Obliczeniowy wykres CTPc-S. Ilościowa ocena składu fazowego na podstawie wykresów CTPc-S

Wielkość: px
Rozpocząć pokaz od strony:

Download "Obliczeniowy wykres CTPc-S. Ilościowa ocena składu fazowego na podstawie wykresów CTPc-S"

Transkrypt

1 Obliczeioy ykres CTPc-S. Ilościoa ocea składu fazoego a podstaie ykresó CTPc-S Z poodu zaczej różorodości ykresó CTPc-S ich peły, aalityczy opis jest zaczym stopiu utrudioy. Istieją atomiast zory pozalające yliczyć iektóre charakterystycze ielkości dla ykresó CTPc-S. Dzięki zajomości tych ielkości moża opracoać uproszczoe ykresy CTPc-S. Obliczeioy ykres CTPc-S jest ykoyay i aalizoay a podstaie astępujących ielkości: Ms - temperatura początku przemiay martezytyczej [C], Bs - temperatura początku przemiay baiityczej [C], Fs - temperatura początku przemiay ferrytyczej [C], tb - czas do początku przemiay baiityczej [s], tf - czas do początku przemiay ferrytyczej [s], tp - czas do początku przemiay perlityczej [s], tmk - czas do zakończeia przemiay martezytyczej [s]. Do obliczeń mogą być użyte astępujące zależości: edług Coe [17,19]: Ms = C - 30,4 M - 17,7 Ni - 12,1 Cr - 7,5 Mo (3.24) Mf = ,4 C - 33 M - 17 Ni - 17 Cr - 21 Mo (3.25) edług Hoeycombe [17,19]: Bs = C - 80 M - 70 Cr - 83 Mo (3.26) edług Iagaki [17,19]: tb = 10 [5,81 (C+Si/16+M/19+Ni/48+Cr/20+Mo/7+V/28) - 1,13] (3.27) tf = 10 [5,8 (C+Si/291+M/14+Ni/67+Cr/16+Mo/6+V/425) - 0,83] (3.28) tp = 10 [5,14(C+Si/17+M/19+Ni/25+Cr/16+Mo/4+V/3) + 0,06] (3.29) edług Zemaa M.[78]: Ms = 646,6-2418,2 C +219,6 M Si + 41,4 Cr - 134,7 Ni - 9,3 Mo - 7,1 V+35,2 Nb ,1 C 2-175,3 M 2-36,7 Si ,3 Cr ,5 Ni ,2 Mo ,7 C M + 228,6+M Si + 535,5 C Si (3.30) Bs = 947,9-1616,7 C - 231,5 M + 71,4 Si - 98,7 Cr - 103,4 Ni - 18,9Mo - 171,6 V - 384,8 Nb ,1 C ,3 M 2-73,9Si ,7 Cr ,7 Ni 2-19,6 Mo ,4 C M - 36,8 M Si ++ 0,913 C Si (3.31) tb = - 1,8 + 28,3 C + 17,1 M - 59,6 Si - 20 Cr +13,2 Ni + 0,1 Mo - 5,3 V + 47,0 Nb - 289,6 C 2-3,7 M ,4 Si 2 +38,6 Cr 2-7,0 Ni 2-21,0 Mo 2-9,8 C M - 19,5 M Si +232,1 C Si (3.32)

2 tf = - 225,4-4011,0 C M + 670,1 Si - 434,6 Cr - 123,8 Ni - 912,8 Mo - 112,2 V ,3 Nb ,2 C 2-401,4 M ,3 Si ,2 Cr 2-2,83 Ni ,1 Mo ,2 C M - 227,6 M Si ,1 C Si (3.33) edług Jaresa [17,19]: Ms = C+90C 2-35M-30Cr-20Ni-15W-10Mo (3.34) edług Paysoa, Savageho [21]: Ms = C-35M-20Cr-15Ni-10Si-10Mo (3.35) edług Okumury [47]: tb = exp(7,4(c+si/24+(m+cr)/6+cu/15+ni/40+mo/4+(nb+v)/5+5b)-3,027) (3.36) tp = exp(5,6(c-si/30+m/5+cu/5+ni/20+cr/4+mo/6+10b)-1,821) (3.37) edług Kasatkia, Seyffartha [30]: Ms = Si-197CM-515CSi-26MSi-365C 2 +7,41M 2 (3.38) Bs = C+356M+341Si-583CM-849CSi-161MSi-77,3M 2 (3.39) tb = -3,83+29,9C+1,7M-13,3Si+67,8CSi+2,22MSi-40,8C 2 (3.40) tf = -47,2+121C+46,1M+26,1Si-88,4CM (3.41) edług Seyffartha [56]: l Ac1 = C Si Ni Al W Cu V S P M C Cr C Cr Si Mo C Mo M Mo Si Mo Cr Ni C M Si Cr Mo Ni 2 (3.42) l Ac3 = C M Si Cr Ni Ti W N S Si C Cr C Mo M Mo Si Mo Cr Ni C Ni M Ni Cr C M Cr Mo Ni 2 (3.43) l Ms = C Cr Ni Ti Al M C Cr M Mo C Mo M Mo Si Mo Cr Ni C Ni Si Ni Cr C M Cr Ni 2 (3.44) l Bs = C M Si Cr Mo Ni V Ti Nb Cu B N S P M V Si C M Si Cr C M Cr M Mo Mo Ni Mo Si Ni C M Ni Si Ni C M Mo Ni 2 (3.45)

