dr inż. Zbigniew Szklarski
|
|
- Maria Kujawa
- 5 lat temu
- Przeglądów:
Transkrypt
1 Wkłd 3: Kinemtk dr inż. Zbigniew Szklrski
2 Wstęp Opis ruchu KINEMATYKA Dlczego tki ruch? Przczn ruchu DYNAMIKA MECHANIKA
3 Podstwowe pojęci dl ruchu prostoliniowego i krzwoliniowego. r r ( t 1 ) r t ) ( przemieszczenie r r t ) r( ) tor ruchu ( t1 śr r ( t 1 ) r ( t ) r t ) ( r prędkość średni r r ( t t t t śr ) r ( t1) 1 gd t t 1 Δt to Δr dr dr prędkość chwilow 3
4 Prędkość chwilow jko grnic prędkości średniej lim0 t r t dr skoro r i ˆ + ˆj to Wektor prędkości chwilowej jest zwsze stczn do toru. dr d d iˆ + ˆj i ˆ + ˆj z d d dz 4
5 Przspieszenie Przspieszenie związne jest ze zminą wektor prędkości d Jeżeli d poniewż: d iˆ + ˆj i ˆ + const to 0 ˆj + t z d lim t 0 d dz d t Δt 0 Δ >0 <0 t d d 0 t 0 t więc 0 + t 5
6 Wzgledność ruchów Kżd ruch opisujem względem jkiegoś ukłdu odniesieni W chwili t 0 rusz smochód i zczn toczć się piłk - ob STOP A cił mją tką smą szbkość względem ukłdu A. Piłk względem ukłdu B jest nieruchom! B 6
7 Trnsformcj Glileuszzłożeni Przestrzeń jest euklidesow Przestrzeń jest izotropow Rozptrwne są ukłd inercjlne Prw ruchu Newton są słuszne w ukłdzie inercjlnm-n Ziemi Obowiązuje prwo powszechnego ciążeni 7
8 Trnsformcj Glileusz ( ) Ciło jest nieruchome w ukłdzie X Y Z, m w nim współrzędną Ukłd X Y Z porusz się względem ukłdu XYZ wzdłuż osi OX. Czs w obu ukłdch biegnie tk smo. Współrzędne cił widzine w ukłdzie XYZ: +vt z z t t Trnsformcj odwrotn: - vt z z t t Prz ruchu cił w X Y Z z szbkością u jego szbkość w ukłdzie XYZ: z v + u 8 Y Z Y v t Z u X X
9 Przkłd Podczs ćwiczeń rtownictw morskiego, jednm z zdń jkie mił wkonć smolot rtownicz bło zrzucenie młego pojemnik z trtwą rtunkową możliwie blisko wzwjącego pomoc rozbitk. W tm celu lecąc z szbkością km/h smolot zszedł do lotu poziomego n wsokości h 100 m nd poziomem morz. 1. Jkim ruchem porusz się po opuszczeniu smolotu, pojemnik względem: pilot; rozbitk?. Npisz równni (n (t) i (t) ) opisujące położenie pojemnik względem: pilot; rozbitk; 3. Npisz równni opisujące prędkość ( (t) i (t) ) pojemnik względem: pilot; rozbitk; 4. W jkiej odległości od rozbitk nleż upuścić pojemnik z trtwą? W rozwżnich nleż pominąć opór powietrz. 5. Oblicz z jką szbkością pojemnik wpdnie do wod. 6. Oblicz pod jkim kątem pojemnik uderz w wodę. 9
10 Ruch krzwoliniow v 1 W ruchu krzwoliniowm wstępuje zmin wektor prędkości. v 1 v v Konsekwencją tego jest wstępownie przspieszeni pomimo stłej wrtości prędkości 10
11 Przspieszenie stczne i normlne Ruch jednostjn S t S r ds r S d ds r d 1 r ds r d czli r 11
12 Związek pomiędz prędkością liniową i kątową z r r ˆ w ruchu jednostjnm po okręgu, wektor prędkości kątowej jest stł reguł śrub!! 1
13 Ruch niejednostjn po okręgu dl współrzędnej : r sin ( t) r (t) d r d cos ( t) d r d cos r sin 13
14 r sin ( t) r d cos r sin skoro: d d d i to r cos orz r cos czli 14
15 mm: nlogicznie r cos ( t) r sin Skoro i ˆ + ˆj to iˆ iˆ ˆ j + ˆ j ˆ (ˆ i + j) (ˆ i + ˆj ) r osttecznie: przspieszenie stczne przspieszenie dośrodkowe 15
16 Wnioski: - kied mleje skłdow prędkości, to rośnie skłdow - przspieszenie dośrodkowe skierowne jest wzdłuż promieni, do środk okręgu - wrtość przspieszeni dośrodkowego jest równ: n r 16
17 Przkłd 1. Pjąk porusz się po torze krzwoliniowm, którego ct długość opisn jest równniem: S( t) S0e gdzie S 0 i c to stłe. Wektor przspieszeni pjąk tworz w kżdm punkcie toru stł kąt φ ze stczną do jego toru. Obliczć wrtość: ) przspieszeni stcznego, b) przspieszeni normlnego, c) promieni krzwizn toru jko funkcji długości łuku krzwej. ROZWIĄZANIE: ) przspieszenie stczne stąd s c S0 e ct d s d S ds c S0 ct e 17
18 b) przspieszenie normlne: z rsunku wnik że stąd tg n s s n S( t) S0e ct n tg c S e tg s 0 ct c) promień krzwizn toru jko funkcj długości łuku krzwej: z innej definicji przspieszeni dośrodkowego (normlnego): stąd podstwijąc wliczone wcześniej : r n c S0 e ct r n c c S S 0 0 e ct ( e ) ct tg S 0 e ct ctg S ctg 18
