Chłodnictwo i Kriogenika - Ćwiczenia Lista 2
|
|
- Mieczysław Sobolewski
- 6 lat temu
- Przeglądów:
Transkrypt
1 Chłodictwo i Kriogeika - Ćwiczeia Lista 2 dr hab. iż. Bartosz Zajączkowski bartosz.zajaczkowski@pwr.edu.pl Politechika Wrocławska Wydział Mechaiczo-Eergetyczy Katedra Termodyamiki, Teorii Maszy i Urządzeń Cieplych paździerika 208 Zadaia Zad. Oblicz ciepło topieia mieszaiy m L 5 kg lodu z chlorkiem sodu sól kuchea), przy stosuku ilości soli do ilości lodu odpowiedio 5%, 5% i 25%. Do określeia właściwego ciepła topieia mieszaiy, wykorzystaj poiższą tabelę: Stosuek % Właściwe ciepło topieia, kj/kg Zad.2 W komorze zamrażaliczej zamraża się codzieie 3.5 toy mięsa wołowego, od temperatury początkowej T p 8 C, do temperatury składowaia T R 8 C. Przyjmij, że ciepło właściwe dla mięsa wołowego rozmrożoego c p 3.25 kj/kgk, ciepło właściwe dla mięsa wołowego zamrożoego c.76 kj/kgk, ciepło utajoe zamrażaia mięsa wołowego q w 235 kj/kg oraz temperatura krioskopowa t kr C. Oblicz ile ciepła ależy odprowadzić od produktu. Zad.3 W projektowaej komorze zamrażaliczej będzie zamrażae 5 to żabich udek, od temperatury początkowej T p 0 C, do temperatury składowaia T R 0 C. Ciepło właściwe rozmrożoych żabich udek wyosi c p 3.57 kj/kgk, ciepło właściwe zamrożoych żabich udek c.89 kj/kgk, ciepło utajoe zamrażaia żabich udek q w 28 kj/kg oraz temperatura krioskopowa t kr 3 C. Jaka powia być wydajość chłodicza, aby proces zamrażaia trwał 8 godzi? Odp: 59.4 kw
2 Zad.4 W przelotowej komorze chłodiczej zamrażaie odbywa się w sposób ciągły a taśmie przesuwającej się z prędkością v t 0.05 m/s. Do wętrza komory wjeżdżają specjale pojemiki do produkcji kostek lodu o pojemości V l 0 l, wypełioe wodą o temperaturze T 20 C. Wewątrz zaistalowaa jest istalacja o wydajości Q 0 50 kw. Oblicz jak długi musi być taśmociąg, aby po drugiej stroie odbierao lód o temperaturze 5 C. Do obliczeń ależy przyjąć ciepło właściwe wody c p w 4.8 kj/kgk, ciepło właściwe lodu c p l 2. kj/kgk oraz ciepło przemiay fazowej - zamarzaia wody q l 334 kj/kg. Gęstość wody w temperaturze 20 C wyosi ρ 20 C 998 kg/m 3. Jakiej długości jest taśmociąg? Zad.5 Nieduży przelotowy system do mrożeia wołowiy wyposażoy jest w taśmociąg o długości l 5 m. Prędkość taśmy to v t 0.02 m/s. System zamraża paczki mieloej wołowiy o masie m kg. Przyjmij, że ciepło właściwe dla mięsa wołowego rozmrożoego c p 3.25 kj/kgk, ciepło właściwe dla mięsa wołowego zamrożoego c.76 kj/kgk, ciepło utajoe zamrażaia mięsa wołowego q w 235 kj/kg oraz temperatura krioskopowa t kr C. Jeśli temperatura początkowa T p 5 C, a temperatura składowaia T R 8 C, oblicz jaka powia być wydajość chłodicza systemu w przeliczeiu a jedą paczkę produktu. Jak długo produkt pozostaje w komorze zamrażaliczej? Odp:. kw, Odp: 250 s Zad.6 Za pomocą sprężarki, w urządzeiu chłodiczym zrealizowao przemiaę politropową o wykładiku 2. Temperatura gazu zasysaego do sprężarki wyosi T 20 C, atomiast a wylocie 50 C. Oblicz ciśieie a wylocie, jeżeli gaz zasysay jest pod ciśieiem atmosferyczym. Oblicz spręż sprężarki. Zad.7 Oblicz temperaturę końca sprężaia wiedząc, że ciśieie a wlocie wyosi p.5 bar, a wylocie p bar, a temperatura początkowa gazu to T 300 K. Wykładik politropy zachodzącej przemiay wyosi.4. Zad.8 Początkowy sta gazu określoy jest parametrami T 320 K, p 2.7 bar, atomiast końcowy 390 K, p bar. Oblicz wykładik politropy przemiay. Zad.9 Oblicz jaką pracę wykoa sprężarka, sprężając v 20 m 3 powietrza o temperaturze T p 25 C i ciśieiu p p bar do ciśieia p 6 bar. Obliczeia wykoaj dla przemiay politropowej o wykładiku.3. Zad.0 Jaka musiałaby być moc sprężarki jak w zadaiu 8), aby sprężyć podaą objętość gazu, odpowiedio w ciągu godziy i w ciągu doby. 2 Rozwiązaia Zad. Ciepło topieia mieszaiy lodu z solą oblicza się wg zależości: Q m L q e ) Gdzie q e jest to właściwe ciepło przemiay, które ależy odczytać z tabeli. Dla 5%, 5% i 25% roztworu wartość właściwego ciepła topieia wyosi odpowiedio q e,5% kj, q e,5% kj, q e,25% kj. 2