3 l (t 8/5 ) B = Ni Al Nb Cu B N M C Si C Cr C Mo M Mo Si Ni C Ni M Ni Cr Si Cr 2 (3.46) l (t 8/5 ) F = C M Si Cr Mo Ni V Cr C Cr M Mo C Mo Si Mo Cr Ni C Si Mo 2 (3.47) edług Wojar, Mikuła [74]: Ms = 635,02-549,82C - 85,441M - 68,967Si - 18,07Cr - 30,965Ni - 69,301Mo - 6,6033V +420,26Nb + 553,8Ti ,3B (3.48) Mf = 381,76-252,44C - 111,12M + 54,538Si + 114,17Cr - 23,779Ni - 57,381Mo + 215,7V + 945,4Nb ,7Ti ,5B (3.49) Bs = 744,93-183,65C - 77,404M + 45,594Si - 132,37Cr + 2,037Ni + 14,051Mo - 11,364V - 309,27Nb - 609,46Ti + 488,89B (3.50) edług Makaroa i Głazuoa [35]: krytycze szybkości chłodzeia zakresie temperatur 600 do 500C przy których struktura SWC zaiera 5 i 90% martezytu: M 5 M90 = 0343, C = 3, 217C 4116, ek 3, 838 ek krytycze szybkości chłodzeia przy których struktura SWC zaiera 5 i 95 % ferrytu i perlitu: (3.51) (3.52) = (3.53) FP5 M 5 = 01, (3.54) FP95 FP5 C C Si M Cr Ni Mo V Cu ek = B (3.55) t 85 / 225 (3.56) 65 / zaartość martezytu i ferrytu z perlitem strukturze przy [ ( M M )] M90 6/ 5 M5 M = 100 0, 95 exp K 65 / (3.57) ( FP ) FP = 100 exp KFP 65 / (3.58) K K M FP = 0, M M 5 = 2, ,7664 FP5 M 3, = I FP = 1, 7664 ( / ) M90 M5

4 Zaartość baiitu B dla zadaej prędkości chłodzeia określa się jako dopełieie udziału martezytu M do 95% (ok. 5% staoi austeit szczątkoy A 0 ) lub dopełieie udziału struktur ferrytyczo-perlityczych do 100%. Zakres zastosoaia: 0,08-0,45%C, 0,5-1,8 %M, 0,1-1,4 %Si, 0,0-0,6 %Mo, 0,0-3,0 % Ni, 0,0-0,18 % V, 0,0-2,0 %Cr. edług Kasatkia i Seyfferta [30]: Ocea składu fazoego SWC: l t l t M = Φ l S m t tf F+ P = 100Φ l l l S F = F max m + P F+ P [%] (3.59) [%] (3.60) l t l tf Φ [%] (3.61) l S F B = M - (F+P) [%] (3.62) M, B, F, P - procetoy udział strukturze martezytu, baiitu, ferrytu i perlitu, t - czas chłodzeia pomiędzy 850 a 500 C l t M = -2,1 + 15,5 C + 0,96 M + 0,84 Si + 0,77 + 0,74 Mo + 0,7 Ni + 0,3 V + 4 Al + 0,5 W + 0,8 Cu - 13,5 C 2 (3.63) l S M = C M Cr Mo Ti Nb Cu Cu Mo (3.64) l t F+P = C M Si Cr Mo Ni W + Cu C 2 (3.65) l S F+P = C M Ce Mo Ni V Ti W (3.66) l t F = C M Si Cr Mo Ni W C M C 2 (3.67) I S F = M Si Cr Mo Ni Nb W Cu (3.68) F max = 100 %, jeżeli C < 0.02% (3.69)

5 F max = 100 [1 - (C ):( M Mo)] [%] (3.70) Skład chemiczy stali poiie spełiać aruki: C 0.4, M 2, Si 0.8, Cr 2, Mo 1, Ni 1.5, V 0.3, Ti 0.06 Al 0.06, Nb 0.1, W 0.5, Cu 0.5. Czas chłodzeia: 5 t 200 [%] Φ - fukcja rozkładu ormalego 1 Φ= 1 exp t (3.71) 2π 2 Aalizując przedstaioe zależości ależy stierdzić, że brakuje zoró a temperaturę początku przemiay ferrytyczej i czas końca przemiay martezytyczej. Brakujące ielkości moża ustalić szacukoo jako [74]: Fs = Bs + 50 (3.72) tmk = 10tB (3.73) Poyższe zależości ie mają pradzie uzasadieia teoretyczego, ykazao jedak a podstaie aalizy kilkudziesięciu ykresó CTPc-S, że dla zdecydoaej iększości ykresó poyższe uproszczoe zależości a F s i t Mk dają poprae yiki. Istoty problem staoi ocea składu strukturalego co yika ze zmieej prędkości ydzielaia się poszczególych faz. Wykres płyu czasu a stopień zaaasoaia przemia dyfuzyjych jest ieliioy. Fukcja, opisująca te proces musi być fukcją mootoiczą, zmierzającą asymptotyczie zaróo do kresu dolego (całkoity brak przemiay), jak i do kresu górego (100% zaaasoaia przemiay). Jedą z fukcji, które spełiają poyższe założeia jest fukcja typu: V v = A, B, C - stałe, t - czas. A A+ exp( B( l t C) ) (3.74) W celu aalityczej ocey składu strukturalego ależy dodatkoo przyjąć astępujące założeia [41]: 1. Dla czasó poiżej t B struktura składa się z martezytu i 5% austeitu szczątkoego. 2. Dla czasó pomiędzy t B i t Mk zaartość austeitu szczątkoego maleje prost proporcjoalie do l(t), osiągając ielkość 0 (zero) dla t = t Mk. 3. W celu yzaczeia stałych róaiu (3.74) przyjmuje się, że czas początku przemiay odpoiada 2% zaaasoaia przemiay, atomiast czas końca przemiay odpoiada 98% zaaasoaia przemiay. 4. Zakłada się, że przemiaa ferrytycza zachodzi czasie 40 s. 5. Zaartość baiitu określa się jako dopełieie do 100% po obliczeiu zaartości austeitu szczątkoego, martezytu i ferrytu. 6. Ze zględu a małą zaartość ęgla ie rozdziela się ferrytu i perlitu, traktując je jako jede składik strukturaly. Poyższe założeia ie zasze są spełioe, a brak odpoiedich daych dośiadczalych uiemożliia proadzeie dokładiejszych zoró obliczeioych. Pomimo to ymieioe zory i założeia pozalają a oceę struktury z zadoalającą dokładością, przez co ależy rozumieć jakościoą zgodość struktur rzeczyistych z

6 obliczoym składem strukturalym. Przeproadzoe badaia dośiadczale ykazały poadto ilościoą zgodość obliczoych i zmierzoych zaartości poszczególych składikó struktury dla kilku grup stali, zaróo ęgloych mikrostopoych o podyższoej ytrzymałości, jak i stali iskostopoych. Nie moża jedak przeosić tych dośiadczeń a ie grupy stali bez cześiejszego przeproadzeia badań spradzających.