19 . Punkt mteriln porusz się po ćwirtce elips o równniu: /c + /b 1 prz czm > 0, > 0, (0) 0, (0) b, v(0) (v 0,0). Wiedząc, że wektor przspieszeni punktu -(t)j znleźć: ) równni ruchu punktu, b) oblicz po jkim czsie punkt mteriln znjdzie się w położeniu (c, 0), c) podj wektor prędkości punktu, d) oblicz prędkość punktu mterilnego w punkcie (c, 0). 19
20 3. Punkt mteriln porusz się po okręgu o promieniu R 3,6 m. W pewnej chwili n cząsteczkę zczn dziłć przspieszenie o wrtości 0,1g, tworzące w kżdm punkcie okręgu po jkim ndl porusz się cząsteczk, stł kąt 30 0 ze stczną do jego toru. Obliczć: ) szbkość cząsteczki w momencie zdziłni przspieszeni, b) szbkość cząsteczki w dwie sekund później. 0
21 Inne ruch krzwoliniowe Rzut ukośn jest to złożenie dwóch niezleżnch ruchów- - ruchu jednostjnego (poziomo) - ruchu jednostjnie zmiennego (pionowo) 1
22 Oś : F 0; 0, ruch jednostjn HRW,1 Oś : F mg; g, ruch jednostjnie zmienn
23 Oś : v v 0 v t const g gj ˆ HRW,1 Oś : v v 0 gt v 0 t gt (tgθ 0 ) (v 0 g cos θ 0 ) równnie toru - prbol 3
24 .. tk jest nprwdę: Sił oporu powietrz wpłw n tor rzutu ukośnego! Piłk do gr w bsebll rzucon pod kątem 45 z prędkością v 50 m/s osiąg: bez oporu powietrz - - wsokość 63 m, - zsięg 54 m, z oporem powietrz - - wsokość 31 m, - zsięg 1 m tor w powietrzu tor w próżni optmln kąt rzutu wnosi: 0 o - 30 o 45 o 4
25 Rzut poziom Dl osi OX Dl osi OY 0 const ruch jednostjn X(t) t t 0 ruch jednostjnie przspieszon gt Y( t) H ( t) H g 0 H g 0 Równnie toru prbol tpu: (t) -b ( t) + ( t) 0 + gt 5
26 Przkłd Piłkę wrzucono ukośnie w górę pod kątem 45 0 z prędkością początkową 0 1 m/s. W odległości 1 m od miejsc wrzutu stoi pionow ścin. Oblicz: 1. czs t t po którm piłk trfi w ścinę,. skłdowe prędkości piłki i w momencie trfieni i szbkość wpdkową, 3. kąt pod jkim piłk trfi w ścinę, 4. mksmlną wsokość H n jką wzniesie się piłk, 5. wsokość od podstw ścin h n jkiej piłk w nią uderz, 6. w jkiej odległości X od ścin piłk po sprężstm od niej odbiciu uderz w ziemię. 6
27 Zdnie domowe: Wspincze utknęli n szczcie skł wznoszącej się 50 m nd poziomem ziemi. Smolot mjąc dostrczć zoptrzenie leci poziomo n wsokości 00 m pond wspinczmi, z szbkością 50 km/h. Gd znjduje się w pewnej odległości od szcztu skł nstępuje wrzut zsobnik. 1. W jkiej odległości od celu zsobnik powinien zostć upuszczon z smolotu?. Jeżeli smolot zbliż się n odległość 400 m, to z jką szbkością pionową (w górę cz w dół?) zsobnik musi bć wrzucon b trfił w cel? 3. Z jką szbkością uderz on w szczt skł? 7
dr inż. Zbigniew Szklarski
Wkłd 3: Kinemtk dr inż. Zbigniew Szklrski szkl@gh.edu.pl http://ler.uci.gh.edu.pl/z.szklrski/ Wstęp Opis ruchu KINEMATYKA Dlczego tki ruch? Przczn ruchu DYNAMIKA MECHANIKA Podstwowe pojęci dl ruchu prostoliniowego
Bardziej szczegółowodr inż. Zbigniew Szklarski
Wkłd 3: Kinemtk d inż. Zbigniew Szklski szkl@gh.edu.pl http://le.uci.gh.edu.pl/z.szklski/ Wstęp Opis uchu KINEMATYKA Dlczego tki uch? Pzczn uchu DYNAMIKA MECHANIKA 08.03.018 Wdził Infomtki, Elektoniki
Bardziej szczegółowoKINEMATYKA. 7. Ruch punktu we współrzędnych kartezjańskich
KINETYK 7. Ruch punu we współrzędnch krtezjńskich Zdnie 1 Pun porusz się w jednej płszczźnie. Zneźć: 1) równnie toru punu, ) położenie punu w chwii początkowej, ) prędkość i przspieszenie punu w chrerstcznch
Bardziej szczegółowo3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to
Bardziej szczegółowoKlucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych
Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc
Bardziej szczegółowoI POCHODNA - INTERPRETACJA GEOMETRYCZNA
I ROK GOSPODARKA PRZESTRZENNA semestr I POCHODNA - INTERPRETACJA GEOMETRYCZNA Przpomnijm definicję ilorzu róŝnicowego : Definicj (ilorzu róŝnicowego) : Ilorzem róŝnicowm funkcji f : (,b) R odpowidjącm
Bardziej szczegółowoCzęść I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO. Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni.
