MODELOWANIE OŚWIETLENIA SCEN 3-D3
|
|
- Laura Laskowska
- 6 lat temu
- Przeglądów:
Transkrypt
1 WYKŁAD 8 MODELOWANE OŚWETLENA O SCEN 3-D3 Pln wkłdu: Sformułownie ownie problemu Podstwowe modele oświetlenio Algortm genercji obrzów w scen oświetlonch o. Sformułownie ownie problemu v źródło świtł obiekt z v (x,, z ) piksel (x p, p ) prost rzutowni x v Od czego zleż stopień jsności lub kolor punktu (piksel) (x p, p ), będącego rzutem punktu (x,, z), z, gd n scenie wstępuje źródło świtł?
2 Stopień jsności lub kolor punktu (piksel) ( x p, p ) zleż od wielu cznników. W szczególno lności może e zleżeć od: geometrii ukłdu (wzjemnego ustuowni obiektu i źródł świtł,, ksztłtu tu obiektu, sposobu rzutowni), chrkterstki źródł świtł (intenswności świeceni, koloru, tłumieni t świtł w przestrzeni, kierunkowości), chrkterstki powierzchni obiektu (odbijni, rozprszni, pochłnini, przepuszczni, koloru powierzchni), chrkterstki rozchodzeni się świtł odbitego, chrkterstki świtł rozproszonego, oświetlni obiektu świtłem odbitm (np. od innch obiektów znjdującch się n scenie), Jkie przjąć złożeni? Jk dl przjętch złożeń obliczć stopień jsności lub kolor punktu (piksel) ( x p, p )? Jk zredukowć ilość obliczeń?. Podstwowe modele oświetlenio model dl oświetlni o świtłem otoczeni, model dl obiektów o odbiciu dfuzjnm, model dl obiektów o odbiciu zwiercidlnm, model dl obiektów przezroczstch,
3 Model oświetlni o świtłem otoczeni: Złożeni: N scenie wstępuje jednie świtło o rozproszone (bezkierunkowe). Powierzchnie obiektów odbijją świtło Model oświetleni: o = - intenswność oświetleni punktu powierzchni, - intenswność dl świtł rozproszonego, k - współcznnik odbici świtł rozproszonego przez powierzchnię, współcznnik zleż od mteriłu u z jkiego wkonn jest obiekt, k [ 0,] Model oświetlni o dl powierzchni rozprszjącch (dfuzjnch): Złożeni: N scenie wstępuje punktowe źródło świtł emitujące świtło o tk smo we wszstkich kierunkch. Powierzchnie obiektów rozprszją świtło o (są mtowe). Model oświetleni: o Model opier się n prwie cosinusów Lmbert. p źródło świtł = p d cosq L N k d 3
4 - intenswność oświetleni punktu powierzchni, p - intenswność świeceni punktowego źródł świtł,, k d - współcznnik odbici przez powierzchnię,, współcznnik zleż od mteriłu u z jkiego wkonn jest obiekt, k d [ 0,] - kąt t międz kierunkiem pdni świtł prostopdłą do oświetlnej o powierzchni w bdnm punkcie, o o Q 90, 90 [ ] Jeśli odpowiednie kierunki opisć znormlizownmi wektormi, to model możn zpisć też jko = p d ( N L ) N - jednostkow wektor normln do powierzchni w bdnm punkcie, L - jednostkow wektor opisując kierunek pdni świtł.. Model nie uwzględni wielu istotnch cznników. Modfikcj : Uwzględnienie świtł rozproszonego Te element scen, n które nie pdją bezpośrednio promienie wsłne przez punktowe źródło świtł nie będąb widoczne. Modfikcj poleg n połą łączeniu modelu oprtego n prwie cosinusów z modelem dl świtł rozproszonego. = + p d ( N L ) gdzie - intenswność dl świtł rozproszonego, k - współcznnik odbici świtł rozproszonego przez powierzchnię.
