WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:

Wielkość: px
Rozpocząć pokaz od strony:

Download "WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:"

Transkrypt

1 YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą th wszstkih wielkośi opisć się nie d, dltego posługuje się wektore, któr jest ukłde dwu liz (swoih współrzędnh). Podonie łtwo zuwżć, że opisują równnie liniowe nleż użć ukłdu trzeh liz np. równnie () 3+ =0 ożn jednoznznie opisć ukłde liz ( 3,, ). Gdś rozwżli ukłd dwóh równń liniowh, powiedz: () + 3+ = = 0 to w sposó jednoznzn opisuje go ukłd liz: 3 4 Tkie ukłd w tete nzw się ierzi. Przjij definiję: Mierzą roziru n nzw prostokątn tlię liz o n wierszh i kolunh. Mierz opisują równnie () jest roziru 3. Mierz opisują ukłd () jest roziru 3. Łtwo zuwżć, że opisują ukłd trzeh równń z trze niewidoi nleżło użć ierz o rozirze 3 4 (trz równni w kżd równniu zter współznniki lizowe). Mierz oznz wpisują jej eleent np. (3) Szzególnie wżne są ierze kwdrtowe, to znz tkie gdzie liz wiersz równ jest lizie kolun. Mierz kwdrtową hrkterzuje pewn liz zwn wznznikie ierz. znznik ierz (3) oznz się poprzez det lu Det jest skróte ngielskiego terinu deterinnt. Opisze terz sposó olizni wznznik, któr ożn przjąć z jego definiję.

2 . Dl ierz roziru, to znz ierz, gdzie jest dowolną lizą, wznznikie ędzie ( ). Zuwż, o dlej ędzie przdtne, że + = = ( ).. Dl ierz roziru, to znz ierz wznznikie jest liz: = Opisze szzegółowo sposó jej powstni, gdż ędzie sposó ten stosowć w ierzh roziru większego. Bierze eleent, noż go przez ( ) + ( do potęgi nuer wiersz + nuer kolun), skreśl wiersz i kolunę w której ten eleent stoi (to znz pierwsz wiersz i pierwszą kolunę), po skreśleniu otrzuje ierz roziru +, której wznznik zn i nsz ilozn ( ) donż przez ten włśnie wznznik otrzują. Do tego wniku dodje lizę uzskn w identzn sposó le po przesunięiu się o jedno iejse w prwo. Bierze eleent, noż go przez ( ) + ( do potęgi nuer wiersz + nuer kolun), skreśl wiersz i kolunę w której ten eleent stoi (to znz pierwsz wiersz i drugą kolunę), po skreśleniu otrzuje + ierz roziru, której wznznik zn i nsz ilozn ( ) donż przez ten wznznik otrzują. 3. Dl ierz roziru n n wznznik liz nstępująo: skreśl w ierz pierwszą kolunę i pierwsz wiersz otrzują ierz roziru ( n ) ( n ). znz- + nik tej nowej, niejszego roziru ierz noż przez ( ). Przesuw się o jedną kolunę w prwo do wrzu. Skreśl pierwsz wiersz i drugą kolunę, otrz- + uje kolejną ierz roziru ( n ) ( n ). Jej wznznik noż przez ( ) i dodje do poprzedniego wniku. Przesuw się o jedną kolunę w prwo do wrzu 3, powtrz znność itd. ż dojdzie do osttniego wrzu n. Su w ten sposó otrznh n liz jest wznznikie ierz roziru n n. Opisn etod nzw się rozwinięie Lple i pozwl wlizć wznznik ierz roziru n n prz poo wznzników ierz roziru niejszego. Jest to tpow w tete sposó postępowni, gdzie prole rdziej skoplikown rozkłd się n prole niej skoplikowne, dohodzą w końu do proleu trwilnego (ozwistego). Przkłd = = =. 0 0 =

3 = ( ) + ( ) + ( ) 3 = = ( 5) (3 4) + 3(5 8) = 3+ + = = ( 5) = 37 Zuwż, że lizą ten wznznik rdzo w olizenih poogł zer w pierwszej i drugiej kolunie = = 3 4 = (0 6) [ 3 (8 4) + (4 4) ] (0 6) = = 50 Podonie jk w poprzedni przkłdzie oeność zer uprośił olizeni. Metodę Lple, którą się posługuje ożn stosowć nie tlko do pierwszego wiersz. znznik przjie identzną wrtość jeżeli ędzie go rozwijli względe dowolnego wiersz nwet dowolnej kolun. Nleż tlko piętć o włśiw znku, któr uzskuje podnoszą do potęgi nuer wiersz + nuer kolun. prkte wznzniki stopni 3 (wznzniki ierz roziru 3 3) liz posługują się sposoe Srrus. Poleg on n t, że n końu wznznik dopisuje dwie pierwsze kolun i ierze ilozn liz n przekątnh (przesuwją sie w prwo) ćwirtki II i IV ze znkie plus, nstępnie ćwirtki I i III ze znkie inus. Przkłd = = = = = = = = = = 0 znzniki posidją kilk włsnośi, które ułtwiją ih oliznie. Już zuwżliś, że pojwienie się zer w wierszu lu kolunie, względe której stosuje rozwinięie Lple uprszz rhunki. Czsi ożn tk przeksztłić wznznik, że tkih zer pojwi 3

