Zaawansowane programowanie
|
|
- Jarosław Krawczyk
- 7 lat temu
- Przeglądów:
Transkrypt
1 Zaawasowae programowaie wykład 5: algorytmy dokłade prof. dr hab. iż. Marta Kasprzak Istytut Iformatyki, Politechika Pozańska lgorytmy dokłade lgorytmy dokłade służą rozwiązywaiu problemów w sposób dokłady (czyli ieheurystyczy). W przypadku problemów optymalizacyjych ozacza to gwarację wygeerowaia rozwiązaia optymalego Problemy trude obliczeiowo rozwiązywae są algorytmami działającymi w tzw. wykładiczym czasie: problemy silie NP-trude (silie NP-zupełe) rozwiązywae są algorytmami wykładiczymi, p. algorytmem brach-ad-boud lub brach-ad-cut problemy NP-trude (NP-zupełe) w zwykłym sesie mogą zostać rozwiązae algorytmami pseudowielomiaowymi, p. algorytmem programowaia dyamiczego 2 Metoda podziału i ograiczeń (ag. brach-ad-boud) opiera się a przeszukiwaiu (ajczęściej w głąb) drzewa reprezetującego przestrzeń rozwiązań problemu. Stosowae w tej metodzie odcięcia redukują liczbę przeszukiwaych węzłów (wykładiczą względem rozmiaru istacji) Metoda jest skompoowaa z grubsza rzecz ujmując z dwóch podstawowych procedur: rozgałęziaie (ag. brachig) dzieleie zbioru rozwiązań reprezetowaego przez węzeł a rozłącze podzbiory, reprezetowae przez astępików tego węzła ograiczaie (ag. boudig) pomijaie w przeszukiwaiu tych gałęzi drzewa, o których wiadomo, że ie zawierają optymalego rozwiązaia w swoich liściach Rozgałęziaie może być w korzeiu drzewa, jeśli rozpoczya każde rozwiązaie Następiki węzła muszą wyczerpywać wszystkie możliwe połączeia Węzeł reprezetuje zbiór rozwiązań osiągalych z iego Liście drzewa reprezetują komplete rozwiązaia 3 4 Ograiczaie Przykład dla problemu komiwojażera (bez predykcji) Odcięcia w drzewie opierają się a bieżącej wartości fukcji celu Im ta wartość bliższa optymalej, tym większe gałęzie moża pomiąć Wstępa heurystyka poprawia efektywość odcięć Miejsca odcięć wykrywa się z wyprzedzeiem (predykcja)
2 W węźle drzewa porówywae są wartości tzw. dolego i górego ograiczeia (ag. lower ad upper boud). Wyik tego porówaia wpływa a decyzję o odcięciu gałęzi drzewa w tym węźle Przy założeiu miimalizacji fukcji celu, wartość tej fukcji dla ajlepszego osiągiętego do tej pory rozwiązaia staowi góre ograiczeie W (prawie) każdym węźle obliczaa jest aktuala wartość dolego ograiczeia, która musi być ie większa iż wartość fukcji celu ajlepszego rozwiązaia możliwego do osiągięcia z tego węzła ole i góre ograiczeie (miimalizacja fukcji celu) W bieżącym poddrzewie poszukujemy rozwiązań z obszaru pomiędzy góre ograiczeie dolym i górym (ajlepsze otrzymae do tej pory rozwiązaie) ograiczeiem Gdy obliczoa w węźle zbiór rozwiązań wartość dolego osiągaych ograiczeia jest ie z bieżącego węzła miejsza iż górego, odciamy poddrzewo wychodzące z tego węzła żade zawarte w im dole ograiczeie rozwiązaie ie będzie (żade rozwiązaie ie będzie lepsze) lepsze od posiadaego 7 8 Wartość dolego ograiczeia musi zostać obliczoa poprawie w tym sesie, że rzeczywiście żade rozwiązaie ie będzie miało lepszej wartości fukcji celu. Z drugiej stroy, wartość ta może odbiegać od rzeczywistej wartości fukcji celu ajlepszego rozwiązaia w poddrzewie Należy dążyć do tego, aby wartość dolego ograiczeia była jak ajbliższa rzeczywiście istiejącemu rozwiązaiu. Pozwoli to a dokoaie bardziej efektywych odcięć, czyli skróci czas obliczeń okłade obliczeie optymalej wartości dolego ograiczeia (rówej wartości fukcji celu optymalego rozwiązaia w poddrzewie) wiąże się z wykładiczym czasem obliczeń, stąd stosuje się szybkie metody przybliżoe 9 Przykładowo, dole ograiczeie dla problemu komiwojażera moża obliczyć sumując m+1 ajmiejszych iewłączoych jeszcze do trasy odległości z macierzy, gdzie m jest liczbą ieodwiedzoych miast ardziej dokładym przybliżeiem byłoby sumowaie odcików o ajmiejszej długości spośród dochodzących do ieodwiedzoych miast (plus powrót do źródła), po jedym a każde takie