5 Modfikcj : Uwzględnienie tłumieni t świtł emitownego przez źródło Z doświdczeni widomo, że e obiekt położone one dlej od źródł świtł,, sąs oświetlne słbiej. s Modfikcj poleg n uwzględnieniu zjwisk tłumieni t przez wprowdzeniu współcznnik tłumieni t f tt. = + f tt p d ( N L ) Jk uzleżni nić współcznnik f tt, od odległości międz źródłem świtł bdnm punktem powierzchni? Z fizki widomo, że f = tt d L gdzie d L jest odległości cią pomiędz źródłem świtł punktem oświetlnej powierzchni. W prktce powższ wzór r nie dje zbt dobrch wników, w, bowiem: jeśli d L jest duże, f tt zmieni się niezncznie nwet dl dleko położonch onch od siebie powierzchni, jeśli d L jest młe, f tt zmieni się brdzo zncznie nwet dl blisko położonch onch od siebie powierzchni, W grfice komputerowej stosuje się więc c brdziej ogóln lną zleżno ność w postci: = min, c + c d + c d L 3 L ftt gdzie c, c, c 3 są stłmi dobiernmi empircznie. 5
6 Modfikcj 3: Uwzględnienie odległości oświetlonego o obiektu od obserwtor Z doświdczeni widomo, że e obiekt położone one dlej od obserwtor, sąs postrzegne jko oświetlne o słbiej. s Zjwisko to uwzględni się w prost sposób, modfikując wznczoną prz pomoc poprzednio omówionch modeli intenswność nstępuj pująco: = ( d v ) d v - odległość oświetlnego punktu powierzchni od obserwtor, α(d v ) α(d v ) - funkcj o przebiegu pokznm n rsunku (przkłd tkiej funkcji) d d d v u z = Model oświetlni o dl powierzchni odbijjącch świtło: Złożeni: N scenie wstępuje punktowe źródło świtł emitujące świtło o tk smo we wszstkich kierunkch. Powierzchnie obiektów odbij świtło o (różnie w różnchr kierunkch). Przkłd: delne zwiercidło p L źródło świtł N α R V kierunek obserwcji Oświetln punkt powierzchni, będzie b widoczn dl obserwtor tlko wted, gd kierunek wektor R będzie b się pokrwł z kierunkiem wektor V. 6
7 Wdje się sensowne poszukiwnie modelu powierzchni, któr łącz włsno sności rozprszni i odbijni świtł.. Model tkim jest model zwn modelem Phong (zproponowł go Phong Bui Tuong) Model oświetleni: o (Phong) = + f tt p n [ k cosq + W ( Q ) cos ] d W() - pewn funkcj kąt k (zleż od włsno sności mteriłu), często funkcję tą zstępuje się stłą k s, czli prmetr nie zleż wted od kąt k pod jkim świtło o pd n nlizown punkt powierzchni, n - stł n [, 00] Model Phong możn wted zpisć w postci: = + f tt p [ k ( N L) + k ( V R) ] n d W modelu podstwową rolę odgrw skłdnik cos uzleżnij nijąc intenswność oświetleni punktu powierzchni od s cos n α, kąt obserwcji α.. Wjśni nić możn to bdjąc c przebieg funkcji cos n α. n = n = 0 α α n = 00 α 7
8 Wniosek jest nstępuj pując: młe n L R szeroki stożek widoczności ci duże n L R wąski stożek widoczności ci Jeżeli eli n uzskuje się prwie idelne zwiercidło. Modele oświetlni o dl obiektów, które przepuszczją świtło: Podstw fizczne: Prz przejściu z jednego ośrodk o przezroczstego do drugiego promień świetln uleg złmniu. mniu. v v η Zjwisko jest opisne przez prwo Snell. sinq sinh v = v gdzie v i v są odpowiednio prędko dkościmi rozchodzeni się świtł w pierwszm i drugim ośrodku. o 8
9 Prz przejściu przez przezroczstą płtkę nstępuje podwójne złmnie, mnie, które powoduje równolegr wnoległe e przesunięcie promieni. Przesunięcie promieni zleż od poprzednio wmienionch prmetrów i grubości płtki. p Omówione podstw fizczne stosuje się do budow modeli przechodzeni świtł przez obiekt. Dl przkłdu, znne sąs modele opisujące przechodzenie świtł przez szb, sąs one wkorzstwne w smultorch lotu. Njprostsz model przezroczstości: ci: Przezroczstość interpolown z v wielobok (nieprzezroczst) wielobok (przezroczst) x v kierunek obserwcji = ( k t ) + k t - intenswność oświetleni wieloboku, - intenswność oświetleni wieloboku, k t - wsp k t k t współcznnik przezroczstości ci wieloboku,. t = 0 - wielobok nieprzezroczst, t = - wielobok cłkowicie przezroczst, k t [ 0,] 9