4 się kilk. Podonie zniejszenie liz wstępująh w wznzniku oże znznie ułtwić jego wlizenie. Pod zter główne włsnośi wznzników, które tkie przeksztłeni uożliwiją. I. Jeżeli w wznzniku wszstkie wrz pewnego wiersz (lu pewnej kolun) są równe 0, to wznznik jest równ 0. A to uzsdnić nleż rozwinąć wznznik sposoe Lple względe tego wiersz (lu kolun). Przkłd = = II. Jeżeli w wznzniku wszstkie wrz wiersz lu kolun ponożone są przez dowolną stłą, to tą stłą ożn wiągnąć przed wznznik. A uzsdnić tę włsność wstrz zuwżć, że rozwijją wznznik sposoe Lple względe tego wiersz (lu kolun) stłą ożn wiągnąć przed nwis. Przkłd = = = = III. Jeżeli w wznzniku do dowolnego wiersz (lu dowolnej kolun) dod odpowiednie eleent innego wiersz (lu innej kolun) ponożone przez stłą, to wznznik nie zieni wrtośi. Tę włsność ożn sprwdzić rozwijją wznznik względe wiersz lu kolun, n którh dokonno operji. Przkłd = 0 6 = = t przkłdzie do pierwszej kolun dodno drugą ponożon przez. Powstł w ten sposó wznznik rozwinięto względe pierwszej kolun. 4

5 IV. Jeżeli wznznik zwier dw identzne wiersze lu dwie identzne kolun to jest równ 0. Jest to wniosek z włsnośi (I) i (III). strz do pierwszego równego wiersz (pierwszej równej kolun) dodć eleent drugiego równego wiersz (drugiej równej kolun) ponożone przez. Otrz wiersz (kolunę) równ 0, zte wznznik równ jest 0. Przkłd = = Do kolun pierwszej dodno kolunę drugą ponożoną przez, powstł kolun z si zeri, wię n podstwie włsnośi (I) wrtość wznznik wnosi 0. znzniki stosuje przede wszstki do rozwiązwni ukłdów równń liniowh. Złóż, że he rozwiązć ukłd równń z dwie niewidoi: (4) + = + = Ukłd tki nzw się liniow gdż kżde z równń opisuje prostą dną w posti ogólnej. Zuwż, że ukłd zostł uporządkown tzn. w pierwszej kolunie znjdują się niewido, w drugiej kolunie niewidoe, nstępnie znk = i kolun wrzów wolnh (liz ez niewidoej). Jeżeli pierwsze z równń ponoż przez, drugie ponoż przez, to po dodniu stroni redukji ulegną niewidoe : + = = = iąg przed nwis nstępnie dzieli otrzują: = = podon sposó, nożą pierwsze z równń przez, drugie przez zredukuje po dodniu stroni niewido i dlej wliz : 5

6 = = rziliś niewidoe ukłdu jko ilorz pewnh wznzników. Dl ukłdu dwóh równń z dwie niewidoi (4) oliz trz wznzniki: wznznik główn = orz dw wznzniki ozne = i =. Prz th oznzenih otrzuje =, =. Są to tk zwne wzor Crer. Zwróć uwgę, że powstł przez zstąpienie w wznzniku główn współzn- ników kolun prz niewidoej wrzi wolni. znznik powstł przez zstąpienie w wznzniku główn współznników kolun prz niewidoej wrzi wolni. UAGA Brdzo wżne, że ukłd ł uporządkown tzn. kolun -ów, kolun -ów równość, kolun wrzów wolnh. Przkłd 7 Korzstją ze wzorów Crer rozwiąż ukłd równń: 3+ = 4 5+ = + 3 Po uporządkowniu i skróeniu równń : = = = = 3 = 3 3 = = 9+ = = = + 3= 4 0 = = = 5 4 = = = Zuwż, że we wzorh Crer doznieni z ilorze. Jeżeli wznznik główn 0, to niewidoe, są wznzone i tki ukłd nzw się oznzon. Może się zdrzć, że = 0 wted dwie ożliwośi: ) jeżeli o wznzniki ozne tkże równe są 0, to wzor Crer ożn zpisć w posti = orz =, z której widć, że ukłd nieskońzenie wiele rozwiązń, 6

7 (kżd pr liz, spełni 0 = 0 i 0 = 0) ukłd nzw się nieoznzon poniewż nie ożn oznzć, wskzć jednego rozwiązni, ) jeżeli którkolwiek z wznzników oznh równ się 0 ukłd jest nzwn sprzezn gdż we wzorh Crer lizę różną od 0 (wznznik główn) dzieli się przez 0. Przkłd 8 Dl jkih wrtośi pretru ukłd: + = + = jest oznzon, nieoznzon sprzezn? A zdnie rozwiązć skorzst z etod wznzników. Poliz wznznik główn: = = Ustl kied wznznik główn równ jest 0. = 0 = = Skoro dl dwóh wrtośi wznznik główn równ jest 0, to ukłd równń dl th wrtośi jest nieoznzon lu sprzezn. Dl wszstkih liz \{, } ukłd jest oznzon (posid dokłdnie jedno rozwiąznie). Poliz wznzniki ozne: = = Dl liz wrtość wznznik wnosi + =, jest zte różno od 0 i ukłd jest sprzezn. Podonie dl liz wrtość wznznik wnosi =, jest różn od 0, zte w t przpdku ukłd również jest sprzezn. Metodą Crer ożn rozwiązwć ukłd równń liniowh dowolnego stopni. Przkłdowo dl ukłdu trzeh równń z trze niewidoi wzor Crer prziorą postć: =, z =, z = Nleż tlko piętć, że wszstkie równni ją ć uporządkowne, jeżeli w równniu nie wstępuje jkś niewido to w wznzniku współznnik tej niewidoej wnosi 0. 7

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A

Bardziej szczegółowo

H. Dąbrowski, W. Rożek Próbna matura, grudzień 2014 r. CKE poziom rozszerzony 1. Zadanie 15 różne sposoby jego rozwiązania

H. Dąbrowski, W. Rożek Próbna matura, grudzień 2014 r. CKE poziom rozszerzony 1. Zadanie 15 różne sposoby jego rozwiązania H ąrowski, W Rożek Prón mtur, grudzień 014 r K poziom rozszerzony 1 Zdnie 15 różne sposoy jego rozwiązni Henryk ąrowski, Wldemr Rożek Zdnie 15 Punkt jest środkiem oku prostokąt, w którym Punkt leży n oku

