Grafika Komputerowa. Metoda śledzenia promieni
|
|
- Eleonora Majewska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Grafika Komputerowa. Metoda śledzenia promieni Aleksander Denisiuk Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi Gdańsk Ò Ù Ô º ÙºÔÐ 1 / 30
2 Metoda śledzenia promieni Najnowsza wersja tego dokumentu dostępna jest pod adresem ØØÔ»»Ù Ö ºÔ º ÙºÔл Ò Ù 2 / 30
3 Scena fotorealistyczna Ray tracing 3 / 30
4 Scena fotorealistyczna Scena fotorealistyczna Ray tracing 4 / 30
5 Śledzenie promieni Scena fotorealistyczna Ray tracing Ð Ø Ý Ú ÛÔÓÖØ 5 / 30
6 Czujnik cienia (shadow feeler) Scena fotorealistyczna Ray tracing Ð Ø Ý 6 / 30
7 Śledzenie promieni odbijanych Scena fotorealistyczna Ray tracing Ð Ø Ý I = I local +ρ rg I reflect 7 / 30
8 Promienie załamane Scena fotorealistyczna Ray tracing Ð Ø Ý I = I local +ρ rg I reflect +ρ tg I xmit 8 / 30
9 Promienie odbijane Promienie załamane Całkowite oświetlenie 9 / 30
10 Á Ö Ø ÖÚ Á Ò Lokalne oświetlenie i promienie odbijane Promienie odbijane Ò Promienie załamane Całkowite oświetlenie Á Ú Wektor odbijanyr v = 2(v n) v. 10 / 30
11 Oświetlenie punktu na powierzchni Promienie odbijane Promienie załamane Całkowite oświetlenie I local = ρ a I in,i a +δ i I = I local +ρ rg I reflect ( ρ d I in,i d (l i n)+ρ s I in,i s (r v l i ) f) δ i = 1, jeśli punkt jest bezpośrednio oświetlony światlemi, 0 w przeciwnym przypadku. współczynnikiρzależa od kolorów (częstotliwości) I reflect oblicza się rekurencyjnie powtarzajac algorytm ray tracing 11 / 30
12 Ø Ð Ø Ø Ø Ô ÖÔ Promienie załamane Ò Promienie odbijane Promienie załamane Całkowite oświetlenie Ú Ú Ú Ð Ø Ø Prawo Snelliusa sinθ v sinθ t = η. 12 / 30
13 Współczynnik załamania Promienie odbijane Promienie załamane Całkowite oświetlenie η 1,3 powietrze woda. η 1,5 powietrze szkło. sinθ t = η 1 sinθ v. Jeżeliη 1 sinθ v > 1, to nie ma załamania, tylko całkowite wewnętrzne odbijanie 13 / 30
14 Obliczenie wetorat Promienie odbijane Promienie załamane Całkowite oświetlenie v lat = v (v n)n t lat = sinθ t = η 1 sinθ v = η 1 v lat t lat = η 1 v lat cosθ t = 1 sin 2 θ t = 1 t lat 2 ( t lat < 1) t perp = 1 t lat 2 n t = t lat +t perp t perp = 1 η 2 (1 (v n) 2 ) n t = η 1 ((v n)n v) 1 η 2 (1 (v n) 2 ) n 14 / 30
15 Rozszerzenie modelu Phonga Promienie odbijane Promienie załamane Całkowite oświetlenie Ä Ø Ä Ø µ µ 15 / 30
16 Á Ò Á ÐÓ Ð Rozszerzenie modelu Phonga Ò Promienie odbijane Ú Promienie załamane Całkowite oświetlenie Ø I i local = ρ ai in,i a +δ i ( ρ dt I in,i d (l i ( n))+ρ st I in,i s (t l i ) f ) 16 / 30
17 Rozszerzenie modelu Phonga Promienie odbijane Promienie załamane Całkowite oświetlenie I local =ρ a I in a +ρ d +ρ s k i=1 +ρ st k i=1 k i=1 δ i I in,i d (l i n)+ δ i I in,i s (r v l i ) f +ρ dt δ ii in,i s (t l i ) f +I e k i=1 δ ii in,i d (l i ( n))+ 17 / 30
18 Sprawdzenie przecięcia 18 / 30
19 Sprawdzenie przecięcia Dla każdego promienia: Znajdź pierwsze miejsce przecięcia ze scena. Jeśli promień nie przecina żadnego obiektu ze sceny, wykorzystuj kolor tła. Oblicz oświetlenia punktu zgodnie z modelem oswietlenia. Wypuść promienie odbijane oraz załamane. Zastosuj rekurencyjnie algorytm do każdego wypuszczonego promienia. Dodaj wyniki obliczenia ośiwetleń. Warunek zakończenia rekurencji: ilość odbić. 19 / 30