miasto alej przybliżając tę wartość, moża zliczać takie ajmiejsze odległości z macierzy, które łączą dwa ieodwiedzoe miasta, z uczyieiem wyjątku dla połączeń z bieżącą częścią rozwiązaia Krokiem dalej jest obliczaie w każdym węźle drzewa rozwiązaia dla problemu przydziału, w którym łączy się pozostałe miasta w pary i każde ieodwiedzoe miasto występuje w dwóch takich parach 10 Problem przydziału (ag. assigmet problem) sformułoway jest astępująco: mi z x ij i1 x ij j1 1, c x ij ij i1 j1 j 1,..., c ij koszt przydziału x ij zmiea decyzyja (o wartości 0/1) Iymi słowy, ależy z kwadratowej macierzy kosztów wybrać pozycji takich, że każdy wiersz i każda koluma macierzy jest wybraa dokładie raz oraz suma wskazaych kosztów jest miimala 1, i 1,..., 11 Problem przydziału rozwiązyway jest w wielomiaowym czasie tzw. metodą węgierską. Mimo to zastosowaie tego podejścia w każdym węźle drzewa może wydłużyć obliczeia zamiast je skrócić Obiekty w wierszach i kolumach mogą staowić, w zależości od iterpretacji, rozłącze lub idetycze zbiory (p. osoby i zadaia lub miasta w problemie komiwojażera) Rozwiązaie problemu przydziału dla miast z problemu komiwojażera daje zbiór rozłączych cykli. Miimala wartość z zawsze będzie poprawym dolym ograiczeiem by wykluczyć iepożąday (w problemie komiwojażera) wybór kosztu z przekątej macierzy, pozycjom tym przypisuje się a wstępie duże wartości 12 2
3 Przykład rozwiązaia problemu przydziału w węźle drzewa Przykład rozwiązaia problemu przydziału w węźle drzewa Rozw.: -,-,- Wartość f. celu: 68 ole ogr.: 159 Góre ogr.: 127 Rozw.: -,-,-,- Wartość fukcji celu: 79 ole ograiczeie: 111 Góre ograiczeie: Porówaie metod o różym stopiu dokładości stosowaych do obliczeia dolego ograiczeia przykład ( slajd 10) metoda rozwiązaie wartość m+1 ajmiejszych odległości -, -, =44 ajmiejsze odległości dochodzące do m+1 miast ajmiejsze odległości pomiędzy parami miast -, -, =44 -, -, =61 problem przydziału -, -, =68 Wyik metody obliczającej dole ograiczeie może, wraz z częścią już istiejącego rozwiązaia, staowić poprawe rozwiązaie główego problemu. W takim przypadku jest to ajlepsze (lub jedo z ajlepszych) rozwiązaie możliwe do osiągięcia w poddrzewie wychodzącym z aalizowaego węzła i moża w tym miejscu zakończyć rozgałęziaie zasami moża zaoszczędzić a obliczeiach, przechodząc z węzła do jego astępika, gdyż problemy rozwiązywae w sąsiedich węzłach są podobe Struktura drzewa często opieraa jest a elemetach rozwiązaia każdy elemet w jedym węźle które po dodaiu do siebie tworzą rozwiązaie. Moża jedak zastosować iy schemat, p. węzeł ozacza brak daego elemetu w rozwiązaiu Oprócz właściwego doboru schematu rozgałęziaia i ograiczaia, istotym elemetem jest uporządkowaie astępików węzła. Kolejość ich odwiedzaia ma wpływ a wcześiejsze osiągięcie lepszego górego ograiczeia, a więc a czas obliczeń Najczęściej stosowaymi strategiami są: least-cost-ext least-lower-boud-ext last-i-first-out first-i-first-out Uporządkowaie zależy w dużej mierze od rodzaju problemu Moża zrezygować z obliczaia dolego ograiczeia a ajiższych poziomach drzewa z uwagi a oszczędość czasu, ew. ajwyższych z uwagi a iską skuteczość Warto wyposażyć algorytm w mechaizm przerywaia zbyt długich obliczeń. Wtedy zamiast stracić dokoae obliczeia możemy uzyskać wyik przybliżoy, często o bardzo dobrej jakości Oprócz ajlepszego rozwiązaia osiągiętego do mometu przerwaia obliczeń algorytm może zwrócić ajiższą wartość dolego ograiczeia obliczoą dla wszystkich ierozgałęzioych węzłów. Wiemy wtedy, że poszukiwaa wartość optymala zajduje się pomiędzy tymi dwiema wartościami