Część I. MECHANIKA Wykład.. KINEMATYKA PUNKTU MATERIALNEGO Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni 1 KINEMATYKA PUNKTU MATERIALNEGO KINEMATYKA zajmuje się opisem ruchu ciał bez rozpatrywania
Bardziej szczegółowoPraca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia.
Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Grupa 1. Kinematyka 1. W ciągu dwóch sekund od wystrzelenia z powierzchni ziemi pocisk przemieścił się o 40 m w poziomie i o 53
Bardziej szczegółowoZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ
ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A
Bardziej szczegółowomechanika analityczna 2 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej
mechnik nlityczn niereltywistyczn L.D.Lndu, E.M.Lifszyc Krótki kurs fizyki teoretycznej ver-8.06.07 środek msy w różnych ukłdch inercjlnych v = v ' u m v = P= P ' u m v ' m m u trnsformcj pędu istnieje
Bardziej szczegółowoRówna Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym
Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez
Bardziej szczegółowoMECHANIKA. Podstawy kinematyki Zasady dynamiki. Zasada zachowania pędu Zasada zachowania energii Ruch harmoniczny i falowy
MECHANIKA Podswy kineyki Zsdy dyniki Siły Równnie ruchu Ukłdy inercjlne i nieinercjlne Zsd zchowni pędu Zsd zchowni energii Ruch hroniczny i flowy ruch rejesrowne w czsie w sposób ciągły ziny położeni
Bardziej szczegółowoODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etapy rozwiązania zadania , 3 5, 7
Próbn egzmin mturln z mtemtki Numer zdni ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etp rozwiązni zdni Liczb punktów Podnie wrtości b: b = Sporządzenie wkresu funkcji g Uwgi dl egzmintorów 4 Krzw
Bardziej szczegółowoRozwiązywanie zadań z dynamicznego ruchu płaskiego część I 9
ozwiązywnie zdń z dyniczneo ruchu płskieo część I 9 Wprowdzenie ozwiązywnie zdń w oprciu o dyniczne równni ruchu (D pole n uwolnieniu z więzów kżdeo z cił w sposób znny ze sttyki. Wrunki równowi są zbliżone
Bardziej szczegółowoOpis ruchu obrotowego
Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają
Bardziej szczegółowoMECHANIKA 2 Wykład 7 Dynamiczne równania ruchu
MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu Druga zasada dynamiki zapisana w postaci: Jest dynamicznym wektorowym równaniem ruchu. Dynamiczne
Bardziej szczegółowoWEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:
WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość
Bardziej szczegółowoPrzykład 2.5. Figura z dwiema osiami symetrii
Przkłd 5 Figur z dwiem osimi smetrii Polecenie: Wznczć główne centrlne moment bezwłdności orz kierunki główne dl poniższej figur korzstjąc z metod nlitcznej i grficznej (konstrukcj koł Mohr) 5 5 5 5 Dl
Bardziej szczegółowoMECHANIKA 2. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Prowadzący: dr Krzysztof Polko PLAN WYKŁADÓW 1. Podstawy kinematyki 2. Ruch postępowy i obrotowy bryły 3. Ruch płaski bryły 4. Ruch złożony i ruch względny 5. Ruch kulisty i ruch ogólny bryły
Bardziej szczegółowoZapis wskaźnikowy i umowa sumacyjna
Zpis wskźnikow i mow smcjn Pokzć, że e ikm e ikm Pokzć, że e e δ ikm jkm Dn jest mcierzow reprezentcj tensor 7 7 7 ), ), c) 7 7 Podć dziewięć skłdowch d zdefiniownch związkiem: Wrnki nierozdzielności możn
Bardziej szczegółowoWydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni
Wydział Inżynierii Środowiska; kierunek Inż. Środowiska Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Tabele wzorów matematycznych i fizycznych oraz obszerniejsze listy zadań do kursu są dostępne
Bardziej szczegółowoKINEMATYKA czyli opis ruchu. Marian Talar
KINEMATYKA czyli opis ruchu 1 października 2006 2 Kinematyka czyli opis ruchu 1 Podstawowe pojęcia Kinematyka jest działem fizyki, który zajmuje się tylko opisem ruchu ciał. W ruchu postępowym ciało zastępuje
Bardziej szczegółowoKINEMATYKA (punkt materialny)
KINEMATYKA (punkt materialny) Wykład 3 2016/2017, zima 1 MECHANIKA KINEMATYKA DYNAMIKA Opis ruchu Przyczyny ruchu Wykład 3 2016/2017, zima 2 Y r RUCH KRZYWOLINIOWY P r OP y XY - Układ odniesienia - wektor
Bardziej szczegółowoO ruchu. 10 m. Założenia kinematyki. Najprostsza obserwowana zmiana. Opis w kategoriach przestrzeni i czasu ( geometria fizyki ).