MODELOWANIE PRZEMIAN FAZOWYCH W STYGNĄCYCH ODLEWACH STALIWNYCH.

MODELOWANIE PRZEMIAN FAZOWYCH W STYGNĄCYCH ODLEWACH STALIWNYCH. 5/38 Solidificatio of Metals ad Alloys, No. 38, 1998 Krzepięcie Metali i Stopów, r 38, 1998 PAN Katowice PL ISSN 0208-9386 MODELOWANIE PRZEMIAN FAZOWYCH W STYGNĄCYCH ODLEWACH STALIWNYCH. PARKITNY Ryszard,

Bardziej szczegółowo

8. MAT SPAW - program wspomagajcy analiz spawalnoci stali i opracowanie technologii spawania

8. MAT SPAW - program wspomagajcy analiz spawalnoci stali i opracowanie technologii spawania 124 8. MAT SPAW - program wspomagajcy analiz spawalnoci stali i opracowanie technologii spawania Podsumowaniem przedstawionych w niniejszej pracy rozwaa jest program komputerowy MAT SPAW. Nazwa programu

Bardziej szczegółowo

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej 3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu. Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

Statystyka matematyczna. Wykład II. Estymacja punktowa

Statystyka matematyczna. Wykład II. Estymacja punktowa Statystyka matematycza. Wykład II. e-mail:e.kozlovski@pollub.pl Spis treści 1 dyskretych Rozkłady zmieeych losowych ciągłych 2 3 4 Rozkład zmieej losowej dyskretej dyskretych Rozkłady zmieeych losowych

Bardziej szczegółowo

Numeryczny opis zjawiska zaniku

Numeryczny opis zjawiska zaniku FOTON 8, iosa 05 7 Numeryczy opis zjawiska zaiku Jerzy Giter ydział Fizyki U Postawieie problemu wielu zagadieiach z różych działów fizyki spotykamy się z astępującym problemem: zmiay w czasie t pewej

Bardziej szczegółowo

Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017

Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017 STATYSTYKA OPISOWA Dr Alia Gleska Istytut Matematyki WE PP 18 listopada 2017 1 Metoda aalitycza Metoda aalitycza przyjmujemy założeie, że zmiay zjawiska w czasie moża przedstawić jako fukcję zmieej czasowej

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Politechika Pozańska Temat: Laboratorium z termodyamiki Aaliza składu spali powstałych przy spalaiu paliw gazowych oraz pomiar ich prędkości przepływu za pomocą Dopplerowskiego Aemometru Laserowego (LDA)

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy 12. Dowieść, że istieje ieskończeie wiele par liczb aturalych k < spełiających rówaie ( ) ( ) k. k k +1 Stosując wzór a wartość współczyika dwumiaowego otrzymujemy ( ) ( )!! oraz k k! ( k)! k +1 (k +1)!

Bardziej szczegółowo

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2. Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,

Bardziej szczegółowo

1 Testy statystyczne. 2 Rodzaje testów

1 Testy statystyczne. 2 Rodzaje testów 1 Testy statystycze Podczas sprawdzaia hipotez statystyczych moga¾ wystapić ¾ dwa rodzaje b ¾edów. Prawdopodobieństwo b ¾edu polegajacego ¾ a odrzuceiu hipotezy zerowej (H 0 ), gdy jest oa prawdziwa, czyli

Bardziej szczegółowo

I kolokwium z Analizy Matematycznej

I kolokwium z Analizy Matematycznej I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4

Bardziej szczegółowo

1 Zmienne losowe. Własności dystrybuanty F (x) = P (X < x): F1. 0 F (x) 1 dla każdego x R, F2. lim F (x) = 0 oraz lim F (x) = 1,

1 Zmienne losowe. Własności dystrybuanty F (x) = P (X < x): F1. 0 F (x) 1 dla każdego x R, F2. lim F (x) = 0 oraz lim F (x) = 1, 1 Zmiee loowe Właości dytrybuaty F x = X < x: F1. 0 F x 1 dla każdego x R, F2. lim F x = 0 oraz lim F x = 1, x x + F3. F jet fukcją iemalejącą, F4. lim x x 0 F x = F x 0 dla każdego x R, F5. a X < b =

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 1 i 2

STATYSTYKA OPISOWA WYKŁAD 1 i 2 STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest

Bardziej szczegółowo

INWESTYCJE MATERIALNE

INWESTYCJE MATERIALNE OCENA EFEKTYWNOŚCI INWESTYCJI INWESTCJE: proces wydatkowaia środków a aktywa, z których moża oczekiwać dochodów pieiężych w późiejszym okresie. Każde przedsiębiorstwo posiada pewą liczbę możliwych projektów

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VI: Metoda Mote Carlo 17 listopada 2014 Zastosowaie: przybliżoe całkowaie Prosta metoda Mote Carlo Przybliżoe obliczaie całki ozaczoej Rozważmy całkowalą fukcję f : [0, 1] R. Chcemy zaleźć przybliżoą

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadaie 1 Rzucamy 4 kości do gry (uczciwe). Prawdopodobieństwo zdarzeia iż ajmiejsza uzyskaa a pojedyczej kości liczba oczek wyiesie trzy (trzy oczka mogą wystąpić a więcej iż jedej kości) rówe jest: (A)

Bardziej szczegółowo

OK 92.05 SFA/AWS A 5.11: (NiTi3) zasadowa. Otulina:

OK 92.05 SFA/AWS A 5.11: (NiTi3) zasadowa. Otulina: OK 92.05 SFA/AWS A 5.11: EN ISO 14172: E Ni-1 E Ni2061 (NiTi3) Elektroda do spawania elementów z czystego niklu. Przeznaczona jest także do łączenia materiałów różnoimiennych, np. niklu ze stalą, niklu

Bardziej szczegółowo

PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,,

PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,, PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA Ruch cząstki ieograiczoy z klasyczego puktu widzeia W tym przypadku V = cost, przejmiemy V ( x ) = 0, cząstka porusza się wzdłuż osi x. Rozwiązujemy

Bardziej szczegółowo

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1 Tekst a iebiesko jest kometarzem lub treścią zadaia. Zadaie 1. Zbadaj mootoiczość i ograiczoość ciągów. a = + 3 + 1 Ciąg jest mootoiczie rosący i ieograiczoy poieważ różica kolejych wyrazów jest dodatia.

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16 Egzami,.9.6, godz. :-5: Zadaie. ( puktów) Wyzaczyć wszystkie rozwiązaia rówaia z 4 = 4 w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej (bez używaia fukcji trygoometryczych)

Bardziej szczegółowo

Ocena dopasowania modelu do danych empirycznych

Ocena dopasowania modelu do danych empirycznych Ocea dopasowaia modelu do dach empirczch Po oszacowaiu parametrów modelu ależ zbadać, cz zbudowa model dobrze opisuje badae zależości. Jeśli okaże się, że rozbieżość międz otrzmam modelem a dami empirczmi

Bardziej szczegółowo

Kolorowanie Dywanu Sierpińskiego. Andrzej Szablewski, Radosław Peszkowski

Kolorowanie Dywanu Sierpińskiego. Andrzej Szablewski, Radosław Peszkowski olorowaie Dywau ierpińskiego Adrzej zablewski, Radosław Peszkowski pis treści stęp... Problem kolorowaia... Róże rodzaje kwadratów... osekwecja atury fraktalej...6 zory rekurecyje... Przekształcaie rekurecji...

Bardziej szczegółowo

INSTRUKCJA NR 06-2 POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ

INSTRUKCJA NR 06-2 POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ LABORATORIUM OCHRONY ŚRODOWISKA - SYSTEM ZARZĄDZANIA JAKOŚCIĄ - INSTRUKCJA NR 06- POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ 1. Cel istrukcji Celem istrukcji jest określeie metodyki postępowaia w celu

Bardziej szczegółowo

Podstawowe rozkłady zmiennych losowych typu dyskretnego

Podstawowe rozkłady zmiennych losowych typu dyskretnego Podstawowe rozkłady zmieych losowych typu dyskretego. Zmiea losowa X ma rozkład jedopuktowy, skocetroway w pukcie x 0 (ozaczay przez δ(x 0 )), jeżeli P (X = x 0 ) =. EX = x 0, V arx = 0. e itx0.. Zmiea

Bardziej szczegółowo

oznaczają łączne wartości szkód odpowiednio dla k-tego kontraktu w t-tym roku. O składnikach naszych zmiennych zakładamy, że:

oznaczają łączne wartości szkód odpowiednio dla k-tego kontraktu w t-tym roku. O składnikach naszych zmiennych zakładamy, że: Zadaie. Niech zmiee losowe: X t,k = μ + α k + β t + ε t,k, k =,2,, K oraz t =,2,, T, ozaczają łącze wartości szkód odpowiedio dla k-tego kotraktu w t-tym roku. O składikach aszych zmieych zakładamy, że:

Bardziej szczegółowo

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów

Bardziej szczegółowo

Sprawozdanie z laboratorium proekologicznych źródeł energii

Sprawozdanie z laboratorium proekologicznych źródeł energii P O L I T E C H N I K A G D A Ń S K A Sprawozdaie z laboratorium proekologiczych źródeł eergii Temat: Wyzaczaie współczyika efektywości i sprawości pompy ciepła. Michał Stobiecki, Michał Ryms Grupa 5;

Bardziej szczegółowo

3. Funkcje elementarne

3. Funkcje elementarne 3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących

Bardziej szczegółowo

D:\materialy\Matematyka na GISIP I rok DOC\07 Pochodne\8A.DOC 2004-wrz-15, 17: Obliczanie granic funkcji w punkcie przy pomocy wzoru Taylora.

D:\materialy\Matematyka na GISIP I rok DOC\07 Pochodne\8A.DOC 2004-wrz-15, 17: Obliczanie granic funkcji w punkcie przy pomocy wzoru Taylora. D:\maerialy\Maemayka a GISIP I rok DOC\7 Pochode\8ADOC -wrz-5, 7: 89 Obliczaie graic fukcji w pukcie przy pomocy wzoru Taylora Wróćmy do wierdzeia Taylora (wzory (-( Tw Szczególie waża dla dalszych R rozważań

Bardziej szczegółowo

ĆWICZENIE Nr 8. Laboratorium InŜynierii Materiałowej. Opracowali: dr inŝ. Krzysztof Pałka dr Hanna Stupnicka

ĆWICZENIE Nr 8. Laboratorium InŜynierii Materiałowej. Opracowali: dr inŝ. Krzysztof Pałka dr Hanna Stupnicka Akceptował: Kierownik Katedry prof. dr hab. inŝ. A. Weroński POLITECHNIKA LUBELSKA WYDZIAŁ MECHANICZNY KATEDRA INśYNIERII MATERIAŁOWEJ Laboratorium InŜynierii Materiałowej ĆWICZENIE Nr 8 Opracowali: dr

Bardziej szczegółowo

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień.