4 rach & cut Metoda podziału i odcięć (ag. brach-ad-cut) powstała przez połączeie dwóch metod: podziału i ograiczeń oraz płaszczyz odciających (ag. cuttig-plae) Metoda podobie jak brach-ad-boud służy do rozwiązywaia problemów kombiatoryczych, czyli takich, w których zmiee mają wartości całkowite. Problem jest wyrażay zazwyczaj w postaci układu rówań i ierówości programowaia liiowego całkowitoliczbowego (ag. iteger liear programmig, ILP, przykład a slajdzie 11) Rozwiązaie problemu ILP jest trude obliczeiowo. W praktyczych podejściach stosuje się metodę przybliżoą, polegającą a rozwiązaiu problemu bez ograiczeia wartości zmieych do liczb całkowitych (metodą simplex), z zamiaą uzyskaych wartości ułamkowych a całkowitoliczbowe rach & cut Proste zaokrągleie wartości ułamkowych do ajbliższych liczb całkowitych ajczęściej ie sprawdza się, gdyż wartość taka może być iedopuszczala (aruszająca ograiczeia z problemu) Metoda cuttig-plae Ralpha Gomory ego polega a wprowadzaiu do sformułowaia problemu dodatkowych zmieych i dodawaiu ierówości mających a celu wyelimiowaie wartości ułamkowych kolejych zmieych Metoda Gomory ego jest powiązaa z postacią rówań z metody simplex (opis obu tych metod wykracza poza program wykładu). W praktyce stosuje się w metodzie brach-ad-cut także uproszczoe podejście, bez dodatkowych zmieych i z prostszymi ierówościami (kolejy slajd) rach & cut W każdym węźle drzewa rozwiązyway jest problem ILP w sposób przybliżoy metodą simplex i dodawaa jest ierówość w dwóch wariatach dla wybraej zmieej, co prowadzi do dwóch owych sformułowań i rozgałęzieia węzła Sformułowaie ILP + ograiczeie x 27 Sformułowaie ILP x = 27,6 Sformułowaie ILP + ograiczeie x 28 W momecie uzyskaia rozwiązaia bez wartości ułamkowych dla zmieych całkowitoliczbowych, mamy rozwiązaie dopuszczale problemu i kończymy rozgałęziaie w tym węźle 21 rach & cut Wartość fukcji celu ajlepszego dotąd otrzymaego rozwiązaia całkowitoliczbowego staowi góre ograiczeie. olym ograiczeiem jest wartość fukcji celu wyliczoa metodą simplex dla problemu przybliżoego Liczba wywołań metody simplex bywa ograiczaa, ie uruchamia się jej wtedy w każdym węźle Podobie jak w brach-ad-boud, wstępa heurystyka poprawia jakość odcięć Stosuje się wstępe przetworzeie problemu ILP obejmujące: elimiację zbędych zmieych ustaleie zmieych o stałej wartości uproszczeie ierówości 22 rach & cut W przypadku zero-jedykowego programowaia liiowego, w którym zmiee decyzyje przyjmują wartości 0 lub 1, rozgałęziaie może zostać zrealizowae w jeszcze bardziej uproszczoy sposób. Metoda simplex może być używaa wtedy do obliczaia dolego ograiczeia w wybraych węzłach Przykład 0-1 LP problem plecakowy max f wi i1 si k i1 0,1, i 1,..., ae w problemie: liczba elemetów s i rozmiar elemetu w i wartość elemetu k rozmiar plecaka 23 rach & cut Przykład rozgałęzieia dla problemu plecakowego Istacja problemu: =5, k=10 dla LP: 0 x i 1 ograiczeie: x 1 = 0 LP = [0,1,1,1,0.33] f LP = LP = [0.2,1,1,1,0] f LP = 12.6 ograiczeie: x 1 = 1 LP = [1,0.33,0,1,0] f LP =
5 Programowaie dyamicze [R. ellma, Proceedigs of the Natioal cademy of Scieces of the US 38, 1952, ] Programowaie dyamicze (ag. dyamic programmig) jest metodą stosowaą do optymalego rozwiązaia problemów zarówo wielomiaowych, jak i NP-trudych (NP-zupełych) Problemy te muszą spełiać zasadę optymalości ellmaa, tz. decyzja optymala podjęta w kroku i jest adal optymalą w kroku i+1 i kolejych. Mają oe tzw. optymalą podstrukturę, czyli rozwiązaia optymale dla podproblemów składają się a rozwiązaie optymale całego problemu Nie ma awrotów w tej metodzie Programowaie dyamicze W programowaiu dyamiczym wypełia się k-wymiarową macierz wartości o rozmiarze ograiczoym zazwyczaj (w zastosowaiach praktyczych) wielomiaem będącym fukcją rozmiaru istacji i ajwiększej liczby występującej w istacji Najbardziej zaym w bioiformatyce algorytmem programowaia dyamiczego jest algorytm dopasowaia dwóch sekwecji (algorytm Needlemaa-Wuscha, algorytm Smitha-Watermaa) Na kolejych slajdach przedstawioy jest przykład algorytmu programowaia dyamiczego dla problemu plecakowego ( slajd 23). lgorytm te ma złożoość pseudowielomiaową O(k) Programowaie dyamicze Programowaie dyamicze Istacja problemu: =5, k=10 Tablica programowaia dyamiczego: j lgorytm: i i=0.., j=0..k, i f(i, 0) = 0 j f(0, j) = 0 f(i, j) = f(i 1, j) gdy j < s i, f(i, j) = max{ f(i 1, j s i)+w i, f(i 1, j)} wpp. Optimum: f(, k) 27 Istacja problemu: =5, k=10 Tablica programowaia dyamiczego: j i Rozwiązaie odczytujemy od końca, cofając się z pola (,k) po kolei do pól, z których wywiedzioe zostały wartości składające się a optymalą ścieżkę. Kończymy a wartości 0. Rozwiązaiem jest podzbiór elemetów: {2, 3, 4} 28 Literatura cd. hristos H. Papadimitriou, Keeth Steiglitz, ombiatorial Optimizatio: lgorithms ad omplety, Pretice Hall, glewood liffs,
D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assignment Problem)
D. Miszczyńska, M.Miszczyński KBO UŁ, Badaia operacyje (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assigmet Problem) Bliskim "krewiakiem" ZT (w sesie podobieństwa modelu decyzyjego) jest zagadieie
EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY
Cetrala Komisja Egzamiacyja Arkusz zawiera iformacje prawie chroioe do mometu rozpoczęcia egzamiu. Układ graficzy CKE 2010 KOD WISUJE ZDAJĄCY ESEL Miejsce a aklejkę z kodem EGZAMIN MATURALNY Z INORMATYKI
Ciągi liczbowe wykład 3
Ciągi liczbowe wykład 3 dr Mariusz Grządziel semestr zimowy, r akad 204/205 Defiicja ciągu liczbowego) Ciagiem liczbowym azywamy fukcję odwzorowuja- ca zbiór liczb aturalych w zbiór liczb rzeczywistych
MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU
Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów
Modele i narzędzia optymalizacji w systemach informatycznych zarządzania
Modele i arzędzia optymalizacji w systemach iformatyczych zarządzaia Prof. dr hab. iż. Joaa Józefowska Istytut Iformatyki Orgaizacja zajęć 8 godzi wykładów prof. dr hab. iż. J. Józefowska www.cs.put.poza.pl/jjozefowska
Elementy rach. macierzowego Materiały pomocnicze do MES Strona 1 z 7. Elementy rachunku macierzowego
Elemety rach macierzowego Materiały pomocicze do MES Stroa z 7 Elemety rachuku macierzowego Przedstawioe poiżej iformacje staowią krótkie przypomieie elemetów rachuku macierzowego iezbęde dla zrozumieia
Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera
Istrukcja do ćwiczeń laboratoryjych z przedmiotu: Badaia operacyje Temat ćwiczeia: Problemy trasportowe cd Problem komiwojażera Zachodiopomorski Uiwersytet Techologiczy Wydział Iżyierii Mechaiczej i Mechatroiki
Teoria i metody optymalizacji
eoria i metody optymalizaci Programowaie liiowe całowitoliczbowe PCL Metodologia podziału i ograiczeń Brach ad Boud (B&B) ma c A Z echique Metodologia podziału i ograiczeń B&B { A b i Z } Podstawą metodologii
WYBRANE METODY DOSTĘPU DO DANYCH
WYBRANE METODY DOSTĘPU DO DANYCH. WSTĘP Coraz doskoalsze, szybsze i pojemiejsze pamięci komputerowe pozwalają gromadzić i przetwarzać coraz większe ilości iformacji. Systemy baz daych staowią więc jedo
ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y
Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:
Egzamin maturalny z informatyki Poziom rozszerzony część I
Zadaie 1. Długość apisów biarych (7 pkt) Opisaa poiżej fukcja rekurecyja wyzacza, dla liczby aturalej 0, długość apisu uzyskaego przez sklejeie biarych reprezetacji liczb aturalych od 1 do 1. ukcja krok
3. Regresja liniowa Założenia dotyczące modelu regresji liniowej
3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi
KADD Metoda najmniejszych kwadratów
Metoda ajmiejszych kwadratów Pomiary bezpośredie o rówej dokładości o różej dokładości średia ważoa Pomiary pośredie Zapis macierzowy Dopasowaie prostej Dopasowaie wielomiau dowolego stopia Dopasowaie
EGZAMIN MATURALNY Z INFORMATYKI MAJ 2012 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY
Cetrala Komisja Egzamiacyja Arkusz zawiera iformacje prawie chroioe do mometu rozpoczęcia egzamiu. Układ graficzy CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce a aklejkę z kodem EGZAMIN MATURALNY Z INFORMATYKI