O ruchu Założenia kinematyki Najprostsza obserwowana zmiana. Ignorujemy czynniki sprawcze ruchu, rozmiar, kształt, strukturę ciała (punkt materialny). Opis w kategoriach przestrzeni i czasu ( geometria
Bardziej szczegółowo[L] Rysunek Łuk wolnopodparty, paraboliczny wymiary, obciążenie, oznaczenia.
rzkład 10.3. Łuk paraboliczn. Rsunek przedstawia łuk wolnopodpart, którego oś ma kształt paraboli drugiego stopnia (łuk paraboliczn ). Łuk obciążon jest ciśnieniem wewnętrznm (wektor elementarnej wpadkowej
Bardziej szczegółowoCałkowanie. dx d) x 3 x+ 4 x. + x4 big)dx g) e x 4 3 x +a x b x. dx k) 2x ; x 0. 2x 2 ; x 1. (x 2 +3) 6 j) 6x 2. x 3 +3 dx k) xe x2 dx l) 6 1 x dx
Wydził Mtemtyki Stosownej Zestw zdń nr 5 Akdemi Górniczo-Hutnicz w Krkowie WFiIS, informtyk stosown, I rok Elżbiet Admus 3 listopd 6r. Cłk nieoznczon Cłkownie. Podstwowe metody cłkowni Zdnie. Oblicz cłki:
Bardziej szczegółowoKinematyka: opis ruchu
Kinematyka: opis ruchu Wstęp do Fizyki I (B+C) Wykład III: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny Pojęcia podstawowe
Bardziej szczegółowoBlok 6: Pęd. Zasada zachowania pędu. Praca. Moc.
Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Przypuśćmy, że wszyscy ludzie na świecie zgromadzili się w jednym miejscu na Ziemi i na daną komendę jednocześnie
Bardziej szczegółowo3. Kinematyka ruchu jednostajnego, zmiennego, jednostajnie zmiennego, rzuty.
3 Kinemk uchu jednosjnego zmiennego jednosjnie zmiennego zu Wbó i opcownie zdń 3-3: Bb Kościelsk zdń 33-35: szd J Bczński 3 Zleżność dogi pzebej pzez punk meiln od czsu możn opisć ównniem: () A B C 3 gdzie
Bardziej szczegółowoMechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)
Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek
Bardziej szczegółowoWykład 2. Kinematyka. Podstawowe wielkości opisujące ruch. W tekście tym przedstawię podstawowe pojecia niezbędne do opiosu ruchu:
Wykład 2. Kinematyka. Aby prześledzić tok tego wykładu MUSISZ rozumieć pojęcie wektora, jego składowych w układzie kartezjańskim oraz w trakcie wykładu zrozumieć intuicyjnie pojęcie pochodnej funkcji jednej
Bardziej szczegółowoWykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I. Kinemayka punku maerialnego Kaedra Opyki i Fooniki Wydział Podsawowych Problemów Techniki Poliechnika Wrocławska hp://www.if.pwr.wroc.pl/~wozniak/fizyka1.hml Miejsce konsulacji: pokój
Bardziej szczegółowoKinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy
Bardziej szczegółowoW efekcie złożenia tych dwóch ruchów ciało porusza się ruchem złożonym po torze, który w tym przypadku jest łukiem paraboli.