20 Sprawdzenie przecięcia Sprawdzenie przecięcia Obiekty modeluje się za pomoca prostych figur: sfera, walec, stożek, torus, wielobok płaski, wielobok o bokach w postaci powierzchi Béziera, B-spline powierzchni. Sprawdza się dla każdego promienia, dla każdego czujnika cieni. Zależy od ilości uwzględnianych odbić. Najbardziej kosztowne względem obliczeń działanie. 20 / 30
21 Supersampling i Antialiasing Głębia ostrości Rozmazywanie ruchu Miękie cienie Wiele kolorów Path tracing Backwards 21 / 30
22 Supersampling i Antialiasing Supersampling i Antialiasing Głębia ostrości Rozmazywanie ruchu Miękie cienie Wiele kolorów Path tracing µ ÆÓ ÙÔ Ö ÑÔÐ Ò º Backwards 22 / 30 µ ËÙÔ Ö ÑÔÐ Ò Û Ø ØØ Ö Ù Ô Ü Ð ÒØ Ö º
23 Supersampling i Antialiasing Supersampling i Antialiasing Głębia ostrości Rozmazywanie ruchu Miękie cienie Wiele kolorów Path tracing µ ÆÓ ÙÔ Ö ÑÔÐ Ò º Backwards 23 / 30 µ ËÙÔ Ö ÑÔÐ Ò Û Ø ØØ Ö Ù Ô Ü Ð ÒØ Ö º
24 Głębia ostrości Supersampling i Antialiasing Głębia ostrości Rozmazywanie ruchu Ó Ð ÔÐ Ò Miękie cienie Wiele kolorów Path tracing Backwards 24 / 30
25 Głębia ostrości Supersampling i Antialiasing Głębia ostrości Rozmazywanie ruchu Miękie cienie Wiele kolorów Path tracing Backwards 25 / 30
26 Rozmazywanie ruchu Supersampling i Antialiasing Głębia ostrości Rozmazywanie ruchu Miękie cienie Wiele kolorów Path tracing Backwards 26 / 30
27 Miękie cienie ÙÐÐ ÐÐÙÑ Ò Ø ÓÒ Supersampling i Antialiasing È ÒÙÑ Ö Głębia ostrości Ä Ø ÙÐÐ ÓÛ Rozmazywanie ruchu Miękie cienie Wiele kolorów Path tracing È ÒÙÑ Ö Backwards ÙÐÐ ÐÐÙÑ Ò Ø ÓÒ 27 / 30
28 Wiele kolorów Nie tylko RGB, Odbicie i załamanie zależy od barwy (częstotliwości fai). Supersampling i Antialiasing Głębia ostrości Rozmazywanie ruchu Miękie cienie Wiele kolorów Path tracing Backwards 28 / 30
29 Path tracing Supersampling i Antialiasing Głębia ostrości Rozmazywanie ruchu Miękie cienie Wiele kolorów Path tracing Backwards Cycles 29 / 30
30 Odwrotny ray tracing Supersampling i Antialiasing Głębia ostrości Rozmazywanie ruchu Miękie cienie Wiele kolorów Path tracing Backwards Skupienie światła 30 / 30
Grafika Komputerowa. Teksturowanie
Grafika Komputerowa. Teksturowanie Aleksander Denisiuk Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Ò Ù Ô º ÙºÔÐ 1 / 19 Teksturowanie Najnowsza
Wprowadzenie do grafiki maszynowej. Wprowadenie do teksturowania
Wprowadzenie do grafiki maszynowej. Wprowadenie do teksturowania Aleksander Denisiuk Uniwersytet Warmińsko-Mazurski Olsztyn, ul. Słoneczna 54 denisjuk@matman.uwm.edu.pl 1 / 19 Wprowadenie do teksturowania
Grafika Komputerowa. Krzywe B-sklejane. Alexander Denisjuk.
Grafika Komputerowa Krzywe B-sklejane Alexander Denisjuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych zamiejscowy ośrodek dydaktyczny w Gdańsku ul. Brzegi 55 80-045 Gdańsk
Grafika Komputerowa. Wprowadzenie
Grafika Komputerowa. Wprowadzenie Aleksander Denisiuk Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Ò Ù Ô º ÙºÔÐ 1 / 17 Wprowadzenie Najnowsza
Zaawansowana Grafika Komputerowa
Zaawansowana Komputerowa Michał Chwesiuk Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Wydział Informatyki 28 Luty 2017 Michał Chwesiuk Zaawansowana Komputerowa 28 Luty 2017 1/11 O mnie inż.