10 3. Algortm genercji obrzów w scen oświetloncho Rendering - cieniownie, oblicznie jsności (koloru) poszczególnch pikseli obrzu scen z uwzględnieniem międz innmi efektów oświetleni. Algortm bezpośredni:. Dl punktu obrzu (piksel) o współrz rzędnch ( x p, p ) obliczć odpowiedni punkt widocznej powierzchni obiektu ( x,, z ).. Dl punktu ( x,, z ) zstosowć wbrn model oświetleni o i obliczć intenswność nlizownego punktu. 3. Wpełni nić piksel ( x p, p ) zgodnie z obliczoną intenswności cią. Zlet: dokłdno dność. Wd: znczn ilość obliczeń. Algortm cieniowni jednotonowego: Złożeni: Obiekt scen opisne sąs jko sitki wieloboków. w. Dl widocznej ścin obiektu scen, zkłd d się stłą intenswność oświetleni. Algortm:. Dl dowolnego punktu widocznej ścin, wliczć intenswność oświetleni.. Rzutowć ścinę,, wpełnij nijąc c odpowiedni wielobok stłą łą, zgodnie z obliczoną intenswności cią. Zlet: stosunkowo mło o obliczeń. Wd: jeśli sitk wieloboków w proksmuje obiekt o płnnchp ksztłtch tch widoczne będąb krwędzie. 0
11 Algortm interpolcji intenswności (lgortm Gourud): Złożenie: Obiekt scen opisne sąs jko sitki wieloboków. w. Algortm:. Dl kżdego wierzchołk sitki wieloboków wliczć wektor normln,, jko średnią rtmetczną wektorów w normlnch dl ścin, do którch nleż nlizown wierzchołek ek. N 3 N + N + N 3 + N = N N N N. Dl kżdego wierzchołk sitki stosując c wbrn model oświetleni i obliczon wektor normln,, obliczć intenswność oświetleni j. 3. Wpełni nić rzut widocznch wieloboków, w, użwju wjąc lgortm linii sknującej, w nstępuj pując sposób 3 lini sknując 5 6 = + = 5 x x 6 x x = x x x x
12 Zlet: ogrniczenie ilości obliczeń,, obiekt proksmowne sitkmi wieloboków w wglądj dją głdko,, bowiem krwędzie sitki przestją bć widoczne. Wd: nienturlne obrz w przpdkch odbici świtł od powierzchni lustrznch. Algortm interpolcji wektorów w normlnch (lgortm Phong): Złożenie: Obiekt scen opisne sąs jko sitki wieloboków. w. Algortm:. Obliczć wektor normlne do wierzchołków w wieloboków sitki tk smo jk w poprzednim lgortmie.. Wpełni nić rzut widocznch wieloboków w użwju wjąc lgortmu linii sknującej, lecz interpolując c nie intenswności wektor normlne obliczone dl wierzchołków. w. ntenswność oświetleni dl kolejnch pikseli jest obliczn prz pomoc modelu oświetleni, lecz dl interpolownego nie prwdziwego wektor normlnego. Zlet: zncznie lepsze obrz niż dl poprzedniego lgortmu. Wd: dość dużo obliczeń (dl kżdego piksel obrzu wkorzstwn jest model oświetleni).
13 model sitk wieloboków metod jednotonow metod Gourud metod Phong Metod Phong - obiekt (model biłk) zbudown jest z.080 trójk jkątów w tpu smooth tringle 3
14 N 3 N V 3 V 3 N N V V V trójk jkąt zwkł V trójk jkąt smooth tringle
WYKŁAD 10 MODELOWANIE OŚWIETLENIA SCEN 3-D3. Plan wykładu: 1. Sformułowanie problemu
WYKŁAD 0 MODEOWANIE OŚWIETENIA SCEN -D. Sformułownie roblemu v źróło świtł z v obiekt (x,, z ) Pln wkłu: iksel (x, ) Sformułownie roblemu Postwowe moele oświetleni Algortm genercji obrzów scen oświetlonch
Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania.
Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania. Chcąc osiągnąć realizm renderowanego obrazu, należy rozwiązać problem świetlenia. Barwy, faktury i inne właściwości przedmiotów postrzegamy
ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etapy rozwiązania zadania , 3 5, 7
Próbn egzmin mturln z mtemtki Numer zdni ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etp rozwiązni zdni Liczb punktów Podnie wrtości b: b = Sporządzenie wkresu funkcji g Uwgi dl egzmintorów 4 Krzw
dr inż. Zbigniew Szklarski
Wkłd 3: Kinemtk dr inż. Zbigniew Szklrski szkl@gh.edu.pl http://ler.uci.gh.edu.pl/z.szklrski/ Wstęp Opis ruchu KINEMATYKA Dlczego tki ruch? Przczn ruchu DYNAMIKA MECHANIKA Podstwowe pojęci dl ruchu prostoliniowego
Wektory [ ] Oczywiście wektor w przestrzeni trójwymiarowej wektor będzie miał trzy współrzędne. B (x B. , y B. α A (x A, y A ) to jest wektor
Wektor N fizce w szkole średniej spotkcie się z dwom tpmi wielkości fizcznch. Jedne z nich, np. ms, tempertur, łdunek elektrczn są opiswne przez jedną liczę; te nzwm wielkościmi sklrnmi, w skrócie - sklrmi.
Wykład 6 Dyfrakcja Fresnela i Fraunhofera
Wykłd 6 Dyfrkcj Fresnel i Frunhofer Zjwisko dyfrkcji (ugięci) świtł odkrył Grimldi (XVII w). Poleg ono n uginniu się promieni świetlnych przechodzących w pobliżu przeszkody (np. brzeg szczeliny). Wyjśnienie
Animowana grafika 3D. Opracowanie: J. Kęsik.
Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollub.pl Powierzchnia obiektu 3D jest renderowana jako czarna jeżeli nie jest oświetlana żadnym światłem (wyjątkiem są obiekty samoświecące) Oświetlenie
GRAKO: ŚWIATŁO I CIENIE. Modele barw. Trochę fizyki percepcji światła. OŚWIETLENIE: elementy istotne w projektowaniu
GRAKO: ŚWIATŁO I CIENIE Metody oświetlania Metody cieniowania Przykłady OŚWIETLENIE: elementy istotne w projektowaniu Rozumienie fizyki światła w realnym świecie Rozumienie procesu percepcji światła Opracowanie
Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,
Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,
WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:
YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą
Model oświetlenia. Radosław Mantiuk. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie
Model oświetlenia Radosław Mantiuk Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Obliczenie koloru powierzchni (ang. Lighting) Światło biegnie od źródła światła, odbija
A. Zaborski, Rozciąganie proste. Rozciąganie
. Zborski, Rozciągnie proste Rozciągnie rzkłd Zprojektowć pręt i tk, b przemieszczenie węzł nie przekroczło dopuszczlnej wrtości mm. Dne: R = 50 M, E = 0 G. 5 m m 4 m 80 k Rozwiąznie: równni sttki: sin
LISTA ZADAŃ Z MECHANIKI OGÓLNEJ
. RCHUNEK WEKTOROWY LIST ZDŃ Z MECHNIKI OGÓLNEJ Zd. 1 Dne są wektor: = i + 3j + 5k ; b = i j + k. Oblicz sumę wektorów e = + b orz kosinus kątów, jkie tworz wektor e z osimi ukłdu ( kosinus kierunkowe
Morfologia kryształów
Morfologi krsztłów Morfologi krsztłu Ścin krsztłu = ogrniczjące powierzchnie Zleżą od ksztłtu komorek elementrnch i od fizcznch wrunków wzrostu krsztłu (T, p, otoczenie, roztwór itd.); Krsztł jest wielościnem
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Mteriły dydktyczne n zjęci wyrównwcze z mtemtyki dl studentów pierwszego roku kierunku zmwinego Biotechnologi w rmch projektu Er inżynier pewn lokt n przyszłość Projekt Er inżynier pewn lokt n przyszłość
dr inż. Zbigniew Szklarski
Wkłd 3: Kinemtk dr inż. Zbigniew Szklrski szkl@gh.edu.pl http://ler.uci.gh.edu.pl/z.szklrski/ Wstęp Opis ruchu KINEMATYKA Dlczego tki ruch? Przczn ruchu DYNAMIKA MECHANIKA Podstwowe pojęci dl ruchu prostoliniowego
Ćwiczenie 361 Badanie układu dwóch soczewek
Nazwisko... Data... Wdział... Imię... Dzień tg.... Godzina... Ćwiczenie 36 Badanie układu dwóch soczewek Wznaczenie ogniskowch soczewek metodą Bessela Odległość przedmiotu od ekranu (60 cm 0 cm) l Soczewka
Oświetlenie obiektów 3D
Synteza i obróbka obrazu Oświetlenie obiektów 3D Opracowanie: dr inż. Grzegorz Szwoch Politechnika Gdańska Katedra Systemów Multimedialnych Rasteryzacja Spłaszczony po rzutowaniu obraz siatek wielokątowych
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Mteriły dydktyczne n zjęci wyrównwcze z mtemtyki dl studentów pierwszego roku kierunku zmwinego Inżynieri Środowisk w rmch projektu Er inżynier pewn lokt n przyszłość Projekt Er inżynier pewn lokt n przyszłość
Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych
Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc
Model oświetlenia WYKŁAD 4. Adam Wojciechowski
Model oświetleni WYKŁAD 4 Adm Wojciechowsi Źródł świtł 1. Puntowe f tt p = 1 min, 1 2 c1 c2d c3d 2. Kierunowe, gdzie d - odległość od źródł p 3. Stożowe model refletor Wrn p p spot = p cos γ = p L o D
GRK 4. dr Wojciech Palubicki
GRK 4 dr Wojciech Palubicki Uproszczony Potok Graficzny (Rendering) Model Matrix View Matrix Projection Matrix Viewport Transform Object Space World Space View Space Clip Space Screen Space Projection
Zadania do rozdziału 10.
Zadania do rozdziału 0. Zad.0.. Jaką wsokość musi mieć pionowe zwierciadło ab osoba o wzroście.80 m mogła się w nim zobaczć cała. Załóżm, że ocz znajdują się 0 cm poniżej czubka głow. Ab prawidłowo rozwiązać
ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ
ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A
dr inż. Zbigniew Szklarski
Wkłd 3: Kinemtk d inż. Zbigniew Szklski szkl@gh.edu.pl http://le.uci.gh.edu.pl/z.szklski/ Wstęp Opis uchu KINEMATYKA Dlczego tki uch? Pzczn uchu DYNAMIKA MECHANIKA 08.03.018 Wdził Infomtki, Elektoniki
2. FUNKCJE WYMIERNE Poziom (K) lub (P)
Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy
Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE
Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych
Zadania. I. Podzielność liczb całkowitych
Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.
Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa
Mtemtyk finnsow 12.03.2012 r. Komisj Egzmincyjn dl Akturiuszy LIX Egzmin dl Akturiuszy z 12 mrc 2012 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 100 minut
Zapis wskaźnikowy i umowa sumacyjna
Zpis wskźnikow i mow smcjn Pokzć, że e ikm e ikm Pokzć, że e e δ ikm jkm Dn jest mcierzow reprezentcj tensor 7 7 7 ), ), c) 7 7 Podć dziewięć skłdowch d zdefiniownch związkiem: Wrnki nierozdzielności możn
Wektory. P. F. Góra. rok akademicki
Wektor P. F. Góra rok akademicki 009-0 Wektor zwiazan. Wektorem zwiazanm nazwam parę punktów. Jeżeli parę tę stanowią punkt,, wektor przez nie utworzon oznaczm. Graficznie koniec wektora oznaczam strzałką.