1. Pocisk wystrzelony poziomo leciał t k = 10 *s+, spadł w odległości S = 600 *m+. Oblicz prędkośd początkową pocisku V0 =?, i z jakiej wysokości został wystrzelony, jak daleko zaleciałby ten pocisk, gdyby
Bardziej szczegółowoRozdział 2. Kinematyka
Rozdział. Kinematyka 018 Spis treści Ruch jednowymiarowy Ruch na płaszczyźnie Rzut ukośny Ruch jednostajny po okręgu Ruch przyspieszony po okręgu Ruch krzywoliniowy Ruch jednowymiarowy Dział Fizyki zajmujący
Bardziej szczegółowoR o z d z i a ł 2 KINEMATYKA PUNKTU MATERIALNEGO
R o z d z i a ł KINEMATYKA PUNKTU MATERIALNEGO Kinematyka zajmuje się opisem ruchu ciał bez uwzględniania ich masy i bez rozpatrywania przyczyn, które ten ruch spowodowały. Przez punkt materialny rozumiemy
Bardziej szczegółowoMateriały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna
Bardziej szczegółowo5 m. 3 m. Zad. 4 Pod jakim kątem α do poziomu należy rzucić ciało, aby wysokość jego wzniesienia równała się 0.5 zasięgu rzutu?
Segment A.II Kinematyka II Przygotował: dr Katarzyna Górska Zad. 1 Z wysokości h = 35 m rzucono poziomo kamień z prędkością początkową v = 30 m/s. Jak daleko od miejsca rzucenia spadnie kamień na ziemię
Bardziej szczegółowo1 Definicja całki oznaczonej
Definicj cłki oznczonej Niech dn będzie funkcj y = g(x) ciągł w przedzile [, b]. Przedził [, b] podzielimy n n podprzedziłów punktmi = x < x < x
Bardziej szczegółowoDr Kazimierz Sierański www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach
Dr Kazimierz Sierański kazimierz.sieranski@pwr.edu.pl www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach Forma zaliczenia kursu: egzamin końcowy Grupa kursów -warunkiem
Bardziej szczegółowoPodstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)
Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu
Bardziej szczegółowoPrędkość i przyspieszenie punktu bryły w ruchu kulistym
Pędkość i pzyspieszenie punktu były w uchu kulistym Położenie dowolnego punktu były okeślmy z pomocą wekto (o stłej długości) któego współzędne możemy podć w nieuchomym ukłdzie osi x y z ) z b) ζ ζ η z
Bardziej szczegółowo3. Zadanie nr 21 z rozdziału 7. książki HRW
Lista 3. do kursu Fizyka; rok. ak. 2012/13 sem. letni W. Inż. Środ.; kierunek Inż. Środowiska Tabele wzorów matematycznych (http://www.if.pwr.wroc.pl/~wsalejda/mat-wzory.pdf) i fizycznych (http://www.if.pwr.wroc.pl/~wsalejda/wzf1.pdf;
Bardziej szczegółowoTemat lekcji Zakres treści Osiągnięcia ucznia
ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:
Bardziej szczegółowoWykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna
1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,
Bardziej szczegółowoWymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02
Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie
Bardziej szczegółowoWEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:
WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość
Bardziej szczegółowoKinematyka, Dynamika, Elementy Szczególnej Teorii Względności
Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności Fizyka wykład 2 dla studentów kierunku Informatyka Wydział Automatyki, Elektroniki i Informatyki Politechnika Śląska 15 października 2007r.
Bardziej szczegółowoCzęść I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO
Część I. MECHANIKA Wykład.. KINEMATYKA PUNKTU MATERIALNEGO.1. Względność ruchu. Układy współrzędnych.. Prędkość i przyspieszenie.3. Ruch prostoliniowy.4. Ruch krzywoliniowy 1 KINEMATYKA PUNKTU MATERIALNEGO
Bardziej szczegółowoPrawo Coulomba i pole elektryczne
Prwo Coulomb i pole elektryczne Mciej J. Mrowiński 4 pździernik 2010 Zdnie PE1 2R R Dwie młe kulki o msie m, posidjące ten sm łdunek, umieszczono w drewninym nczyniu, którego przekrój wygląd tk jk n rysunku
Bardziej szczegółowoCałka oznaczona i całka niewłaściwa Zastosowania rachunku całkowego w geometrii
Wydził Mtemtyki Stosownej Zestw zdń nr 6 Akdemi Górniczo-Hutnicz w Krkowie WFiIS, informtyk stosown, I rok Elżbiet Admus 9 listopd 8r. Cłk oznczon i cłk niewłściw Zstosowni rchunku cłkowego w geometrii
Bardziej szczegółowoMechanika. Wykład 2. Paweł Staszel
Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu
Bardziej szczegółowoProwadzący: dr hab. Kamil Fedus pokój nr 569 lub 2.20 COK konsultacje: czwartek
Prowadzący: dr hab. Kamil Fedus pokój nr 569 lub 2.20 COK konsultacje: czwartek 16 00-18 00 e-mail: kamil@fizyka.umk.pl Program zajęć Mechanika punktu materialnego, bryły sztywnej, fal oraz cieczy: 1.