Grafika Komputerowa. Percepcja wizualna i modele barw
Grafika Komputerowa. Percepcja wizualna i modele barw Aleksander Denisiuk Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk denisjuk@pja.edu.pl 1
Elementy grafiki komputerowej. Elementy krzywych Béziera
Elementy grafiki komputerowej. Elementy krzywych Aleksander Denisiuk Uniwersytet Warmińsko-Mazurski Olsztyn, ul. Słoneczna 54 denisjuk@matman.uwm.edu.pl 1 / 36 Elementy krzywych Najnowsza wersja tego dokumentu
Grafika Komputerowa. Algorytmy rastrowe
Grafika Komputerowa. Algorytmy rastrowe Aleksander Denisiuk Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Ò Ù Ô º ÙºÔÐ 1 / 23 Algorytmy rastrowe
Wprowadzenie do grafiki maszynowej. Wprowadzenie do percepcji wizualnej i modeli barw
Wprowadzenie do grafiki maszynowej. Wprowadzenie do percepcji i modeli barw Aleksander Denisiuk Uniwersytet Warmińsko-Mazurski Olsztyn, ul. Słoneczna 54 denisjuk@matman.uwm.edu.pl 1 / 38 Wprowadzenie do
Grafika Komputerowa Wykład 5. Potok Renderowania Oświetlenie. mgr inż. Michał Chwesiuk 1/38
Wykład 5 Potok Renderowania Oświetlenie mgr inż. 1/38 Podejście śledzenia promieni (ang. ray tracing) stosuje się w grafice realistycznej. Śledzone są promienie przechodzące przez piksele obrazu wynikowego
GRAKO: ŚWIATŁO I CIENIE. Modele barw. Trochę fizyki percepcji światła. OŚWIETLENIE: elementy istotne w projektowaniu
GRAKO: ŚWIATŁO I CIENIE Metody oświetlania Metody cieniowania Przykłady OŚWIETLENIE: elementy istotne w projektowaniu Rozumienie fizyki światła w realnym świecie Rozumienie procesu percepcji światła Opracowanie
Śledzenie promieni w grafice komputerowej
Dariusz Sawicki Śledzenie promieni w grafice komputerowej Warszawa 2011 Spis treści Rozdział 1. Wprowadzenie....... 6 1.1. Śledzenie promieni a grafika realistyczna... 6 1.2. Krótka historia śledzenia
GRK 4. dr Wojciech Palubicki
GRK 4 dr Wojciech Palubicki Uproszczony Potok Graficzny (Rendering) Model Matrix View Matrix Projection Matrix Viewport Transform Object Space World Space View Space Clip Space Screen Space Projection
Analiza Matematyczna. Zastosowania Całek
Analiza Matematyczna. Zastosowania Całek Aleksander Denisiuk denisiuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 8-45 Gdańsk 9 maja 217
Grafika Komputerowa Podstawy animacji
Grafika Komputerowa Podstawy animacji Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Grafika Komputerowa
N j=1 (η M η j ) Û Ö η 1... η N Ö
Ù ÔØ Ð ØÝ ÌÓÔÓÐÓ Ð ØÛ Ø Ñ ÖÑ ÓÒ ÖÓÑ Ù Ò Ô ØÖ Ð ÔÖÓ ØÓÖ Ý ÃÖÞÝ ÞØÓ Ë ÙØ Ò ÖÑ ÒÝ ÆÁ Ñ Å Û Þ ÍÒ Ú Ö ØÝ ÈÓÞÒ ÈÓÐ Ò ÓÐÐ ÓÖ Ø ÓÒ Û Ø Ò Ö Ê ÑÓ Ð Ò Ã ÖÐ Â Ò Ò Ä ÌÌÁ ¾¼½ ½» ¾ ÁÒØÖÓ ÙØ ÓÒ ÌÓÔÓÐÓ Ð ÒÓØ Ö Ð Ò Ò Ø
WSTĘP DO GRAFIKI KOMPUTEROWEJ
WSTĘP DO GRAFIKI KOMPUTEROWEJ Miłosz Michalski Institute of Physics Nicolaus Copernicus University Październik 2015 1 / 15 Plan wykładu Światło, kolor, zmysł wzroku. Obraz: fotgrafia, grafika cyfrowa,
Geometria Analityczna w Przestrzeni