Ćwiczenie 42 Wyznaczanie ogniskowych soczewek
Ćwiczenie 4 Wyzncznie ogniskowych soczewek Wstęp teoretyczny: Krzyszto Rębils. utorem ćwiczeni w Prcowni izycznej Zkłdu izyki Uniwersytetu Rolniczego w Krkowie jest Józe Zpłotny. ZJWISK ZŁMNI ŚWITŁ Świtło,
Pierwiastek z liczby zespolonej
Pierwistek z liczby zespolonej Twierdzenie: Istnieje dokłdnie n różnych pierwistków n-tego stopni z kżdej liczby zespolonej różnej od zer, tzn. rozwiązń równni w n z i wszystkie te pierwistki dją się zpisć
e) Kwadrat dowolnej liczby b) Idź na dwór! całkowitej jest liczbą naturalna. c) Lubisz szpinak? f) 12 jest liczbą pierwszą. d) 3 2 =10.
Zdnie. Cz poniższe wrżeni są zdnimi logicznmi: ) wczorj pdł deszcz. e) Kwdrt dowolnej liczb b) Idź n dwór! cłkowitej jest liczbą nturln. c) Lubisz szpink? f) jest liczbą pierwszą. d) =0. Zdni. Podj zprzeczeni
Przykład 2.5. Figura z dwiema osiami symetrii
Przkłd 5 Figur z dwiem osimi smetrii Polecenie: Wznczć główne centrlne moment bezwłdności orz kierunki główne dl poniższej figur korzstjąc z metod nlitcznej i grficznej (konstrukcj koł Mohr) 5 5 5 5 Dl
Rozwiązania maj 2017r. Zadania zamknięte
Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1
Grafika 2D. Przekształcenia geometryczne 2D. opracowanie: Jacek Kęsik
Grafika 2D Przekształcenia geometrczne 2D opracowanie: Jacek Kęsik Wkład obejmuje podstawowe przekształcenia geometrczne stosowane w grafice komputerowej. Opisane są w nim również współrzędne jednorodne
[L] Rysunek Łuk wolnopodparty, paraboliczny wymiary, obciążenie, oznaczenia.
rzkład 10.3. Łuk paraboliczn. Rsunek przedstawia łuk wolnopodpart, którego oś ma kształt paraboli drugiego stopnia (łuk paraboliczn ). Łuk obciążon jest ciśnieniem wewnętrznm (wektor elementarnej wpadkowej
Morfologia kryształów
Morfologi krsztłów Morfologi krsztłu Ścin krsztłu = ogrniczjące powierzchnie Zleżą od ksztłtu komorek elementrnch i od fizcznch wrunków wzrostu krsztłu (T, p, otoczenie, roztwór itd.); Krsztł jest wielościnem
Pierwiastek z liczby zespolonej
Pierwistek z liczby zespolonej Twierdzenie: Istnieje dokłdnie n różnych pierwistków n-tego stopni z kżdej liczby zespolonej różnej od zer, tzn. rozwiązń równni w n z i wszystkie te pierwistki dją się zpisć
WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:
WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość
2. Tensometria mechaniczna
. Tensometri mechniczn Wstęp Tensometr jk wskzywłby jego nzw to urządzenie służące do pomiru nprężeń. Jk jednk widomo, nprężeni nie są wielkościmi mierzlnymi i stnowią jedynie brdzo wygodne pojęcie mechniki
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria Środowiska w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era inżniera
Grafika Komputerowa Wykład 5. Potok Renderowania Oświetlenie. mgr inż. Michał Chwesiuk 1/38
Wykład 5 Potok Renderowania Oświetlenie mgr inż. 1/38 Podejście śledzenia promieni (ang. ray tracing) stosuje się w grafice realistycznej. Śledzone są promienie przechodzące przez piksele obrazu wynikowego
) q przyłożona jest w punkcie o współrzędnej x = x + x. Przykład Łuk trójprzegubowy.
rzkład 0.. Łuk trójprzegubow. Rsunek 0.. przedstawia łuk trójprzegubow, którego oś ma kształt półokręgu (jest to łuk kołow ). Łuk obciążon jest ciężarem konstrukcji podwieszonej. Narsować wkres momentów
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Ktlog wymgń progrmowych n poszczególne stopnie szkolne Mtemtyk. Poznć, zrozumieć Ksztłcenie w zkresie podstwowym. Kls 2 Poniżej podjemy umiejętności, jkie powinien zdobyć uczeń z kżdego dziłu, by uzyskć
Aparatura sterująca i sygnalizacyjna Czujniki indukcyjne zbliżeniowe LSI
Aprtur sterując i sygnlizcyjn Czujniki indukcyjne zbliżeniowe LSI Czujnik indukcyjny zbliżeniowy prcuje n zsdzie tłumionego oscyltor LC: jeżeli w obszr dziłni dostnie się metl, to z ukłdu zostje pobrn
STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI
INTELIGENTNE TECHNIKI KOMPUTEROWE wkłd STNDRDOWE FUNKCJE PRZYNLEŻNOŚCI GUSSOWSK F. PRZYNLEŻNOŚCI ' μ ( ; ', ) ep μ().5 ' środek; określ szerokość krzwej.5 3 F. PRZYNLEŻNOŚCI KLSY s dl - dl c- sc ( ;,,
Sposób opisu symetrii figur lub brył skończonych
Wkłd drugi - smetri Smetri (gr. συμμετρια podobn mir) dl figur lub brł - istnienie nietrwilnego prekstłceni, które odworowuje obiekt w smego siebie minie mogą ulegć współrędne prestrenne, cs, kolor itp.
