Rys Ilustracja rastra i jego najmniejszego elementu - piksela
|
|
- Wojciech Wilk
- 8 lat temu
- Przeglądów:
Transkrypt
1 Wldemr Izdeski - Wkłd z przedmiotu SIT.. Model rstrow Rstrow model dnch wkorzstwn jest dl gromdzeni i przetwrzni dnch pochodzącch ze sknowni istniejącch mteriłów mpowch, zdjęć lotniczch i stelitrnch orz orzów teledetekcjnch. W modelu rstrowm dne o oiektch świt rzeczwistego przechowwne są w postci regulrnch elementów powierzchniowch zwnch pikselmi (ng. piel od picture element). Piksele przewżnie mją ksztłt kwdrtu chociż możn się spotkć również z pikselmi w ksztłcie prostokąt. Orz tworzon przez piksele nzwn jest rstrem. Z ntur rzecz rster jest prostokątem, którego wmir określone są w pikselch. Inczej rzecz ujmując możn powiedzieć, że piksel jest njmniejszą rozróżnilną powierzchnią rstr. Rsnek.9 przedstwi ilustrcję rstr o wmirch H W (wsokość szerokość) i wodręnionego w nim piksel. Rs..9. Ilustrcj rstr i jego njmniejszego elementu - piksel Rster w sposó nturln może ć reprezentown przez tlicę dwuwmirową, w której poszczególne element przechowują informcje o odpowiednich pikselch. Położenie kżdego piksel w rstrze jest identfikowne przez podnie wiersz i kolumn w tlic przporządkownej rstrowi. Rs... Ilustrcj zpisu rstr w tlic Wrtości zpiswne w tlic są nzwne trutmi elementu rstr. Korzstjąc z tlic dwuwmirowej dl kżdego piksel możem zpisć jeden trut. W przpdku przpiswni do piksel większej licz trutów nleż zmist pojednczego pol stosowć wektor trutów, co prowdzi do tlic trójwmirowej. Trzeci wmir tlic ędzie określł płszczzn odpowiednich trutów, mogącch tworzć wrstw temtczne np. poziom informcjne w zorzownich teledetekcjnch.
2 Wldemr Izdeski - Wkłd z przedmiotu SIT Rs... Ilustrcj wielu trutów przpiswnch do elementu rstr W zleżności od dopuszczlnch wrtości trutu piksel nleż zstosowć odpowiedni tp zmiennej do jego przechowwni tm smm odpowiedni zsó pmięci do zpisu cłej tlic rstr. Njczęściej wrtość trutu przekłd się n kolor jkim dn piksel ędzie rsown podczs prezentcji grficznej. Przjmując, że do zpisu trutu piksel wkorzstm jeden it, możem wróżnić dw jego stn wrtości tzn. zero lu jeden, mówim wted o rstrze monochromtcznm zwnm populrnie czrno-iłm. W rstrze monochromtcznm w jednm jcie pmięci zpisujem więc kolor ośmiu kolejnch pikseli. Prz rstrch w którch wróżni się więcej kolorów trze przeznczć odpowiednio więcej pmięci dl przechowni wrtości trutu piksel. Wielkość pmięci potrzenej do zpisu rstr możem określić n podstwie nstępującego wzoru: B (.7) N H * W * 8 gdzie N - wielkość rstr wrżon w jtch, H - wsokość rstr w pikselch, W - szerokość rstr w pikselch, B - licz itów do zpisu jednego piksel. Orz rstrow powstje jko ezpośrednie zorzownie rzeczwistości np. w wniku wkonni zdjęć lotniczch lu stelitrnch gdzie kżdemu pikselowi orzu przporządkowwn jest odpowiedni frgment terenu.
3 Wldemr Izdeski - Wkłd z przedmiotu SIT Rs... Ilustrcj tworzeni rstr Cechą chrkterstczną tkich zorzowń jest wmir terenu zorzown jednm pikselem rstr. Im piksel mniejsz tm wierniejsze zorzownie terenu. Dl przkłdu stelit LANDSAT TM oferuje orz z pikselem odpowidjącm oszrowi m m djąc orz odpowidjące oszrom 85km 85 km. Stelit SPOT ntomist oferuje piksel m m i orz oejmujące oszr 6km 6km. Njdokłdniejszmi oecnie zorzowniem stelitrnm są zdjęci z stelit IKONOS o rozdzielczości,8m i QuickBird,6m. Rs... Zdjęcie z stelit IKONOS Innm sposoem tworzeni rstrów odnoszącch się do rzeczwistości jest sknownie istniejącch mp n urządzenich zwnch sknermi. Proces sknowni poleg n podzile orginłu n młe element i pomierzeniu ich jsność. W tm celu skner wposżon jest w odpowiednią liczę świtłoczułch receptorów, z którch kżd mierz jsność młego wcink orginłu. W przpdku sknowni kolorowego również mierzon jest jsności lecz z zstosowniem odpowiednich filtrów dl głównch kolorów RGB co ozncz indwiduln pomir jsności dl poszczególnch skłdowch. Poniżej przedstwiono ilustrcję procesu sknowni.