Bardziej szczegółowo

Równania i nierówności kwadratowe z jedną niewiadomą

Równania i nierówności kwadratowe z jedną niewiadomą 50 REPETYTORIUM 31 Równni i nierówności kwdrtowe z jedną niewidomą Równnie wielominowe to równość dwóch wyrżeń lgebricznych Kżd liczb, któr po podstwieniu w miejscu niewidomej w równniu o jednej niewidomej

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc

Bardziej szczegółowo

a) b) Rys. 6.1. Schemat ideowo-konstrukcyjny układu do przykładu 6.1 a) i jego schemat blokowy

a) b) Rys. 6.1. Schemat ideowo-konstrukcyjny układu do przykładu 6.1 a) i jego schemat blokowy 04 6. Ztoownie metod hemtów lokowh do nliz włśiwośi ukłdów utomtki Shemt lokow ukłdu utomtki jet formą zpiu mtemtznego modelu dnego ukłdu, n podtwie której, wkorztują zd przedtwione rozdzile 3.7, możn

Bardziej szczegółowo

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1 Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem

Bardziej szczegółowo

FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA.

FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA. Oprownie: Elżiet Mlnowsk FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA. Określeni podstwowe: Jeżeli kżdej lizie x z pewnego zioru lizowego X przporządkown jest dokłdnie jedn liz, to mówim,

Bardziej szczegółowo

G i m n a z j a l i s t ó w

G i m n a z j a l i s t ó w Ko³o Mtemtyzne G i m n z j l i s t ó w 1. Lizy,, spełniją wrunki: (1) ++ = 0, 1 () + + 1 + + 1 + = 1 4. Olizyć wrtość wyrżeni w = + + Rozwiąznie Stowrzyszenie n rzez Edukji Mtemtyznej Zestw 7 szkie rozwizń

Bardziej szczegółowo

2.3.1. Iloczyn skalarny

2.3.1. Iloczyn skalarny 2.3.1. Ilon sklrn Ilonem sklrnm (sklrowm) dwóh wektorów i nwm sklr równ ilonowi modułów ou wektorów pre kosinus kąt wrtego międ nimi. α O Rs. 2.8. Ilustrj do definiji ilonu sklrnego Jeżeli kąt międ wektormi

Bardziej szczegółowo

Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco:

Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco: Def.8. Wyzncznikiem mcierzy kwdrtowej stopni n nzywmy liczbę det określoną nstępująco:.det.det dl n n det det n det n, gdzie i j ozncz mcierz, którą otrzymujemy z mcierzy przez skreślenie i- tego wiersz

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

Wartość bezwzględna. Proste równania i nierówności.

Wartość bezwzględna. Proste równania i nierówności. Wrtość bezwzględn Proste równni i nierówności Dl liczb rzeczywistych możemy zdefiniowć opercję zwną wrtością bezwzględną lub modułem liczby Definicj 7,, Sens powyższej definicji jest nstępujący Jeżeli

Bardziej szczegółowo

Wyznacznik macierzy. - wyznacznik macierzy A

Wyznacznik macierzy. - wyznacznik macierzy A Wzncznik mcierz Uwg Wzncznik definiujem tlko dl mcierz kwdrtowch:,,,,,, =,,,,,, n n n n nn n,,, det = n,,, n n nn - mcierz - wzncznik mcierz Wzncznik mcierz to wzncznik n wektorów, które stnowią kolumn

Bardziej szczegółowo

1. Określ monotoniczność podanych funkcji, miejsce zerowe oraz punkt przecięcia się jej wykresu z osią OY

1. Określ monotoniczność podanych funkcji, miejsce zerowe oraz punkt przecięcia się jej wykresu z osią OY . Określ ootoiczość podch fukcji, iejsce zerowe orz pukt przecięci się jej wkresu z osią OY ) 8 ) 8 c) Określjąc ootoiczość fukcji liiowej = + korzst z stępującej włsości: Jeżeli > to fukcj liiow jest

Bardziej szczegółowo

Macierz. Wyznacznik macierzy. Układ równań liniowych

Macierz. Wyznacznik macierzy. Układ równań liniowych Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: żółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk Zgdnieni. Pojęci. Dziłni n mcierzch.

Bardziej szczegółowo

Wprowadzenie: Do czego służą wektory?

Wprowadzenie: Do czego służą wektory? Wprowdzenie: Do czego służą wektory? Mp połączeń smolotowych Isiget pokzuje skąd smoloty wyltują i dokąd doltują; pokzne jest to z pomocą strzłek strzłki te pokzują przemieszczenie: skąd dokąd jest dny

Bardziej szczegółowo

Wektory [ ] Oczywiście wektor w przestrzeni trójwymiarowej wektor będzie miał trzy współrzędne. B (x B. , y B. α A (x A, y A ) to jest wektor

Wektory [ ] Oczywiście wektor w przestrzeni trójwymiarowej wektor będzie miał trzy współrzędne. B (x B. , y B. α A (x A, y A ) to jest wektor Wektor N fizce w szkole średniej spotkcie się z dwom tpmi wielkości fizcznch. Jedne z nich, np. ms, tempertur, łdunek elektrczn są opiswne przez jedną liczę; te nzwm wielkościmi sklrnmi, w skrócie - sklrmi.

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etapy rozwiązania zadania , 3 5, 7

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etapy rozwiązania zadania , 3 5, 7 Próbn egzmin mturln z mtemtki Numer zdni ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etp rozwiązni zdni Liczb punktów Podnie wrtości b: b = Sporządzenie wkresu funkcji g Uwgi dl egzmintorów 4 Krzw

Bardziej szczegółowo

Macierz. Wyznacznik macierzy. Układ równań liniowych

Macierz. Wyznacznik macierzy. Układ równań liniowych Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: Ŝółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk n kierunku Biologi w SGGW Zgdnieni.