± - małe odchylenie od osi. ± - duże odchylenie od osi
TYGONOMETRYCZNE Przjmujm, ż znn są dfinicj i podstwow włsności funkcji trgonomtrcznch. Zprzntujm poniżj kilk prktcznch sposobów szbkigo, prktczngo obliczni wrtości funkcji trgonomtrcznch, rozwiązwni równń
Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna
1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,
R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10
Zdnie. Zkłd ubezpieczeń n życie plnuje zbudownie portfel ubezpieczeniowego przy nstępujących złożenich: ozwiąznie. Przez P k będę oznczł wrtość portfel n koniec k-tego roku. Szukm P 0 tkie by spełnił:
4. RACHUNEK WEKTOROWY
4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie
Wykład 7: Pochodna funkcji zastosowania do badania przebiegu zmienności funkcji
Wkłd 7: Pochodn funkcji zstosowni do bdni przebiegu zmienności funkcji dr Mriusz Grządziel semestr zimow, rok kdemicki 2013/2014 Funkcj logistczn Rozwżm funkcję logistczną = f 0 (t) = 1+5e 0,5t f(t) 0
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 9. ZBIORY ROZMYTE Częstochow 204 Dr hb. inż. Grzegorz Dudek Wydził Elektryczny Politechnik Częstochowsk ZBIORY ROZMYTE Klsyczne pojęcie zbioru związne jest z logiką dwuwrtościową
Programowanie nieliniowe optymalizacja funkcji wielu zmiennych
Ekonomia matematczna II Ekonomia matematczna II Prowadząc ćwiczenia Programowanie nieliniowe optmalizacja unkcji wielu zmiennch Modele programowania liniowego często okazują się niewstarczające w modelowaniu
VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH
VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH ZADANIA ZAMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0 B. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa B. 9 C. D. 5 Zadanie. ( pkt) Liczba
Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco:
Def.8. Wyzncznikiem mcierzy kwdrtowej stopni n nzywmy liczbę det określoną nstępująco:.det.det dl n n det det n det n, gdzie i j ozncz mcierz, którą otrzymujemy z mcierzy przez skreślenie i- tego wiersz
Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne
Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych
O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI
ZESZYTY NAUKOWE 7-45 Zenon GNIAZDOWSKI O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI Streszczenie W prcy omówiono grupę permutcji osi krtezjńskiego ukłdu odniesieni reprezentowną przez mcierze permutcji,
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 17751 WYGENEROWANY AUTOMATYCZNIE W SERWISIE ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Rozważm treść następujacego
- Wydział Fizyki Zestaw nr 5. Powierzchnie 2-go stopnia
1 Algebr Liniow z Geometri - Wydził Fizyki Zestw nr 5 Powierzchnie -go stopni 1 N sferze 1 + + 3 = 4 znleźć punkt, którego odległość od punktu p = (, 6, 3) byłby njmniejsz Wyznczyć osie elipsy powstłej
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria i Gospodarka Wodna w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era
Małgorzata Żak. Zapisane w genach. czyli o zastosowaniu matematyki w genetyce
Młgorzt Żk Zpisne w gench czyli o zstosowniu mtemtyki w genetyce by opisć: - występownie zjwisk msowych - sznse n niebieski kolor oczu potomk - odległość między genmi - położenie genu n chromosomie Rchunek
a a a b M. Przybycień Matematyczne Metody Fizyki I
Relcje równowr wnowżności i klsy Definicj: Relcją określoną n zbiorze A nzywmy dowolny test porównwczy pomiędzy uporządkownymi prmi elementów elementów zbioru A. Jeśli pr (, b) œ A ä A spełni ten test,
Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych
Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni
a) b) Rys. 6.1. Schemat ideowo-konstrukcyjny układu do przykładu 6.1 a) i jego schemat blokowy
04 6. Ztoownie metod hemtów lokowh do nliz włśiwośi ukłdów utomtki Shemt lokow ukłdu utomtki jet formą zpiu mtemtznego modelu dnego ukłdu, n podtwie której, wkorztują zd przedtwione rozdzile 3.7, możn
Adam Korzeniewski p Katedra Systemów Multimedialnych
Adm Korzeniewski dmkorz@sound.eti.pg.gd.pl p. 73 - Ktedr Sstemów ultimedilnch Filtr FIR jest sstemem o trnsmitncji z z Y z z H z z X relizującm lgortm opisn nstępującm równniem różnicowm n n n n n gdzie
CAŁKOWANIE NUMERYCZNE
Wprowdzenie Kwdrtury węzły równoodległe Kwdrtury Guss Wzory sumcyjne Trnsport, studi niestcjonrne I stopni, semestr I rok kdemicki 01/013 Instytut L-5, Wydził Inżynierii Lądowej, Politechnik Krkowsk Ew
RENDEROWANIE GRAFIKI 3D
To, że widzim to zasługa światła. REDEROWAIE GRAFIKI 3D Dlatego istotą spraw jest zdefiniowanie sposoów rozchodzenia się promieni świetlnch. oświetlenie cieniowanie model oświetlenia rozchodzenie się strumieni
Przykład 6.2. Płaski stan naprężenia. Płaski stan odkształcenia.