3 a) Q 5% 5 kg kj/kg kj b) Q 5% 5 kg kj/kg kj c) Q 25% 5 kg kj/kg kj Zad.6 Rozwiązaie zadaia 5 wymaga zajomości zależości pomiędzy temperaturami i ciśieiami a początku i końcu przemiay politropowej. Dla przemiay politropowej prawdziwa jest zależość: p V idem 2) Aby wyelimiować objętość ależy spierwiastkować rówaie 2), co prowadzi do postaci: p V idem Rówaie Clapeyroa przekształcoe celem uzyskaia objętości po lewej stroie ma postać: Zestawiając obie rówości uzyskuje się: V RT p p RT p idem Po podzieleiu obu stro rówaia przez R stała) oraz zapisaiu /p jako p rówaie przyjmuje postać: p p T idem Poieważ x a x b x a+b uporządkowaie powyższego rówaia prowadzi ostateczie do zależości pomiędzy temperaturą i ciśieiem przemiay politropowej: p T idem Zakładając, że przemiaa politropowa przebiega pomiędzy staami i 2, moża zapisać astępującą rówość: p T p 2 Co daje się uporządkować do astępujących postaci: T p ) 3) p 2 p T2 T ) Rozwiązaie zadaia 3 wymaga skorzystaia z rówaia 4). Pozostawiając po lewej stroie p 2 i pamiętając, że temperatury ależy podstawiać w Kelwiach mamy: 4) 3
4 p 2 p ) T2 T bar 273 C + 50 C 273 C + 20 C ) bar Spręż defiiuje się jako stosuek ciśieia a wylocie do ciśieia a wlocie. π p 2 p.22 bar bar.22 Zad.7 Rozwiązaie zadaia wymaga przekształceia rówaia 3), celem uzyskaia jawego. Odwracając liczik i miaowik uzyskuje się: A więc: T ) p p ) T p ) Co po podstawieiu odpowiedich wartości, atychmiast prowadzi do rozwiązaia K ) bar.4.5 bar 300 K K Zad.8 Aby możliwe było obliczeie wykładika przemiay, koiecze jest przekształceie rówaia 3). Zarytmowaie obu stro rówaia prowadzi do astępującej postaci: Poieważ a) b b a): ) T ) T Po pomożeiu obu stro przez : ) T Wykoujemy możeie po prawej stroie: ) T p ) ) ) ) ) p ) p ) p ) Przeosimy iloczy przez a lewą stroę i wyciągamy przed awias: [ ) T + )] p p ) Sumę arytmów moża zapisać jako arytm iloczyu: p 4
5 [ )] T p ) Ostateczie wykładik politropy oblicza się z astępującej zależości: ) p 2 p T Podstawiając dae z zadaia uzyskuje się astępującą wartość : ) 5.3 bar 2.7 bar 320 K 390 K 5.3 bar 2.7 bar p ) p ).4 Zad.9 Rozwiązaie zadaia wymaga wyprowadzeia wzoru a pracę przemiay politropowej. W termodyamice pracę L 2 oblicza się całkując: L 2 2 p dv 5) Wiedząc, że dla przemiay politropowej obowiązuje rówaie 2) moża zapisać: p idem V 6) Co po podstawieiu do rówaia 5) daje: Po uporządkowaiu: L 2 2 idem V dv L 2 idem 2 V dv Pamiętając, że x a xa+ + C rozwiązujemy całkę otrzymując: a+ V 2 L 2 idem V ) Po uporządkowaiu: L 2 idem ) V2 V Uwzględiając, że x a x x a możemy zapisać: L 2 idem ) V 2 V2 V V Uporządkowując zapis do postaci... L 2 V 2 idem V2 V idem ) V Oraz podstawiając rówaie 6) rówaie przyjmuje postać: 5
6 L 2 p 2 V 2 p V ) Co po wyciągięciu z awiasu daje ostateczie rówaie a pracę przemiay politropowej: L 2 p V p 2 V 2 ) Podstawiając odpowiedie wartości z zadaia uzyskuje się: L 2 p V p 2 V 2 ) Niestety do rozwiązaia wciąż brakuje am iformacji o objętości w staie 2. Na szczęście moża ją wyelimiować. W tym celu ależy zapisać rówaie politropy dla dwóch staów i 2. Przekształcając: Pierwiastkując w stopiu : p V p 2 V2 p 2 V p V 2 Podstawiając do rówaia a pracę: L 2 p V 2 V ) V V 2 Teraz moża wyciągąć p V przed awias: p ) p V p 2 V p L 2 p V V p ) p ) Ostateczie uzyskuje się rówaie a pracę przemiay politropowej, do rozwiązaia którego ie jest potrzeba zajomość objętości a końcu: L 2 p V p ) Teraz moża podstawić odpowiedie wartości, pamiętając o wyrażeiu ciśieia w jedostkach SI: 6