Bardziej szczegółowo2. FUNKCJE WYMIERNE Poziom (K) lub (P)
Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy
Bardziej szczegółowoRuch jednowymiarowy. Autorzy: Zbigniew Kąkol Kamil Kutorasiński
Ruch jednowymiarowy Autorzy: Zbigniew Kąkol Kamil Kutorasiński 017 Ruch jednowymiarowy Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Dział Fizyki zajmujący się opisem ruchu ciał nazywamy kinematyką. Definicja
Bardziej szczegółowoWymagania kl. 2. Uczeń:
Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej
Bardziej szczegółowoWykład 2. Funkcja logarytmiczna. Definicja logarytmu: Własności logarytmu: Logarytm naturalny: Funkcje trygonometryczne
Wykłd 2 Funkcj rytmiczn, Deinicj rytmu: Włsności rytmu: 2 u 2 u b c c b 2 2 Lorytm nturlny: Funkcje tryonometryczne Funkcje tryonometryczne kąt ostreo: b c sin cos t ct b c b c b Mir łukow kąt wyrż się
Bardziej szczegółowoKINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )
Bardziej szczegółowo09R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (dynamika ruchu prostoliniowego)
Włodzimierz Wolczyński 09R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY (dynamika ruchu prostoliniowego) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią
Bardziej szczegółowoZadanie 2 Narysuj wykres zależności przemieszczenia (x) od czasu(t) dla ruchu pewnego ciała. m Ruch opisany jest wzorem x( t)
KINEMATYKA Zadanie 1 Na spotkanie naprzeciw siebie wyszło dwóch kolegów, jeden szedł z prędkością 2m/s, drugi biegł z prędkością 4m/s po prostej drodze. Spotkali się po 10s. W jakiej maksymalnej odległości
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 6 KWIETNIA 0 CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT.) Liczbę 5 7 zaokr aglam do liczb,6.
Bardziej szczegółowoRuch. Kinematyka zajmuje się opisem ruchu różnych ciał bez wnikania w przyczyny, które ruch ciał spowodował.
Kinematyka Ruch Kinematyka zajmuje się opisem ruchu różnych ciał bez wnikania w przyczyny, które ruch ciał spowodował. Ruch rozumiany jest jako zmiana położenia jednych ciał względem innych, które nazywamy
Bardziej szczegółowoPodstawy fizyki. Wykład 1. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr
Podstawy fizyki Wykład 1 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Użyteczne informacje Moja strona domowa: if.pwr.edu.pl/~piosit informacje do wykładu: Dydaktyka/Elektronika 1 Miejsce konsultacji:
Bardziej szczegółowoWektory [ ] Oczywiście wektor w przestrzeni trójwymiarowej wektor będzie miał trzy współrzędne. B (x B. , y B. α A (x A, y A ) to jest wektor
Wektor N fizce w szkole średniej spotkcie się z dwom tpmi wielkości fizcznch. Jedne z nich, np. ms, tempertur, łdunek elektrczn są opiswne przez jedną liczę; te nzwm wielkościmi sklrnmi, w skrócie - sklrmi.
Bardziej szczegółowoPraca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne.
PRACA Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. Rozważmy sytuację, gdy w krótkim czasie działająca siła spowodowała przemieszczenie ciała o bardzo małą wielkość Δs Wtedy praca wykonana
Bardziej szczegółowoPodstawy fizyki. Wykład 1. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska
Podstawy fizyki Wykład 1 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Użyteczne informacje Moja strona domowa: www.if.pwr.wroc.pl/~piosit informacje do wykładu: Dydaktyka/Mechaniczny Miejsce
Bardziej szczegółowoPierwsze kolokwium z Mechaniki i Przyległości dla nanostudentów (wykład prof. J. Majewskiego)
Pierwsze kolokwium z Mechaniki i Przylełości dla nanostudentów (wykład prof. J. Majewskieo) Zadanie Dane są cztery wektory A, B, C oraz D. Wyrazić liczbę (A B) (C D), przez same iloczyny skalarne tych
Bardziej szczegółowo- Wydział Fizyki Zestaw nr 5. Powierzchnie 2-go stopnia
1 Algebr Liniow z Geometri - Wydził Fizyki Zestw nr 5 Powierzchnie -go stopni 1 N sferze 1 + + 3 = 4 znleźć punkt, którego odległość od punktu p = (, 6, 3) byłby njmniejsz Wyznczyć osie elipsy powstłej
Bardziej szczegółowoWymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE
Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych
Bardziej szczegółowoZADANIA Z GEOMETRII RÓŻNICZKOWEJ NA PIERWSZE KOLOKWIUM
ZADANIA Z GEOMETRII RÓŻNICZKOWEJ NA PIERWSZE KOLOKWIUM. Koło o promieniu n płszczyźnie Oxy oczy się bez poślizgu wzdłuż osi Ox. Miejsce geomeryczne opisne przez punk M leżący n obwodzie ego koł jes cykloidą.