Bardziej szczegółowo

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Ktlog wymgń progrmowych n poszczególne stopnie szkolne Mtemtyk. Poznć, zrozumieć Ksztłcenie w zkresie podstwowym. Kls 2 Poniżej podjemy umiejętności, jkie powinien zdobyć uczeń z kżdego dziłu, by uzyskć

Bardziej szczegółowo

Metoda sił jest sposobem rozwiązywania układów statycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych).

Metoda sił jest sposobem rozwiązywania układów statycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych). Metod sił jest sposoem rozwiązywni ukłdów sttycznie niewyznczlnych, czyli ukłdów o ndliczowych więzch (zewnętrznych i wewnętrznych). Sprowdz się on do rozwiązni ukłdu sttycznie wyznczlnego (ukłd potwowy

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby

Bardziej szczegółowo

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE M. DSTY STTYKI N ŁSZZYŹNIE. DSTY STTYKI N ŁSZZYŹNIE.. Zsdy dynmiki Newton Siłą nzywmy wektorową wielkość, któr jest mirą mechnicznego oddziływni n ciło ze strony innych cił. dlszej części ędziemy rozptrywć

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

Rozwiązania maj 2017r. Zadania zamknięte

Rozwiązania maj 2017r. Zadania zamknięte Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM Kls drug A, B, C, D, E, G, H zkres podstwowy 1. FUNKCJA LINIOWA rozpoznje funkcję liniową n podstwie wzoru lub wykresu rysuje

Bardziej szczegółowo

I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH

I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH pitgors.d.pl I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: licz turle N : N 0,,,,,,..., N,,,,,... licz cłkowite C : C...,,,, 0,,,,... Kżdą liczę wierą oż przedstwić z poocą ułk dziesiętego

Bardziej szczegółowo

LISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx&

LISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx& LISTA: Projektownie ukłdów drugiego rzędu Przygotownie: 1. Jkie włsności m równnie -ego rzędu & &+ b + c u jeśli: ) c>; b) c; c) c< Określ położenie biegunów, stbilność, oscylcje Zdni 1: Wyzncz bieguny.

Bardziej szczegółowo

STYLE. TWORZENIE SPISÓW TREŚCI

STYLE. TWORZENIE SPISÓW TREŚCI STYLE. TWORZENIE SPISÓW TREŚCI Ćwiczenie 1 Tworzenie nowego stylu n bzie istniejącego 1. Formtujemy jeden kpit tekstu i zznczmy go (stnowi on wzorzec). 2. Wybiermy Nrzędzi główne, rozwijmy okno Style (lub

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie

Bardziej szczegółowo

Przykład 6.2. Płaski stan naprężenia. Płaski stan odkształcenia.

Przykład 6.2. Płaski stan naprężenia. Płaski stan odkształcenia. Przkłd 6.. Płski stn nprężeni. Płski stn odksztłeni. ZADANIE. Dl dnego płskiego stnu nprężeni [MP] znleźć skłdowe stnu nprężeni w ukłdzie osi oróonh względem osi o kąt α0 orz nprężeni i kierunki główne.

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa

Analiza matematyczna i algebra liniowa Anliz mtemtyczn i lgebr liniow Mteriły pomocnicze dl studentów do wykłdów Mcierze liczbowe i wyznczniki. Ukłdy równń liniowych. Mcierze. Wyznczniki. Mcierz odwrotn. Równni mcierzowe. Rząd mcierzy. Ukłdy

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

KARTA WZORÓW MATEMATYCZNYCH. (a + b) c = a c + b c. p% liczby a = p a 100 Liczba x, której p% jest równe a 100 a p

KARTA WZORÓW MATEMATYCZNYCH. (a + b) c = a c + b c. p% liczby a = p a 100 Liczba x, której p% jest równe a 100 a p KRT WZORÓW MTEMTYZNY WŁSNOŚI DZIŁŃ Pwo pzemiennośi dodwni + = + Pwo łąznośi dodwni + + = ( + ) + = + ( + ) Pwo zemiennośi mnoŝeni = Pwo łąznośi mnoŝeni = ( ) = ( ) Pwo ozdzielnośi mnoŝeni względem dodwni

Bardziej szczegółowo

2. Funktory TTL cz.2

2. Funktory TTL cz.2 2. Funktory TTL z.2 1.2 Funktory z otwrtym kolektorem (O.. open olletor) ysunek poniżej przedstwi odnośny frgment płyty zołowej modelu. Shemt wewnętrzny pojedynzej rmki NAND z otwrtym kolektorem (O..)

Bardziej szczegółowo

4. RACHUNEK WEKTOROWY

4. RACHUNEK WEKTOROWY 4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie

Bardziej szczegółowo

Kodowanie liczb. Kodowanie stałopozycyjne liczb całkowitych. Niech liczba całkowita a ma w systemie dwójkowym postać: Kod prosty

Kodowanie liczb. Kodowanie stałopozycyjne liczb całkowitych. Niech liczba całkowita a ma w systemie dwójkowym postać: Kod prosty Kodownie licz Kodownie stłopozycyjne licz cłkowitych Niech licz cłkowit m w systemie dwójkowym postć: nn 0 Wtedy może yć on przedstwion w postci ( n+)-itowej przy pomocy trzech niżej zdefiniownych kodów

Bardziej szczegółowo

Wspomaganie obliczeń za pomocą programu MathCad

Wspomaganie obliczeń za pomocą programu MathCad Wprowdzenie do Mthcd' Oprcowł:M. Detk P. Stąpór Wspomgnie oliczeń z pomocą progrmu MthCd Definicj zmiennych e f g h 8 Przykłd dowolnego wyrŝeni Ay zdefinowc znienną e wyierz z klwitury kolejno: e: e f

Bardziej szczegółowo

WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA UCZNIÓW KLASY Ia TECHNIKUM

WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA UCZNIÓW KLASY Ia TECHNIKUM WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA UCZNIÓW KLASY I TECHNIKUM Egzmin poprwkowy n ocenę dopuszczjącą będzie obejmowł zdni zgodne z poniższymi wymgnimi n ocenę dopuszczjącą. Egzmin poprwkowy n wyższą ocenę

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 015/016 oprcowł: Dnut Wojcieszek n ocenę dopuszczjącą rysuje wykres funkcji f ( ) i podje jej włsności sprwdz lgebricznie, czy dny punkt

Bardziej szczegółowo

ZADANIA OTWARTE. Są więc takie same. Trzeba jeszcze pokazać, że wynoszą one 2b, gdyż taka jest długość krawędzi dwudziestościanu.