7 L P a 20m P a 0 5 P a ) J 344 kj Zak mius w rozwiązaiu wyika z faktu, że mamy do czyieia z kompresją, a więc zmiejszeiem objętości - pracę ależy doprowadzić do systemu. Stąd wiosek, że aby przeprowadzić kompresję politropową w warukach opisaych w zadaiu do sprężarka musi wykoać pracę 343 kj. Zad.0 Aby obliczyć moc sprężarki ależy podzielić pracę obliczoą w zadaiu 9 przez czas. W tym przypadku dla przypadków propoowaych w zadaiu będzie to odpowiedio 3600 s oraz s. a) P h b) P 24h 343 kj 3600 s 0.94 kw 343 kj s 0.04 kw 7
Chłodnictwo i Kriogenika - Ćwiczenia Lista 4
Chłodnictwo i Kriogenika - Ćwiczenia Lista 4 dr hab. inż. Bartosz Zajączkowski bartosz.zajaczkowski@pwr.edu.pl Politechnika Wrocławska Wydział Mechaniczno-Energetyczny Katedra Termodynamiki, Teorii Maszyn
STATYSTYKA I ANALIZA DANYCH
TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica
2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1
Tekst a iebiesko jest kometarzem lub treścią zadaia. Zadaie 1. Zbadaj mootoiczość i ograiczoość ciągów. a = + 3 + 1 Ciąg jest mootoiczie rosący i ieograiczoy poieważ różica kolejych wyrazów jest dodatia.
Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16
Egzami,.9.6, godz. :-5: Zadaie. ( puktów) Wyzaczyć wszystkie rozwiązaia rówaia z 4 = 4 w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej (bez używaia fukcji trygoometryczych)
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy
12. Dowieść, że istieje ieskończeie wiele par liczb aturalych k < spełiających rówaie ( ) ( ) k. k k +1 Stosując wzór a wartość współczyika dwumiaowego otrzymujemy ( ) ( )!! oraz k k! ( k)! k +1 (k +1)!
O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności
Edward Stachowski O trzech elemetarych ierówościach i ich zastosowaiach przy dowodzeiu iych ierówości Przy dowodzeiu ierówości stosujemy elemetare przejścia rówoważe, przeprowadzamy rozumowaie typu: jeżeli
Chłodnictwo i Kriogenika - Ćwiczenia Lista 3
Chłodnictwo i Kriogenika - Ćwiczenia Lista 3 dr hab. nż. Bartosz Zajączkowski bartosz.zajaczkowski@pwr.edu.pl Politechnika Wrocławska Wydział Mechaniczno-Energetyczny Katedra Termodynamiki, Teorii Maszyn
Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17
Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo
LABORATORIUM INŻYNIERII CHEMICZNEJ, PROCESOWEJ I BIOPROCESOWEJ. Ćwiczenie nr 16
KATEDRA INŻYNIERII CHEMICZNEJ I ROCESOWEJ INSTRUKCJE DO ĆWICZEŃ LABORATORYJNYCH LABORATORIUM INŻYNIERII CHEMICZNEJ, ROCESOWEJ I BIOROCESOWEJ Ćwiczeie r 16 Mieszaie Osoba odpowiedziala: Iwoa Hołowacz Gdańsk,
PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,,
PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA Ruch cząstki ieograiczoy z klasyczego puktu widzeia W tym przypadku V = cost, przejmiemy V ( x ) = 0, cząstka porusza się wzdłuż osi x. Rozwiązujemy
Równowaga reakcji chemicznej
Rówowaga reakcji chemiczej Sta i stała rówowagi reakcji chemiczej (K) Reakcje dysocjacji Stopień dysocjacji Prawo rozcieńczeń Ostwalda utodysocjacja wody p roztworów p roztworów. p roztworów mocych elektrolitów
ANALIZA MATEMATYCZNA 1 (MAP 1024) LISTY ZADAŃ
ANALIZA MATEMATYCZNA (MAP 0) LISTY ZADAŃ Listy zadań przezaczoe są dla studetów którzy program matematyki szkoły poadgimazjalej zają jedyie a poziomie podstawowym Obejmują iezbęde do dalszej auki zagadieia
Internetowe Kółko Matematyczne 2004/2005
Iteretowe Kółko Matematycze 2004/2005 http://www.mat.ui.toru.pl/~kolka/ Zadaia dla szkoły średiej Zestaw I (20 IX) Zadaie 1. Daa jest liczba całkowita dodatia. Co jest większe:! czy 2 2? Zadaie 2. Udowodij,
CIĄGI LICZBOWE. Poziom podstawowy
CIĄGI LICZBOWE Poziom podstawowy Zadaie ( pkt) + 0 Day jest ciąg o wyrazie ogólym a =, N+ + jest rówy? Wyzacz a a + Czy istieje wyraz tego ciągu, który Zadaie (6 pkt) Marek chce przekopać swój przydomowy
Kolorowanie Dywanu Sierpińskiego. Andrzej Szablewski, Radosław Peszkowski
olorowaie Dywau ierpińskiego Adrzej zablewski, Radosław Peszkowski pis treści stęp... Problem kolorowaia... Róże rodzaje kwadratów... osekwecja atury fraktalej...6 zory rekurecyje... Przekształcaie rekurecji...
Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.
Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako
Materiał ćwiczeniowy z matematyki Marzec 2012
Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0
Numeryczny opis zjawiska zaniku
FOTON 8, iosa 05 7 Numeryczy opis zjawiska zaiku Jerzy Giter ydział Fizyki U Postawieie problemu wielu zagadieiach z różych działów fizyki spotykamy się z astępującym problemem: zmiay w czasie t pewej
Przykład Obliczenie wskaźnika plastyczności przy skręcaniu
Przykład 10.5. Obliczeie wskaźika plastyczości przy skręcaiu Obliczyć wskaźiki plastyczości przy skręcaiu dla astępujących przekrojów: a) -kąta foremego b) przekroju złożoego 6a 16a 9a c) przekroju ciekościeego
Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16
Egzami,.6.6, godz. 9:-: Zadaie. puktów) Wyzaczyć wszystkie rozwiązaia rówaia z i w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej bez używaia fukcji trygoometryczych) oraz zazaczyć
Zadania z Matematyka 2 - SIMR 2008/ szeregi zadania z rozwiązaniami. n 1. n n. ( 1) n n. n n + 4
Zadaia z Matematyka - SIMR 00/009 - szeregi zadaia z rozwiązaiami. Zbadać zbieżość szeregu Rozwiązaie: 0 4 4 + 6 0 : Dla dostateczie dużych 0 wyrazy szeregu są ieujeme 0 a = 4 4 + 6 0 0 Stosujemy kryterium
Politechnika Poznańska
Politechika Pozańska Temat: Laboratorium z termodyamiki Aaliza składu spali powstałych przy spalaiu paliw gazowych oraz pomiar ich prędkości przepływu za pomocą Dopplerowskiego Aemometru Laserowego (LDA)
Chłodnictwo i Kriogenika - Ćwiczenia Lista 7
Chłodnictwo i Kriogenika - Ćwiczenia Lista 7 dr hab. inż. Bartosz Zajączkowski bartosz.zajaczkowski@pwr.edu.pl Politechnika Wrocławska Wydział Mechaniczno-Energetyczny Katedra Termodynamiki, Teorii Maszyn
Parametryzacja rozwiązań układu równań
Parametryzacja rozwiązań układu rówań Przykład: ozwiąż układy rówań: / 2 2 6 2 5 2 6 2 5 //( / / 2 2 9 2 2 4 4 2 ) / 4 2 2 5 2 4 2 2 Korzystając z postaci schodkowej (środkowa macierz) i stosując podstawiaie
Egzaminy. na wyższe uczelnie 2003. zadania
zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia
Rozpuszczalność gazów w cieczach. Prawo Henry ego
Rozpuszczalość gazów w cieczach. rawo ery ego Empiryczie stwierdzoo, że, w k, czyli ilość gazu rozpuszczoego w cieczy jest w warukach izotermiczych proporcjoala do jego ciśieia. V Jeśli gaz jest gazem
Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik
Pierwiastki z liczby zespoloej Autorzy: Agieszka Kowalik 09 Pierwiastki z liczby zespoloej Autor: Agieszka Kowalik DEFINICJA Defiicja : Pierwiastek z liczby zespoloej Niech będzie liczbą aturalą. Pierwiastkiem
Jarosław Wróblewski Analiza Matematyczna 2, lato 2018/19
47. W każdym z zadań 47.-47.5 podaj wzór a fukcję różiczkowalą f :D f R o podaym wzorze a pochodą oraz o podaej wartości w podaym pukcie. 47.. f x 4x 5 54 f D f R 4x 555 fx + 47.. f x x+ f D f, + fx 9
WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ
WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM RACHUNEK EKONOMICZNY W ELEKTROENERGETYCE INSTRUKCJA DO ĆWICZENIA
Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek
Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy
MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum
MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu
I. Podzielność liczb całkowitych
I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc
Sprawozdanie z laboratorium proekologicznych źródeł energii
P O L I T E C H N I K A G D A Ń S K A Sprawozdaie z laboratorium proekologiczych źródeł eergii Temat: Wyzaczaie współczyika efektywości i sprawości pompy ciepła. Michał Stobiecki, Michał Ryms Grupa 5;
Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.
Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)
V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy I Etap ZADANIA 27 lutego 2013r.
V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizka się licz I Etap ZDNI 7 lutego 3r.. Dwa pociski wstrzeloo jeocześie w tę saą stroę z wóch puktów oległch o o. Pierwsz pocisk wstrzeloo z prękością o po kąte α. Z jaką
Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości)
Kospekt lekcji (Kółko matematycze, kółko przedsiębiorczości) Łukasz Godzia Temat: Paradoks skąpej wdowy. O procecie składaym ogólie. Czas lekcji 45 miut Cele ogóle: Uczeń: Umie obliczyć procet składay
Zadania z algebry liniowej - sem. I Liczby zespolone
Zadaia z algebry liiowej - sem. I Liczby zespoloe Defiicja 1. Parę uporządkowaą liczb rzeczywistych x, y azywamy liczbą zespoloą i ozaczamy z = x, y. Zbiór wszystkich liczb zespoloych ozaczamy przez C
Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI. Wyznaczanie ciepła właściwego c p dla powietrza
Katedra Silików Saliowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Wyzaczaie cieła właściweo c dla owietrza Wrowadzeie teoretycze Cieło ochłoięte rzez ciało o jedostkowej masie rzy ieskończeie małym rzyroście
OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (rzeczywistego) PRACA W WARUNKACH STATYCZNYCH. Opracował. Dr inż. Robert Jakubowski
OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (rzeczywistego) PRACA W WARUNKACH STATYCZNYCH DANE WEJŚCIOWE : Opracował Dr inż. Robert Jakubowski Parametry otoczenia p H, T H Spręż sprężarki, Temperatura gazów
Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/ n 333))
46. Wskazać liczbę rzeczywistą k, dla której graica k 666 + 333)) istieje i jest liczbą rzeczywistą dodatią. Obliczyć wartość graicy przy tak wybraej liczbie k. Rozwiązaie: Korzystając ze wzoru a różicę
Zadania domowe z termodynamiki I dla wszystkich kierunków A R C H I W A L N E
Zadania domowe z termodynamiki I dla wszystkich kierunków A R C H I W A L N E ROK AKADEMICKI 2015/2016 Zad. nr 4 za 3% [2015.10.29 16:00] Ciepło właściwe przy stałym ciśnieniu gazu zależy liniowo od temperatury.
Moduł 4. Granica funkcji, asymptoty
Materiały pomocicze do e-learigu Matematyka Jausz Górczyński Moduł. Graica fukcji, asymptoty Wyższa Szkoła Zarządzaia i Marketigu Sochaczew Od Autora Treści zawarte w tym materiale były pierwotie opublikowae
O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii
O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję
Bilans energii komory chłodniczej
Bilans energii komory chłodniczej dr inż. Grzegorz Krzyżaniak Równanie bilansu energii bilans parownikowy 1 Zyski ciepła w komorze chłodniczej Zyski ciepła przez przegrody izolowane 2 Zyski ciepła przez
Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:
Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego
POLITECHNIKA OPOLSKA
POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia
Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy
Klucz odpowiedzi do zadań zamkiętych oraz schematy oceiaia zadań otwartych Matematyka CZERWIEC 0 Schemat oceiaia Klucz puktowaia zadań zamkiętych Nr zad Odp 5 6 8 9 0 5 6 8 9 0 5 6 B C C B C C A A B B
AUDYT SYSTEMU GRZEWCZEGO
Wytycze do audytu wykoao w ramach projektu Doskoaleie poziomu edukacji w samorządach terytorialych w zakresie zrówoważoego gospodarowaia eergią i ochroy klimatu Ziemi dzięki wsparciu udzieloemu przez Isladię,
3. Regresja liniowa Założenia dotyczące modelu regresji liniowej
3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi
W wielu przypadkach zadanie teorii sprężystości daje się zredukować do dwóch
Wykład 5 PŁASKI ZADANI TORII SPRĘŻYSTOŚCI Płaski sta arężeia W wielu rzyadkach zadaie teorii srężystości daje się zredukować do dwóch wymiarów Przykładem może być cieka tarcza obciążoa siłami działającymi
[1] CEL ĆWICZENIA: Identyfikacja rzeczywistej przemiany termodynamicznej poprzez wyznaczenie wykładnika politropy.