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień. Metoda aalizy hierarchii Saaty ego Ważym problemem podejmowaia decyzji optymalizowaej jest często występująca hierarchiczość zagadień. Istieje wiele heurystyczych podejść do rozwiązaia tego problemu, jedak

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Szeregi liczbowe

Zadania z analizy matematycznej - sem. I Szeregi liczbowe Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych

Bardziej szczegółowo

Chłodnictwo i Kriogenika - Ćwiczenia Lista 2

Chłodnictwo i Kriogenika - Ćwiczenia Lista 2 Chłodictwo i Kriogeika - Ćwiczeia Lista 2 dr hab. iż. Bartosz Zajączkowski bartosz.zajaczkowski@pwr.edu.pl Politechika Wrocławska Wydział Mechaiczo-Eergetyczy Katedra Termodyamiki, Teorii Maszy i Urządzeń

Bardziej szczegółowo

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim. Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako

Bardziej szczegółowo

OK Autrod SFA/AWS A 5.14: ERNiCrMo-3 EN ISO 18274: S Ni 6625 (NiCr22Mo9Nb)

OK Autrod SFA/AWS A 5.14: ERNiCrMo-3 EN ISO 18274: S Ni 6625 (NiCr22Mo9Nb) OK Autrod 19.82 SFA/AWS A 5.14: ERNiCrMo-3 EN ISO 18274: S Ni 6625 (NiCr22Mo9Nb) Drut ze stopu niklu, odporny na korozję i podwyższone temperatury, przeznaczony do stopów typu NiCr21Mo, NiCr22Mo, spawania

Bardziej szczegółowo

Twierdzenia graniczne:

Twierdzenia graniczne: Twierdzeia graicze: Tw. ierówośd Markowa Jeżeli P(X > 0) = 1 oraz EX 0: P X k 1 k EX. Tw. ierówośd Czebyszewa Jeżeli EX = m i 0 < σ = D X 0: P( X m tσ) 1 t. 1. Z partii towaru o wadliwości

Bardziej szczegółowo

Współzależności między wykluczeniem społecznym a edukacją

Współzależności między wykluczeniem społecznym a edukacją Współzależości między ykluczeiem społeczym a edukacją Tomasz Paek Warszaa, 30 czerca 2014 ZWIĄZKI POMIĘDZY WYKLUCZENIEM SPOŁECZNYM A EDUKACJĄ Wykształceie oraz kompetecje są jedym z podstaoych yzaczikó

Bardziej szczegółowo

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO Agieszka Jakubowska ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO. Wstęp Skąplikowaie współczesego życia gospodarczego powoduje, iż do sterowaia procesem zarządzaia

Bardziej szczegółowo

ANALIZA DANYCH DYSKRETNYCH

ANALIZA DANYCH DYSKRETNYCH ZJAZD ESTYMACJA Jest to metoda wioskowaia statystyczego. Umożliwia oa oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej estymatorem,

Bardziej szczegółowo

Siłownie ORC sposobem na wykorzystanie energii ze źródeł niskotemperaturowych.

Siłownie ORC sposobem na wykorzystanie energii ze źródeł niskotemperaturowych. Siłowie ORC sposobem a wykorzystaie eergii ze źródeł iskotemperaturowych. Autor: prof. dr hab. Władysław Nowak, Aleksadra Borsukiewicz-Gozdur, Zachodiopomorski Uiwersytet Techologiczy w Szczeciie, Katedra

Bardziej szczegółowo

POMIAR MOCY BIERNEJ W OBWODACH TRÓJFAZOWYCH

POMIAR MOCY BIERNEJ W OBWODACH TRÓJFAZOWYCH ĆWICZEIE R 9 POMIAR MOCY BIEREJ W OBWODACH TRÓJFAZOWYCH 9.. Cel ćiczenia Celem ćiczenia jest poznanie metod pomiaru mocy biernej odbiornika niesymetrycznego obodach trójfazoych. 9.. Pomiar mocy biernej

Bardziej szczegółowo

Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej).

Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej). Cetrale miary położeia Średia; Moda (domiata) Mediaa Kwatyle (kwartyle, decyle, cetyle) Moda (Mo, D) wartość cechy występującej ajczęściej (ajlicziej). Mediaa (Me, M) dzieli uporządkoway szereg liczbowy

Bardziej szczegółowo

System SCADA we współpracy ze specjalnym algorytmem sterowania

System SCADA we współpracy ze specjalnym algorytmem sterowania Pomiary Automatyka Robotyka 6/009 System SCADA e spółpracy ze specjalym algorytmem steroaia Krzysztof Oprzędkieicz W pracy omóioo zasady realizacji systemu SCADA spółpracującego ze specjalymi algorytmami

Bardziej szczegółowo

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik Pierwiastki z liczby zespoloej Autorzy: Agieszka Kowalik 09 Pierwiastki z liczby zespoloej Autor: Agieszka Kowalik DEFINICJA Defiicja : Pierwiastek z liczby zespoloej Niech będzie liczbą aturalą. Pierwiastkiem

Bardziej szczegółowo

MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty

MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 2: RENTY. PRZEPŁYWY PIENIĘŻNE. TRWANIE ŻYCIA 1. Rety Retą azywamy pewie ciąg płatości. Na razie będziemy je rozpatrywać bez żadego związku z czasem życiem człowieka.

Bardziej szczegółowo

Struktura czasowa stóp procentowych (term structure of interest rates)

Struktura czasowa stóp procentowych (term structure of interest rates) Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,

Bardziej szczegółowo

Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych

Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych Wokół testu Studeta Wprowadzeie Rozkłady prawdopodobieństwa występujące w testowaiu hipotez dotyczących rozkładów ormalych Rozkład ormaly N(µ, σ, µ R, σ > 0 gęstość: f(x σ (x µ π e σ Niech a R \ {0}, b

Bardziej szczegółowo

3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej

3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elemety kombiatoryki 2. Zmiee losowe i ich rozkłady 3. Populacje i próby daych, estymacja parametrów 4. Testowaie hipotez 5. Testy parametrycze 6. Testy