Przkłd 6.. Płski stn nprężeni. Płski stn odksztłeni. ZADANIE. Dl dnego płskiego stnu nprężeni [MP] znleźć skłdowe stnu nprężeni w ukłdzie osi oróonh względem osi o kąt α0 orz nprężeni i kierunki główne.
5.4.1. Ruch unoszenia, względny i bezwzględny
5.4.1. Ruch unozeni, zględny i bezzględny Przy ominiu ruchu punktu lub bryły zkłdliśmy, że punkt lub brył poruzły ię zględem ukłdu odnieieni x, y, z użnego z nieruchomy. Możn rozptrzyć tki z przypdek,
Twoje zdrowie -isamopoczucie
Twoje zdrowie -ismopoczucie Kidney Disese nd Qulity of Life (KDQOL-SF ) Poniższ nkiet zwier pytni dotyczące Pn/Pni opinii o włsnym zdrowiu. Informcje te pozwolą nm zorientowć się, jkie jest Pn/Pni smopoczucie
symbol dodatkowy element graficzny kolorystyka typografia
Identyfikcj wizuln Fundcji n rzecz Nuki Polskiej 1/00 Elementy podstwowe symbol dodtkowy element grficzny kolorystyk typogrfi Identyfikcj wizuln Fundcji n rzecz Nuki Polskiej 1/01 Elementy podstwowe /
Droga Pani/Drogi Panie! Wakacje minęły szybko i znowu możemy się spotkać. oraz za zabawami z koleżankami i kolegami.
KARTY PRACY 1 CZĘŚĆ KARTA PRACY NR 1 IMIĘ:... DATA: STRONA 1 1. Jkie są twoje oczekiwni i postnowieni związne z kolejnym rokiem szkolnym? Npisz list do nuczyciel, uzupełnijąc luki w tekście. miejscowość
Materiały diagnostyczne z matematyki poziom podstawowy
Mteriły dignostyczne z mtemtyki poziom podstwowy czerwiec 0 Klucz odpowiedzi do zdń zmkniętych orz schemt ocenini Mteriły dignostyczne przygotowł Agt Siwik we współprcy z nuczycielmi mtemtyki szkół pondgimnzjlnych:
KSZTAŁTOWANIE ŁUKOWO-KOŁOWEJ LINII ZĘBÓW W UZĘBIENIU CZOŁOWYM NA FREZARCE CNC
KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 8 nr Archiwum Technologii Mszyn i Automtyzcji 008 PIOTR FRĄCKOWIAK KSZTAŁTOWANIE ŁUKOWO-KOŁOWEJ LINII ZĘBÓW W UZĘBIENIU CZOŁOWYM NA FREZARCE CNC W rtykule
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 5, Radosław Chrapkiewicz, Filip Ozimek
Podstaw Fizki IV Optka z elementami fizki współczesnej wkład 5, 27.02.2012 wkład: pokaz: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wkład 4 - przpomnienie dielektrki
Rolainformatykiwnaukach ekonomicznychispoųecznych
Rolinformtkiwnukch ekonomicznchispoųecznch Innowcjeiimplikcjeinterdscplinrne redkcj ZBIGNIEWE.ZIELIFSKI TOM Recenzjnukow prof.zw.drhb.tdeuszgrbiŷski Wdwnictwo WǏszejSzkoųHndlowej Kielce009 PublikcjwdrukownzostųzgodniezmteriųemdostrczonmprzezAutorów.
WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach
Mtemtyk I WYKŁD. ypy mcierzy, dziłni n mcierzch, mcierz ukłdu równń. Podstwowe widomości o mcierzch Ogóln postć ukłdu m równń liniowych lgebricznych z n niewidomymi x x n xn b x x n xn b, niewidome: x,
WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:
WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość
Pomiar bezpośredni przyrządem wskazówkowym elektromechanicznym
. Rodzaj poiaru.. Poiar bezpośredni (prost) W przpadku poiaru pojednczej wielkości przrząde wskalowan w jej jednostkach wartość niedokładności ± określa graniczn błąd przrządu analogowego lub cfrowego
Zbiory rozmyte. Teoria i zastosowania we wnioskowaniu aproksymacyjnym
Zior rozmte Teori i zstosowni we wniosowniu prosmcjnm PODSTWOWE POJĘCI Motwcje Potrze opisni zjwis i pojęć wielozncznch i niepreczjnch użwnch swoodnie w jęzu nturlnm np. wso tempertur młod człowie średni
Grafika Komputerowa. Metoda śledzenia promieni
Grafika Komputerowa. Metoda śledzenia promieni Aleksander Denisiuk Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Ò Ù Ô º ÙºÔÐ 1 / 30 Metoda śledzenia
OpenGL oświetlenie. Bogdan Kreczmer. Katedra Cybernetyki i Robotyki Wydziału Elektroniki Politechnika Wrocławska
OpenGL oświetlenie Bogdan Kreczmer bogdan.kreczmer@pwr.wroc.pl Katedra Cybernetyki i Robotyki Wydziału Elektroniki Politechnika Wrocławska Kurs: Copyright c 2017 Bogdan Kreczmer Niniejszy dokument zawiera
RÓWNANIA RÓŻNICZKOWE WYKŁAD 3
RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 Równania różniczkowe liniowe Metoda przewidwań Metoda przewidwań całkowania równania niejednorodnego ' p( x) opiera się na następującm twierdzeniu. Twierdzenie f ( x) Suma
Interpolacja. Układ. x exp. = y 1. = y 2. = y n
MES 07 lokaln Interpolacja. Układ Interpolacja, wprowadzenie Interpolacja: po co nam to? Ptania MES polega na wznaczaniu interesującch nas parametrów w skończonej ilości punktów. A co leż pomiędz tmi punktami?
Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1
Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem
Fizyka I (mechanika), ćwiczenia, seria 1
Fizka I (mechanika), ćwiczenia, seria 1 Układ współrzędnch na płaszczźnie. Zadanie 1 Odcinek o stałej długości porusza się tak, że jego punkt końcowe A i B ślizgają się po osiach odpowiednio x i pewnego
2.1. Określenie i rodzaje wektorów. Mnożenie wektora przez skalar
2.1. kreślenie i rodje wektorów. Mnożenie wektor pre sklr Wielkości ficne wstępujące w mechnice i innch diłch fiki możn podielić n sklr i wektor. A określić wielkość sklrną, wstrc podć tlko jedną licę.
Podstawy opisu dynamiki punktu materialnego
Podstaw opisu dnaiki punktu aterialnego Ruch ałego obiektu, któr oże przbliżać koncepcjnie jako punkt obdarzon asą (tzw. punkt aterialn) będzie opiswać podając wektor położenia tego punktu jako funkcję
1.5. Iloczyn wektorowy. Definicja oraz k. Niech i
.. Iloczyn ektoroy. Definicj. Niech i, j orz k. Iloczynem ektoroym ektoró = i j k orz = i j k nzymy ektor i j k.= ( )i ( )j ( )k Skrótoo możn iloczyn ektoroy zpisć postci yzncznik: i j k. Poniżej podno
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby
Scenariusz lekcji Zwierciadła i obrazy w zwierciadłach
Scenariusz lekcji. Temat lekcji: Zwierciadła i obraz w zwierciadłach 2. Cele: a) Cele poznawcze: Uczeń wie: - co to jest promień świetln, - Ŝe światło rozchodzi się prostoliniowo, - na czm polega zjawisko
Rys Ilustracja rastra i jego najmniejszego elementu - piksela
Wldemr Izdeski - Wkłd z przedmiotu SIT.. Model rstrow Rstrow model dnch wkorzstwn jest dl gromdzeni i przetwrzni dnch pochodzącch ze sknowni istniejącch mteriłów mpowch, zdjęć lotniczch i stelitrnch orz
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
Mteriły do wykłdu MATEMATYKA DYSKRETNA dl studiów zocznych cz. Progrm wykłdu: KOMBINATORYKA:. Notcj i podstwowe pojęci. Zlicznie funkcji. Permutcje. Podziory zioru. Podziory k-elementowe. Ziory z powtórzenimi
MES polega na wyznaczaniu interesujących nas parametrów w skończonej ilości punktów. A co leży pomiędzy tymi punktami?
MES- 07 Interpolacja, wprowadzenie Interpolacja: po co nam to? Ptania MES polega na wznaczaniu interesującch nas parametrów w skończonej ilości punktów. A co leż pomiędz tmi punktami? Na razie rozpatrwaliśm
Macierz. Wyznacznik macierzy. Układ równań liniowych
Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: żółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk Zgdnieni. Pojęci. Dziłni n mcierzch.
Od lewej: piramida Chefrena, Wielki Sfinks, piramida Cheopsa.
1. Pirmidiotologi. W obfitej literturze przedmiotu podje się, że pirmid Ceops, lub też z ngielsk Wielk Pirmid (te Gret Pyrmid), zwier w swej konstrukcji pełną i szczegółową istorię rodzju ludzkiego od
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 015/016 oprcowł: Dnut Wojcieszek n ocenę dopuszczjącą rysuje wykres funkcji f ( ) i podje jej włsności sprwdz lgebricznie, czy dny punkt