Algebra p. 1/25 Algebra Geometria Analityczna w Przestrzeni Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045
Analiza Matematyczna Praca domowa
Analiza Matematyczna Praca domowa J. de Lucas Zadanie 1. Pokazać, że dla wszystkich n naturalnych ( n ) exp kx k dx 1 dx n = 1 n (e k 1). (0,1) n k=1 n! k=1 Zadanie. Obliczyć dla dowolnego n. (0,1) n (x
www.anilrana13014.weebly.com www.k8449.weebly.com t t t t t t t t t t t t t t t t t ç iv P P P P P P P P P P P q r s t r 1 r 1 2 r 34 5 I 2 6 r 34 5 I 78 910 ❶ r s ❷ ❸ 78 910 P P P P P s r r r r r r r
ÏÝ Ö Ò ÖÙÒ Û ÛÓÐÙ Ö Ò ÓÛ Â ÖÓ Û Ö ÈÓÐ Ø Ò Ï Ö Þ Û ÁÒ ØÝØÙØ ËÝ Ø Ñ Û Ð ØÖÓÒ ÞÒÝ ¹Ñ Ð Ö Ð ºÔÛº ÙºÔÐ Ñ Ò Ö ÙÑ Ù ÁÒØ Ð ÒØÒÝ ËÝ Ø Ñ Û Ï ÔÓÑ Ò ÝÞ ÈÓÐ Ø Ò ÈÓ
ÏÝ Ö Ò ÖÙÒ Û ÛÓÐÙ Ö Ò ÓÛ Â ÖÓ Û Ö ÈÓÐ Ø Ò Ï Ö Þ Û ÁÒ ØÝØÙØ ËÝ Ø Ñ Û Ð ØÖÓÒ ÞÒÝ ¹Ñ Ð Ö Ð ºÔÛº ÙºÔÐ Ñ Ò Ö ÙÑ Ù ÁÒØ Ð ÒØÒÝ ËÝ Ø Ñ Û Ï ÔÓÑ Ò ÝÞ ÈÓÐ Ø Ò ÈÓÞÒ ¾ º½½º¾¼½¼ ÈÐ Ò ÔÖ Þ ÒØ ½ ¾ Ð ÓÖÝØÑ ÛÓÐÙÝ ÒÝ Ó ÖÓÞ
Modelowanie i wizualizowanie 3W-grafiki. Transformacje. Aleksander Denisiuk. denisjuk@matman.uwm.edu.pl
Modelowanie i wizualizowanie 3W-grafiki Transformacje Aleksander Denisiuk denisjuk@matman.uwm.edu.pl Uniwersytet Warmińsko-Mazurski w Olsztynie Wydział Matematyki i Informatyki ul. Słoneczna 54 10-561
Synteza i obróbka obrazu. Algorytmy oświetlenia globalnego
Synteza i obróbka obrazu Algorytmy oświetlenia globalnego Algorytmy oświetlenia Algorytmy oświetlenia bezpośredniego (direct illumination) tylko światło poadające bezpośrednio na obiekty, mniejszy realizm,
Przestrzenie 3D (algorytmy renderingu)
Rendering Przestrzenie 3D (algorytmy renderingu) Rendering proces przekształcania opisu świata, uzyskanego po modelowaniu, w pełnokolorowy obraz. Wejściem do renderingu jest model świata, położenie oka,
ÛÙÛÝÑ ÖÓÛÝ ÔÖ Ò ÂÓ ÒÒ ÀÓÖ ÂÓ ÒÒ ÀÓÖ ÛÙÛÝÑ ÖÓÛÝ ÔÖ Ò
½º Ò ¾º ÈÖÞÝ º Ï ÒÓ Ð ÓÖÝØÑÙ Þ ÒÓ Ù Ý Ó ÛÖ ÐÒ ÔÖÞ ÔÐ Ø Ò Ù ÐÒÓ µ º Ê Ó¹ Ð Û ÐÐ Þ º ÈÖ Ò Ð ÓÖÝØÑ Å º ÏÔÖÓÛ Þ Ò Ó Û ÐÓÛÝÑ ÖÓÛ Ó ÔÖ Ò Ò Ù Ý Ó Ò ÖÓÛ Ò Þ Û ØÓÖ ÐÓ ÓÛ Ó (, ) Ó ÔÓÛ Ò ÔÖ Ý ( ½, ½ ),( ¾, ¾ ),...
Optyka. Wykład VII Krzysztof Golec-Biernat. Prawa odbicia i załamania. Uniwersytet Rzeszowski, 22 listopada 2017
Optyka Wykład VII Krzysztof Golec-Biernat Prawa odbicia i załamania Uniwersytet Rzeszowski, 22 listopada 2017 Wykład VII Krzysztof Golec-Biernat Optyka 1 / 20 Plan Zachowanie pola elektromagnetycznego
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 5 Tomasz Kwiatkowski 3 listopad 2010 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 5 1/41 Plan wykładu Podstawy optyki geometrycznej Załamanie światła, soczewki Odbicie
Ð ÓÖÝØÑÝ ØÖÙ ØÙÖÝ ÒÝ Ñ Ø Ö Ý ÛÝ ÓÛ ËØÙ Þ ÓÞÒ ÈÂÏËÌÃ Á ËÌÊÍÃÌÍÊ Æ À Ä ÇÊ ÌÅ ÁÁ Ñ Ø Ö Ý ÔÓÑÓÒ Þ µ Ï Ã ÈÖÓ Ð Ñ ÛÝ ÞÙ Ò ÈÓÐ Ó Â ÔÓ ÏÝ Þ ËÞ Ó Ì Ò ÃÓÑÔÙØ ÖÓ
Á ËÌÊÍÃÌÍÊ Æ À Ä ÇÊ ÌÅ ÁÁ Ñ Ø Ö Ý ÔÓÑÓÒ Þ µ Ï Ã ÈÖÓ Ð Ñ ÛÝ ÞÙ Ò ÈÓÐ Ó Â ÔÓ ÏÝ Þ ËÞ Ó Ì Ò ÃÓÑÔÙØ ÖÓÛÝ Ï Ö Þ Û Ð ØÓÔ ¾¼¼ Ð ØÓÔ ¾¼¼ ËÐ ½ È Û Ê Ñ Ð Ð ÓÖÝØÑ Û ÒÝ ÒÝ Ð ÓÖÝØÑ ØÙÖÒ Ð ÔÖÓ Ð ÑÙ ¾¹ Ó Ó Ó Û Ð Ó Ð
Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania.
Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania. Chcąc osiągnąć realizm renderowanego obrazu, należy rozwiązać problem świetlenia. Barwy, faktury i inne właściwości przedmiotów postrzegamy
Grafika komputerowa. Model oświetlenia. emisja światła przez źródła światła. interakcja światła z powierzchnią. absorbcja światła przez sensor
Model oświetlenia emisja światła przez źródła światła interakcja światła z powierzchnią absorbcja światła przez sensor Radiancja radiancja miara światła wychodzącego z powierzchni w danym kącie bryłowym
Ð ÓÖÝØÑÝ ØÖÙ ØÙÖÝ ÒÝ Ñ Ø Ö Ý ÛÝ ÓÛ ËØÙ Þ ÓÞÒ ÈÂÏËÌÃ Á ËÌÊÍÃÌÍÊ Æ À Ä ÇÊ ÌÅ ÁÁÁ Ñ Ø Ö Ý ÔÓÑÓÒ Þ µ Ï Ã ÈÖÓ Ð Ñ ÓÖØÓÛ Ò ÈÓÐ Ó Â ÔÓ ÏÝ Þ ËÞ Ó Ì Ò ÃÓÑÔÙØ Ö
Á ËÌÊÍÃÌÍÊ Æ À Ä ÇÊ ÌÅ ÁÁÁ Ñ Ø Ö Ý ÔÓÑÓÒ Þ µ Ï Ã ÈÖÓ Ð Ñ ÓÖØÓÛ Ò ÈÓÐ Ó Â ÔÓ ÏÝ Þ ËÞ Ó Ì Ò ÃÓÑÔÙØ ÖÓÛÝ Ï Ö Þ Û ½¼ Ð ØÓÔ ¾¼¼ ½¼ Ð ØÓÔ ¾¼¼ ËÐ ½ È Û Ê Ñ Ð Ð ÓÖÝØÑ ÓÖØÓÛ Ò ÔÖÞ Þ Ð Ð ÓÖÝØÑ ÓÖØÓÛ Ò ÔÖÞ Þ Û Ø
ń ę ńń ń
ń ż ę Ą Ś Ó Ę ń ę ńń ń ę ż ż Ę ę Ń Ę ę ę Ń ń ż Ę ę Ą ę ń ż ę ć ę ć ń ń ę Ś ę ę ź ż ż ę ę ż ę ż ń ę Ę ę ż Ę ń ż ę ń ń ę ż ę ż ę ż ń ę ę ę ę ę ę ę ż Ę ę ę ć ę ź ę ę ź Ę ę ń ę ż Ę ę Ę ń ż ę ę Ę ń ę ż Ę ę
Wprowadzenie do grafiki maszynowej. Wprowadzenie do wprowadzenia
Wprowadzenie do grafiki maszynowej. Wprowadzenie do wprowadzenia Aleksander Denisiuk Uniwersytet Warmińsko-Mazurski Olsztyn, ul. Słoneczna 54 denisjuk@matman.uwm.edu.pl 1 / 17 Wprowadzenie do wprowadzenia
Przestrzenie 3D (algorytm rendering y u)
Przestrzenie 3D (algorytmy renderingu) Rendering Rendering proces przekształcania opisu świata, uzyskanego po modelowaniu, w pełnokolorowy obraz. Wejściem do renderingu jest model świata, położenie oka,
Poniżej 14 r.ż. 1 (0,5%) 1 (0,9%) r.ż. 11 (6,0%) 21 (18,9%) r.ż. 59 (32,2%) 44 (39,6%) r.ż. 38 (20,8%) 15 (13,5%) Powyżej 25 r.ż.
! " # $ % &! ' $ ( ) * # +, $ - *. /, 0 # 1!. 0, * 2 0 '! 3! 1 ) 4 $ % 5. ) (! +, ) 0 6 ). 7 1 $ 8, 9 : ; < = >? < ; @ = A B C D E F G @ H < I J K L D M N = A D M O E L D H B P ; A Q H < O R S G @ ; P
Analiza Matematyczna. Teoria Liczb Rzeczywistych
Analiza Matematyczna. Teoria Liczb Aleksander Denisiuk denisiuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk 12 marca 2017
Animowana grafika 3D. Opracowanie: J. Kęsik.
Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollub.pl Śledzenie promieni Ray tracing jest techniką renderowania będącą obecnie podstawą wielu algorytmów fotorealistycznych Po raz pierwszy wykorzystana
Fizyka I (mechanika), rok akad. 2012/2013 Zadania kolokwialne 1
ÞÝ Á ¾¼½¾»¾¼½ µ ÃÓÐÓ Û ÙÑ ½ º½½º¾¼½¾ Ò Ö ÙÒ ÓÛ ÖÙÔ ÍÛ Ã Þ Ò ÖÓÞÛ ÞÙ ÑÝ Ò Ó Ó Ò ÖØ º ÈÖ ÔÓÛ ÒÒÝ Ý ÞÝØ ÐÒ ÓÐ Ò ÖÓ ÓÔ ØÖÞÓÒ Ø Ñ ÓÑ ÒØ ÖÞ Ñ Ý ØÓ ÖÓÞÙÑÓÛ Ò Ý ÒÝ Ð ÔÖ Û Þ Óº ÊÓÞÛ ÞÙ Þ Ò ÛÝÔÖÓÛ õ ÛÞ Ö Ó ÓÛÝ ÔÖ
Animowana grafika 3D. Opracowanie: J. Kęsik.
Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollub.pl Powierzchnia obiektu 3D jest renderowana jako czarna jeżeli nie jest oświetlana żadnym światłem (wyjątkiem są obiekty samoświecące) Oświetlenie
Analiza Matematyczna. Własności funkcji różniczkowalnych
Analiza Matematyczna. Własności funkcji Aleksander Denisiuk denisiuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk 5 kwietnia
Analiza Matematyczna. Pochodne wyższych rzędów. Wzór Taylora
Analiza Matematyczna. Pochodne wyższych Aleksander Denisiuk denisiuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk 23 kwietnia
0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do
0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do obserwatora f) w kierunku od obserwatora 1. Obrót dookoła osi
Grafika komputerowa Wykład 10 Modelowanie oświetlenia
Grafika komputerowa Wykład 10 Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1 2 3 Spis treści Spis treści 1 2 3 Spis
Oświetlenie obiektów 3D
Synteza i obróbka obrazu Oświetlenie obiektów 3D Opracowanie: dr inż. Grzegorz Szwoch Politechnika Gdańska Katedra Systemów Multimedialnych Rasteryzacja Spłaszczony po rzutowaniu obraz siatek wielokątowych
Gry komputerowe: efekty specjalne cz. 2
1/43 Gry komputerowe: efekty specjalne cz. 2 Przygotowała: Anna Tomaszewska 2/43 Mapowanie środowiska - definicja aproksymacje odbić na powierzchnie prosto- i krzywoliniowej," oświetlanie sceny." obserwator
Wektory. Algebra. Aleksander Denisiuk. Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi Gdańsk
Algebra Wektory Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p. 1 Wektory Najnowsza wersja
Ś Ż ć Ą Ż Ż ć Ś Ż Ą Ż Ą ľ Ś ć Ś Ś ć Ś ć ě Ż Ż Ż Ż Ż Ź Ż Ż Í
Ó Í ľ ä Í ľ Ä ľ Ü Ś Đ Ą Ś Ż Ś Ż Ś Ż ć Ą Ż Ż ć Ś Ż Ą Ż Ą ľ Ś ć Ś Ś ć Ś ć ě Ż Ż Ż Ż Ż Ź Ż Ż Í Ż ľ Ó Ż Ż Ż ć Ż ć Ó ć Ą ć ć ć ü Í Á í í Ś Ż Ą Ś Ż í í í í í í í í í í ć Ż Í í ć Ż Ż Ż Ź Ą Ż Ż ć Ż őż Í ć Ż ć
Janusz Przewocki. Zeroth Milnor-Thurston homology for the Warsaw Circle. Instytut Matematyczny PAN. Praca semestralna nr 3 (semestr zimowy 2010/11)
Janusz Przewocki Instytut Matematyczny PAN Zeroth Milnor-Thurston homology for the Warsaw Circle Praca semestralna nr 3 (semestr zimowy 2010/11) Opiekun pracy: Andreas Zastrow ÖÓØ Å ÐÒÓÖ¹Ì ÙÖ ØÓÒ ÓÑÓÐÓ
Model oświetlenia. Radosław Mantiuk. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie
Model oświetlenia Radosław Mantiuk Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Obliczenie koloru powierzchni (ang. Lighting) Światło biegnie od źródła światła, odbija
Analiza Matematyczna. Właściwości funkcji ciagłych
Analiza Matematyczna. Właściwości funkcji Aleksander Denisiuk denisiuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk 24 marca
Wykład 17: Optyka falowa cz.2.
Wykład 17: Optyka falowa cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Interferencja w cienkich warstwach Załamanie
ÃÓÑÔ Ð ØÖÓÒ ÞÒÝ ÈÓ ÖÞÒ ½º¼ ÏÝ Ò ÖÓÛ ÒÓ ÔÖÞ Þ ÓÜÝ Ò ½º º Ï ÂÙÒ ½½ ¼ ¾¼¼ ËÔ ØÖ ½ ÃÓÑÔ Ð ØÖÓÒ ÞÒÝ ½ ½º½ ÇÔ ÔÖÓ ØÙ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ Ð Ñ ÒØÝ
ć ć ź ć ć ć Ź ź Ź ź
ć Ż Ż ć ć ć ź ć ć ć Ź ź Ź ź ć ź ć ź ć ź ź ź ź ź ź ź ć ć ź ć źć ć ć ć ć ć ć ć ć ć ć ź ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ź ć ć ć ź ć ć ć ć Ź ć ć ć Ó Ż ć ć Ź ć ć ć ć ć ć ć ć ć ć ć Ź ć ź ć ć ć ć ź ć ć ć
1. Czym jest rendering? a. Komputerowa analiza modelu danej sceny i utworzenie na jej podstawie obrazu 2D. b. Funkcja umożliwiająca kopiowanie obrazu
1. Czym jest rendering? a. Komputerowa analiza modelu danej sceny i utworzenie na jej podstawie obrazu 2D. b. Funkcja umożliwiająca kopiowanie obrazu pomiędzy warstwami. c. Sposób tworzenia modeli 2D d.