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE. Strona 1

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE.  Strona 1 KURS STATYSTYKA Lekcja 3 Parametrycze testy istotości ZADANIE DOMOWE www.etrapez.pl Stroa Część : TEST Zazacz poprawą odpowiedź (tylko jeda jest prawdziwa). Pytaie Statystykę moża rozumieć jako: a) próbkę

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych w zakresie materiału przedstawioego a wykładzie orgaizacyjym Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli doświadczeie,

Bardziej szczegółowo

KLASYFIKACJI I BUDOWY STATKÓW MORSKICH

KLASYFIKACJI I BUDOWY STATKÓW MORSKICH PRZEPISY KLASYFIKACJI I BUDOWY STATKÓW MORSKICH ZMIANY NR 3/2012 do CZĘŚCI IX MATERIAŁY I SPAWANIE 2008 GDAŃSK Zmiany Nr 3/2012 do Części IX Materiały i spawanie 2008, Przepisów klasyfikacji i budowy statków

Bardziej szczegółowo

(12) OPIS PATENTOWY (19) PL (11) 185228

(12) OPIS PATENTOWY (19) PL (11) 185228 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 185228 (21) Numer zgłoszenia: 331212 ( 13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 04.07.1997 (86) Data i numer zgłoszenia

Bardziej szczegółowo

Ekonometria Mirosław Wójciak

Ekonometria Mirosław Wójciak Ekoometria Mirosław Wójciak Literatura obowiązkowa Barczak A, ST. Biolik J, Podstawy Ekoometrii, Wydawictwo AE Katowice, Katowice 1998 Dziechciarz J. Ekoometria Metody, przykłady, zadaia (wyd. ) Kukuła

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM RACHUNEK EKONOMICZNY W ELEKTROENERGETYCE INSTRUKCJA DO ĆWICZENIA

Bardziej szczegółowo

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce! Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,

Bardziej szczegółowo

ALGORYTM OPTYMALIZACJI PARAMETRÓW EKSPLOATACYJNYCH ŚRODKÓW TRANSPORTU

ALGORYTM OPTYMALIZACJI PARAMETRÓW EKSPLOATACYJNYCH ŚRODKÓW TRANSPORTU Łukasz WOJCIECHOWSKI, Tadeusz CISOWSKI, Piotr GRZEGORCZYK ALGORYTM OPTYMALIZACJI PARAMETRÓW EKSPLOATACYJNYCH ŚRODKÓW TRANSPORTU Streszczeie W artykule zaprezetowao algorytm wyzaczaia optymalych parametrów

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki Marzec 2012

Materiał ćwiczeniowy z matematyki Marzec 2012 Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0

Bardziej szczegółowo

STABILNOŚĆ STRUKTURALNA STALI P92 W KSZTAŁTOWANYCH PLASTYCZNIE ELEMENTACH RUROCIĄGÓW KOTŁÓW ENERGETYCZNYCH ANDRZEJ TOKARZ, WŁADYSŁAW ZALECKI

STABILNOŚĆ STRUKTURALNA STALI P92 W KSZTAŁTOWANYCH PLASTYCZNIE ELEMENTACH RUROCIĄGÓW KOTŁÓW ENERGETYCZNYCH ANDRZEJ TOKARZ, WŁADYSŁAW ZALECKI PL0400058 STABILNOŚĆ STRUKTURALNA STALI P92 W KSZTAŁTOWANYCH PLASTYCZNIE ELEMENTACH RUROCIĄGÓW KOTŁÓW ENERGETYCZNYCH ANDRZEJ TOKARZ, WŁADYSŁAW ZALECKI Instytut Metalurgii Żelaza im. S. Staszica, Gliwice

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17 Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo

Bardziej szczegółowo

SUPLEMENTY MAGNEZU I POTRZEBA ICH STOSOWANIA W DIETACH DZIECI ZDROWYCH I Z CELIAKIĄ

SUPLEMENTY MAGNEZU I POTRZEBA ICH STOSOWANIA W DIETACH DZIECI ZDROWYCH I Z CELIAKIĄ ŻYWNOŚĆ. Nauka. Techologia. Jakość, 29, 4 (65), 295 32 ANNA WOJTASIK, HANNA KUNACHOWICZ, JERZY SOCHA 1 SUPLEMENTY MAGNEZU I POTRZEBA ICH STOSOWANIA W DIETACH DZIECI ZDROWYCH I Z CELIAKIĄ Streszczeie Na

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

Analiza matematyczna. Robert Rałowski

Analiza matematyczna. Robert Rałowski Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................

Bardziej szczegółowo

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X Matematyka ubezpieczeń majątkowych.0.0 r. Zadaie. Mamy day ciąg liczb q, q,..., q z przedziału 0,. Rozważmy trzy zmiee losowe: o X X X... X, gdzie X i ma rozkład dwumiaowy o parametrach,q i, i wszystkie

Bardziej szczegółowo

ĆWICZENIE Nr 8. Laboratorium Inżynierii Materiałowej. Opracowali: dr inż. Krzysztof Pałka dr Hanna Stupnicka

ĆWICZENIE Nr 8. Laboratorium Inżynierii Materiałowej. Opracowali: dr inż. Krzysztof Pałka dr Hanna Stupnicka Akceptował: Kierownik Katedry prof. dr hab. B. Surowska POLITECHNIKA LUBELSKA WYDZIAŁ MECHANICZNY KATEDRA INŻYNIERII MATERIAŁOWEJ Laboratorium Inżynierii Materiałowej ĆWICZENIE Nr 8 Opracowali: dr inż.