ZADANIA OTWARTE. Są więc takie same. Trzeba jeszcze pokazać, że wynoszą one 2b, gdyż taka jest długość krawędzi dwudziestościanu. ZADANIA OTWARTE ZADANIE 1 DWUDZIESTOŚCIAN FOREMNY Wiemy, że z trzech złotych prostokątów możn skonstruowć dwudziestościn foremny. Wystrczy wykzć, że długości boków trójkąt ABC n rysunku obok są równe.

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

MATEMATYKA W EKONOMII I ZARZĄDZANIU

MATEMATYKA W EKONOMII I ZARZĄDZANIU MATEMATYA W EONOMII I ZARZĄDZANIU Wykłd - Alger iiow) eszek S Zre Wektore zywy iąg liz ) p 567) 5) itp W ekooii koszyk dór zpisuje się jko wektory Np 567) jko koszyk dór wyspie Hul Gul oŝe ozzć 5 jłek

Bardziej szczegółowo

BADANIE ZALEŻNOŚCI PRZENIKALNOŚCI MAGNETYCZNEJ

BADANIE ZALEŻNOŚCI PRZENIKALNOŚCI MAGNETYCZNEJ ADANIE ZAEŻNOŚCI PRZENIKANOŚCI MAGNETYCZNEJ FERRIMAGNETYKÓW OD TEMPERATURY 1. Teori Włściwości mgnetyczne sstncji chrkteryzje współczynnik przeniklności mgnetycznej. Dl próżni ten współczynnik jest równy

Bardziej szczegółowo

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD ,0. 3x 6 6 3x 6 6,

PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD ,0. 3x 6 6 3x 6 6, Zdnie PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD 04 Zbiorem wszystkich rozwiązń nierówności x 6 6 jest: A, 4 0, B 4,0 C,0 4, D 0,4 Odpowiedź: C Rozwiąznie Sposób I Nierówność A 6 jest równowżn lterntywie

Bardziej szczegółowo

3. Rozkład macierzy według wartości szczególnych

3. Rozkład macierzy według wartości szczególnych Rozkłd mcierzy wedłg wrtości szczególnych Wprowdzenie Przypomnimy podstwowe zleżności związne z zstosowniem metody nmnieszych kwdrtów do proksymci fnkci dyskretne Podstwowe równnie m nstępącą postć: +

Bardziej szczegółowo

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna lger Bool i podstwy systemów liczowych. Ćwiczeni z Teorii Ukłdów Logicznych, dr inż. Ernest Jmro. System dwójkowy reprezentcj inrn Ukłdy logiczne operują tylko n dwóch stnch ozncznymi jko zero (stn npięci

Bardziej szczegółowo

O pewnych zgadnieniach optymalizacyjnych O pewnych zgadnieniach optymalizacyjnych

O pewnych zgadnieniach optymalizacyjnych O pewnych zgadnieniach optymalizacyjnych Spis tresci 1 Spis tresci 1 W wielu zgdnienich prktycznych brdzo wżne jest znjdownie optymlnego (czyli njlepszego z jkiegoś punktu widzeni) rozwiązni dnego problemu. Dl przykłdu, gdybyśmy chcieli podróżowć

Bardziej szczegółowo

A. Zaborski, Rozciąganie proste. Rozciąganie

A. Zaborski, Rozciąganie proste. Rozciąganie . Zborski, Rozciągnie proste Rozciągnie rzkłd Zprojektowć pręt i tk, b przemieszczenie węzł nie przekroczło dopuszczlnej wrtości mm. Dne: R = 50 M, E = 0 G. 5 m m 4 m 80 k Rozwiąznie: równni sttki: sin

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i

Bardziej szczegółowo

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10 Zdnie. Zkłd ubezpieczeń n życie plnuje zbudownie portfel ubezpieczeniowego przy nstępujących złożenich: ozwiąznie. Przez P k będę oznczł wrtość portfel n koniec k-tego roku. Szukm P 0 tkie by spełnił:

Bardziej szczegółowo

Rozwiązywanie zadań z dynamicznego ruchu płaskiego część I 9

Rozwiązywanie zadań z dynamicznego ruchu płaskiego część I 9 ozwiązywnie zdń z dyniczneo ruchu płskieo część I 9 Wprowdzenie ozwiązywnie zdń w oprciu o dyniczne równni ruchu (D pole n uwolnieniu z więzów kżdeo z cił w sposób znny ze sttyki. Wrunki równowi są zbliżone

Bardziej szczegółowo

Zadania. I. Podzielność liczb całkowitych

Zadania. I. Podzielność liczb całkowitych Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.

Bardziej szczegółowo

Przykład 2.6. Przekrój złożony z trzech kształtowników walcowanych.

Przykład 2.6. Przekrój złożony z trzech kształtowników walcowanych. Przkłd 6 Przkrój złożon z trzh ksztłtowników wlownh Polni: Wznzć główn ntrln momnt bzwłdnośi orz kirunki główn dl poniższgo przkroju złożongo z trzh ksztłtowników wlownh 0800 0 80800 Dn dotzą ksztłtowników

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętych i schemt ocenini zdń otwrtych Klucz odpowiedzi do zdń zmkniętych 4 5 6 7 8 9 0 4 5 6 7 8 9 0 D D D Schemt ocenini zdń otwrtych Zdnie (pkt) Rozwiąż nierówność x + x+ 0

Bardziej szczegółowo

Od lewej: piramida Chefrena, Wielki Sfinks, piramida Cheopsa.