4 Wldemr Izdeski - Wkłd z przedmiotu SIT 4 Orginł Mtrc skner Rs..4. Ilustrcj procesu sknowni W wniku nłożeni mtrc skner n orginł dokonujem jego podziłu n piksele dl którch w procesie sknowni rejestrown jest ich kolor. Do określeni preczji sknowni użw się chrkterstki określnej jko rozdzielczość. Rozdzielczość określn jest w pikselch n cl i oznczn skrótem DPI (ng. dot per inch). N podstwie rozdzielczości określm wmir frgmentu orginłu odwzorown w jednm pikselu. Prz rozdzielczości 54 dpi jest to.mm. Rozdzielczość jest więc jednostką chrkterzującą preczję sknowni. Im wrtość jest większ tm mniejsz jest piksel tm smm wierniejsze odwzorownie orginłu. Jednocześnie wzrost rozdzielczość powoduje przrost wielkości rstr i to w zleżności kwdrtowej. Ozncz to, że dwukrotne podniesienie rozdzielczości powoduje czterokrotn wzrost wielkości rstr. Zleżności międz wmirem orzu i rozdzielczością wmirem rstr są nstępujące: h H * DPI 5,4 (.8) w W * DPI 5,4 gdzie W - szerokość rstr w pikselch, H - wsokość rstr w pikselch, DPI - rozdzielczość h - wsokość orzu w [mm] w - szerokość orzu w [mm]
5 Wldemr Izdeski - Wkłd z przedmiotu SIT 5 W chrkterstkch sknerów możn się spotkć z dwom rodzjmi rozdzielczości optczną i interpolowną. Rozdzielczość optczn (zwn również fizczną) ozncz rzeczwistą liczę elementów świtłoczułch n jednostkę długości. Rozdzielczość interpolown (oliczeniow) poleg n progrmowm wstwiniu międz piksele rzeczwiste dodtkowch pikseli i przpiswni im wrtości uśrednionch wnikjącch z sąsiedztw pikseli rzeczwistch. Nleż jednk pmiętć, że interpolcj nie powoduje wprowdzeni nowch dnch do orzu, jest tlko jego przetworzeniem. Ozncz to, że rozdzielczość optczn np. 6 lu dpi, dje zncznie lepsze wniki niż tk sm rozdzielczość interpolown.... Kompresj dnch rstrowch Zior rstrowe zpiswne w postci ezpośredniej są ziormi o zncznch rozmirch. Są one tm większe im wższ jest rozdzielczość przechowwnego w nich orzu i im więcej itów przeznczonch jest n zpis pojednczego piksel. Poniższ tel zwier przkłdowe zestwienie wielkości rstrów dl orginłu o wmirch 58mm zesknownego w rozdzielczości 54 dpi z wkorzstniem odpowiednio, 4, 8, 6 i 4 itów do zpisu pojednczego piksel. H W B Licz kolorów Wielkość pliku w MB A uniknąć operowni n rdzo dużch plikch, rozwinęł się formt wkorzstujące kompresję dnch. Różnią się one szkością dziłni, współcznnikiem kompresji orz uniwerslnością zstosowń do różnch tpów orzów. Odcztnie skompresownego pliku możliwe jest po przeprowdzeniu procesu odwrotnego czli dekompresji. Generlnie kompresje dzielą się n kompresje ezstrtne i strtne. W pierwszm wpdku prz zpisie nie nstępują, żdne strt w stosunku do orginłu, w drugim ntomist w celu zmniejszeni wielkości ziorów, stosuje się elimincję pewnch mniej wżnch dl ludzkiego elementów. Klscznm przkłdem tkiej kompresji jest kompresj JPEG. Stndrdowo rster zpiswn jest wiersz po wierszu jk przedstwiono to n poniższm rsunku Rs..5. Ilustrcj zpisu rstr wiersz po wierszu Njczęściej stosowne lgortm kompresji eliminują powtrzjące się w rstrze ciągi itów zpisując je w krótszej postci. Klscznm przkłdem tkiej kompresji jest
6 Wldemr Izdeski - Wkłd z przedmiotu SIT 6 kompresj RLE (ng. Run-Length Encoding) polegjąc n zminie ciągów złożonch z tch smch wrtości w pr P(licz wstąpień, wrtość). (7,); (,),(,),(,); (,),(,),(,),(,),(,); (,),(4,) Rs..6. Ilustrcj kompresji RLE Krzw przedstwion n rsunku (.5) powstł w sposó nturln z połączeni środków poszczególnch pikseli w kolejności ich zpisu i orzuje trnsformcję przestrzeni dwuwmirowej rstr w jednowmirową przestrzeń pmięci. Krzw tką w często nzwn - krzwą orgnizującą przestrzeń. Cechą chrkterstczną przedstwionej krzwej jest to, że przechodzi przez wszstkie piksele rstr. Jeśli z istotę orgnizcji przjmiem wmgnie, że dw piksele znjdujące się lisko sieie w przestrzeni dwuwmirowej mją z dużm prwdopodoieństwem ć lisko sieie w utworzonm porządku jednowmirowm, to przedstwion n rsunku.5 krzw nie dje njlepszch efektów. A uzskć lepsze efekt nleż wkorzstć krzwą Peno, której ilustrcję z zstosowniem porządku oprcownego przez Morton przedstwiono n rsunku poniżej Rs..7. Ilustrcj krzwej Peno Innm podejściem do kompresji rstrów jest operownie elementmi powierzchniowmi o różnej wielkości zpiswnej w strukturze drzew czwórkowego, co zilustrowno n poniższm rsunku.