Bardziej szczegółowo

ZAGROŻENIE SEJSMICZNE OD WSTRZĄSÓW GÓRNICZYCH W WARUNKACH NIEPEWNEJ INFORMACJI

ZAGROŻENIE SEJSMICZNE OD WSTRZĄSÓW GÓRNICZYCH W WARUNKACH NIEPEWNEJ INFORMACJI GÓRICTWO I GEOLOGIA 013 Tom 8 Zeszyt Piotr KOŁODZIEJCZYK, Jerzy KOROWKI, Ioa GOŁDA Poitechika Śąska, Giice ZAGROŻEIE EJMICZE OD WTRZĄÓW GÓRICZYCH W WARUKACH IEPEWEJ IFORMACJI treszczeie. W artykue opisao

Bardziej szczegółowo

Uwarunkowania rozwojowe województw w Polsce analiza statystyczno-ekonometryczna

Uwarunkowania rozwojowe województw w Polsce analiza statystyczno-ekonometryczna 3 MAŁGORZATA STEC Dr Małgorzata Stec Zakład Statystyki i Ekoometrii Uiwersytet Rzeszowski Uwarukowaia rozwojowe województw w Polsce aaliza statystyczo-ekoometrycza WPROWADZENIE Rozwój społeczo-gospodarczy

Bardziej szczegółowo

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW.

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW. Statytycza ocea wyików pomiaru STATYSTYCZNA OCENA WYNIKÓW POMIARÓW CEL ĆWICZENIA Celem ćwiczeia jet: uświadomieie tudetom, że każdy wyik pomiaru obarczoy jet błędem o ie zawze zaej przyczyie i wartości,

Bardziej szczegółowo

Estymacja przedziałowa:

Estymacja przedziałowa: Estymacja przedziałowa: Zamiast szukad ajlepszego estymatora, tak jak w estymacji puktowej będziemy poszukiwad przedziału, do którego będzie ależał szukay parametr z odpowiedio dużym prawdopodobieostwem.

Bardziej szczegółowo

1. Element nienaprawialny, badania niezawodności. Model matematyczny elementu - dodatnia zmienna losowa T, określająca czas życia elementu

1. Element nienaprawialny, badania niezawodności. Model matematyczny elementu - dodatnia zmienna losowa T, określająca czas życia elementu Badaia iezawodościowe i saysycza aaliza ich wyików. Eleme ieaprawialy, badaia iezawodości Model maemayczy elemeu - dodaia zmiea losowa T, określająca czas życia elemeu Opis zmieej losowej - rozkład, lub

Bardziej szczegółowo

Identyfikacja i modelowanie struktur i procesów biologicznych

Identyfikacja i modelowanie struktur i procesów biologicznych Idetyfikacja i modelowaie struktur i procesów biologiczych Laboratorium 4: Modele regresyje mgr iż. Urszula Smyczyńska AGH Akademia Góriczo-Huticza Aaliza regresji Aaliza regresji jest bardzo szeroka dziedzią,

Bardziej szczegółowo

PODSTAWOWE UKŁADY PRĄDU STAŁEGO

PODSTAWOWE UKŁADY PRĄDU STAŁEGO 3. lemety obodó prądu stałego 5 Wykład V. ODSTAWOW KŁADY ĄD STAŁO zeczyiste ódło apięcioe obciążoe rezystacją Na rysuku pokazao schemat i charakterystykę zeętrzą rzeczyistego stałoprądoego ódła apięcioego,

Bardziej szczegółowo

Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407

Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407 Statystyka i Opracowaie Daych W7. Estymacja i estymatory Dr Aa ADRIAN Paw B5, pok407 ada@agh.edu.pl Estymacja parametrycza Podstawowym arzędziem szacowaia iezaego parametru jest estymator obliczoy a podstawie

Bardziej szczegółowo

Metody badania zbieżności/rozbieżności ciągów liczbowych

Metody badania zbieżności/rozbieżności ciągów liczbowych Metody badaia zbieżości/rozbieżości ciągów liczbowych Ryszard Rębowski 14 grudia 2017 1 Wstęp Kluczowe pytaie odoszące się do zagadieia badaia zachowaia się ciągu liczbowego sprowadza się do sposobu opisu

Bardziej szczegółowo

Wprowadzenie do laboratorium 1

Wprowadzenie do laboratorium 1 Wprowadzeie do laboratorium 1 Etymacja jedorówaiowego modelu popytu a bilety loticze Etapy budowy modelu ekoometryczego Specyfikacja modelu Zebraie daych tatytyczych Etymacja parametrów modelu Weryfikacja

Bardziej szczegółowo

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,. Z adaie Niech,,, będą iezależymi zmieymi losowymi o idetyczym rozkładzie ormalym z wartością oczekiwaą 0 i wariacją. Wyzaczyć wariację zmieej losowej. Wskazówka: pokazać, że ma rozkład Γ, ODP: Zadaie Niech,,,

Bardziej szczegółowo

Zmienna losowa N ma rozkład ujemny dwumianowy z parametrami (, q) = 7,

Zmienna losowa N ma rozkład ujemny dwumianowy z parametrami (, q) = 7, Matematyka ubezpieczeń majątkowych.0.008 r. Zadaie. r, Zmiea losowa N ma rozkład ujemy dwumiaowy z parametrami (, q), tz.: Pr( N k) (.5 + k) (.5) k! Γ Γ * Niech k ozacza taką liczbę aturalą, że: * k if{

Bardziej szczegółowo

Definicja interpolacji

Definicja interpolacji INTERPOLACJA Defiicja iterpolacji Defiicja iterpolacji 3 Daa jest fukcja y = f (x), x[x 0, x ]. Zamy tablice wartości tej fukcji, czyli: f ( x ) y 0 0 f ( x ) y 1 1 Defiicja iterpolacji Wyzaczamy fukcję

Bardziej szczegółowo

TESTY LOSOWOŚCI. Badanie losowości próby - test serii.