3 Arytmetyka. 3.1 Zbiory liczbowe.
3 Arytmetyka. 3.1 Zbiory liczbowe. Bóg stworzył liczby aturale, wszystko ie jest dziełem człowieka. Leopold Kroecker Ozaczeia: zbiór liczb aturalych: N = {1, 2,...} zbiór liczb całkowitych ieujemych: N
ALGORYTM OPTYMALIZACJI PARAMETRÓW EKSPLOATACYJNYCH ŚRODKÓW TRANSPORTU
Łukasz WOJCIECHOWSKI, Tadeusz CISOWSKI, Piotr GRZEGORCZYK ALGORYTM OPTYMALIZACJI PARAMETRÓW EKSPLOATACYJNYCH ŚRODKÓW TRANSPORTU Streszczeie W artykule zaprezetowao algorytm wyzaczaia optymalych parametrów
Parametryzacja rozwiązań układu równań
Parametryzacja rozwiązań układu rówań Przykład: ozwiąż układy rówań: / 2 2 6 2 5 2 6 2 5 //( / / 2 2 9 2 2 4 4 2 ) / 4 2 2 5 2 4 2 2 Korzystając z postaci schodkowej (środkowa macierz) i stosując podstawiaie
Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech
zadań z pierwszej klasówki, 10 listopada 2016 r. zestaw A 2a n 9 = 3(a n 2) 2a n 9 = 3 (a n ) jest i ograniczony. Jest wiec a n 12 2a n 9 = g 12
Rozwiazaia zadań z pierwszej klasówki, 0 listopada 06 r zestaw A Ciag a ) jest zaday rekuryjie: a a, a + a a 9, a R, a
METODY NUMERYCZNE dr inż. Mirosław Dziewoński
Metody Numerycze METODY NUMERYCZNE dr iż. Mirosław Dziewoński e-mail: miroslaw.dziewoski@polsl.pl Pok. 151 Wykład /1 Metody Numerycze Aproksymacja fukcji jedej zmieej Wykład / Aproksymacja fukcji jedej
UKŁADY RÓWNAŃ LINOWYCH
Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a
STATYSTYKA I ANALIZA DANYCH
TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica
Metody Obliczeniowe w Nauce i Technice laboratorium
Marci Rociek Iformatyka, II rok Metody Obliczeiowe w Nauce i Techice laboratorium zestaw 1: iterpolacja Zadaie 1: Zaleźć wzór iterpolacyjy Lagrage a mając tablicę wartości: 3 5 6 y 1 3 5 6 Do rozwiązaia
Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R
Kresy zbiorów. Ćwiczeia 21.11.2011: zad. 197-229 Kolokwium r 7, 22.11.2011: materiał z zad. 1-249 Defiicja: Zbiór Z R azywamy ograiczoym z góry, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą
1 Układy równań liniowych
Katarzya Borkowska, Wykłady dla EIT, UTP Układy rówań liiowych Defiicja.. Układem U m rówań liiowych o iewiadomych azywamy układ postaci: U: a x + a 2 x 2 +... + a x =b, a 2 x + a 22 x 2 +... + a 2 x =b
Rozsądny i nierozsądny czas działania
ZŁOŻONOŚĆ OBLICZENIOWA Wyzaczaie złożoości obliczeiowej dokładej i asymptotyczej Złożoość obliczeiowa algorytmów Chcemy podać miarodają oceę efektywości algorytmu, abstrahując od komputera, techiki (języka)
PODSTAWOWE ZAGADNIENIA METODOLOGICZNE
PODSTAWOWE ZAGADNIENIA METODOLOGICZNE. Wprowadzeie W ekoomii i aukach o zarządzaiu obserwuje się tedecję do ilościowego opisu zależości miedzy zjawiskami ekoomiczymi. Umożliwia to - zobiektywizowaie i
8. Optymalizacja decyzji inwestycyjnych
8. Optymalizacja decyzji iwestycyjych 8. Wprowadzeie W wielu różych sytuacjach, w tym rówież w czasie wyboru iwestycji do realizacji, podejmujemy decyzje. Sytuacje takie azywae są sytuacjami decyzyjymi.
