wahnięć oraz jego niepewność u(t ). Czas reakcji człowieka można przyjąć na poziomie 0.5s. Obliczyć okres drgań wahadła dla poszczególnych osi obrotu T = t /n (n liczba wahnięć) oraz jego niepewność korzystając z wzoru na niepewność złożoną, niepewność liczby zliczeń przyjąć u(n)=1. potwierdzić zależność okresu drgań wahadła od momentu bezwładności. d) Obliczyć moment bezwładności tarczy względem określonej osi obrotu korzystając ze wzoru: I d = T mgd 4π 5
6 i jego niepewność u(id). Obliczenia przeprowadzić dla wszystkich odległości d. e) Potwierdzić twierdzenie Steinera, w tym celu należy sprawdzić czy wyrażenie T gd 4π d = C jest stałe dla wszystkich osi obrotu w granicy niepewności pomiarowej f) Obliczyć momenty bezwładności względem środkowej osi obrotu na podstawie wartości współczynnika C oraz określić jego niepewność. I 0 = m 4π C g) Obliczyć moment bezwładności względem środkowej osi obrotu na podstawie twierdzenie Steinera dla poszczególnych osi obrotu oraz określić jego niepewność I 0 = I d md h) Porównać uzyskane I 0 obliczone przy wykorzystaniu dwóch metod Część B (pierścień metalowy): a) Obliczyć średni czas t dla 100 wahnięć i średni okres T oraz ich niepewności. b) Obliczyć moment bezwładności Id pierścienia względem osi obrotu i jego niepewność. c) Korzystając z twierdzenia Steinera, wyznaczyć moment bezwładności Io pierścienia względem osi przechodzącej przez środek masy i jego niepewność. d) Obliczyć moment bezwładności Io (tab. Io.st) pierścienia względem osi środkowej na podstawie wzoru tablicowego: I 0.st = 1 8 m(d + D ) oraz obliczyć jego niepewność. e) Porównać wartości momentu bezwładności Io obliczone metodą dynamiczną i statyczną. Część C (pręt metalowy): a) Obliczyć niepewności pomiarowe długości pręta u(l) oraz niepewności odległości u(d) dla poszczególnych osi obrotu od środka masy. b) Na podstawie pomiarów czasu t 50 wahnięć dla danej osi obrotu obliczyć uśredniony czas t 50 wahnięć oraz jego niepewnośću(t ). Czas reakcji człowieka można przyjąć na poziomie 0.5s. c) Obliczyć okres drgań wahadła dla danej osi obrotu T = t /n (n liczba wahnięć) oraz jego niepewność korzystając z wzoru na niepewność złożoną, niepewność liczby zliczeń przyjąć u(n)=1. Potwierdzić zależność okresu drgań wahadła od odległości osi obrotu od środka ciężkości d) Obliczyć moment bezwładności pręta względem określonej osi obrotu i jego niepewność uc(id). Obliczenia przeprowadzić dla wszystkich odległości d. e) Potwierdzić twierdzenie Steinera, w tym celu należy sprawdzić czy wyrażenie T gd 4π d = C jest stałe dla wszystkich osi obrotu w granicy niepewności pomiarowej f) Obliczyć momenty bezwładności względem środkowej osi obrotu na podstawie wartości współczynnika C oraz określić jego niepewność. I 0 = m 4π C g) Obliczyć moment bezwładności względem środkowej osi obrotu na podstawie wyników uzyskanych dla poszczególnych osi obrotu oraz określić jego niepewność I 0 = I d md h) Porównać uzyskane I 0 obliczone przy wykorzystaniu dwóch metod oraz porównać wynik z przewidywaniami teoretycznymi 6
7 I ot = 1 1 ml Wariant II (tarcza metalowa, pręt metalowy) a) W zależności od wybranej bryły wykonać czynności opisane w punktach a-d lub a-c (w części A lub C opracowania wyników). b) Sporządzić wykres (punktowy) zależności T d od d wraz z polami niepewności. c) Znaleźć równanie prostej najlepszego dopasowania T d od d przy pomocy metody regresji liniowej. Wyznaczyć współczynniki a i b prostej y = ax + b oraz ich niepewność d) Na podstawie współczynnika kierunkowego prostej wyznaczyć przyśpieszenie ziemskie g = 4π a oraz określić jego niepewność. Sprawdzić czy wyznaczone przyśpieszenie ziemskie w granicy niepewności pomiarowej zgadza się z tablicową wartością. u(a) wyznaczyć na podstawie regresji liniowej. e) Obliczyć moment bezwładność ciała I o względem środka masy układu na podstawie współczynnika b równania dopasowanej prostej, I 0 = bmg, oraz jego niepewność. 4 Pytania: Podaj definicję bryły sztywnej Podaj drugą zasadę dynamiki dla bryły sztywnej Podaj twierdzenie Steinera Opisz jak zależy okres drgań wahadła fizycznego od odległości osi obrotu od środka ciężkości oraz bezwładności wahadła. 4π Opracował M.Baranowski 7