TESTY LOSOWOŚCI. Badanie losowości próby - test serii. TESTY LOSOWOŚCI Badaie losowości próby - test serii. W wielu zagadieiach wioskowaia statystyczego istotym założeiem jest losowość próby. Prostym testem do weryfikacji tej własości jest test serii. 1 Dla

Bardziej szczegółowo

Moment skrawania w procesie gwintowania PA6 a wybór medium obróbkowego DR HAB. INŻ. Ryszard Wójcik, PROF. PŁ, DR INŻ. Hieronim Korzeniewski,

Moment skrawania w procesie gwintowania PA6 a wybór medium obróbkowego DR HAB. INŻ. Ryszard Wójcik, PROF. PŁ, DR INŻ. Hieronim Korzeniewski, fot. Thikstock Momet skrawaia w procesie gwitowaia PA6 a wybór medium obróbkowego DR HAB. INŻ. Ryszard Wójcik, PROF. PŁ, DR INŻ. Hieroim Korzeiewski, INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN POLITECHNIKI

Bardziej szczegółowo

Ćwiczenie 2 ESTYMACJA STATYSTYCZNA

Ćwiczenie 2 ESTYMACJA STATYSTYCZNA Ćwiczeie ETYMACJA TATYTYCZNA Jest to metoda wioskowaia statystyczego. Umożliwia oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej

Bardziej szczegółowo

Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora

Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora Aaliza wyików symulacji i rzeczywistego pomiaru zmia apięcia ładowaego kodesatora Adrzej Skowroński Symulacja umożliwia am przeprowadzeie wirtualego eksperymetu. Nie kostruując jeszcze fizyczego urządzeia

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R Kresy zbiorów. Ćwiczeia 21.11.2011: zad. 197-229 Kolokwium r 7, 22.11.2011: materiał z zad. 1-249 Defiicja: Zbiór Z R azywamy ograiczoym z góry, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą

Bardziej szczegółowo

Ćwiczenie: Test chi 2 i miary na nim oparte.

Ćwiczenie: Test chi 2 i miary na nim oparte. Ćwiczeie: Test chi 2 i miary a im oparte. Zadaie (MS EXCEL) Czy istieje zależość między płcią a paleiem papierosów? 1. W arkuszu Excel utworzyć dwie tabele 2. Uzupełić wartości w tabeli z daymi obserwowaymi

Bardziej szczegółowo

Statystyka opisowa - dodatek

Statystyka opisowa - dodatek Statystyka opisowa - dodatek. *Jak obliczyć statystyki opisowe w dużych daych? Liczeie statystyk opisowych w dużych daych może sprawiać problemy. Dla przykładu zauważmy, że aiwa implemetacja średiej arytmetyczej

Bardziej szczegółowo

Barbara Maniak METODA CIĄGŁEJ MADERYZACJI WINA OWOCOWEGO

Barbara Maniak METODA CIĄGŁEJ MADERYZACJI WINA OWOCOWEGO METODA CIĄGŁEJ MADERYZACJI WINA OWOCOWEGO Barbara Maiak Katedra Biologiczych Podstaw Techologii Żywości i Pasz, Akademia Rolicza w Lubliie, Lubli WPROWADZENIE Wiiarstwo polskie, ze względu a specyfikę

Bardziej szczegółowo

Optymalizacja sieci powiązań układu nadrzędnego grupy kopalń ze względu na koszty transportu

Optymalizacja sieci powiązań układu nadrzędnego grupy kopalń ze względu na koszty transportu dr hab. iż. KRYSTIAN KALINOWSKI WSIiZ w Bielsku Białej, Politechika Śląska dr iż. ROMAN KAULA Politechika Śląska Optymalizacja sieci powiązań układu adrzędego grupy kopalń ze względu a koszty trasportu

Bardziej szczegółowo

Układ okresowy. Przewidywania teorii kwantowej

Układ okresowy. Przewidywania teorii kwantowej Przewidywania teorii kwantowej Chemia kwantowa - podsumowanie Cząstka w pudle Atom wodoru Równanie Schroedingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - podsumowanie rozwiązanie Cząstka w pudle

Bardziej szczegółowo

COLLEGIUM MAZOVIA INNOWACYJNA SZKOŁA WYŻSZA WYDZIAŁ NAUK STOSOWANYCH. Kierunek: Finanse i rachunkowość. Robert Bąkowski Nr albumu: 9871

COLLEGIUM MAZOVIA INNOWACYJNA SZKOŁA WYŻSZA WYDZIAŁ NAUK STOSOWANYCH. Kierunek: Finanse i rachunkowość. Robert Bąkowski Nr albumu: 9871 COLLEGIUM MAZOVIA INNOWACYJNA SZKOŁA WYŻSZA WYDZIAŁ NAUK STOSOWANYCH Kieruek: Fiase i rachukowość Robert Bąkowski Nr albumu: 9871 Projekt: Badaie statystycze cey baryłki ropy aftowej i wartości dolara

Bardziej szczegółowo

ISSN 1898-6447. Zeszyty Naukowe. Uniwersytet Ekonomiczny w Krakowie. Cracow Review of Economics and Management. Metody analizy danych.

ISSN 1898-6447. Zeszyty Naukowe. Uniwersytet Ekonomiczny w Krakowie. Cracow Review of Economics and Management. Metody analizy danych. ISSN 1898-6447 Uiwersytet Ekoomiczy w Krakowie Zeszyty Naukowe Cracow Review of Ecoomics ad Maagemet 93 Metody aalizy daych Kraków 013 Rada Naukowa Adrzej Atoszewski (Polska), Slavko Arsovski (Serbia),

Bardziej szczegółowo

Znikanie sumy napięć ïród»owych i sumy prądów w wielofazowym układzie symetrycznym

Znikanie sumy napięć ïród»owych i sumy prądów w wielofazowym układzie symetrycznym Obwody trójfazowe... / OBWODY TRÓJFAZOWE Zikaie sumy apięć ïród»owych i sumy prądów w wielofazowym układzie symetryczym liczba faz układu, α 2π / - kąt pomiędzy kolejymi apięciami fazowymi, e jα, e -jα

Bardziej szczegółowo

16 Przedziały ufności

16 Przedziały ufności 16 Przedziały ufości zapis wyiku pomiaru: sugeruje, że rozkład błędów jest symetryczy; θ ± u(θ) iterpretacja statystycza przedziału [θ u(θ), θ + u(θ)] zależy od rozkładu błędów: P (Θ [θ u(θ), θ + u(θ)])

Bardziej szczegółowo