7 Wldemr Izdeski - Wkłd z przedmiotu SIT 7 Rs..8. Zpis rstr w strukturze drzew czwórkowego W prezentownej strukturze z kżdego węzł wchodzą czter rozgłęzieni, odpowidjące podziłowi dnego elementu powierzchniowego n czter części. Podził rozpoczn się od oszru cłego rstr i jest kontnuown przez kolejne corz mniejsze element. Jk widć dl pewnch (jednolitch) oszrów rstr podził może ć zkończon już n pierwszm podzile płszczzn ez utrt jkiejkolwiek informcji. Nie wstępuje więc potrze wodręnini dl tego oszru kolejnch mniejszch elementów.... Klircj rstrów Wkorzstnie rstrów w sstemch informcji przestrzennej musi ć poprzedzone ich odpowiednim przgotowniem, polegjącm n określeniu związku międz ukłdem rstr (zpisnm w tlic pikseli) ukłdem terenowm. Jeżeli określon związek ędzie wmgł innch przeksztłceń niż przesunięcie i zmin skli, trudno worzić soie prcę n rstrch, złożonch z wielu milionów pikseli, które co chwil trze ędzie poddwć skomplikownm przeksztłceniom. Konieczność tkich przeksztłceń może wnikć ze skręceni orginłu podczs sknowni, łędów powstłch w trkcie sknowni cz też łędów orginłu, wnikjącch z włściwości mteriłu n jkim zostł wkonn. Klircj jest procesem, któr eliminuje opisne znieksztłceni przez utworzenie nowego rstr, odpowiednio zloklizownego w ukłdzie współrzędnch, powstłego w wniku przetrnsformowni pikseli rstr orginlnego n piksele rstr nowego wolnego od znieksztłceń. Schemtcznie proces ten przedstwiono n rsunku.9. Rs..9. Ilustrcj procesu klircji
8 Wldemr Izdeski - Wkłd z przedmiotu SIT 8 Skuteczność elimincji łędów zleż w zncznej mierze od zstosownego modelu trnsformcji orz od tego cz model zstosujem ezpośrednio dl cłego rstr cz ędziem go stosowli do frgmentów rstr, które po trnsformcji zostną ze soą połączone. Do wznczeni prmetrów trnsformcji wkorzstujem punkt łączne czli tkie, które posidjące określone współrzędne terenowe orz są identfikowlne n rstrze. Rs... Ilustrcj procesu klircji W przpdku mp jest to głównie sitk kwdrtów le mogą ć wkorzstwne również inne punkt (np. punkt osnow, grniczniki). Minimln licz punktów łącznch zleż od przjętego modelu trnsformcji. Zzwczj prmetr trnsformcji wzncz się metodą njmniejszch kwdrtów n podstwie większej licz punktów niż minimln wnikjąc z modelu, co pozwl n oszcownie dokłdność uzsknej trnsformcji. Poniżej przedstwiono kilk njczęściej stosownch do klircji rstrów modeli trnsformcji. Trnsformcj Helmert Njprostsz model trnsformcji wmgjąc do jednozncznego wznczeni prmetrów jednie dwóch punktów. Model pozwl n orót, przesunięcie i zminę skli. X cosϕ sinϕ Xo k * * Y sinϕ cosϕ Yo Trnsformcj finiczn Model w którm współrzędn w nowm ukłdzie wnik z zleżności przedstwionej poniżej. Minimln licz potrzench punktów wnosi. Trnsformcj zchowuje równoległość linii i środki odcinków zmieni ntomist długości odcinków i wrtości kątów.
9 Wldemr Izdeski - Wkłd z przedmiotu SIT 9 * Y X Trnsformcj iliniow Model w którm współrzędn w nowm ukłdzie wnik z zleżności przedstwionej poniżej. Minimln licz potrzench punktów wnosi 4. Trnsformcj m szczególne znczenie ze względu n przeksztłcnie czworokąt w czworokąt co znkomicie ndje się do trnsformcji frgmentmi. * Y X Trnsformcj rzutow Trnsformcj określjąc zleżność rzutową pomiędz punktmi ukłdu pierwotnego i wtórnego. Do określeni wrtości współcznników trnsformcji potrzene są czter punkt rozmieszczone tk żdne nie leżł n jednej prostej Y X Trnsformcje wielominowe W trnsformcji finicznej do określeni zleżności międz ukłdmi zstosown jest wielomin dwóch zmiennch P(,) stopni pierwszego. Zwiększjąc stopień wielominu ędziem potrzeowli więcej punktów do wznczeni prmetrów wielominu le jednocześnie trnsformcj może weliminowć znczne większe znieksztłceni. Njczęściej wkorzstwne są trnsformcje do -go stopni wielominu nzwne odpowiednio trnsformcją: ikwdrtową, * Y X ikuiczną.
10 Wldemr Izdeski - Wkłd z przedmiotu SIT 4 * Y X Nleż zwrócić uwgę n fkt, że kżde przeksztłcenie rstr powoduje jego stopniową degrdcję. Możem to sprwdzić doświdczlnie wkonując kilk orotów rstr o młe kąt i powrót do pozcji wjściowej. Poniżej przedstwiono rster z rsunku. po trzech orotch o wrtość stopni i powrót do pozcji wjściowej. Rs... Rster po kilku przeksztłcenich
KALIBRACJA MAP O POSTACI RASTROWEJ
KALIBRACJA MAP O POSTACI RASTROWEJ ETAPY pozskiwni dnch do SIT z mp nlogowch Sknownie Klircj Przeprókownie (resmpling) Wektorzcj WM,UC,KP - SIT mterił pomocnicze do wkłdów Wpłw rozdzielczości n cztelność
Wektory [ ] Oczywiście wektor w przestrzeni trójwymiarowej wektor będzie miał trzy współrzędne. B (x B. , y B. α A (x A, y A ) to jest wektor
Wektor N fizce w szkole średniej spotkcie się z dwom tpmi wielkości fizcznch. Jedne z nich, np. ms, tempertur, łdunek elektrczn są opiswne przez jedną liczę; te nzwm wielkościmi sklrnmi, w skrócie - sklrmi.