Rys. 1Stanowisko pomiarowe
ĆWICZENIE WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA Wykaz przyrządów: Stojak z metalową pryzmą do zawieszania badanych ciał Tarcza
Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego
Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura
PF11- Dynamika bryły sztywnej.
Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych
Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka
Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły
Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)
Politechnika Łódzka FTMS Kierunek: nformatyka rok akademicki: 2008/2009 sem. 2. Termin: 6 V 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
T =2 I Mgd, Md 2, I = I o
Kazimierz Pater, Nr indeksu: 999999 Wydział: Podstawowych Problemów Fizyki Kierunek: Fizyka Data: 99.99.9999 Temat: Wyznaczanie momentu bezwładności bryły sztywnej i sprawdzenie tw. Steinera Nr kat. ćwicz:
Opis ćwiczenia. Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Henry ego Katera.
ĆWICZENIE WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO Opis ćwiczenia Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
2. OPIS ZAGADNIENIA Na podstawie literatury podręczniki akademickie, poz. [2] zapoznać się z zagadnieniem i wyprowadzeniami wzorów.
Zad. M 04 Temat: PRACOWA FZYCZA nstytut Fizyki US Wyznaczanie momentu bezwładności brył metodą wahadła fizycznego. Doświadczalne potwierdzenie twierdzenia Steinera. Cel: zapoznanie się z ruchem drgającym
WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ
ĆWICZENIE 12 WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ Cel ćwiczenia: Wyznaczanie modułu sztywności drutu metodą sprężystych drgań obrotowych. Zagadnienia: sprężystość, naprężenie ścinające, prawo
Fizyka 11. Janusz Andrzejewski
Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna
Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego
Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Obrót wokół ustalonej osi Prawa ruchu Dla bryły sztywnej obracajacej się wokół ostalonej osi mement
Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego
Bryła sztywna Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Typ równowagi zależy od zmiany położenia środka masy ( Równowaga Statyka Bryły sztywnej umieszczonej
MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego
POLTECHNKA ŚLĄSKA WYDZAŁ CHEMCZNY KATEDRA FZYKOCHEM TECHNOLOG POLMERÓW LABORATORUM Z FZYK Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego WYZNACZANE MOMENTÓW BEZWŁADNOŚC
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)
Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu
R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO
R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO 4.1. Bryła sztywna W dotychczasowych rozważaniach traktowaliśmy wszystkie otaczające nas ciała jako punkty materialne lub zbiory punktów materialnych. Jest to
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści
Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i
O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,
BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO
ĆWICZENIE 36 BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO Cel ćwiczenia: Wyznaczenie podstawowych parametrów drgań tłumionych: okresu (T), częstotliwości (f), częstotliwości kołowej (ω), współczynnika tłumienia
WYZNACZANIE MOMENTU BEZWŁADNOŚCI BRYŁY METODĄ DRGAŃ SKRĘTNYCH
WYZNACZANIE MOMENTU BEZWŁADNOŚCI BRYŁY METODĄ DRGAŃ SKRĘTNYCH I. Cel ćwiczenia: wyznaczenie momentu bezwładności bryły przez pomiar okresu drgań skrętnych, zastosowanie twierdzenia Steinera. II. Przyrządy:
Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2
1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej
ĆWICZENIE 5. Wyznaczanie przyśpieszenia ziemskiego przy pomocy wahadła matematycznego i fizycznego. Kraków,
Maria Nowotny-Różańska Zakład Fizyki, Uniwersytet Rolniczy do użytku wewnętrznego ĆWICZENIE 5 Wyznaczanie przyśpieszenia ziemskiego przy pomocy wahadła matematycznego i fizycznego Kraków, 03.015 Spis treści:
Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)
Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek
Państwowa Wyższa Szkoła Zawodowa w Kaliszu
Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie Wyznaczanie parametrów ruchu obrotowego bryły sztywnej Kalisz, luty 005 r. Opracował: Ryszard Maciejewski Natura jest
Opis ruchu obrotowego
Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają
10 K A T E D R A FIZYKI STOSOWANEJ
10 K A T E D R A FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I Ćw. 10. Wyznaczanie momentu bezwładności brył nieregularnych Wprowadzenie Obserwowane w przyrodzie ruchy ciał można opisać * stosując podział
Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Obowiązkowa znajomość zagadnień Charakterystyka drgań gasnących i niegasnących, ruch harmoniczny. Wahadło fizyczne, długość zredukowana
Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym
Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez
MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne
Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego
Ćwiczenie nr Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego. Wymagania do ćwiczenia 1. ynamika ruchu obrotowego.. rgania harmoniczne Literatura:. Halliday, R. Resnick,
Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe
Ruch obrotowy bryły sztywnej Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy ruch po okręgu P, t 1 P 1, t 1 θ 1 θ Ruch obrotowy ruch po okręgu P,
VII.1 Pojęcia podstawowe.
II.1 Pojęcia podstawowe. Jan Królikowski Fizyka IBC 1 Model matematyczny ciała sztywnego Zbiór punktów materialnych takich, że r r = const; i, j= 1,... N i j Ciało sztywne nie ulega odkształceniom w wyniku
Fizyka 1- Mechanika. Wykład 9 1.XII Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Fizyka 1- Mechanika Wykład 9 1.X.016 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Moment bezwładności - koło Krążek wokół osi symetrii: M dm
Wyznaczanie modułu sprężystości za pomocą wahadła torsyjnego
Wyznaczanie modułu sprężystości za pomocą wahadła torsyjnego Obowiązkowa znajomość zagadnień Charakterystyka odkształceń sprężystych, pojęcie naprężenia. Prawo Hooke a, moduł Kirchhoffa i jego wpływ na
v 6 i 7 j. Wyznacz wektora momentu pędu czaski względem początku układu współrzędnych.
Dynamika bryły sztywnej.. Moment siły. Moment pędu. Moment bezwładności. 171. Na cząstkę o masie kg znajdującą się w punkcie określonym wektorem r 5i 7j działa siła F 3i 4j. Wyznacz wektora momentu tej
Podstawy fizyki wykład 4
Podstawy fizyki wykład 4 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada
Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3.
Dynamika ruchu obrotowego Zauważyłem, że zadania dotyczące ruchu obrotowego bardzo często sprawiają maturzystom wiele kłopotów. A przecież wystarczy zrozumieć i stosować zasady dynamiki Newtona. Przeanalizujmy
12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa
Włodzimierz Wolczyński Przyspieszenie kątowe 1 RUCH OROTOWY RYŁY SZTYWNEJ I = = ε przyspieszenie kątowe [ ] ω prędkość kątowa = = T okres, = - częstotliwość s=αr v=ωr a=εr droga = kąt x promień prędkość
Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/
1. Wahadło fizyczne o regulowanej płaszczyźnie. drgań. kilkukrotnie sprawdzając z jaką niepewnością statystyczną możemy mieć do czynienia. pomiarze.