będą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0,
Zadaie iech X, X,, X 6 będą iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), a Y, Y,, Y6 iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), gdzie, są iezaymi
Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17
Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo
Lista 5. Odp. 1. xf(x)dx = xdx = 1 2 E [X] = 1. Pr(X > 3/4) E [X] 3/4 = 2 3. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym
Lista 5 Zadaia a zastosowaie ierówosci Markowa i Czebyszewa. Zadaie 1. Niech zmiea losowa X ma rozkład jedostajy a odciku [0, 1]. Korzystając z ierówości Markowa oszacować od góry prawdopodobieństwo, że
Algorytmy I Struktury Danych Prowadząca: dr Hab. inż. Małgorzata Sterna. Sprawozdanie do Ćwiczenia 3 Algorytmy grafowe ( )
Poiedziałki 11.45 Grupa I3 Iformatyka a wydziale Iformatyki Politechika Pozańska Algorytmy I Struktury Daych Prowadząca: dr Hab. iż. Małgorzata Stera Sprawozdaie do Ćwiczeia 3 Algorytmy grafowe (26.03.12)
Egzamin maturalny z matematyki CZERWIEC 2011
Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr
TRANSFORMACJA DO UKŁADU 2000 A PROBLEM ZGODNOŚCI Z PRG
Tomasz ŚWIĘTOŃ 1 TRANSFORMACJA DO UKŁADU 2000 A ROBLEM ZGODNOŚCI Z RG Na mocy rozporządzeia Rady Miistrów w sprawie aństwowego Systemu Odiesień rzestrzeych już 31 grudia 2009 roku upływa termi wykoaia
MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum
MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu
Wprowadzenie. metody elementów skończonych
Metody komputerowe Wprowadzeie Podstawy fizycze i matematycze metody elemetów skończoych Literatura O.C.Ziekiewicz: Metoda elemetów skończoych. Arkady, Warszawa 972. Rakowski G., acprzyk Z.: Metoda elemetów
Materiał ćwiczeniowy z matematyki Marzec 2012
Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0
O liczbach naturalnych, których suma równa się iloczynowi
O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą
Wstęp do programowania
Wstęp do programowania Algorytmy zachłanne, programowanie dynamiczne Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk(Wydział Fizyki) WP w. IX Jesień 2014 1 / 26 Algorytmy zachłanne Strategia polegająca
h = 10 / N, a N jest zadaną liczbą naturalną.
5. CAŁKOWAIE I RÓŻICZKOWAIE FUKCJI 5.. Przykład wprowadzający Dae są ukcje cos oraz F si dla [,] związae zależościami: F dξ ξ oraz oraz ciąg wartości argumetu : dla,..., gdzie df d /, a jest zadaą liczbą
POMIARY WARSZTATOWE. D o u ż y t k u w e w n ę t r z n e g o. Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Ćwiczenia laboratoryjne
D o u ż y t k u w e w ę t r z e g o Katedra Iżyierii i Aparatury Przemysłu Spożywczego POMIARY WARSZTATOWE Ćwiczeia laboratoryje Opracowaie: Urszula Goik, Maciej Kabziński Kraków, 2015 1 SUWMIARKI Suwmiarka
z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X
Matematyka ubezpieczeń majątkowych.0.0 r. Zadaie. Mamy day ciąg liczb q, q,..., q z przedziału 0,. Rozważmy trzy zmiee losowe: o X X X... X, gdzie X i ma rozkład dwumiaowy o parametrach,q i, i wszystkie
Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja
Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n 4n n 1
30. Obliczyć wartość graicy ( 0 ( ( ( 4 +1 + 1 4 +3 + 4 +9 + 3 4 +7 +...+ 1 4 +3 + 1 ( ( 4 +3. Rozwiązaie: Ozaczmy sumę występującą pod zakiem graicy przez b. Zamierzamy skorzystać z twierdzeia o trzech
Kongruencje Wykład 4. Kongruencje kwadratowe symbole Legendre a i Jac
Kogruecje kwadratowe symbole Legedre a i Jacobiego Kogruecje Wykład 4 Defiicja 1 Kogruecję w ostaci x a (mod m), gdzie a m, azywamy kogruecją kwadratową; jej bardziej ogóla ostać ax + bx + c może zostać
Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień.
Metoda aalizy hierarchii Saaty ego Ważym problemem podejmowaia decyzji optymalizowaej jest często występująca hierarchiczość zagadień. Istieje wiele heurystyczych podejść do rozwiązaia tego problemu, jedak
POLITECHNIKA OPOLSKA
POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia
AUDYT SYSTEMU GRZEWCZEGO
Wytycze do audytu wykoao w ramach projektu Doskoaleie poziomu edukacji w samorządach terytorialych w zakresie zrówoważoego gospodarowaia eergią i ochroy klimatu Ziemi dzięki wsparciu udzieloemu przez Isladię,
Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.
Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako
EKONOMETRIA. Temat wykładu: Co to jest model ekonometryczny? Dobór zmiennych objaśniających w modelu ekonometrycznym CZYM ZAJMUJE SIĘ EKONOMETRIA?