Przykład 2.5. Figura z dwiema osiami symetrii
Przkłd 5 Figur z dwiem osimi smetrii Polecenie: Wznczć główne centrlne moment bezwłdności orz kierunki główne dl poniższej figur korzstjąc z metod nlitcznej i grficznej (konstrukcj koł Mohr) 5 5 5 5 Dl
ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etapy rozwiązania zadania , 3 5, 7
Próbn egzmin mturln z mtemtki Numer zdni ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etp rozwiązni zdni Liczb punktów Podnie wrtości b: b = Sporządzenie wkresu funkcji g Uwgi dl egzmintorów 4 Krzw
Waldemar Izdebski - Wykłady z przedmiotu SIT / Mapa zasadnicza 30
Waldemar Izdebski - Wykłady z przedmiotu SIT / Mapa zasadnicza 30 2.3. Model rastrowy Rastrowy model danych wykorzystywany jest dla gromadzenia i przetwarzania danych pochodzących ze skanowania istniejących
MATEMATYKA Przed próbną maturą. Sprawdzian 1. (poziom podstawowy) Rozwiązania zadań
MTMTYK Przed próbną mturą. Sprwdzin. (poziom podstwow) Rozwiązni zdń Zdnie. ( pkt) 0,() < P.. Uczeń przedstwi liczb rzeczwiste w różnch postcich. Odpowiedź:., czli < Zdnie. ( pkt) P.. Uczeń rozwiązuje
WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:
YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą
ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ
ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A
e) Kwadrat dowolnej liczby b) Idź na dwór! całkowitej jest liczbą naturalna. c) Lubisz szpinak? f) 12 jest liczbą pierwszą. d) 3 2 =10.
Zdnie. Cz poniższe wrżeni są zdnimi logicznmi: ) wczorj pdł deszcz. e) Kwdrt dowolnej liczb b) Idź n dwór! cłkowitej jest liczbą nturln. c) Lubisz szpink? f) jest liczbą pierwszą. d) =0. Zdni. Podj zprzeczeni
Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych
Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc
Wyznacznik macierzy. - wyznacznik macierzy A
Wzncznik mcierz Uwg Wzncznik definiujem tlko dl mcierz kwdrtowch:,,,,,, =,,,,,, n n n n nn n,,, det = n,,, n n nn - mcierz - wzncznik mcierz Wzncznik mcierz to wzncznik n wektorów, które stnowią kolumn
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby
Wyrównanie sieci niwelacyjnej
1. Wstęp Co to jest sieć niwelcyjn Po co ją się wyrównje Co chcemy osiągnąć 2. Metod pośrednicząc Wyrównnie sieci niwelcyjnej Metod pośrednicząc i metod grpow Mmy sieć skłdjącą się z szereg pnktów. Niektóre
Temat 1. Afiniczne odwzorowanie płaszczyzny na płaszczyznę. Karol Bator. GGiIŚ, II rok, niestac. grupa 1
Temt Afiniczne odwzorownie płszczyzny n płszczyznę Krol Btor GGiIŚ, II rok, niestc. grp SPRAWOZDANIE DANE FORMALNO-PRAWNE:. Zleceniodwc: Akdemi Górniczo-Htnicz Wydził Geozdezji Górniczej i Inżynierii Środowisk.
Adam Korzeniewski p Katedra Systemów Multimedialnych
Adm Korzeniewski dmkorz@sound.eti.pg.gd.pl p. 73 - Ktedr Sstemów ultimedilnch Filtr FIR jest sstemem o trnsmitncji z z Y z z H z z X relizującm lgortm opisn nstępującm równniem różnicowm n n n n n gdzie
CAŁKOWANIE NUMERYCZNE
Wprowdzenie Kwdrtury węzły równoodległe Kwdrtury Guss Wzory sumcyjne Trnsport, studi niestcjonrne I stopni, semestr I rok kdemicki 01/013 Instytut L-5, Wydził Inżynierii Lądowej, Politechnik Krkowsk Ew
Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna
lger Bool i podstwy systemów liczowych. Ćwiczeni z Teorii Ukłdów Logicznych, dr inż. Ernest Jmro. System dwójkowy reprezentcj inrn Ukłdy logiczne operują tylko n dwóch stnch ozncznymi jko zero (stn npięci
Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,
Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,
Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1
Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem
Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych
Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni
Algorytmy graficzne. Filtry wektorowe. Filtracja obrazów kolorowych
Algorytmy grficzne Filtry wektorowe. Filtrcj orzów kolorowych Filtrcj orzów kolorowych Metody filtrcji orzów kolorowych możn podzielić n dwie podstwowe klsy: Metody komponentowe (component-wise). Cechą
MODELOWANIE OŚWIETLENIA SCEN 3-D3
WYKŁAD 8 MODELOWANE OŚWETLENA O SCEN 3-D3 Pln wkłdu: Sformułownie ownie problemu Podstwowe modele oświetlenio Algortm genercji obrzów w scen oświetlonch o. Sformułownie ownie problemu v źródło świtł obiekt
Morfologia kryształów
Morfologi krsztłów Morfologi krsztłu Ścin krsztłu = ogrniczjące powierzchnie Zleżą od ksztłtu komorek elementrnch i od fizcznch wrunków wzrostu krsztłu (T, p, otoczenie, roztwór itd.); Krsztł jest wielościnem
A. Zaborski, Rozciąganie proste. Rozciąganie
. Zborski, Rozciągnie proste Rozciągnie rzkłd Zprojektowć pręt i tk, b przemieszczenie węzł nie przekroczło dopuszczlnej wrtości mm. Dne: R = 50 M, E = 0 G. 5 m m 4 m 80 k Rozwiąznie: równni sttki: sin
WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM
WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM Kls drug A, B, C, D, E, G, H zkres podstwowy 1. FUNKCJA LINIOWA rozpoznje funkcję liniową n podstwie wzoru lub wykresu rysuje
Zadania. I. Podzielność liczb całkowitych
Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.