. Wahadło fizyczne o regulowanej płaszczyźnie drgań.. Cel ćwiczenia Cel ćwiczenia: Analiza drgań harmonicznych na przykładzie wahadła fizycznego. Sprawdzenie relacji między okresem drgań obliczonym a okresem
Doświadczalne sprawdzenie drugiej zasady dynamiki ruchu obrotowego za pomocą wahadła OBERBECKA.
Dowiadczalne sprawdzenie drugiej zasady dynamiki ruchu obrotowego za pomocą wahadła OBERBECKA. Wprowadzenie Wahadło Oberbecka jest bryłą sztywną utworzoną przez tuleję (1) i cztery identyczne wkręcone
Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników
Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników 1. Podstawowe pojęcia związane z niewyważeniem Stan niewyważenia stan wirnika określony takim rozkładem masy, który w czasie wirowania wywołuje
Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XXI:
Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XXI: Porównanie ruchu obrotowego z ruchem postępowym Ogólne wyrażenie na moment pędu Tensor momentu bezwładności Osie główne Równania Eulera Bak swobodny Porównanie
M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA
M WYZNACZANE MOMENTU BEZWŁADNOŚC WAHADŁA OBERBECKA opracowała Bożena Janowska-Dmoch Do opisu ruchu obrotowego ciał stosujemy prawa dynamiki ruchu obrotowego, w których występują wielkości takie jak: prędkość
Ć W I C Z E N I E N R M-2
INSYU FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I ECHNOLOGII MAERIAŁÓW POLIECHNIKA CZĘSOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M- ZALEŻNOŚĆ OKRESU DRGAŃ WAHADŁA OD AMPLIUDY Ćwiczenie M-: Zależność
Wyznaczanie współczynnika sprężystości sprężyn i ich układów
Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie
Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności
Zasady dynamiki Newtona Pęd i popęd Siły bezwładności Copyright by pleciuga@o2.pl Inercjalne układy odniesienia Układy inercjalne to takie układy odniesienia, względem których wszystkie ciała nie oddziałujące
Bryła sztywna. Fizyka I (B+C) Wykład XXII: Porównanie ruchu obrotowego z ruchem postępowym. Bak Precesja Żyroskop
Bryła sztywna Wykład XXII: Fizyka I (B+C) Porównanie ruchu obrotowego z ruchem postępowym Bak Precesja Żyroskop Ogólne wyrażenie na moment pędu Tensor momentu bezwładności Osie główne Porównanie Punkt
MECHANIKA OGÓLNA (II)
MECHNIK GÓLN (II) Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 Liczba godzin: sem. II *) - wykład 30 godz., ćwiczenia 30 godz. sem. III *) - wykład 30 godz., ćwiczenia 30 godz., ale
Podstawy fizyki wykład 4
Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada
Bąk wirujący wokół pionowej osi jest w równowadze. Momenty działających sił są równe zero (zarówno względem środka masy S jak i punktu podparcia O).
Bryła sztywna (2) Bąk Równowaga Rozważmy bąk podparty wirujący do okoła pionowej osi. Z zasady zachowania mementu pędu wynika, że jeśli zapewnimy znikanie momentów sił to kierunek momentu pędu pozostanie
Dynamika Newtonowska trzy zasady dynamiki
Dynamika Newtonowska trzy zasady dynamiki I. Zasada bezwładności Gdy działające siły równoważą się ciało fizyczne pozostaje w spoczynku lubporusza się ruchem prostoliniowym ze stałą prędkością. II. Zasada
będzie momentem Twierdzenie Steinera
Wykład z fizyki, Piotr Posmykiewicz. Niech 90 oznacza moment bezwładności względem osi przechodzącej przez środek masy ciała o masie i niech będzie momentem bezwładności tego ciała względem osi równoległej
Ćwiczenie nr 1: Wahadło fizyczne
Wydział PRACOWNA FZYCZNA WFi AGH mię i nazwiso 1.. Temat: Ro Grupa Zespół Nr ćwiczenia Data wyonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 1: Wahadło fizyczne Cel
Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm.