EKONOMETRIA Temat wykładu: Co to jest model ekoometryczy? Dobór zmieych objaśiających w modelu ekoometryczym Prowadzący: dr iż. Zbigiew TARAPATA e-mail: Zbigiew.Tarapata Tarapata@isi.wat..wat.edu.pl http://
Twierdzenie Cayleya-Hamiltona
Twierdzeie Cayleya-Hamiltoa Twierdzeie (Cayleya-Hamiltoa): Każda macierz kwadratowa spełia swoje włase rówaie charakterystycze. D: Chcemy pokazać, że jeśli wielomiaem charakterystyczym macierzy A jest
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.
Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe
LUBELSKA PRÓBA PRZED MATURĄ 2015 poziom podstawowy. Liczba punktów Wyznaczenie pierwszej współrzędnej wierzchołka paraboli: x.
LUBELSKA PRÓBA PRZED MATURĄ 05 poziom podstawowy ZESTAW A ZADANIA ZAMKNIĘTE 5 6 7 8 9 0 5 6 7 8 9 0 A B D D A D B D A B C D C B A C A C B C A B D C ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI zadaia 5 6 7 puktów
Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:
Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego
Prawdopodobieństwo i statystyka
Wykład VI: Metoda Mote Carlo 17 listopada 2014 Zastosowaie: przybliżoe całkowaie Prosta metoda Mote Carlo Przybliżoe obliczaie całki ozaczoej Rozważmy całkowalą fukcję f : [0, 1] R. Chcemy zaleźć przybliżoą
INWESTYCJE MATERIALNE
OCENA EFEKTYWNOŚCI INWESTYCJI INWESTCJE: proces wydatkowaia środków a aktywa, z których moża oczekiwać dochodów pieiężych w późiejszym okresie. Każde przedsiębiorstwo posiada pewą liczbę możliwych projektów
Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).
Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic
Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r.
Matematyka fiasowa 08.10.2007 r. Komisja Egzamiacyja dla Aktuariuszy XLIII Egzami dla Aktuariuszy z 8 paździerika 2007 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:...
Internetowe Kółko Matematyczne 2004/2005
Iteretowe Kółko Matematycze 2004/2005 http://www.mat.ui.toru.pl/~kolka/ Zadaia dla szkoły średiej Zestaw I (20 IX) Zadaie 1. Daa jest liczba całkowita dodatia. Co jest większe:! czy 2 2? Zadaie 2. Udowodij,
Wykład 11. a, b G a b = b a,
Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada
ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO
Agieszka Jakubowska ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO. Wstęp Skąplikowaie współczesego życia gospodarczego powoduje, iż do sterowaia procesem zarządzaia
O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii
O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję
P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +
Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch
Przykład Obliczenie wskaźnika plastyczności przy skręcaniu
Przykład 10.5. Obliczeie wskaźika plastyczości przy skręcaiu Obliczyć wskaźiki plastyczości przy skręcaiu dla astępujących przekrojów: a) -kąta foremego b) przekroju złożoego 6a 16a 9a c) przekroju ciekościeego
Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 11
Matematyka I Bezpieczeństwo jądrowe i ochroa radiologicza Semestr zimowy 2018/2019 Wykład 11 Całka ozaczoa podstawowe pojęcia Defiicja podziału odcika Podziałem P odcika < a, b > a części azywamy zbiór
1.3. Największa liczba naturalna (bez znaku) zapisana w dwóch bajtach to a) b) 210 c) d) 32767
Egzami maturaly z iformatyki Zadaie. (0 pkt) Każdy z puktów tego zadaia zawiera stwierdzeie lub pytaie. Zazacz (otaczając odpowiedią literę kółkiem) właściwą kotyuację zdaia lub poprawą odpowiedź. W każdym
WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ
WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM RACHUNEK EKONOMICZNY W ELEKTROENERGETYCE INSTRUKCJA DO ĆWICZENIA
Algorytmy I Struktury Danych Prowadząca: dr Hab. inż. Małgorzata Sterna. Sprawozdanie do Ćwiczenia 1 Algorytmy sortowania (27.02.