CAŁKOWANIE NUMERYCZNE
Wprowdzenie Kwdrtury węzły równoodległe Kwdrtury Guss Wzory sumcyjne Trnsport, studi niestcjonrne I stopni, semestr I Instytut L-5, Wydził Inżynierii Lądowej, Politechnik Krkowsk Ew Pbisek Adm Wostko Wprowdzenie
Macierz. Wyznacznik macierzy. Układ równań liniowych
Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: żółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk Zgdnieni. Pojęci. Dziłni n mcierzch.
DZIAŁ 2. Figury geometryczne
1 kl. 6, Scenriusz lekcji Pole powierzchni bryły DZAŁ 2. Figury geometryczne Temt w podręczniku: Pole powierzchni bryły Temt jest przeznczony do relizcji podczs 2 godzin lekcyjnych. Zostł zplnowny jko
PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych
PODSTAWY BAZ DANYCH Wykłd 3 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy z dnych" 1 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Relcj EGZ(U), U := { I, N, P, O }, gdzie I 10 10 11 N f f
Zbiory rozmyte. Teoria i zastosowania we wnioskowaniu aproksymacyjnym
Zior rozmte Teori i zstosowni we wniosowniu prosmcjnm PODSTWOWE POJĘCI Motwcje Potrze opisni zjwis i pojęć wielozncznch i niepreczjnch użwnch swoodnie w jęzu nturlnm np. wso tempertur młod człowie średni
Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)
Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu
Morfologia kryształów
Morfologi krsztłów Morfologi krsztłu Ścin krsztłu = ogrniczjące powierzchnie Zleżą od ksztłtu komorek elementrnch i od fizcznch wrunków wzrostu krsztłu (T, p, otoczenie, roztwór itd.); Krsztł jest wielościnem
Analiza matematyczna i algebra liniowa
Anliz mtemtyczn i lgebr liniow Mteriły pomocnicze dl studentów do wykłdów Mcierze liczbowe i wyznczniki. Ukłdy równń liniowych. Mcierze. Wyznczniki. Mcierz odwrotn. Równni mcierzowe. Rząd mcierzy. Ukłdy
wersja podstawowa (gradient)
księg znku wersj podstwow (grdient) Logo RAKU FILM w wersji podstwowej może występowć w dwóch wrintch, n jsnym (domyślnie - biłe tło) orz n ciemnym (domyślnie - czrne tło). Nleży unikć stosowni logo n
Algebra macierzowa. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. ELEMENTARNA TEORIA MACIERZOWA
kdemi Morsk w Gdyni Ktedr utomtyki Okrętowej Teori sterowni lger mcierzow Mirosłw Tomer. ELEMENTRN TEORI MCIERZOW W nowoczesnej teorii sterowni rdzo często istnieje potrze zstosowni notcji mcierzowej uprszczjącej
4. RACHUNEK WEKTOROWY
4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie
Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco:
Def.8. Wyzncznikiem mcierzy kwdrtowej stopni n nzywmy liczbę det określoną nstępująco:.det.det dl n n det det n det n, gdzie i j ozncz mcierz, którą otrzymujemy z mcierzy przez skreślenie i- tego wiersz
symbol dodatkowy element graficzny kolorystyka typografia
Identyfikcj wizuln Fundcji n rzecz Nuki Polskiej 1/00 Elementy podstwowe symbol dodtkowy element grficzny kolorystyk typogrfi Identyfikcj wizuln Fundcji n rzecz Nuki Polskiej 1/01 Elementy podstwowe /
2. PODSTAWY STATYKI NA PŁASZCZYŹNIE
M. DSTY STTYKI N ŁSZZYŹNIE. DSTY STTYKI N ŁSZZYŹNIE.. Zsdy dynmiki Newton Siłą nzywmy wektorową wielkość, któr jest mirą mechnicznego oddziływni n ciło ze strony innych cił. dlszej części ędziemy rozptrywć
Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa
Mtemtyk finnsow 15.0.010 r. Komisj Egzmincyjn dl Akturiuszy LII Egzmin dl Akturiuszy z 15 mrc 010 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoy egzminownej:... Czs egzminu: 100 minut 1
Wymagania edukacyjne z matematyki
Wymgni edukcyjne z mtemtyki LICEUM OGÓLNOKSZTAŁCĄCE Kls II Poniżej przedstwiony zostł podził wymgń edukcyjnych n poszczególne oceny. Wiedz i umiejętności konieczne do opnowni (K) to zgdnieni, które są
Równania i nierówności kwadratowe z jedną niewiadomą
50 REPETYTORIUM 31 Równni i nierówności kwdrtowe z jedną niewidomą Równnie wielominowe to równość dwóch wyrżeń lgebricznych Kżd liczb, któr po podstwieniu w miejscu niewidomej w równniu o jednej niewidomej
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie II poziom rozszerzony
Wymgni edukcyjne n poszczególne oceny z mtemtyki w klsie II poziom rozszerzony N ocenę dopuszczjącą, uczeń: rysuje wykres funkcji f ( x) x i podje jej włsności; sprwdz lgebricznie, czy dny punkt nleży
MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej
Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe
Matematyka stosowana i metody numeryczne
Ew Pbisek Adm Wostko Piotr Pluciński Mtemtyk stosown i metody numeryczne Konspekt z wykłdu 0 Cłkownie numeryczne Wzory cłkowni numerycznego pozwlją n obliczenie przybliżonej wrtości cłki: I(f) = f(x) dx
usuwa niewymierność z mianownika wyrażenia typu
Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje
Przykład 6.2. Płaski stan naprężenia. Płaski stan odkształcenia.
Przkłd 6.. Płski stn nprężeni. Płski stn odksztłeni. ZADANIE. Dl dnego płskiego stnu nprężeni [MP] znleźć skłdowe stnu nprężeni w ukłdzie osi oróonh względem osi o kąt α0 orz nprężeni i kierunki główne.
LISTA ZADAŃ Z MECHANIKI OGÓLNEJ
. RCHUNEK WEKTOROWY LIST ZDŃ Z MECHNIKI OGÓLNEJ Zd. 1 Dne są wektor: = i + 3j + 5k ; b = i j + k. Oblicz sumę wektorów e = + b orz kosinus kątów, jkie tworz wektor e z osimi ukłdu ( kosinus kierunkowe
2. Tensometria mechaniczna
. Tensometri mechniczn Wstęp Tensometr jk wskzywłby jego nzw to urządzenie służące do pomiru nprężeń. Jk jednk widomo, nprężeni nie są wielkościmi mierzlnymi i stnowią jedynie brdzo wygodne pojęcie mechniki
Wszystkim życzę Wesołych Świąt :-)
Poniższe zdni pochodzą ze zbiorów: ) J. Rutkowski, Algebr bstrkcyjn w zdnich b) M. Bryński, J. Jurkiewicz, Zbiór zdń z lgebry Do kolokwium proszę też przejrzeć zdni z ćwiczeń. Wszystkim życzę Wesołych
2. FUNKCJE WYMIERNE Poziom (K) lub (P)
Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy
STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI
INTELIGENTNE TECHNIKI KOMPUTEROWE wkłd STNDRDOWE FUNKCJE PRZYNLEŻNOŚCI GUSSOWSK F. PRZYNLEŻNOŚCI ' μ ( ; ', ) ep μ().5 ' środek; określ szerokość krzwej.5 3 F. PRZYNLEŻNOŚCI KLSY s dl - dl c- sc ( ;,,
WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:
WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość
Macierz. Wyznacznik macierzy. Układ równań liniowych
Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: Ŝółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk n kierunku Biologi w SGGW Zgdnieni.
Zapis wskaźnikowy i umowa sumacyjna
Zpis wskźnikow i mow smcjn Pokzć, że e ikm e ikm Pokzć, że e e δ ikm jkm Dn jest mcierzow reprezentcj tensor 7 7 7 ), ), c) 7 7 Podć dziewięć skłdowch d zdefiniownch związkiem: Wrnki nierozdzielności możn
a) b) Rys. 6.1. Schemat ideowo-konstrukcyjny układu do przykładu 6.1 a) i jego schemat blokowy
04 6. Ztoownie metod hemtów lokowh do nliz włśiwośi ukłdów utomtki Shemt lokow ukłdu utomtki jet formą zpiu mtemtznego modelu dnego ukłdu, n podtwie której, wkorztują zd przedtwione rozdzile 3.7, możn
Wymagania edukacyjne z matematyki Klasa IIB. Rok szkolny 2013/2014 Poziom podstawowy
Wymgni edukcyjne z mtemtyki Kls IIB. Rok szkolny 2013/2014 Poziom podstwowy FUNKCJA KWADRATOWA Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: 2 rysuje wykres funkcji f ( ) i podje jej włsności
FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA.
Oprownie: Elżiet Mlnowsk FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA. Określeni podstwowe: Jeżeli kżdej lizie x z pewnego zioru lizowego X przporządkown jest dokłdnie jedn liz, to mówim,
Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Różniczkowanie i całkowanie numeryczne
Modelownie i obliczeni techniczne Metody numeryczne w modelowniu: Różniczkownie i cłkownie numeryczne Pochodn unkcji Pochodn unkcji w punkcie jest deiniown jko grnic ilorzu różnicowego (jeżeli istnieje):
WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:
WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość
Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH
Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.