Analiza Matematyczna. Przeglad własności funkcji elementarnych
Analiza Matematyczna. Przeglad własności Aleksander Denisiuk denisiuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk 4 marca
Krzywe stożkowe. Algebra. Aleksander Denisiuk
Algebra Krzywe stożkowe Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p. 1 Krzywe stożkowe
/ ( ) / 2008 9 / ( ) / 1. 2. 3. 3.1 3.2 3.3 3.4 4. ( ) 4.1 4.2 4.3 4.4 5. 5.1 5.2 5.3 5.4 6. 6.1 () 6.2 6.3 6.4 6.5 / 6.6 6.7 6.8 6.9 T5 1. 2007 ( ) (RPE) / / / 2. 1) / / / 2) TCP T5 3) / / / 1) 2) 3)
Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu. Mirosław Głowacki
Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu Mirosław Głowacki Cieniowanie Bardzo ważnym elementem sceny jest oświetlenie. To właśnie odpowiednie dobranie oświetlenia sprawia,
Grafika realistyczna. Oświetlenie globalne ang. global illumination. Radosław Mantiuk
Oświetlenie globalne ang. global illumination Radosław Mantiuk Generowanie obrazów z uwzględnieniem oświetlenia globalnego Cel oświetlenia globalnego obliczenie drogi promieni światła od źródeł światła
MODELE OŚWIETLENIA. Mateusz Moczadło
MODELE OŚWIETLENIA Mateusz Moczadło Wstęp Istotne znaczenie w modelu oświetlenia odgrywa dobór źródeł światła uwzględnianych przy wyznaczaniu obserwowanej barwy obiektu. Lokalne modele oświetlenia wykorzystują
rgbf<składowa_r,składowa_g,składowa_b,filter>. Dla parametru filter przyjmij kolejno wartości: 0.60, 0.70, 0.80, 0.90, 1.00, np.:
Temat 2: Przezroczystość. Prostopadłościan, walec i stożek. Przesuwanie i skalowanie obiektów. Omówimy teraz przezroczystość obiektów związaną z ich kolorem (lub teksturą). Za przezroczystość odpowiadają
ÈÐ Ò ÛÝ Ø Ô Ò ½ ¾ ÃÐ ÝÞÒ Ó Ð Þ Ò ÓÛ ÞØÙÞÒ ÒØ Ð Ò ÅÓ Ð Ó Ð Þ Ò ÓÛ ÞØÙÞÒ ÒØ Ð Ò Ë Ò ÙÖÓÒÓÛ ÏÒ Ó ÓÛ Ò Þ ÐÓ ÖÓÞÑÝØ Ð ÓÖÝØÑÝ ÛÓÐÙÝ Ò ÊÓÞÛ Þ Ò Ý ÖÝ ÓÛ ÝÒ Ñ
Ç Ð Þ Ò ÓÛ ÞØÙÞÒ ÒØ Ð Ò Â ÖÓ Û Ö ÈÓÐ Ø Ò Ï Ö Þ Û ÁÒ ØÝØÙØ ËÝ Ø Ñ Û Ð ØÖÓÒ ÞÒÝ Ï ÌÁ ÈÐ Ò ÛÝ Ø Ô Ò ½ ¾ ÃÐ ÝÞÒ Ó Ð Þ Ò ÓÛ ÞØÙÞÒ ÒØ Ð Ò ÅÓ Ð Ó Ð Þ Ò ÓÛ ÞØÙÞÒ ÒØ Ð Ò Ë Ò ÙÖÓÒÓÛ ÏÒ Ó ÓÛ Ò Þ ÐÓ ÖÓÞÑÝØ Ð ÓÖÝØÑÝ
Ź Ą Ś ć ć Ą Ś Í ć Ł ć ć
Í ć í ć Ź Ą Ś ć ć Ą Ś Í ć Ł ć ć ć í í í ć Ś ć Ó ć Ó Ó ć Ś Ó ć ő Ć ć Ó ć Ś ć ć ć Ś ć Ś ć ć Ść ć ć ć Ó ć ľ ć Ó ć ć Ć ć Ó ć Ś ľ Ś ć ć ć ć ć Ą ć Ó Ś ć Ą ć ć Ó ć Á Í ć Ź ć ľ ľ ľ ť ć ć Ó ŚÓ ľ ć í Ś Ś ć ľ Ó Ś
ń ń Ś Ż Ś ń
ń ń Ś Ż Ś ń ć Ż Ś Ż ń Ś Ż Ż ń Ś Ó ń ć ć ć ć ć Ść Ę ź Ó ć ć źń ć Ś Ć Ż Ś Ć ŚĆ ń ć ź Ś ń ń Ż ć ń ć ń Ś ź ń ź ć ź ć Ę ń ć ć ć Ę ć Ó ń ć ź Ó ŻÓ ź ń ń Ć ć ź ć ń ź ń ć ń Ą ń ć Ż ń Ś Ś ź Ą ć ŚĆ ń ć źć ć Ę Ż ć