Bardziej szczegółowoSumy algebraiczne i funkcje wymierne
Sumy lgebriczne i funkcje wymierne Moduł - dził -temt Zkres treści Sumy lgebriczne 1 definicj jednominu, sumy lgebricznej, wyrzów podobnych pojęcie współczynnik jednominu Dodwnie i odejmownie sum lgebricznych
Bardziej szczegółowoAnaliza Matematyczna F1 dla Fizyków na WPPT Lista zadań 4, 2018/19z (zadania na ćwiczenia)
Analiza Matematyczna F1 dla Fizyków na WPPT Lista zadań 4, 2018/19z (zadania na ćwiczenia) (Na podstawie podręcznika M. Gewert, Z. Skoczylas, Analiza Matematyczna 1. Przykłady i zadania, GiS 2008) 4 Pochodne
Bardziej szczegółowoKINEMATYKA (punkt materialny)
KINEMATYKA (punkt materialny) Wykład 2 2012/2013, zima 1 MECHANIKA KINEMATYKA DYNAMIKA Opis ruchu Przyczyny ruchu Wykład 2 2012/2013, zima 2 1 Y RUCH KRZYWOLINIOWY P XY - Układ odniesienia r y - wektor
Bardziej szczegółowoRuch po równi pochyłej
Sławomir Jemielit Ruch po równi pochłej Z równi pochłej o kącie nachlenia do poziomu α zsuwa się ciało o masie m. Jakie jest przspieszenie ciała, jeśli współcznnik tarcia ciała o równię wnosi f? W jakich
Bardziej szczegółowoPrzekształcenia wykresów funkcji
Przekształcenia wykresów funkcji Przekształcenia wykresów funkcji Jerzy Rutkowski Teoria Niech f : R R będzie dowolną funkcją i niech liczby a, k R spełniają warunki: a > 0 i k 0. Związek między funkcją
Bardziej szczegółowoZadania do rozdziału 10.
Zadania do rozdziału 0. Zad.0.. Jaką wsokość musi mieć pionowe zwierciadło ab osoba o wzroście.80 m mogła się w nim zobaczć cała. Załóżm, że ocz znajdują się 0 cm poniżej czubka głow. Ab prawidłowo rozwiązać
Bardziej szczegółowoLISTA ZADAŃ Z MECHANIKI OGÓLNEJ
. RCHUNEK WEKTOROWY LIST ZDŃ Z MECHNIKI OGÓLNEJ Zd. 1 Dne są wektor: = i + 3j + 5k ; b = i j + k. Oblicz sumę wektorów e = + b orz kosinus kątów, jkie tworz wektor e z osimi ukłdu ( kosinus kierunkowe
Bardziej szczegółowoOznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające
Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci
Bardziej szczegółowoMatematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 Wykład 1
Mtemtyk II Bezpieczeństwo jądrowe i ochron rdiologiczn Semestr letni 2018/2019 Wykłd 1 Zsdy współprcy przypomnienie Wykłdy są nieobowiązkowe, le Egzmin: pytni teoretyczne z łtwymi ćwiczenimi (będzie list)
Bardziej szczegółowoRuch jednostajny prostoliniowy
Ruch jednostajny prostoliniowy Ruch jednostajny prostoliniowy to taki ruch, którego torem jest linia prosta, a ciało w jednakowych odcinkach czasu przebywa jednakową drogę. W ruchu jednostajnym prostoliniowym
Bardziej szczegółowo2. Obliczyć natężenie pola grawitacyjnego w punkcie A, jeżeli jest ono wytwarzane przez bryłę o masie M, która powstała przez wydrążenie kuli o
Grwitcj. Obliczyć, jką siłą jest przyciągn s, jeżeli znn jest s plnety orz gęstość i proień drugiej plnety tkże odległości, jk n rysunku. (,, / F ) 5 F G.5.5 7 Sił t jest położon do poziou pod kąte β tki,
Bardziej szczegółowo14. Krzywe stożkowe i formy kwadratowe
. Krwe stożkowe i form kwdrtowe.. Kwdrki Powierchnią stopni drugiego, lub krótko kwdrką, nwm biór punktów P(,,), którch współrędne spełniją równnie: 33 3 3 kwdrt wr miesne 3 wr liniowe wr woln gdie. 33
Bardziej szczegółowoFizyka 1 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Wzorce sekunda Aktualnie niepewność pomiaru czasu to 1s na 70mln lat!!! 2 Modele w fizyce Uproszczenie problemów Tworzenie prostych modeli, pojęć i operowanie nimi 3 Opis ruchu Opis
Bardziej szczegółowoI. DYNAMIKA PUNKTU MATERIALNEGO
I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć
Bardziej szczegółowoBlok 2: Zależność funkcyjna wielkości fizycznych. Rzuty
Blok : Zależność funkcyjna wielkości fizycznych. Rzuty ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Przeanalizuj wykresy zaprezentowane na rysunkach. Załóż, żę w każdym przypadku ciało poruszało się zgodnie ze
Bardziej szczegółowoZ przedstawionych poniżej stwierdzeń dotyczących wartości pędów wybierz poprawne. Otocz kółkiem jedną z odpowiedzi (A, B, C, D lub E).