Kodowanie liczb. Kodowanie stałopozycyjne liczb całkowitych. Niech liczba całkowita a ma w systemie dwójkowym postać: Kod prosty
Kodownie licz Kodownie stłopozycyjne licz cłkowitych Niech licz cłkowit m w systemie dwójkowym postć: nn 0 Wtedy może yć on przedstwion w postci ( n+)-itowej przy pomocy trzech niżej zdefiniownych kodów
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 015/016 oprcowł: Dnut Wojcieszek n ocenę dopuszczjącą rysuje wykres funkcji f ( ) i podje jej włsności sprwdz lgebricznie, czy dny punkt
Lista 4 Deterministyczne i niedeterministyczne automaty
Uniwersytet Zielonogórski Instytut Sterowni i Systemów Informtycznych Teoretyczne Podstwy Informtyki List 4 Deterministyczne i niedeterministyczne utomty Wprowdzenie Automt skończony jest modelem mtemtycznym
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysłw Smorwińskiego w Zespole Szkół Ekonomicznych w Kliszu Wymgni edukcyjne niezbędne do uzyskni poszczególnych śródrocznych i rocznych ocen klsyfikcyjnych z obowiązkowych zjęć
WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach
Mtemtyk I WYKŁD. ypy mcierzy, dziłni n mcierzch, mcierz ukłdu równń. Podstwowe widomości o mcierzch Ogóln postć ukłdu m równń liniowych lgebricznych z n niewidomymi x x n xn b x x n xn b, niewidome: x,
Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania
Klucz odpowiedzi do zdń zmkniętch orz schemt ocenini sierpień 0 Poziom Podstwow Klucz punktowni zdń zmkniętch Nr zdni 4 5 6 7 8 9 0 4 5 6 7 8 9 0 4 5 Odpowiedź D A B D C B B C C B A C D D C B C A D D C
ZADANIA OTWARTE. Są więc takie same. Trzeba jeszcze pokazać, że wynoszą one 2b, gdyż taka jest długość krawędzi dwudziestościanu.
ZADANIA OTWARTE ZADANIE 1 DWUDZIESTOŚCIAN FOREMNY Wiemy, że z trzech złotych prostokątów możn skonstruowć dwudziestościn foremny. Wystrczy wykzć, że długości boków trójkąt ABC n rysunku obok są równe.
Laura Opalska. Klasa 1. Gimnazjum nr 1 z Oddziałami Integracyjnym i Sportowymi im. Bł. Salomei w Skale
Trójkąt Pscl od kuchni Kls 1 Gimnzjum nr 1 z Oddziłmi Integrcyjnym i Sportowymi im. Bł. Slomei w Skle ul. Ks.St.Połetk 32 32-043 Skł Gimnzjum nr 1 z Oddziłmi Integrcyjnymi i Sportowymi im. Bł. Slomei w
Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna
1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,
Wspomaganie obliczeń za pomocą programu MathCad
Wprowdzenie do Mthcd' Oprcowł:M. Detk P. Stąpór Wspomgnie oliczeń z pomocą progrmu MthCd Definicj zmiennych e f g h 8 Przykłd dowolnego wyrŝeni Ay zdefinowc znienną e wyierz z klwitury kolejno: e: e f
Wymagania edukacyjne z matematyki FUNKCJE dopuszczającą dostateczną dobrą bardzo dobrą
Wymgni edukcyjne z mtemtyki Kls IIC. Rok szkolny 013/014 Poziom podstwowy FUNKCJE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje przyporządkowni będące funkcjmi określ funkcję różnymi
KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań
KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
Mteriły do wykłdu MATEMATYKA DYSKRETNA dl studiów zocznych cz. Progrm wykłdu: KOMBINATORYKA:. Notcj i podstwowe pojęci. Zlicznie funkcji. Permutcje. Podziory zioru. Podziory k-elementowe. Ziory z powtórzenimi
Rolainformatykiwnaukach ekonomicznychispoųecznych
Rolinformtkiwnukch ekonomicznchispoųecznch Innowcjeiimplikcjeinterdscplinrne redkcj ZBIGNIEWE.ZIELIFSKI TOM Recenzjnukow prof.zw.drhb.tdeuszgrbiŷski Wdwnictwo WǏszejSzkoųHndlowej Kielce009 PublikcjwdrukownzostųzgodniezmteriųemdostrczonmprzezAutorów.
Wykład 7: Pochodna funkcji zastosowania do badania przebiegu zmienności funkcji
Wkłd 7: Pochodn funkcji zstosowni do bdni przebiegu zmienności funkcji dr Mriusz Grządziel semestr zimow, rok kdemicki 2013/2014 Funkcj logistczn Rozwżm funkcję logistczną = f 0 (t) = 1+5e 0,5t f(t) 0
Kombinowanie o nieskończoności. 4. Jak zmierzyć?
Kombinownie o nieskończoności.. Jk zmierzyć? Projekt Mtemtyk dl ciekwych świt spisł: Michł Korch 9 kwietni 08 Trochę rzeczy z wykłdu Prezentcj multimediln do wykłdu. Nieskończone sumy Będzie nm się zdrzć
Legenda. Optymalizacja wielopoziomowa Inne typy bramek logicznych System funkcjonalnie pełny
Dr Glin Criow Legend Optymlizcj wielopoziomow Inne typy brmek logicznych System funkcjonlnie pełny Optymlizcj ukłdów wielopoziomowych Ukłdy wielopoziomowe ukłdy zwierjące więcej niż dw poziomy logiczne.
3. Rozkład macierzy według wartości szczególnych
Rozkłd mcierzy wedłg wrtości szczególnych Wprowdzenie Przypomnimy podstwowe zleżności związne z zstosowniem metody nmnieszych kwdrtów do proksymci fnkci dyskretne Podstwowe równnie m nstępącą postć: +
MATeMAtyka 2. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Zakres podstawowy i rozszerzony
MATeMAtyk Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe
KOMPLEKSOWE POMIARY FREZÓW OBWIEDNIOWYCH
KOMPLEKSOWE POMIARY FREZÓW OBWIEDNIOWYCH Michł PAWŁOWSKI 1 1. WSTĘP Corz większy rozwój przemysłu energetycznego, w tym siłowni witrowych stwi corz większe wymgni woec producentów przekłdni zętych jeśli
Temat lekcji Zakres treści Osiągnięcia ucznia
ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE Ib ZAKRES PODSTAWOWY
. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje liczbę do odpowiedniego zbioru liczb stosuje cechy podzielności
Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02
Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie
dr inż. Zbigniew Szklarski
Wkłd 3: Kinemtk dr inż. Zbigniew Szklrski szkl@gh.edu.pl http://ler.uci.gh.edu.pl/z.szklrski/ Wstęp Opis ruchu KINEMATYKA Dlczego tki ruch? Przczn ruchu DYNAMIKA MECHANIKA Podstwowe pojęci dl ruchu prostoliniowego
KSZTAŁTOWANIE ŁUKOWO-KOŁOWEJ LINII ZĘBÓW W UZĘBIENIU CZOŁOWYM NA FREZARCE CNC
KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 8 nr Archiwum Technologii Mszyn i Automtyzcji 008 PIOTR FRĄCKOWIAK KSZTAŁTOWANIE ŁUKOWO-KOŁOWEJ LINII ZĘBÓW W UZĘBIENIU CZOŁOWYM NA FREZARCE CNC W rtykule
METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład
METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wkłd Wkłd Sprw formlne Cz. I. Przpomnienie elementrnch zgdnień z mtemtki Cz. II. Rozwiązwnie nlitczne równń lgebricznch METODY MATEMATYCZNE I
Podstawy układów logicznych
Podstwy ukłdów logicznych Prw logiki /9 Alger Boole Prw logiki WyrŜeni i funkcje logiczne Brmki logiczne Alger Boole /9 Alger Boole' Powszechnie stosowne ukłdy cyfrowe (logiczne) prcują w oprciu o tzw.
Metoda sił jest sposobem rozwiązywania układów statycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych).
Metod sił jest sposoem rozwiązywni ukłdów sttycznie niewyznczlnych, czyli ukłdów o ndliczowych więzch (zewnętrznych i wewnętrznych). Sprowdz się on do rozwiązni ukłdu sttycznie wyznczlnego (ukłd potwowy
Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE
Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych
Wykład 6 Dyfrakcja Fresnela i Fraunhofera
Wykłd 6 Dyfrkcj Fresnel i Frunhofer Zjwisko dyfrkcji (ugięci) świtł odkrył Grimldi (XVII w). Poleg ono n uginniu się promieni świetlnych przechodzących w pobliżu przeszkody (np. brzeg szczeliny). Wyjśnienie
Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające
Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci
O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI
ZESZYTY NAUKOWE 7-45 Zenon GNIAZDOWSKI O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI Streszczenie W prcy omówiono grupę permutcji osi krtezjńskiego ukłdu odniesieni reprezentowną przez mcierze permutcji,
Planimetria czworokąty
Plnimetri czworokąty Emili Ruszczyk kl. II, I LO im. Stefn Żeromskiego w Ełku pod kierunkiem Grżyny iernot-lendo Klsyfikcj czworokątów zworokąty dzielą się n niewypukłe i wypukłe, wypukłe n trpezy i trpezoidy,
Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne
Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych
Aprioryczna ocena niezawodności segmentowych łożysk wzdłużnych podpartych zespołami sprężyn śrubowych
AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZCA W KRAKOWIE mgr inż. Piotr GRĄDKOWSKI Apriorczn ocen niezwodności segmentowch łożsk wzdłużnch podprtch zespołmi sprężn śruowch Rozprw doktorsk 4 listopd
KONKURS MATEMATYCZNY STOŻEK 2007/ Na rozwiązanie 10 zadań masz 90 minut. 2. Dokładnie czytaj treści zadań i udzielaj odpowiedzi.
KONKURS MATEMATYCZNY STOŻEK 007/008 1. N rozwiąznie 10 zdń msz 90 minut.. Dokłdnie cztj treści zdń i udzielj odpowiedzi.. W rozwiąznich zdń przedstwij swój tok rozumowni.. Rozwiązni zpisuj długopisem,
Modelowanie 3 D na podstawie fotografii amatorskich
Edwrd Nowk 1, Jonn Nowk Modelownie D n podstwie fotogrfii mtorskich 1. pecyfik fotogrmetrycznego oprcowni zdjęć mtorskich wynik z fktu, że n ogół dysponujemy smymi zdjęcimi - nierzdko są to zdjęci wykonne
Wprowadzenie: Do czego służą wektory?
Wprowdzenie: Do czego służą wektory? Mp połączeń smolotowych Isiget pokzuje skąd smoloty wyltują i dokąd doltują; pokzne jest to z pomocą strzłek strzłki te pokzują przemieszczenie: skąd dokąd jest dny