Od lewej: piramida Chefrena, Wielki Sfinks, piramida Cheopsa. 1. Pirmidiotologi. W obfitej literturze przedmiotu podje się, że pirmid Ceops, lub też z ngielsk Wielk Pirmid (te Gret Pyrmid), zwier w swej konstrukcji pełną i szczegółową istorię rodzju ludzkiego od

Bardziej szczegółowo

Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 2016/2017 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody.

Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 2016/2017 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody. Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 016/017 Zwód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zwody Przedmiot: MATEMATYKA Kls II (67 godz) Rozdził 1. Funkcj liniow 1. Wzór i

Bardziej szczegółowo

Algebra macierzowa. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. ELEMENTARNA TEORIA MACIERZOWA

Algebra macierzowa. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. ELEMENTARNA TEORIA MACIERZOWA kdemi Morsk w Gdyni Ktedr utomtyki Okrętowej Teori sterowni lger mcierzow Mirosłw Tomer. ELEMENTRN TEORI MCIERZOW W nowoczesnej teorii sterowni rdzo często istnieje potrze zstosowni notcji mcierzowej uprszczjącej

Bardziej szczegółowo

± - małe odchylenie od osi. ± - duże odchylenie od osi

± - małe odchylenie od osi. ± - duże odchylenie od osi TYGONOMETRYCZNE Przjmujm, ż znn są dfinicj i podstwow włsności funkcji trgonomtrcznch. Zprzntujm poniżj kilk prktcznch sposobów szbkigo, prktczngo obliczni wrtości funkcji trgonomtrcznch, rozwiązwni równń

Bardziej szczegółowo

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna 1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,

Bardziej szczegółowo

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ dla studentów I roku kierunku INŻYNIERIA ŚRODOWISKA - studia stacjonarne

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ dla studentów I roku kierunku INŻYNIERIA ŚRODOWISKA - studia stacjonarne ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ GIMNAZJUM I SZKOŁY ŚREDNIEJ dl studentów I roku kierunku INŻYNIERIA ŚRODOWISKA - studi stjonrne Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres

Bardziej szczegółowo

2. FUNKCJE WYMIERNE Poziom (K) lub (P)

2. FUNKCJE WYMIERNE Poziom (K) lub (P) Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy

Bardziej szczegółowo

KSIĘGA ZNAKU. Znak posiada swój obszar ochronny i w jego obrębie nie mogą się znajdować żadne elementy, nie związane ze znakiem.

KSIĘGA ZNAKU. Znak posiada swój obszar ochronny i w jego obrębie nie mogą się znajdować żadne elementy, nie związane ze znakiem. KSIĘGA ZNAKU KSIĘGA ZNAKU Poniżej przedstwion jest chrkterystyk znku 7 lt Uniwersytetu Łódzkiego. Wszystkie proporcje i sposób rozmieszczeni poszczególnych elementów są ściśle określone. Wprowdznie jkichkolwiek

Bardziej szczegółowo

- Wydział Fizyki Zestaw nr 5. Powierzchnie 2-go stopnia

- Wydział Fizyki Zestaw nr 5. Powierzchnie 2-go stopnia 1 Algebr Liniow z Geometri - Wydził Fizyki Zestw nr 5 Powierzchnie -go stopni 1 N sferze 1 + + 3 = 4 znleźć punkt, którego odległość od punktu p = (, 6, 3) byłby njmniejsz Wyznczyć osie elipsy powstłej

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7) EGZAMIN MATURALNY OD ROKU SZKOLNEGO 01/015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A, A, A, A6, A7) GRUDZIEŃ 01 Klucz odpowiedzi do zdń zmkniętych Nr zdni 1 5 Odpowiedź

Bardziej szczegółowo

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach Mtemtyk I WYKŁD. ypy mcierzy, dziłni n mcierzch, mcierz ukłdu równń. Podstwowe widomości o mcierzch Ogóln postć ukłdu m równń liniowych lgebricznych z n niewidomymi x x n xn b x x n xn b, niewidome: x,

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie II poziom rozszerzony

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie II poziom rozszerzony Wymgni edukcyjne n poszczególne oceny z mtemtyki w klsie II poziom rozszerzony N ocenę dopuszczjącą, uczeń: rysuje wykres funkcji f ( x) x i podje jej włsności; sprwdz lgebricznie, czy dny punkt nleży

Bardziej szczegółowo

Środek masy i geometryczne momenty bezwładności figur płaskich 1

Środek masy i geometryczne momenty bezwładności figur płaskich 1 Środek ms geometrzne moment bezwłdnoś fgur płskh Środek ms fgur płskej Zleżnoś n współrzędne środk ms, fgur płskej złożonej z fgur regulrnh rs.. możem zpsć w nstępują sposób: gdze:. pole powerzhn -tej

Bardziej szczegółowo

Laura Opalska. Klasa 1. Gimnazjum nr 1 z Oddziałami Integracyjnym i Sportowymi im. Bł. Salomei w Skale

Laura Opalska. Klasa 1. Gimnazjum nr 1 z Oddziałami Integracyjnym i Sportowymi im. Bł. Salomei w Skale Trójkąt Pscl od kuchni Kls 1 Gimnzjum nr 1 z Oddziłmi Integrcyjnym i Sportowymi im. Bł. Slomei w Skle ul. Ks.St.Połetk 32 32-043 Skł Gimnzjum nr 1 z Oddziłmi Integrcyjnymi i Sportowymi im. Bł. Slomei w

Bardziej szczegółowo

Szkice rozwiązań zadań zawody rejonowe 2019

Szkice rozwiązań zadań zawody rejonowe 2019 XVI Śląski Konkurs Mtemtyzny Szkie rozwiązń zdń zwody rejonowe 9 Zdnie. Znjdź wszystkie lizy pierwsze p, dl któryh liz pp+ + też jest lizą pierwszą. Rozwiąznie Jeżeli p, to pp+ + 3 + i jest to liz złożon.