Zadanie 1. (0 3) Podczas gry w badmintona zawodniczka uderzyła lotkę na wysokości 2 m, nadając jej poziomą prędkość o wartości 5. Lotka upadła w pewnej odległości od zawodniczki. Jest to odległość o jedną
Bardziej szczegółowoA. Zaborski, Rozciąganie proste. Rozciąganie
. Zborski, Rozciągnie proste Rozciągnie rzkłd Zprojektowć pręt i tk, b przemieszczenie węzł nie przekroczło dopuszczlnej wrtości mm. Dne: R = 50 M, E = 0 G. 5 m m 4 m 80 k Rozwiąznie: równni sttki: sin
Bardziej szczegółowoMECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie
Bardziej szczegółowoBlok 2: Zależność funkcyjna wielkości fizycznych
Blok : Zależność funkcjna wielkości fizcznch I. Odcztwanie informacji z wkreu co tak naprawdę na nim ię znajduje. Chcąc odcztać informacje z wkreu funkcji, muim dokładnie wiedzieć, jaka wielkość fizczna
Bardziej szczegółowoEGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)
EGZAMIN MATURALNY OD ROKU SZKOLNEGO 01/015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A, A, A, A6, A7) GRUDZIEŃ 01 Klucz odpowiedzi do zdń zmkniętych Nr zdni 1 5 Odpowiedź
Bardziej szczegółowoKinematyka: opis ruchu
Kinematyka: opis ruchu Pojęcia podstawowe Punkt materialny Ciało, którego rozmiary można w danym zagadnieniu zaniedbać. Zazwyczaj przyjmujemy, że punkt materialny powinien być dostatecznie mały. Nie jest
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Mteriły dydktyczne n zjęci wyrównwcze z mtemtyki dl studentów pierwszego roku kierunku zmwinego Inżynieri i Gospodrk Wodn w rmch projektu Er inżynier pewn lokt n przyszłość Projekt Er inżynier pewn lokt
Bardziej szczegółowomgh. Praca ta jest zmagazynowana w postaci energii potencjalnej,
Wykłd z fizyki. Piot Posmykiewicz 49 6-4 Enegi potencjln Cłkowit pc wykonn nd punktem mteilnym jest ówn zminie jego enegii kinetycznej. Często jednk, jesteśmy zinteesowni znlezieniem pcy jką sił wykonł
Bardziej szczegółowolub też (uwzględniając fakt, że poruszają się w kierunkach prostopadłych) w układzie współrzędnych kartezjańskich: x 1 (t) = v 1 t y 2 (t) = v 2 t
Zad. 1 Dwa okręty wyruszyły jednocześnie z tego samego miejsca w drogę w kierunkach do siebie prostopadłych, jeden z prędkością υ 1 = 30 km/h, drugi z prędkością υ 2 = 40 km/h. Obliczyć prędkość wzajemnego
Bardziej szczegółowo14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (od początku do grawitacji)
Włodzimierz Wolczyński 14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY (od początku do grawitacji) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią
Bardziej szczegółowoPrzykład projektowania łuku poziomego nr 1 z symetrycznymi klotoidami, łuku poziomego nr 2 z niesymetrycznymi klotoidami i krzywej esowej ł
1. Dane Droga klasy technicznej G 1/2, Vp = 60 km/h poza terenem zabudowanym Prędkość miarodajna: Vm = 90 km/h (Vm = 100 km/h dla krętości trasy = 53,40 /km i dla drogi o szerokości jezdni 7,0 m bez utwardzonych
Bardziej szczegółowoWykład 7: Pochodna funkcji zastosowania do badania przebiegu zmienności funkcji
Wkłd 7: Pochodn funkcji zstosowni do bdni przebiegu zmienności funkcji dr Mriusz Grządziel semestr zimow, rok kdemicki 2013/2014 Funkcj logistczn Rozwżm funkcję logistczną = f 0 (t) = 1+5e 0,5t f(t) 0
Bardziej szczegółowoMECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 11 Praca, moc, energia Prowadzący: dr Krzysztof Polko PRACA MECHANICZNA SIŁY STAŁEJ Pracą siły stałej na prostoliniowym przemieszczeniu w kierunku działania siły nazywamy iloczyn
Bardziej szczegółowoPrzykładowe zdania testowe I semestr,
Przykładowe zdania testowe I semestr, 2015-2016 Rozstrzygnij, które z podanych poniżej zdań są prawdziwe, a które nie. Podstawy matematyczno-fizyczne. Działania na wektorach. Zagadnienia kluczowe: Układ
Bardziej szczegółowoKONKURS MATEMATYCZNY STOŻEK 2007/ Na rozwiązanie 10 zadań masz 90 minut. 2. Dokładnie czytaj treści zadań i udzielaj odpowiedzi.
KONKURS MATEMATYCZNY STOŻEK 007/008 1. N rozwiąznie 10 zdń msz 90 minut.. Dokłdnie cztj treści zdń i udzielj odpowiedzi.. W rozwiąznich zdń przedstwij swój tok rozumowni.. Rozwiązni zpisuj długopisem,
Bardziej szczegółowo