[1] CEL ĆWICZENIA: Identyfikacja rzeczywistej przemiany termodynamicznej poprzez wyznaczenie wykładnika politropy. [2] ZAKRES TEMATYCZNY: I. Rejestracja zmienności ciśnienia w cylindrze sprężarki (wykres
Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem:
Relacje rekurecyje Defiicja: Niech =,,,... będzie astępująco zdefiiowaym ciągiem: () = r, = r,..., k = rk, gdzie r, r,..., r k są skalarami, () dla k, = a + a +... + ak k, gdzie a, a,..., ak są skalarami.
Lista 5. Odp. 1. xf(x)dx = xdx = 1 2 E [X] = 1. Pr(X > 3/4) E [X] 3/4 = 2 3. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym
Lista 5 Zadaia a zastosowaie ierówosci Markowa i Czebyszewa. Zadaie 1. Niech zmiea losowa X ma rozkład jedostajy a odciku [0, 1]. Korzystając z ierówości Markowa oszacować od góry prawdopodobieństwo, że
a n 7 a jest ciągiem arytmetycznym.
ZADANIA MATURALNE - CIĄGI LICZBOWE - POZIOM PODSTAWOWY Opracowała mgr Dauta Brzezińska Zad.1. ( pkt) Ciąg a określoy jest wzorem 5.Wyzacz liczbę ujemych wyrazów tego ciągu. Zad.. ( 6 pkt) a Day jest ciąg
Funkcje tworzące - przypomnienie
Zadaia z ćwiczeń # (po. marca) Matematyka Dyskreta Fukcje tworzące - przypomieie Fukcje tworzące są początkowo trude do przełkięcia, ale stosuje się je dość automatyczie i potrafimy je policzyć dla praktyczie
Poziom rozszerzony. 5. Ciągi. Uczeń:
PIOTR LUDWIKOWSKI Materiał z wykładu z aalizy dla uczestików koerecji Podstawa programowa z kometarzami Tom 6 Edukacja matematycza i techicza w szkole podstawowej, gimazjum i liceum matematyka, zajęcia
ROZWIĄZUJEMY ZADANIA Z FIZYKI
ROZWIĄZUJEMY ZADANIA Z FIZYKI Rozwiązując zadnia otwarte PAMIĘTAJ o: wypisaniu danych i szukanych, zamianie jednostek na podstawowe, wypisaniu potrzebnych wzorów, w razie potrzeby przekształceniu wzorów,
LUBELSKA PRÓBA PRZED MATURĄ 2015 poziom podstawowy. Liczba punktów Wyznaczenie pierwszej współrzędnej wierzchołka paraboli: x.
LUBELSKA PRÓBA PRZED MATURĄ 05 poziom podstawowy ZESTAW A ZADANIA ZAMKNIĘTE 5 6 7 8 9 0 5 6 7 8 9 0 A B D D A D B D A B C D C B A C A C B C A B D C ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI zadaia 5 6 7 puktów
L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3
L.Kowalski zadaia ze statystyki matematyczej-zestaw 3 ZADANIA - ZESTAW 3 Zadaie 3. Cecha X populacji ma rozkład N m,. Z populacji tej pobrao próbę 7 elemetową i otrzymao wyiki x7 = 9, 3, s7 =, 5 a Na poziomie
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.
Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe
Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,
Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy
Klucz odpowiedzi do zadań zamkiętych oraz schematy oceiaia zadań otwartych Matematyka CZERWIEC 0 Klucz puktowaia zadań zamkiętych Nr zad Odp 5 6 8 9 0 5 6 8 9 0 5 6 B C C B C C A A B B C A B A A A B D
Estymacja przedziałowa
Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU
Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów
Chemia Teoretyczna I (6).
Chemia Teoretycza I (6). NajwaŜiejsze rówaia róŝiczkowe drugiego rzędu o stałych współczyikach w chemii i fizyce cząstka w jedowymiarowej studi potecjału Cząstka w jedowymiarowej studi potecjału Przez
Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011
Dwumia Newtoa Agiesza Dąbrowsa i Maciej Nieszporsi 8 styczia Wstęp Wzory srócoego możeia, tóre pozaliśmy w gimazjum (x + y x + y (x + y x + xy + y (x + y 3 x 3 + 3x y + 3xy + y 3 x 3 + y 3 + 3xy(x + y
Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZENIE 3. Wyznaczanie aktywności źródeł promieniowania beta
Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjego PRACOWNIA JĄDROWA ĆWICZENIE 3 Wyzaczaie aktywości źródeł promieiowaia beta Łódź 08 I. Cel ćwiczeia Celem ćwiczeia jest praktycze zapozaie się z metodami