Ï ØÔ ÈÖÞÝ Ý Ç ÐÒ Û ÒÓ Ó Þ Ò À Ð ¹ÈÓ Ø ÓÒ Ð Ø ÖÑ Ò Ý Ó ÁÒ Ò Ø Ñ ÖÝ ÃÓÔÞÝ Ï Ö Û ÍÒ Ú Ö ØÝ Û ØÒ ¾¼¼ ÖÝ ÃÓÔÞÝ À Ð ¹ÈÓ Ø ÓÒ Ð Ø ÖÑ Ò Ý Ó ÁÒ Ò Ø Ñ ½» ¼
Ï Ö Û ÍÒ Ú Ö ØÝ Û ØÒ ¾¼¼ ½» ¼ ÔÖÞÝ Ö Þ ÛÝÔ Ø Ö Ò Ö Ò Ó ÞÓÒÝ Ò ØÖ Ø ÔÓÞÝÝ ÒÝ Ò ¹ÔÓÞÝÝ ÒÝ Ò Ò ÛÝÒ ¹ ¹ ¾¼ ÑÝ ¹½ ¹½ ¹¾ ½¼ ¹¾ ¹½ ¹¾ ÓÒ ¹½ ¹ ¾» ¼ ÔÖÞÝ Ö Ô ÖÞÝ ØÓ Ö Ò Ó ÞÓÒÝ Ò ØÖ Ø ÔÓÞÝÝ ÒÝ Ò ¹ÔÓÞÝÝ ÒÝ Ò Ò ÛÝÒ
Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu. Mirosław Głowacki
Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu Mirosław Głowacki Cieniowanie Bardzo ważnym elementem sceny jest oświetlenie. To właśnie odpowiednie dobranie oświetlenia sprawia,
ć ć ć ć ć ć ć ć ć ć ź
Ó ć Ś ź ź ć ć ć ć ź ć ź ć ź ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ź Ó ć ć ć ć ź ź ć Ę ć ć ć ź ć ć ź ć Ę ć ć ź ć ź ć Ó ć ć Ą ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ż ć ć ć Ń ć Ą ź ź ć ć ź ć ć Ę ć ć ć ć ć ć ć ć ź
ć ć Ą ć Ęć Ó Ą ź ć ć ć ć ź ź Ą ć Ę ć ź ć ć ć ź ć ź ć ć ć Ś Ź ź
ź Ó ć Ę ć Ó ć ć ć ć Ź ć ź ć ć Ź ć ć ć Ą ć Ęć Ó Ą ź ć ć ć ć ź ź Ą ć Ę ć ź ć ć ć ź ć ź ć ć ć Ś Ź ź ć Ą ć Ą ć ź ć ź ć Ę ć ć Ź ź Ę ć ć ć ć Ę Ę ź ć Ó ć ć ć ć ć ć ć ć ć Ź Ź ć ć ć ź Ę ć ć ć ć Ę Ąć ź Ź ć Ą ć ć
ć Ę ó ż ć
Ą Ł ż ż Ę ó ó ó ć ó ć ó ż ó ó ż ó ć Ę ó ż ć ó ź ó ó ó ć ó ć ó ć ó ó ó ó ó Ę ó ó ó ż ó Ę ó ó ż ó óż ó ó ć ć ż ó Ą ó ó ć ó ó ó ó ó ż ó ó ó ó Ą ó ó ć ó ó ź ć ó ó ó ó ć ó Ę ó ż ż ó ó ż ż ó ó ó ć ó ć ó ć ó
Algorytmy oświetlenia globalnego
Synteza i obróbka obrazu Algorytmy oświetlenia globalnego Opracowanie: dr inż. Grzegorz Szwoch Politechnika Gdańska Katedra Systemów Multimedialnych Algorytmy oświetlenia Algorytmy oświetlenia bezpośredniego
Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II
Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1
Przetwarzanie i Kompresja Obrazów. Morfologia matematyczna
Przetwarzanie i Kompresja Obrazów. Morfologia matematyczna Aleksander Denisiuk(denisjuk@pja.edu.pl) Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55, 80-045 Gdańsk
C e l e m c z ę ś c i d y s k u s y j n e j j e s t u ś w i a d o m i e n i e s o b i e, w o p a r c i u o r o z w a ż a n i a P i s m a Ś w.
1. C e l s p o t k a n i a. C e l e m c z ę ś c i d y s k u s y j n e j j e s t u ś w i a d o m i e n i e s o b i e, w o p a r c i u o r o z w a ż a n i a P i s m a Ś w., ż e : B y d z b a w i o n y m
ż ć
Ł Ł ż ć ć ż ć Ą Ł ó ó ć ż ć ć ż ć Ę ć Ę ć ć Ę ć ć ć Ę ż ć ć ć Ś ć Ę Ę ż ż ć ż Ę ć ć Ę ż ż Ę Ł ć ć Ą Ę Ł ć ć ć ż ć Ę Ł Ść Ą Ę Ł ć ć ć ć Ę Ł Ść Ą Ę Ł ć ć ć Ł ć Ę Ę ć ć ć ć Ł Ść ć ć Ę Ę Ł Ś Ą Ś Ś Ł Ą Ą ż