Bardziej szczegółowo

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.

Bardziej szczegółowo

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2)

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2) Cłk oznczon Cłkę oznczoną będziemy zpisywli jko f(x)dx (.) z fnkcji f(x), któr jest ogrniczon w przedzile domkniętym [, b]. Jk obliczyć cłkę oznczoną? Obliczmy njpierw cłkę nieoznczoną z fnkcji f(x), co

Bardziej szczegółowo

Pasek narzędziowy Symbolic [View Toolbars Math Symbolic] Pasek narzędziowy Modifier [Symbolic Modifiers]

Pasek narzędziowy Symbolic [View Toolbars Math Symbolic] Pasek narzędziowy Modifier [Symbolic Modifiers] Psek nrzędziowy Symolic [View Toolrs Mth Symolic] Psek nrzędziowy Modifier [Symolic Modifiers] Słow kluczowe możn wprowdzić z pomocą psk nrzędziowego [Symolic] lu ezpośrednio z klwitury. Wprowdznie z klwitury

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna.

Rachunek prawdopodobieństwa i statystyka matematyczna. Rchunek rwdoodobieństw i sttystyk mtemtyczn. Zd 8. {(, : i } Zleżność tą możn rzedstwić w ostci nstęującej interretcji grficznej: Arkdiusz Kwosk Rfł Kukliński Informtyk sem.4 gr. Srwdźmy, czy odne zmienne

Bardziej szczegółowo

Wymagania kl. 2. Uczeń:

Wymagania kl. 2. Uczeń: Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania

Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania Klucz odpowiedzi do zdń zmkniętych orz schemt ocenini sierpień 0 Poziom Podstwowy Schemt ocenini sierpień Poziom podstwowy Klucz punktowni zdń zmkniętych Nr zdni 4 5 6 7 8 9 0 4 5 6 7 8 9 0 4 5 Odpowiedź

Bardziej szczegółowo

Wykład 6 Dyfrakcja Fresnela i Fraunhofera

Wykład 6 Dyfrakcja Fresnela i Fraunhofera Wykłd 6 Dyfrkcj Fresnel i Frunhofer Zjwisko dyfrkcji (ugięci) świtł odkrył Grimldi (XVII w). Poleg ono n uginniu się promieni świetlnych przechodzących w pobliżu przeszkody (np. brzeg szczeliny). Wyjśnienie

Bardziej szczegółowo

Wyrównanie sieci niwelacyjnej

Wyrównanie sieci niwelacyjnej 1. Wstęp Co to jest sieć niwelcyjn Po co ją się wyrównje Co chcemy osiągnąć 2. Metod pośrednicząc Wyrównnie sieci niwelcyjnej Metod pośrednicząc i metod grpow Mmy sieć skłdjącą się z szereg pnktów. Niektóre

Bardziej szczegółowo

e) Kwadrat dowolnej liczby b) Idź na dwór! całkowitej jest liczbą naturalna. c) Lubisz szpinak? f) 12 jest liczbą pierwszą. d) 3 2 =10.

e) Kwadrat dowolnej liczby b) Idź na dwór! całkowitej jest liczbą naturalna. c) Lubisz szpinak? f) 12 jest liczbą pierwszą. d) 3 2 =10. Zdnie. Cz poniższe wrżeni są zdnimi logicznmi: ) wczorj pdł deszcz. e) Kwdrt dowolnej liczb b) Idź n dwór! cłkowitej jest liczbą nturln. c) Lubisz szpink? f) jest liczbą pierwszą. d) =0. Zdni. Podj zprzeczeni

Bardziej szczegółowo

Wymagania edukacyjne z matematyki Klasa IIB. Rok szkolny 2013/2014 Poziom podstawowy

Wymagania edukacyjne z matematyki Klasa IIB. Rok szkolny 2013/2014 Poziom podstawowy Wymgni edukcyjne z mtemtyki Kls IIB. Rok szkolny 2013/2014 Poziom podstwowy FUNKCJA KWADRATOWA Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: 2 rysuje wykres funkcji f ( ) i podje jej włsności

Bardziej szczegółowo

Zbiory rozmyte. Teoria i zastosowania we wnioskowaniu aproksymacyjnym

Zbiory rozmyte. Teoria i zastosowania we wnioskowaniu aproksymacyjnym Zior rozmte Teori i zstosowni we wniosowniu prosmcjnm PODSTWOWE POJĘCI Motwcje Potrze opisni zjwis i pojęć wielozncznch i niepreczjnch użwnch swoodnie w jęzu nturlnm np. wso tempertur młod człowie średni

Bardziej szczegółowo

WYMAGANIA DLA UCZNIÓW KLAS DRUGICH LICEUM OGÓLNOKSZTAŁCĄCEGO

WYMAGANIA DLA UCZNIÓW KLAS DRUGICH LICEUM OGÓLNOKSZTAŁCĄCEGO WYMAGANIA DLA UCZNIÓW KLAS DRUGICH LICEUM OGÓLNOKSZTAŁCĄCEGO Pln wynikowy dostosowny jest do progrmu nuczni mtemtyki w szkole pondgimnzjlnej z zkresu ksztłceni podstwowego PROSTO DO MATURY (progrm nuczni

Bardziej szczegółowo

Semantyka i Weryfikacja Programów - Laboratorium 2 Działania na ułamkach, krotki i rekordy

Semantyka i Weryfikacja Programów - Laboratorium 2 Działania na ułamkach, krotki i rekordy Semntyk i Weryfikj Progrmów - Lortorium Dziłni n ułmkh, krotki i rekory Cz. I. Dziłni n ułmkh Prolem. Oprowć zestw funkji o ziłń rytmetyznyh n ułmkh zwykłyh posti q, gzie, są lizmi łkowitymi i 0. Rozwiąznie