2 Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm. Nr pomiaru T[s] 1 2,21 2 2,23 3 2,19 4 2,22 5 2,25 6 2,19 7 2,23 8 2,24 9 2,18 10 2,16 Wyniki pomiarów okresu drgań dla wahadła
RUCH HARMONICZNY. sin. (r.j.o) sin
RUCH DRGAJĄCY Ruch harmoniczny Rodzaje drgań Oscylator harmoniczny Energia oscylatora harmonicznego Wahadło matematyczne i fizyczne Drgania tłumione Drgania wymuszone i zjawisko rezonansu Politechnika
Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego
2019/02/14 13:21 1/5 Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego 1. Cel ćwiczenia Wyznaczenie przyspieszenia
Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi
Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi technicznej. 1. Wstęp Celem ćwiczenia jest wyznaczenie
LABORATORIUM Z FIZYKI
Projekt Plan rozwoju Politechniki Częstochowskiej współfinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Numer Projektu: POKL.4.1.1--59/8 INSTYTUT FIZYKI WYDZIAŁINśYNIERII
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to
Mechanika teoretyczna
Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe
MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących
Ciało sztywne i moment bezwładności Ciekawe przykłady ruchu obrotowego Dynamika ruchu obrotowego Kinematyka ruchu obrotowego Obliczanie momentu
Ruch obrotowy 016 Spis treści Ciało sztywne i moment bezwładności Ciekawe przykłady ruchu obrotowego Dynamika ruchu obrotowego Kinematyka ruchu obrotowego Obliczanie momentu bezwładności Ruch obrotowo-postępowy
Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego
Ćwiczenie M6 Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego M6.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie przyspieszenia ziemskiego poprzez analizę ruchu wahadła prostego. M6..
Ekpost=mv22. Ekobr=Iω22, mgh =mv22+iω22,
Koło Maxwella Cel ćwiczenia Celem ćwiczenia jest badanie prawa zachowania energii w polu grawitacyjnym, a także zapoznanie się z prawami rządzącymi ruchem obrotowym. Wstęp Wahadło Maxwella Wahadło Maxwella
Ć W I C Z E N I E N R E-15
NSTYTUT FZYK WYDZAŁ NŻYNER PRODUKCJ TECNOLOG MATERAŁÓW POLTECNKA CZĘSTOCOWSKA PRACOWNA ELEKTRYCZNOŚC MAGNETYZMU Ć W C Z E N E N R E-15 WYZNACZANE SKŁADOWEJ POZOMEJ NATĘŻENA POLA MAGNETYCZNEGO ZEM METODĄ
FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego)
2019-09-01 FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego) Treści z podstawy programowej przedmiotu POZIOM ROZSZERZONY (PR) SZKOŁY BENEDYKTA Podstawa programowa FIZYKA KLASA 1 LO (4-letnie po szkole
MECHANIKA 2. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Prowadzący: dr Krzysztof Polko PLAN WYKŁADÓW 1. Podstawy kinematyki 2. Ruch postępowy i obrotowy bryły 3. Ruch płaski bryły 4. Ruch złożony i ruch względny 5. Ruch kulisty i ruch ogólny bryły
Ruch drgający i falowy
Ruch drgający i falowy 1. Ruch harmoniczny 1.1. Pojęcie ruchu harmonicznego Jednym z najbardziej rozpowszechnionych ruchów w mechanice jest ruch ciała drgającego. Przykładem takiego ruchu może być ruch
Ćwiczenie nr 43: HALOTRON
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel
Wyznaczanie modułu Younga metodą strzałki ugięcia
Ćwiczenie M12 Wyznaczanie modułu Younga metodą strzałki ugięcia M12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu Younga różnych materiałów poprzez badanie strzałki ugięcia wykonanych
Promieniowanie dipolowe
Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A
WYDZIAŁ LABORATORIUM FIZYCZNE
1 W S E i Z W WARSZAWE WYDZAŁ LABORAORUM FZYCZNE Ćwiczenie Nr 1 emat: WYZNACZNE PRZYSPESZENA ZEMSKEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO Warszawa 9 WYZNACZANE PRZYSPESZENA ZEMSKEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO
Zasady dynamiki Isaak Newton (1686 r.)
Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają
PRACOWNIA FIZYCZNA I
Skrypt do laboratorium PRACOWNIA FIZYCZNA I Ćwiczenie 1: Badanie siły odśrodkowej. Opracowanie: mgr Tomasz Neumann Gdańsk, 2011 Projekt Przygotowanie i realizacja kierunku inżynieria biomedyczna - studia
MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający
D103. Wahadła fizyczne sprzężone (przybliżenie małego kąta).
D3. Wahadła fizyczne sprzężone (przybliżenie małego kąta). Cel: Zbadanie przebiegu drgań dwóch wahadeł sprzężonych: zbadanie zależności częstości drgań wahadła prostego od jego momentu bezwładności, wyznaczenie
Plan wynikowy fizyka rozszerzona klasa 3a
Plan wynikowy fizyka rozszerzona klasa 3a 1. Hydrostatyka Temat lekcji dostateczną uczeń Ciśnienie hydrostatyczne. Prawo Pascala zdefiniować ciśnienie, objaśnić pojęcie ciśnienia hydrostatycznego, objaśnić
Fizyka 1 (mechanika) AF14. Wykład 9
Fizyka 1 (mechanika) 1100-1AF14 Wykład 9 Jerzy Łusakowski 05.12.2016 Plan wykładu Żyroskopy, bąki, etc. Toczenie się koła Ruch w polu sił centralnych Żyroskopy, bąki, etc. Niezrównoważony żyroskop L m
VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY (CZ. 1)
1 VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY (CZ. 1) 1. Opis ruchu postępowego 1 Elementy działań na wektorach podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy wektora, dodać
Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka
Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka SPIS TREŚCI Przedmowa... 7 1. PODSTAWY MECHANIKI... 11 1.1. Pojęcia podstawowe... 11 1.2. Zasada d Alemberta... 18 1.3. Zasada prac
Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej
Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon
M10. Własności funkcji liniowej
M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji
Wyznaczanie modułu sztywności metodą Gaussa
Ćwiczenie M13 Wyznaczanie modułu sztywności metodą Gaussa M13.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu sztywności stali metodą dynamiczną Gaussa. M13.2. Zagadnienia związane z
III Zasada Dynamiki Newtona. Wykład 5: Układy cząstek i bryła sztywna. Przykład. Jak odpowiesz na pytania?
III Zasada Dynamiki Newtona 1:39 Wykład 5: Układy cząstek i bryła sztywna Matematyka Stosowana Ciało A na B: Ciało B na A: 0 0 Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał
Drgania. O. Harmoniczny
Dobrej fazy! Drgania O. Harmoniczny Położenie równowagi, 5 lipca 218 r. 1 Zadanie Zegar Małgorzata Berajter, update: 217-9-6, id: pl-ciepło-5, diff: 2 Pewien zegar, posiadający wahadło ze srebra, odmierza
Podstawy fizyki sezon 1 VII. Ruch drgający
Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania
Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska
Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html DRGANIA HARMONICZNE
Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym
Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika
Zasady dynamiki Newtona. Autorzy: Zbigniew Kąkol Kamil Kutorasiński
Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2019 Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Podstawowa teoria, która pozwala przewidywać ruch ciał, składa
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz
BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC
Ćwiczenie 45 BADANE EEKTYZNEGO OBWOD EZONANSOWEGO 45.. Wiadomości ogólne Szeregowy obwód rezonansowy składa się z oporu, indukcyjności i pojemności połączonych szeregowo i dołączonych do źródła napięcia
Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych
Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )
Kinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy