Model oświetlenia WYKŁAD 4. Adam Wojciechowski
|
|
- Amelia Kalinowska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Model oświetleni WYKŁAD 4 Adm Wojciechowsi
2 Źródł świtł 1. Puntowe f tt p = 1 min, 1 2 c1 c2d c3d 2. Kierunowe, gdzie d - odległość od źródł p 3. Stożowe model refletor Wrn p p spot = p cos γ = p L o D δ γ D Lustro refletor -L L p spot p cos 8 γ p p 0 γ 90 δ δ 90 gdzie: p intensywność njjśniejszego świtł, emitownego wzdłuż osi D, p wyłdni zwiercidlny, L ierune promieni świtł emitownego przez refletor, γ ąt między wetormi L i D.
3 gllight*nr_źródł, nzw_prmetru, wrtość; służy do oreśleni indywidulnych prmetrów źródł świtł o numerze od GL_LGHT0 do GL_LGHT7 podnym jo pierwszy rgument. nzw_prmetru wrtość GL_AMBENT Brw słdowej intensywności p, domyślnie p =0, 0, 0, 1 GL_DFFUSE pd, domyślnie 1,1,1, 1 dl źródł GL_LGHT0 i 0, 0, 0, 1 dl pozostłych GL_SPECULAR ps, domyślnie 1, 1, 1, 1 dl źródł GL_LGHT0 i 0, 0, 0, 1 dl pozostłych GL_POSTON Położenie źródł puntowego i refletor x, y, z, 1, lub ierune x, y, z, 0 źródł ierunowego. Domyślnie 0,0,1,0. Położenie i ierune źródł są modyfiowne przez bieżącą mcierz modelu widou i przesztłcne do ułdu o. GL_SPOT_DRECTON Kierune D refletor; domyślnie 0,0,-1. GL_SPOT_EXPONENT GL_SPOT_CUTOFF GL_CONSTANT_ATTENUATTON GL_LNEAR_ATTENUATTON GL_QUADRATC_ATTENUATTON Wyłdni p; domyślnie p=0.0 Kąt δ stoż; domyślnie δ=180 Współczynni c1 tłumieni źródł; domyślnie c1=1.0 c2, domyślnie c1=0.0 c3, domyślnie c3=0.0
4 Przyłd1: Źródło 1 y GLflot pozycj0[] = {0.0, 0.0, 1.5, 1.0}; //punt 3D GLflot pozycj2[] = {0.0, 1.5, 0.0, 1.0};//punt 3D GLflot ierune1[] ={1.0,-1.0,0.0,0.0};//punt w GLflot ierune2[] ={0.0,-1.0,0.0}; //wetor // źródło puntowe nr 0, np. żrów: gllightfvgl_lght0,gl_poston,pozycj0; gllightf GL_LGHT0,GL_CONSTANT_ATTENUATON,2.0; gllightf GL_LGHT0,GL_LNEAR_ATTENUATON,1.0; gllightf GL_LGHT0,GL_QUADRATC_ATTENUATON,0.5; // źródło ierunowe nr 1, np. słońce: gllightfvgl_lght1,gl_poston,ierune1; // źródło stożowe nr 2, np. refletor: gllightfvgl_lght2,gl_poston,pozycj2; gllightfvgl_lght2,gl_spot_drecton,ierune2; gllightf GL_LGHT2,GL_SPOT_CUTOFF,45.0; //połow ąt stoż gllightf GL_LGHT2,GL_SPOT_EXPONENT,2.0; z 45 Źródło 0 Źródło 2 x
5 Przyłd 2: Nieruchome źródło świtł W funcji init ustwion pozycj świtł. Wtedy oryginln pozycj świtł nie zostnie zmienion przez mcierz modelu-widou. void initvoid { } GLflot pozycj0[] = {0.0, 0.0, 1.5, 1.0}; //oryginln pozycj glclercolor0.0, 0.0, 0.0, 0.0; //olor tł gllightfvgl_lght0, GL_POSTON, pozycj0; glenblegl_lghtng; //włączone obliczeni oświetleni glenblegl_lght0; // włączone źródło świtł glenblegl_depth_test; // włączony test głęboości, Z-bufor
6 Przyłd 3: Ruchome źródło świtł rąży woół bryły. Njpierw ustwimy merę, potem świtło, potem obiety sceny. sttic GLdouble spin = 0;//ąt obrotu świtł void init void { glclercolor0.0, 0.0, 0.0, 0.0; glshdemodelgl_smooth; //głdie cieniownie powierzchni glenblegl_lghtng; glenblegl_lght0; glenblegl_depth_test; } void displyvoid { GLflot pozycj0[] = {0.0, 0.0, 1.5, 1.0}; } glclergl_color_buffer_bt GL_DEPTH_BUFFER_BT; glpushmtrix; //dl ustwieni mery i obietu glulooat0.0,0.0,5.0, 0.0,0.0,0.0, 0.0,1.0,0.0; //mer glpushmtrix; //dl ustwieni świtł po obrocie glrottedgldoublespin, 1.0, 0.0, 0.0; gllightfvgl_lght0, GL_POSTON, pozycj0; //świtło glpopmtrix; glutsolidtorus0.275, 0.85, 8, 15;//obiet glpopmtrix; glflush;
7 void resizeint w, int h { glviewport0,0,glsizeiw, GLsizeih; glmtrixmodegl_projecton; glloddentity; gluperspective40.0, GLflotw/GLfloth, 1.0, 20.0; glmtrixmodegl_modelvew; glloddentity; } //żde wciśnięcie lewego przycisu myszy obróci świtło void mouseint button, int stte, int x, int y { switchbutton { cse GLUT_LEFT_BUTTON: if stte == GLUT_DOWN {//lewy przycis myszy wciśnięty spin = spin 30%360; glutpostredisply;//odrysuj scenę dl nowego ąt } bre; defult: bre; } }
8 Przyłd 4: Źródło porusz się rzem z merą, t j przy zwiedzniu oplni z lmpą n głowie hedlight. Pozycj świtł musi być ustwion przed przesztłcenimi widou mery. Jeżeli mer zostnie przemieszczon, to świtło przemieści się rzem z nią, utrzymując stły dystns od mery. GLflot pozycj[] = {0.0,0.0,0.0, 1.0}; //dystns świtł od mery void resizevoid { // j w przyłdzie 3 i dodtowo n ońcu } gllightfvgl_lght0, GL_POSTON, pozycj; //zmienne globlne sterujące merą: sttic GLdouble ex,ey,ez, upx,upy,upz; void displyvoid { } glclergl_color_buffer_bt GL_DEPTH_BUFFER_BT; glpushmtrix; glulooat ex,ey,ez, 0.0,0.0,0.0, upx,upy,upz; glutsolidtorus 0.275, 0.85, 8, 15; glpopmtrix; glflush;
9 Mterił Co dzieje się ze świtłem, tóre docier do powierzchni? Pochłninie 1, przepuszcznie bez złmni 2, przepuszcznie z złmniem 3 i odbijnie 4 świtł pdjącego n powierzchnię obietu. N b -L θl θr R da da Odbijnie świtł przez powierzchnię: prwo odbici θ L = θ R, b odbicie świtł od elementrnego frgmentu powierzchni da w sli mirosopowej: odbicie rozproszone i odbicie zwiercidlne
10 N Odbicie rozproszone L θ P = cos θ = d p d p d L o N Odbicie rozproszone: = d. Dl olejnych ul d = 0,3; 0,5; 0,8
11 Odbicie świtł otoczeni = env = env p =, dl olejnych ul = 0,8; 0,5; 0,3, p env P = d, = 0,3, dl olejnych ul d = 0,3; 0,5; 0,8;
12 Odbicie zwiercidlne L N θ θ P R V Jsność puntu P mleje, gdy ierune obserwcji V odchyl się od R. α n 5 20 n n s = ps cos α = ps R o V L N P θ θ α R V 100 Obserwtor nie zobczy reflesu świtł. s 0,2 0,4 0,6 = d s; = 0,2; d = 0,3
13 J obliczć R? L S Ncosθ N θ θ S R S R = N cosθ L, S = R N cosθ, = 2N cos θ L = 2N N o L L J przyspieszyć obliczeni? L N θ β H V Wetor połowiczny H = L V/ L V n n s = ps cos β = ps H o N H=const. gdy L=const. źródło świtł w niesończoności i V=const. obserwtor w niesończoności tylo dl obliczeń s.
14 Smoświecenie Efet rosnącego smoświeceni e
15 Równnie oświetleni Phong: n s d p env e V R L N o o = n s d p env e H N L N o o = Równnie oświetleni powinno spełnić zsdę zchowni energii. 1 s d 1 s d Dl olejnych ul, d, s: 0,5; 0,7; 0,6 0,3; 0,4; 0,6 0,2; 0,3; 0,5 0,1; 0,2; 0,4
16 Równni oświetleni dl olorowych świteł i powierzchni: d ds R G B R G B R G B O R O G O B 0,4 0,0 0,0 0,0 0,3 0,4 0,1 0,1 0,4 0,20 1 0,5 0,35 d 0,0 0,6 0,0 0,0 0,6 0,0 0,5 0,2 0,1 0,15 1 0,5 0,35 s 0,0 0,0 0,8 1,0 0,0 0,2 0,4 0,7 0,1 0,25 1 1,0 1,00 n N o L R o V, λ = eλ envλ λ pλ λ dλ gdzie λ =R,G,B sλ
17 Brw rozbłysu n metlu: model oświetleni Phong, b Model Torrnce-Sprrow b d=0,1; 0,05; 0,025 =2 d s=6 d m=0,25 η=17,9
18 n i s i ps i d i pd i p i m i i tt env e C f 1 0 N H N L o o λ λ λ λ λ λ = λ λ λ = lustrcj modelu oświetleni w bibliotece OpenGL θ β γ H V N L L D δ pi = pi, pdi, psi
19 glmteril*ścin, nzw_prmetru_mteriłu, wrtość; służy do oreśleni prmetrów modelu odbici Phong. Argument ścin wszuje, do tórej ściny obietu definiowny mterił m być zstosowny: przedniej GL_FRONT, tylnej GL_BACK, czy do obu GL_FRONT_AND_BACK. Prmetry mteriłu; dl olorów wrtość jest wsźniiem nzw_prmetru_mteriłu wrtość GL_AMBENT Współczynni odbici świtł otoczeni, domyślnie = 0.2, 0.2, 0.2, 1.0 GL_DFFUSE d, domyślnie 0.8, 0.8, 0.8, 1.0. Wyniow wrtość słdowej A intensywności obliczonej z r. oświetleni jest równ słdowej A oloru d GL_AMBENT_AND_DFFUSE Wspólny współczynni rozproszeni: = d GL_SPECULAR s, domyślnie 0.0, 0.0, 0.0, 1.0 GL_SHNNESS Wyłdni odbici zwiercidlnego n z zresu <0.0, 128.0>, domyślnie n = 0.0 GL_EMSSON ntensywność smoświeceni e, domyślnie e = 0.0, 0.0, GL_COLOR_NDEXES ndesy oloru mbient, diffuse i speculr
20 glcolormterilścin, nzw_współczynni_odbici; sygnlizuje, że występując po niej omend glcolor* m zmienić wrtość współczynni odbici: GL_AMBENT, d GL_DFFUSE, s GL_SPECULAR lub =d GL_AMBENT_AND_DFFUSE. Jest użyteczn, gdy tylo jeden współczynni mteriłu zdefiniownego wcześniej omendą glmteril* m ulec zminie, poniewż żde nowe wywołnie glcolormteril powoduje, że poprzedni zmin nie obowiązuje. glenblegl_color_materal; gldisblegl_color_materal; włącz/wyłącz trtownie bieżącego oloru jo współ. odbici. gllightmodel*typ_modelu, wrtość; służy do oreśleni prmetrów globlnych oświetleni. typ_modelu wrtość GL_LGHT_MODEL_AMBENT Brw env, domyślnie 0.2, 0.2, 0.2, 1.0 GL_LGHT_MODEL_LOCAL_VEWER GL_LGHT_MODEL_TWO_SDE Obserwtor dl odbici zwiercidlnego: domyślnie w niesończoności V= 0,0,1 wrtość równ 0.0 lub GL_FALSE, lub lolny - V obliczne z puntu widzeni i wierzchoł wrtość = GL_TRUE. Jednostronne oświetlenie powierzchni wrtość równ 0.0 lub GL_FALSE, lub dwustronne GL_TRUE.
6 Przygotował: mgr inż. Maciej Lasota
Laboratorium nr 6 1/7 Grafika Komputerowa 3D Instrukcja laboratoryjna Temat: Materiały i oświetlenie 6 Przygotował: mgr inż. Maciej Lasota 1) Wprowadzenie Specyfikacja biblioteki OpenGL rozróżnia trzy
Światła i rodzaje świateł. Dorota Smorawa
Światła i rodzaje świateł Dorota Smorawa Rodzaje świateł Biblioteka OpenGL posiada trzy podstawowe rodzaje świateł: światło otoczenia, światło rozproszone oraz światło odbite. Dodając oświetlenie na scenie
Światło. W OpenGL można rozróżnić 3 rodzaje światła
Wizualizacja 3D Światło W OpenGL można rozróżnić 3 rodzaje światła Światło otaczające (ambient light) równomiernie oświetla wszystkie elementy sceny, nie pochodzi z żadnego konkretnego kierunku Światło
Oświetlenie w OpenGL. Oprogramowanie i wykorzystanie stacji roboczych. Wykład 8. Światło otaczajace. Światło rozproszone.
Oświetlenie w OpenGL Oprogramowanie i wykorzystanie stacji roboczych Wykład 8 Dr inż. Tomasz Olas olas@icis.pcz.pl W OpenGL źródło światła w scenie składa się z trzech składowych oświetlenia: otoczenia,
OpenGL transformacje przestrzenne
OpenGL trnsformcje przestrzenne Kżdy zdefiniowny obiekt sceny, znim pojwi się n ekrnie monitor, poddwny jest trzem podstwowym trnsformcjom: Obserwcji Modelowni Projekcji Projekcj określ frgment przestrzeni,
GRK 4. dr Wojciech Palubicki
GRK 4 dr Wojciech Palubicki Uproszczony Potok Graficzny (Rendering) Model Matrix View Matrix Projection Matrix Viewport Transform Object Space World Space View Space Clip Space Screen Space Projection
G:\AA_Wyklad 2000\FIN\DOC\Nieciagly.doc. Drgania i fale II rok Fizyki BC
Fle w ośrodu o struturze periodycznej: N ogół roziry nieciągłości ośrod
Prawdopodobieństwo i statystyka
Zadanie Rozważmy następujący model strzelania do tarczy. Współrzędne puntu trafienia (, Y ) są niezależnymi zmiennymi losowymi o jednaowym rozładzie normalnym N ( 0, σ ). Punt (0,0) uznajemy za środe tarczy,
Materiały. Dorota Smorawa
Materiały Dorota Smorawa Materiały Materiały, podobnie jak światła, opisywane są za pomocą trzech składowych. Opisują zdolności refleksyjno-emisyjne danej powierzchni. Do tworzenia materiału służy funkcja:
OpenGL model oświetlenia
Składowe światła OpenGL Światło otaczające (ambient) OpenGL model oświetlenia Nie pochodzi z żadnego określonego kierunku. Powoduje równomierne oświetlenie obiektów na wszystkich powierzchniach i wszystkich
Grafika 3D OpenGL część II
#include #include #include float kat=0.0f; void renderujscene(void) { glclearcolor(1.0f,1.0f,1.0f,1.0f); glclear(gl_color_buffer_bit); glpushmatrix(); glrotatef(kat,0,0,1);
Temat: Transformacje 3D
Instrukcja laboratoryjna 11 Grafika komputerowa 3D Temat: Transformacje 3D Przygotował: dr inż. Grzegorz Łukawski, mgr inż. Maciej Lasota, mgr inż. Tomasz Michno 1 Wstęp teoretyczny Bardzo często programując
ostatnia aktualizacja 4 maja 2015
ostatnia aktualizacja 4 maja 2015 strona 1 Ziemia nie jest sztywna! Jest elastyczna, lepka, sprężysta... strona 2 punktu Początkowy potencjał w punkcie A W A strona 3 punktu Początkowy potencjał w punkcie
1. RACHUNEK WEKTOROWY
1 RACHUNEK WEKTOROWY 1 Rozstrzygnąć, czy możliwe jest y wartość sumy dwóch wetorów yła równa długości ażdego z nich 2 Dane są wetory: a i 3 j 2 ; 4 j = + = Oliczyć: a+, a, oraz a 3 Jai ąt tworzą dwa jednaowe
4) Podaj wartość stałych czasowych, wzmocnienia i punkt równowagi przy wymuszeniu impulsowym
LISA0: Podtwowe człony (obiety) dynmii Przygotownie ) Wymień i opiz włności podtwowych członów (obiety) dynmii potć trnmitncji nzwy i ogrniczeni prmetrów ) Wymień podtwowe człony dynmii dl tórych trnmitncj
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Oświetlenie obiektów 3D
Synteza i obróbka obrazu Oświetlenie obiektów 3D Opracowanie: dr inż. Grzegorz Szwoch Politechnika Gdańska Katedra Systemów Multimedialnych Rasteryzacja Spłaszczony po rzutowaniu obraz siatek wielokątowych
dr inż. Zbigniew Szklarski
Wkłd 3: Kinemtk dr inż. Zbigniew Szklrski szkl@gh.edu.pl http://ler.uci.gh.edu.pl/z.szklrski/ Wstęp Opis ruchu KINEMATYKA Dlczego tki ruch? Przczn ruchu DYNAMIKA MECHANIKA Podstwowe pojęci dl ruchu prostoliniowego
ef 3 (dziedzina, dziedzina naturalna) Niech f : A R, gdzie A jest podzbiorem płaszczyzny lub przestrzeni Zbiór A nazywamy dziedziną funcji f i oznacza
FUNKCJE WÓCH I TRZECH ZMIENNYCH (było w semestrze II) ef 1 (funcja dwóch zmiennych) Funcją f dwóch zmiennych oreśloną na zbiorze A R o wartościach w R nazywamy przyporządowanie ażdemu puntowi ze zbioru
34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 1
Włodzimierz Wolczyński 34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 1 ODBICIE ŚWIATŁA. ZWIERCIADŁA Do analizy obrazów w zwierciadle sferycznym polecam aplet fizyczny http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=48
OpenGL oświetlenie. Bogdan Kreczmer. Katedra Cybernetyki i Robotyki Wydziału Elektroniki Politechnika Wrocławska
OpenGL oświetlenie Bogdan Kreczmer bogdan.kreczmer@pwr.wroc.pl Katedra Cybernetyki i Robotyki Wydziału Elektroniki Politechnika Wrocławska Kurs: Copyright c 2017 Bogdan Kreczmer Niniejszy dokument zawiera
Kształty komórek elementarnych
Ksztłty omóre elementrnych Komóri elementrne Brvis Grupy trnslcyjne Brvis Ułd Grup trnslcyjn regulrny P, I, F tetrgonlny P, I rombowy P, C, I, F jednosośny P, C, trójsośny P trygonlny R hesgonlny P Prwo
Ćwiczenie 03 POMIAR LUMINANCJI POMIAR LUMINANCJI. Celem ćwiczenia jest poznanie metod pomiaru luminancji oraz budowy i zasady działania nitomierza.
Ćwiczenie O3. Cel i zres ćwiczeni Celem ćwiczeni jest poznnie metod pomiru luminncji orz udowy i zsdy dziłni nitomierz.. Widomości wstępne i opis stnowis lortoryjnego Definicj I: Luminncją świetlną nzywmy
Równania różniczkowe liniowe rzędu pierwszego
Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to
2 Przygotował: mgr inż. Maciej Lasota
Laboratorium nr 2 1/6 Grafika Komputerowa 3D Instrukcja laboratoryjna Temat: Manipulowanie przestrzenią 2 Przygotował: mgr inż. Maciej Lasota 1) Manipulowanie przestrzenią Istnieją dwa typy układów współrzędnych:
Wydajność konwersji energii słonecznej:
Wykład II E we Wydajność konwersji energii słonecznej: η = E wy E we η całkowite = η absorpcja η kreacja η dryft/dyf η separ η zbierania E wy Jednostki fotometryczne i energetyczne promieniowania elektromagnetycznego
Laboratorium Grafiki Komputerowej i Animacji. Ćwiczenie V. Biblioteka OpenGL - oświetlenie sceny
Laboratorium Grafiki Komputerowej i Animacji Ćwiczenie V Biblioteka OpenGL - oświetlenie sceny Sławomir Samolej Rzeszów, 1999 1. Wstęp Większość tworzonych animacji w grafice komputerowej ma za zadanie
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Animowana grafika 3D. Opracowanie: J. Kęsik.
Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollub.pl Powierzchnia obiektu 3D jest renderowana jako czarna jeżeli nie jest oświetlana żadnym światłem (wyjątkiem są obiekty samoświecące) Oświetlenie
Gry komputerowe, Informatyka N1, III Rok
Oświetlenie Potok renderowania. Techniki oświetlenia i cieniowania. http://bazyluk.net/dydaktyka Gry komputerowe, Informatyka N1, III Rok POTOK RENDEROWANIA W grafice realistycznej stosuje się zwykle podejścia
Bartosz Bazyluk POTOK RENDEROWANIA Etapy renderowania w grafice czasu rzeczywistego. Grafika Komputerowa, Informatyka, I Rok
POTOK RENDEROWANIA Etapy renderowania w grafice czasu rzeczywistego. http://bazyluk.net/zpsb Grafika Komputerowa, Informatyka, I Rok POTOK RENDEROWANIA W grafice realistycznej stosuje się zwykle podejścia
Arkusz 1 - karta pracy Całka oznaczona i jej zastosowania. Całka niewłaściwa
Arkusz - krt prcy Cłk oznczon i jj zstosowni. Cłk niwłściw Zdni : Obliczyć nstępując cłki oznczon 5 d 5 d + 5 + 7 d Zuwżmy, ż d, Stąd d, + 5 + 7 d + ] 7 + + ln d cos sin d d ]. d + d 5, d + 5 + 7 7 7 d
ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etapy rozwiązania zadania , 3 5, 7
Próbn egzmin mturln z mtemtki Numer zdni ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etp rozwiązni zdni Liczb punktów Podnie wrtości b: b = Sporządzenie wkresu funkcji g Uwgi dl egzmintorów 4 Krzw
Równanie Fresnela. napisał Michał Wierzbicki
napisał Michał Wierzbici Równanie Fresnela W anizotropowych ryształach optycznych zależność między wetorami inducji i natężenia pola eletrycznego (równanie materiałowe) jest następująca = ϵ 0 ˆϵ E (1)
Model oświetlenia. Radosław Mantiuk. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie
Model oświetlenia Radosław Mantiuk Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Obliczenie koloru powierzchni (ang. Lighting) Światło biegnie od źródła światła, odbija
Grafika Komputerowa Wykład 5. Potok Renderowania Oświetlenie. mgr inż. Michał Chwesiuk 1/38
Wykład 5 Potok Renderowania Oświetlenie mgr inż. 1/38 Podejście śledzenia promieni (ang. ray tracing) stosuje się w grafice realistycznej. Śledzone są promienie przechodzące przez piksele obrazu wynikowego
Geometria analityczna przestrzeni
ALGEBRA LINIOWA 1 Wydział Mechaniczny / AIR, MTR Semestr zimowy 2009/2010 Prowadzący: dr Teresa Jurlewicz Wetory, długość wetora Geometria analityczna przestrzeni Zadanie 1 [5.1] Obliczyć długości podanych
KSIĘGA ZNAKU. Znak posiada swój obszar ochronny i w jego obrębie nie mogą się znajdować żadne elementy, nie związane ze znakiem.
KSIĘGA ZNAKU KSIĘGA ZNAKU Poniżej przedstwion jest chrkterystyk znku 7 lt Uniwersytetu Łódzkiego. Wszystkie proporcje i sposób rozmieszczeni poszczególnych elementów są ściśle określone. Wprowdznie jkichkolwiek
Statystyka Matematyczna Anna Janicka
Statystyka Matematyczna Anna Janicka wykład X, 9.05.206 TESTOWANIE HIPOTEZ STATYSTYCZNYCH II: PORÓWNYWANIE TESTÓW Plan na dzisiaj 0. Przypomnienie potrzebnych definicji. Porównywanie testów 2. Test jednostajnie
Komputerowa reprezentacja oraz prezentacja i graficzna edycja krzywoliniowych obiektów 3d
Komputerowa reprezentacja oraz prezentacja i graficzna edycja rzywoliniowych obietów 3d Jan Prusaowsi 1), Ryszard Winiarczy 1,2), Krzysztof Sabe 2) 1) Politechnia Śląsa w Gliwicach, 2) Instytut Informatyi
Grafika Komputerowa. Metoda śledzenia promieni
Grafika Komputerowa. Metoda śledzenia promieni Aleksander Denisiuk Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Ò Ù Ô º ÙºÔÐ 1 / 30 Metoda śledzenia
Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania.
Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania. Chcąc osiągnąć realizm renderowanego obrazu, należy rozwiązać problem świetlenia. Barwy, faktury i inne właściwości przedmiotów postrzegamy
Elementarne obiekty geometryczne, bufory. Dorota Smorawa
Elementarne obiekty geometryczne, bufory Dorota Smorawa Elementarne obiekty Tworząc scenę 3D, od najprostszej, po najbardziej skomplikowaną, używamy obiektów złożonych, przede wszystkim podstawowych, elementarnych
Grafika komputerowa INSTRUKCJA DO LABORATORIUM 2: operacje przestrzenne oraz obsługa klawiatury i myszki
Grafika komputerowa INSTRUKCJA DO LABORATORIUM 2: operacje przestrzenne oraz obsługa klawiatury i myszki Strona 1 z 9 C E L Ć W I C Z E N I A Celem ćwiczenia jest zapoznanie się z podstawowymi operacjami
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Mteriły dydktyczne n zjęci wyrównwcze z mtemtyki dl studentów pierwszego roku kierunku zmwinego Inżynieri i Gospodrk Wodn w rmch projektu Er inżynier pewn lokt n przyszłość Projekt Er inżynier pewn lokt
BADANIE WRAŻLIWOŚCI UKŁADÓW WIELO-PARAMETRYCZNYCH
POZNAN UNVE RSTY OF TE CHNOLOGY ACADE MC JOURNALS No 86 Electricl Engineering 06 Jnusz TYKOCK* Andrzej JORDAN* Dniel ŻELAZNY* BADANE WRAŻLWOŚC UKŁADÓW WELO-PARAMETRYCZNYCH W prcy przedstwiono dnie wrżliwości
Wykład 21: Studnie i bariery cz.1.
Wyład : Studnie i bariery cz.. Dr inż. Zbigniew Szlarsi Katedra Eletronii, paw. C-, po.3 szla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szlarsi/ 3.6.8 Wydział Informatyi, Eletronii i Równanie Schrödingera
2. FUNKCJE WYMIERNE Poziom (K) lub (P)
Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy
Światło widzialne a widmo elektromagnetyczne
Światło widzialne a widmo elektromagnetyczne 10 3 λ [nm] λ 10 6 10 12 fale radiowe 1 mm 10 9 10 12 10 9 10 6 mikrofale 100 µm 10 µm 10 15 10 18 10 21 10 3 1 10 3 widmo optyczne prom. X promienie gamma
13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE
Część 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3. 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3.. Metoda trzech momentów Rozwiązanie wieloprzęsłowych bele statycznie niewyznaczalnych można ułatwić w znaczącym
dr inż. Zbigniew Szklarski
Wkłd 3: Kinemtk d inż. Zbigniew Szklski szkl@gh.edu.pl http://le.uci.gh.edu.pl/z.szklski/ Wstęp Opis uchu KINEMATYKA Dlczego tki uch? Pzczn uchu DYNAMIKA MECHANIKA 08.03.018 Wdził Infomtki, Elektoniki
DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH
Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza
STATYSTYKA MATEMATYCZNA WYKŁAD października 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 4 26 października 2009 Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ (X µ) 2 { (x µ) 2 exp 1 ( ) } x µ 2 dx 2 σ Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ
i = [ 0] j = [ 1] k = [ 0]
Ćwiczenia nr TEMATYKA: Układy współrzędnych: kartezjański, walcowy (cylindryczny), sferyczny (geograficzny), Przekształcenia: izometryczne, nieizometryczne. DEFINICJE: Wektor wodzący: wektorem r, ρ wodzącym
Przegląd metod optymalizacji wielowymiarowej. Funkcja testowa. Funkcja testowa. Notes. Notes. Notes. Notes. Tomasz M. Gwizdałła
Przegląd metod optymalizacji wielowymiarowej Tomasz M. Gwizdałła 2012.12.06 Funkcja testowa Funkcją testową dla zagadnień rozpatrywanych w ramach tego wykładu będzie funkcja postaci f (x) = (x 1 1) 4 +
Geometria Analityczna w Przestrzeni
Algebra p. 1/25 Algebra Geometria Analityczna w Przestrzeni Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045
G:\AA_Wyklad 2000\FIN\DOC\FRAUN1.doc. "Drgania i fale" ii rok FizykaBC. Dyfrakcja: Skalarna teoria dyfrakcji: ia λ
Dyfrakcja: Skalarna teoria dyfrakcji: U iω t [ e ] ( t) Re U ( ) ;. c t U ( ; t) oraz [ + ] U ( ) k. U ia s ( ) A e ik r ( rs + r ) cos( n, ) cos( n, s ) ds s r. Dyfrakcja Fresnela (a) a dyfrakcja Fraunhofera
MECHANIKA OGÓLNA (II)
MECHNIK GÓLN (II) Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 Liczba godzin: sem. II *) - wykład 30 godz., ćwiczenia 30 godz. sem. III *) - wykład 30 godz., ćwiczenia 30 godz., ale
III.3 Transformacja Lorentza prędkości i przyspieszenia. Efekt Dopplera
r. kd. 5/ 6 III.3 Trnsformj Lorentz prędkośi i przyspieszeni. Efekt Doppler Trnsformj prędkośi Trnsformj przyspieszeni Efekt Doppler Jn Królikowski Fizyk IBC r. kd. 5/ 6 Trnsformj prędkośi Bdmy ruh punktu
WYKŁAD 5 METODY OPTYMALIZACJI NIELINIOWEJ BEZ OGRANICZEŃ
WYKŁAD 5 METODY OPTYMALIZACJI NIELINIOWEJ BEZ OGRANICZEŃ Wstęp. Za wyjątie nielicznych funcji, najczęściej w postaci wieloianów, dla tórych ożna znaleźć iniu na drodze analitycznej, pozostała więszość
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyi i Informatyi Stosowanej Aademia Górniczo-Hutnicza Wyład 12 M. Przybycień (WFiIS AGH Metody Lagrange a i Hamiltona... Wyład 12
ILOCZYNY WEKTORÓW. s równoległe wtedy i tylko wtedy. b =
St Kowls Włd mtemt dl studentów erunu Mehn włd ILOZYNY WEKTORÓW 3 { : } trówmrow prestre tór mon nterpretow n tr sposo: Jo ór puntów W te nterpret element prestren 3 nw s puntm Nps on e punt m współrdne
Całkowanie. dx d) x 3 x+ 4 x. + x4 big)dx g) e x 4 3 x +a x b x. dx k) 2x ; x 0. 2x 2 ; x 1. (x 2 +3) 6 j) 6x 2. x 3 +3 dx k) xe x2 dx l) 6 1 x dx
Wydził Mtemtyki Stosownej Zestw zdń nr 5 Akdemi Górniczo-Hutnicz w Krkowie WFiIS, informtyk stosown, I rok Elżbiet Admus 3 listopd 6r. Cłk nieoznczon Cłkownie. Podstwowe metody cłkowni Zdnie. Oblicz cłki:
GRAKO: ŚWIATŁO I CIENIE. Modele barw. Trochę fizyki percepcji światła. OŚWIETLENIE: elementy istotne w projektowaniu
GRAKO: ŚWIATŁO I CIENIE Metody oświetlania Metody cieniowania Przykłady OŚWIETLENIE: elementy istotne w projektowaniu Rozumienie fizyki światła w realnym świecie Rozumienie procesu percepcji światła Opracowanie
V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania
V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania 1. Ogólne wyrażenia na aberrację światła. Rozpad cząstki o masie M na dwie cząstki o masach m 1 i m 3. Rozpraszanie fotonów z lasera GaAs
Analiza matematyczna v.1.6 egzamin mgr inf niestacj 1. x p. , przy założeniu, że istnieją lim
Anliz mtemtyczn v..6 egzmin mgr inf niestcj Oznczeni: f, g, h : J R funkcje rzeczywiste określone n J R J przedził, b),, b], [, b), [, b], półprost, b),, b],, ), [, ) lub prost R α, β [min{α, β}, m{α,
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 8, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 8, 09.03.0 wykład: pokazy: ćwiczenia: zesław Radzewicz Radosław hrapkiewicz, Filip Ozimek Ernest Grodner Wykład 7 - przypomnienie eikonał
Zadania do rozdziału 5
Zadania do rozdziału 5 Zad.5.1. Udowodnij, że stosując równię pochyłą o dającym się zmieniać ącie nachylenia α można wyznaczyć współczynni tarcia statycznego µ o. ozwiązanie: W czasie zsuwania się po równi
obliczenie różnicy kwadratów odległości punktów po i przed odkształceniem - różniczka zupełna u i, j =1, 2, 3
TEORI STNU ODKSZTŁCENI. WEKTOR RZEMIESZCZENI x u r r ' ' x stan p defrmacj x stan przed defrmacją płżene pt. przed defrmacją ( r) ( x, x, x ) płżene pt. p defrmacj ( r ) ( x, x, x ) przemeszczene puntu
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ LISTA ZADAŃ 1 1 Napisać w formie rozwiniętej następujące wyrażenia: 4 (a 2 + b +1 =0 5 a i b j =1 n a i b j =1 n =0 (a nb 4 3 (! + ib i=3 =1 2 Wyorzystując twierdzenie o
4.15 Badanie dyfrakcji światła laserowego na krysztale koloidalnym(o19)
256 Fale 4.15 Badanie dyfracji światła laserowego na rysztale oloidalnym(o19) Celem ćwiczenia jest wyznaczenie stałej sieci dwuwymiarowego ryształu oloidalnego metodą dyfracji światła laserowego. Zagadnienia
Programowanie gier komputerowych Tomasz Martyn Wykład 6. Materiały informacje podstawowe
Programowanie gier komputerowych Tomasz Martyn Wykład 6. Materiały informacje podstawowe Czym są tekstury? Tekstury są tablicowymi strukturami danych o wymiarze od 1 do 3, których elementami są tzw. teksele.
GRAFIKA CZASU RZECZYWISTEGO Interakcja, ruch kamery, oświetlenie.
Bartosz Bazyluk GRAFIKA CZASU RZECZYWISTEGO Interakcja, ruch kamery, oświetlenie. Grafika komputerowa i wizualizacja, Bioinformatyka S1, II Rok Kamera w OpenGL Aby opisać jednoznacznie położenie kamery,
Analiza numeryczna. Stanisław Lewanowicz. Całkowanie numeryczne. Definicje, twierdzenia, algorytmy
http://wwwiiuniwrocpl/ sle/teching/n-wdrpdf Anliz numeryczn Stnisłw Lewnowicz Styczeń 008 r Cłownie numeryczne Definicje, twierdzeni, lgorytmy 1 Pojęci wstępne Niech IF IF [, b] ozncz zbiór wszystich funcji
Koła rowerowe malują fraktale
Koła rowerowe malują fratale Mare Berezowsi Politechnia Śląsa Rozważmy urządzenie sładającego się z n ół o różnych rozmiarach, obracających się z różnymi prędościami. Na obręczy danego oła, obracającego
Sumy algebraiczne i funkcje wymierne
Sumy lgebriczne i funkcje wymierne Moduł - dził -temt Zkres treści Sumy lgebriczne 1 definicj jednominu, sumy lgebricznej, wyrzów podobnych pojęcie współczynnik jednominu Dodwnie i odejmownie sum lgebricznych
splajnami splajnu kubicznego
WYKŁAD 6 INTERPOLACJA FUNKCJAMI SKLEJANYMI (SPLAJNY) W tym wyłdzie omówimy prolem interpolcji przy pomocy tzw. funcji slejnych, zwnych też (żrgonowo) spljnmi. W przeciwieństwie do metod interpolcyjnych
Wyznaczanie długości fali świetlnej za pomocą spektrometru siatkowego
Politechnia Łódza FTIMS Kierune: Informatya ro aademici: 2008/2009 sem. 2. Termin: 16 III 2009 Nr. ćwiczenia: 413 Temat ćwiczenia: Wyznaczanie długości fali świetlnej za pomocą spetrometru siatowego Nr.
Hipotezy statystyczne
Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o którego prawdziwości lub fałszywości wnioskuje się na podstawie pobranej
(4) (b) m. (c) (d) sin α cos α = sin 2 k = sin k sin k. cos 2 m = cos m cos m. (g) (e)(f) sin 2 x + cos 2 x = 1. (h) (f) (i)
(3) (e) sin( θ) sin θ cos( θ) cos θ sin(θ + π/) cos θ cos(θ + π/) sin θ sin(θ π/) cos θ cos(θ π/) sin θ sin(θ ± π) sin θ cos(θ ± π) cos θ sin(θ ± π) sin θ cos(θ ± π) cos θ (f) cos x cos y (g) sin x sin
MODELOWANIE OŚWIETLENIA SCEN 3-D3
WYKŁAD 8 MODELOWANE OŚWETLENA O SCEN 3-D3 Pln wkłdu: Sformułownie ownie problemu Podstwowe modele oświetlenio Algortm genercji obrzów w scen oświetlonch o. Sformułownie ownie problemu v źródło świtł obiekt
Sterowanie układem zawieszenia magnetycznego
Politechnika Śląska w Gliwicach Wydział: Automatyki, Elektroniki i Informatyki Kierunek: Automatyka i Robotyka Specjalność: Komputerowe systemy sterowania Sterowanie układem zawieszenia magnetycznego Maciej
Bezgradientowe metody optymalizacji funkcji wielu zmiennych. informacje dodatkowe
Bezgradientowe metody optymalizacji funkcji wielu zmiennych informacje dodatkowe Wybór kierunku poszukiwań Kierunki bazowe i ich modyfikacje metody bezgradientowe. Kierunki oparte na gradiencie funkcji
Hipotezy statystyczne
Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o którego prawdziwości lub fałszywości wnioskuje się na podstawie pobranej próbki losowej. Hipotezy
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
Technika optymalizacji
Algorytmy bezgraientowe Algorytmy optymalizacji loalnej c. Nieliniowe zaanie optymalizacji statycznej bez ograniczeń - nieliniowe algorytmy optymalizacji loalnej c. r inŝ. Ewa Szlachcic Wyział Eletronii
Analiza Matematyczna Praca domowa
Analiza Matematyczna Praca domowa J. de Lucas Zadanie 1. Pokazać, że dla wszystkich n naturalnych ( n ) exp kx k dx 1 dx n = 1 n (e k 1). (0,1) n k=1 n! k=1 Zadanie. Obliczyć dla dowolnego n. (0,1) n (x
Wymagania kl. 2. Uczeń:
Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej
Oprogramowanie i wykorzystanie stacji roboczych. Wykład 6
Wykład 6 p. 1/2 Oprogramowanie i wykorzystanie stacji roboczych Wykład 6 Dr inż. Tomasz Olas olas@icis.pcz.pl Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Wektory normalne
Ruch i położenie satelity. dr hab. inż. Paweł Zalewski, prof. AM Centrum Inżynierii Ruchu Morskiego
Ruch i położenie satelity dr hab. inż. Paweł Zalewsi, prof. AM Centrum Inżynierii Ruchu Morsiego Podstawy mechanii ciał niebiesich: Znajomość pozycji satelity w przyjętym systemie odniesienia w danym momencie
Zadanie 5. Kratownica statycznie wyznaczalna.
dnie 5. Krtownic sttycznie wyznczln. Wyznczyć wrtości sił w prętch krtownicy sttycznie wyznczlnej przedstwionej n Rys.1: ). metodą nlitycznego równowżeni węzłów, ). metodą gricznego równowżeni węzłów;
Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02
Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie
ANALIZA WARTOŚCI NAPIĘĆ WYJŚCIOWYCH TRANSFORMATORÓW SN/nn W ZALEŻNOŚCI OD CHARAKTERU I WARTOŚCI OBCIĄŻENIA
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE IC JOURNALS No 78 Electricl Engineering 4 Ryszrd NAWROWSKI* Zbigniew STEIN* ri ZIELIŃSKA* ANALIZA WARTOŚCI NAPIĘĆ WYJŚCIOWYCH TRANSFORATORÓW SN/nn W ZALEŻNOŚCI OD
Skrypt 20. Planimetria: Opracowanie L6
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 20 Planimetria: 1. Kąty w
Obliczeniowa nośność przekroju zbudowanego wyłącznie z efektywnych części pasów. Wartość przybliżona = 0,644. Rys. 25. Obwiednia momentów zginających
Obliczeniowa nośność przekroju zbudowanego wyłącznie z efektywnych części pasów. Wartość przybliżona f y M f,rd b f t f (h γ w + t f ) M0 Interakcyjne warunki nośności η 1 M Ed,385 km 00 mm 16 mm 355 1,0
1. Oświetlenie Materiały i powierzchnie
1. Oświetlenie Rzeczywiste światło emitowane przez określone źródło, odbijane jest na milionach powierzchni obiektów, po czym dociera do naszych oczu powodując, że widzimy dane przedmioty. Światło padające
FUNKCJE. Rozwiązywanie zadań Ćw. 1-3 a) b) str Ćw. 5 i 6 str. 141 dodatkowo podaj przeciwdziedzinę.
FUNKCJE Lekcja 61-6. Dziedzina i miejsce zerowe funkcji str. 140-14 Co to jest funkcja. Może przykłady. W matematyce funkcje najczęściej przedstawiamy za pomocą wzorów. Przykłady. Dziedzina to zbiór argumentów
1 Wstęp teoretyczny. Temat: Manipulowanie przestrzenią. Grafika komputerowa 3D. Instrukcja laboratoryjna Układ współrzędnych
Instrukcja laboratoryjna 9 Grafika komputerowa 3D Temat: Manipulowanie przestrzenią Przygotował: dr inż. Grzegorz Łukawski, mgr inż. Maciej Lasota, mgr inż. Tomasz Michno 1 Wstęp teoretyczny 1.1 Układ
mechanika analityczna 2 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej
mechnik nlityczn niereltywistyczn L.D.Lndu, E.M.Lifszyc Krótki kurs fizyki teoretycznej ver-8.06.07 środek msy w różnych ukłdch inercjlnych v = v ' u m v = P= P ' u m v ' m m u trnsformcj pędu istnieje