Bardziej szczegółowo

Adam Korzeniewski p Katedra Systemów Multimedialnych

Adam Korzeniewski p Katedra Systemów Multimedialnych Adm Korzeniewski dmkorz@sound.eti.pg.gd.pl p. 73 - Ktedr Sstemów ultimedilnch Filtr FIR jest sstemem o trnsmitncji z z Y z z H z z X relizującm lgortm opisn nstępującm równniem różnicowm n n n n n gdzie

Bardziej szczegółowo

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych PODSTAWY BAZ DANYCH Wykłd 3 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy z dnych" 1 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Relcj EGZ(U), U := { I, N, P, O }, gdzie I 10 10 11 N f f

Bardziej szczegółowo

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I Mtemtyk finnsow.03.2014 r. Komisj Egzmincyjn dl Akturiuszy LXVI Egzmin dl Akturiuszy z mrc 2014 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 0 minut 1 Mtemtyk

Bardziej szczegółowo

PODSTAWY ALGEBRY MACIERZY. Operacje na macierzach

PODSTAWY ALGEBRY MACIERZY. Operacje na macierzach PODSTWY LGEBRY MCIERZY WIERSZ i, KOLUMN (j) Mcierz m,n, gdzie m to ilość wierszy, n ilość kolumn i,j element mcierzy z itego wiersz, jtej kolumny Opercje n mcierzch Równość mcierzy m,n = B m,n. def i,j

Bardziej szczegółowo

SCHEMAT PUNKTOWANIA. Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów. Rok szkolny 2012/2013. Etap rejonowy

SCHEMAT PUNKTOWANIA. Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów. Rok szkolny 2012/2013. Etap rejonowy SCHEMAT UNKTOWANIA Wojewódzki Konkurs rzedmiotowy z Mtemtyki dl uczniów gimnzjów Rok szkolny 0/03 Etp rejonowy rzy punktowniu zdń otwrtych nleży stosowć nstępujące ogólne reguły: Ocenimy rozwiązni zdń

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012 mgr Jolnt Chlebd mgr Mri Mślnk mgr Leszek Mślnk mgr inż. Rent itl mgr inż. Henryk Stępniowski Zespół Szkół ondgimnzjlnych Młopolsk Szkoł Gościnności w Myślenicch WYMAGANIA I RYTERIA OCENIANIA DO EGZAMINU

Bardziej szczegółowo

Parada nierówności. Marcin Fryz. 15 czerwca a + b 2. ab 2. a + b + c. 3 abc. (2)

Parada nierówności. Marcin Fryz. 15 czerwca a + b 2. ab 2. a + b + c. 3 abc. (2) Prd nierównośi Mrin Fryz 5 zerw 0 Rozgrzewk Udowodnić, że dl dowolnyh nieujemnyh liz,,, d zhodzą:, () () Dowód Pierwszą nierówność w () możemy podnieść równowżnie do kwdrtu i zstosowć wzór skróonego mnożeni:

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje

Bardziej szczegółowo

Algebra WYKŁAD 6 ALGEBRA 1

Algebra WYKŁAD 6 ALGEBRA 1 Algebr WYKŁAD 6 ALGEBRA Ogóln postć ukłdu równń liniowych Rozwżmy ukłd m równń liniowych z n niewidomymi m m n n mn n n n b b b m o współczynnikch ik orz b i. Mcierz ukłdu równń wymiru m n m postć A m

Bardziej szczegółowo

Regionalne Koło Matematyczne

Regionalne Koło Matematyczne Regionlne Koło Mtemtyzne Uniwersytet Mikołj Kopernik w Toruniu Wyził Mtemtyki i Informtyki http://www.mt.umk.pl/rkm/ List rozwiązń zń nr 8, grup zwnsown (3.03.200) O izometrih (..) Wektorem uporząkownej

Bardziej szczegółowo

ZADANIA ZAMKNIĘTE. Zadanie 1 (1p). Ile wynosi 0,5% kwoty 120 mln zł? A. 6 mln zł B. 6 tys. zł C. 600 tys. zł D. 60 tys. zł

ZADANIA ZAMKNIĘTE. Zadanie 1 (1p). Ile wynosi 0,5% kwoty 120 mln zł? A. 6 mln zł B. 6 tys. zł C. 600 tys. zł D. 60 tys. zł TRZECI SEMESTR LICEUM OGÓLNOKSZTAŁCĄCEGO DLA DOROSŁYCH PRACA KONTROLNA Z MATEMATYKI ROZSZERZONEJ O TEMACIE: Liczby rzeczywiste i wyrżeni lgebriczne Niniejsz prc kontroln skłd się z zdń zmkniętych ( zdń)

Bardziej szczegółowo

KONKURS MATEMATYCZNY. Model odpowiedzi i schematy punktowania

KONKURS MATEMATYCZNY. Model odpowiedzi i schematy punktowania KONKURS MATEMATYCZNY dl uczniów gimnzjów orz oddziłów gimnzjlnych województw mzowieckiego w roku szkolnym 2018/2019 Model odpowiedzi i schemty punktowni Z kżde poprwne i pełne rozwiąznie, inne niż przewidzine

Bardziej szczegółowo

Wyk lad 1 Podstawowe wiadomości o macierzach

Wyk lad 1 Podstawowe wiadomości o macierzach Wyk ld 1 Podstwowe widomości o mcierzch Oznczeni: N {1 2 3 } - zbiór liczb nturlnych N 0 {0 1 2 } R - ci lo liczb rzeczywistych n i 1 + 2 + + n i1 1 Określenie mcierzy Niech m i n bed dowolnymi liczbmi

Bardziej szczegółowo

Układy równań liniowych Macierze rzadkie

Układy równań liniowych Macierze rzadkie wr zesie ń SciLb w obliczenich numerycznych - część Sljd Ukłdy równń liniowych Mcierze rzdkie wr zesie ń SciLb w obliczenich numerycznych - część Sljd Pln zjęć. Zdnie rozwiązni ukłdu równń liniowych..

Bardziej szczegółowo