1. Podstawowe własności fizyczne płynów.
.. Masa, gęstość, ciśieie.. Podstawowe własości fizycze płyów. Masa jest właściwością płyu charakteryzującą jego ilość. W układzie SI jedostką podstawową asy jest l kg. Oprócz jedostki podstawowej używa
LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 3 MODELOWANIE SYSTEMÓW DYNAMICZNYCH METODY OPISU MODELI UKŁADÓW
Wydział Elektryczy Zespół Automatyki (ZTMAiPC) ZERiA LABORATORIUM MODELOWANIA I SYMULACJI Ćwiczeie 3 MODELOWANIE SYSTEMÓW DYNAMICZNYCH METODY OPISU MODELI UKŁADÓW I. Cel ćwiczeia Celem ćwiczeia jest zapozaie
201. a 1 a 2 a 3...a n a 2 1 +a 2 2 +a a 2 n n a 4 1 +a 4 2 +a a 4 n n. a1 + a 2 + a a n 204.
Liczby rzeczywiste dodatie a 1, a 2, a 3,...a spełiają waruek a 1 +a 2 +a 3 +...+a =. Wpisać w kratkę zak lub i udowodić podaą ierówość bez korzystaia z gotowych twierdzeń (moża korzystać z wcześiejszych
Jarosław Wróblewski Analiza Matematyczna 1 LUX, zima 2016/17
585. Wskaż liczbę rzeczywistą k, dla której podaa graica istieje i jest dodatią liczbą rzeczywistą. Podaj wartość graicy dla tej wartości parametru k. Jeżeli odpowiedź jest liczbą wymierą, podaj ją w postaci
ELEKTROTECHNIKA I ELEKTRONIKA
UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E20 BADANIE UKŁADU
Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =
Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka
Procent składany wiadomości podstawowe
Procet składay wiadomości podstawowe Barbara Domysławska I Liceum Ogólokształcące w Olecku Procet prosty to rodzaj oprocetowaia polegający a tym, że odsetki doliczae do złożoego wkładu ie podlegają dalszemu
MATEMATYKA POZIOM PODSTAWOWY
EGZAMIN MATURALNY W ROKU SZKOLNYM 05/06 FORMUŁA OD 05 ( NOWA MATURA ) FORMUŁA DO 04 ( STARA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 06 Klucz puktowaia
Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R
Kresy zbiorów. Ćwiczeia 21.11.2011: zad. 197-229 Kolokwium r 7, 22.11.2011: materiał z zad. 1-249 Defiicja: Zbiór Z R azywamy ograiczoym z góry, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą
Przejmowanie ciepła przy kondensacji pary
d iż. Michał Stzeszewski 004-01 Pzejowaie ciepła pzy kodesacji pay Zadaia do saodzielego ozwiązaia v. 0.9 1. powadzeie Jeżeli paa (asycoa lub pzegzaa) kotaktuje się z powiezchią o tepeatuze T s iższej
ZADANIA - ZESTAW 2. Zadanie 2.1. Wyznaczyć m (n)
ZADANIA - ZESTAW Zadaie.. Wyzaczyć m (), D ( ) dla procesu symetryczego (p = q =,) błądzeia przypadkowego. Zadaie.. Narysuj graf łańcucha Markowa symetrycze (p = q =,) błądzeie przypadkowe z odbiciem.
Zadanie 3. Na jednym z poniższych rysunków przedstawiono fragment wykresu funkcji. Wskaż ten rysunek.
FUNKCJA KWADRATOWA. Zadaia zamkięte. Zadaie. Wierzchołek paraboli, która jest wykresem fukcji f ( x) ( x ) ma współrzęde: A. ( ; ) B. ( ; ) C. ( ; ) D. ( ; ) Zadaie. Zbiorem rozwiązań ierówości: (x )(x
Podstawowe przemiany cieplne
Podstawowe rzemiay iele Przemiaa izohoryza zahodzi, gdy objętość układu ozostaje stała ( ost), zyli 0. ówaie izohory () ost rzemiaie tej ie jest wykoywaa raa, bo 0, wię zgodie z ierwszą zasadą termodyamiki,
MATURA 2014 z WSiP. Zasady oceniania zadań
MATURA 0 z WSiP Matematyka Poziom rozszerzoy Zasady oceiaia zadań Copyright by Wydawictwa Szkole i Pedagogicze sp z oo, Warszawa 0 Matematyka Poziom rozszerzoy Kartoteka testu Numer zadaia Sprawdzaa umiejętość
Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech
ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE DRUGIEJ.
ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE DRUGIEJ I Fukcja kwadratowa ) PODAJ POSTAĆ KANONICZNĄ I ILOCZYNOWĄ (O ILE ISTNIEJE) FUNKCJI: a) f ( ) + b) f ( ) 6+ 9 c) f ( ) ) Narysuj wykresy fukcji f
YCa. y 1. lx \x. Hi-2* sp = SPRĘŻARKI TŁOKOWE 7.1. PODSTAWY TEORETYCZNE
SPRĘŻARKI TŁOKOWE 7.1. PODSTAWY TEORETYCZNE Maszyna,.która kosztem energii pobranej z obcego źródła podnosi ciśnienie gazu, nazywa się; sprężarką. Na rys.7.1 w układzie p-v przedstawiono teoretyczny przebieg
Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w
Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to
Chemiczne metody analizy ilościowej (laboratorium)
Cheicze etody aalizy ilościowej (laboratoriu) Broiaoetria 9. Przygotowaie iaowaego roztworu broiau (V) potasu Broia(V) potasu ależy do stosowaych w aalizie cheiczej substacji podstawowych. oże być otrzyay
Wprowadzenie. metody elementów skończonych
Metody komputerowe Wprowadzeie Podstawy fizycze i matematycze metody elemetów skończoych Literatura O.C.Ziekiewicz: Metoda elemetów skończoych. Arkady, Warszawa 972. Rakowski G., acprzyk Z.: Metoda elemetów
Optymalizacja sieci powiązań układu nadrzędnego grupy kopalń ze względu na koszty transportu
dr hab. iż. KRYSTIAN KALINOWSKI WSIiZ w Bielsku Białej, Politechika Śląska dr iż. ROMAN KAULA Politechika Śląska Optymalizacja sieci powiązań układu adrzędego grupy kopalń ze względu a koszty trasportu
Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora
Aaliza wyików symulacji i rzeczywistego pomiaru zmia apięcia ładowaego kodesatora Adrzej Skowroński Symulacja umożliwia am przeprowadzeie wirtualego eksperymetu. Nie kostruując jeszcze fizyczego urządzeia
21. CAŁKA KRZYWOLINIOWA NIESKIEROWANA. x = x(t), y = y(t), a < t < b,
CAŁA RZYWOLINIOWA NIESIEROWANA rzywą o rówaiach parameryczych: = (), y = y(), a < < b, azywamy łukiem regularym (gładkim), gdy spełioe są asępujące waruki: a) fukcje () i y() mają ciągłe pochode, kóre
zadań z pierwszej klasówki, 10 listopada 2016 r. zestaw A 2a n 9 = 3(a n 2) 2a n 9 = 3 (a n ) jest i ograniczony. Jest wiec a n 12 2a n 9 = g 12
Rozwiazaia zadań z pierwszej klasówki, 0 listopada 06 r zestaw A Ciag a ) jest zaday rekuryjie: a a, a + a a 9, a R, a
, dla n = 1, 2, 3, 4 : 2
Ćwiczeia VI Uwagi do zadań -5 : W każdym z zadań proszę : A. arysować graf przejść i macierz itesywości B. podać graiczą itesywość zgłoszeń λ gr dla której system jest już iestabily C. obliczyć prawdopodobieństwa
Szybka transformacja Fouriera (FFT Fast Fourier Transform)
Szybka trasformacja Fouriera (FFT Fast Fourier Trasform) Pla wykładu: 1 Trasformacja Fouriera, iloczy skalary 2 DFT - dyskreta trasformacja Fouriera 3 FFT szybka trasformacja Fouriera a) algorytm PFA b)
Prawo odbicia i załamania. Autorzy: Zbigniew Kąkol Piotr Morawski
Prawo odbicia i załamaia Autorzy: Zbigiew Kąkol Piotr Morawski 207 Prawo odbicia i załamaia Autorzy: Zbigiew Kąkol, Piotr Morawski Jeżeli światło pada a graicę dwóch ośrodków, to ulega zarówo odbiciu a
POMIARY WARSZTATOWE. D o u ż y t k u w e w n ę t r z n e g o. Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Ćwiczenia laboratoryjne
D o u ż y t k u w e w ę t r z e g o Katedra Iżyierii i Aparatury Przemysłu Spożywczego POMIARY WARSZTATOWE Ćwiczeia laboratoryje Opracowaie: Urszula Goik, Maciej Kabziński Kraków, 2015 1 SUWMIARKI Suwmiarka
Rozwiązanie równania oscylatora harmonicznego
3 FOTON 1, Wiosa 13 Rozwiązaie rówaia oscylatora harmoiczego Adrzej Odrzywołek Istytut Fizyki UJ 1 Wstęp Motywacją do zebraia różych sposobów rozwiązaia rówaia oscylatora harmoiczego: d x() t m k x() t
Przykładowe zadania dla poziomu rozszerzonego
Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,
OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (SILNIK IDEALNY) PRACA W WARUNKACH STATYCZNYCH
OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (SILNIK IDEALNY) PRACA W WARUNKACH STATYCZNYCH DANE WEJŚCIOWE : Parametry otoczenia p H, T H Spręż sprężarki π S, Temperatura gazów przed turbiną T 3 Model obliczeń