Poiedziałki 11.45 Grupa I3 Iformatyka a wydziale Iformatyki Politechika Pozańska Algorytmy I Struktury Daych Prowadząca: dr Hab. iż. Małgorzata Stera Sprawozdaie do Ćwiczeia 1 Algorytmy sortowaia (27.2.12)
Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny
TEMATYKA: Regresja liiowa dla prostej i płaszczyzy Ćwiczeia r 5 DEFINICJE: Regresja: metoda statystycza pozwalająca a badaie związku pomiędzy wielkościami daych i przewidywaie a tej podstawie iezaych wartości
Podprzestrzenie macierzowe
Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji ( ) : m f x = Ax ( A) { Ax x } = Defiicja: Zakresem macierzy A Œ âm azywamy
Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =
Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka
Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik
Pierwiastki z liczby zespoloej Autorzy: Agieszka Kowalik 09 Pierwiastki z liczby zespoloej Autor: Agieszka Kowalik DEFINICJA Defiicja : Pierwiastek z liczby zespoloej Niech będzie liczbą aturalą. Pierwiastkiem
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy
Podprzestrzenie macierzowe
Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji : m f x = Ax RAAx x Defiicja: Zakresem macierzy A Œ âm azywamy podprzestrzeń
Analiza algorytmów to dział informatyki zajmujcy si szukaniem najefektywniejszych, poprawnych algorytmów dla danych problemów komputerowych
Temat: Poprawo całkowita i czciowa algorytmu. Złooo obliczeiowa algorytmu. Złooo czasowa redia i pesymistycza. Rzd fukcji. I. Literatura 1. L. Baachowski, K. Diks, W. Rytter Algorytmy i struktury daych.
MATURA 2014 z WSiP. Zasady oceniania zadań
MATURA 0 z WSiP Matematyka Poziom rozszerzoy Zasady oceiaia zadań Copyright by Wydawictwa Szkole i Pedagogicze sp z oo, Warszawa 0 Matematyka Poziom rozszerzoy Kartoteka testu Numer zadaia Sprawdzaa umiejętość
Estymacja przedziałowa
Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.
Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują
Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.
Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)
Lista 6. Estymacja punktowa
Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?
Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja
Iwestycja Wykład Celowo wydatkowae środki firmy skierowae a powiększeie jej dochodów w przyszłości. Iwestycje w wyiku użycia środków fiasowych tworzą lub powiększają majątek rzeczowy, majątek fiasowy i
Prawdopodobieństwo i statystyka r.
Zadaie 1 Rzucamy 4 kości do gry (uczciwe). Prawdopodobieństwo zdarzeia iż ajmiejsza uzyskaa a pojedyczej kości liczba oczek wyiesie trzy (trzy oczka mogą wystąpić a więcej iż jedej kości) rówe jest: (A)
P π n π. Równanie ogólne płaszczyzny w E 3. Dane: n=[a,b,c] Wówczas: P 0 P=[x-x 0,y-y 0,z-z 0 ] Równanie (1) nazywamy równaniem ogólnym płaszczyzny
Rówaie ogóle płaszczyzy w E 3. ae: P π i π o =[A,B,C] P (,y,z ) Wówczas: P P=[-,y-y,z-z ] P π PP PP= o o Rówaie () azywamy rówaiem ogólym płaszczyzy A(- )+B(y-y )+C(z-z )= ( ) A+By+Cz+= Przykład
2. INNE ROZKŁADY DYSKRETNE
Ie rozkłady dyskrete 9. INNE ROZKŁADY DYSKRETNE.. Rozkład dwumiaowy - kotyuacja Przypomijmy sobie pojęcie rozkładu dwumiaowego prawdopodobieństwa k sukcesów w próbach Beroulli ego: P k k k k = p q m =
Geometrycznie o liczbach
Geometryczie o liczbach Geometryczie o liczbach Łukasz Bożyk Dodatią liczbę całkowitą moża iterpretować jako pole pewej figury składającej się z kwadratów jedostkowych Te prosty pomysł pozwala w aturaly
Kolorowanie Dywanu Sierpińskiego. Andrzej Szablewski, Radosław Peszkowski
olorowaie Dywau ierpińskiego Adrzej zablewski, Radosław Peszkowski pis treści stęp... Problem kolorowaia... Róże rodzaje kwadratów... osekwecja atury fraktalej...6 zory rekurecyje... Przekształcaie rekurecji...
x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem
9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3
Poziom rozszerzony. 5. Ciągi. Uczeń:
PIOTR LUDWIKOWSKI Materiał z wykładu z aalizy dla uczestików koerecji Podstawa programowa z kometarzami Tom 6 Edukacja matematycza i techicza w szkole podstawowej, gimazjum i liceum matematyka, zajęcia
I kolokwium z Analizy Matematycznej
I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4
3. Funkcje elementarne
3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących
Metody numeryczne Laboratorium 5 Info
Metody umerycze Laboratorium 5 Ifo Aproksymacja - proces określaia rozwiązań przybliżoych a podstawie rozwiązań zaych, które są bliskie rozwiązaiom dokładym w ściśle sprecyzowaym sesie. Metoda ajmiejszych
Materiał ćwiczeniowy z matematyki marzec 2012
Materiał ćwiczeiowy z matematyki marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych dla iewidomych POZIOM PODSTAWOWY Klucz puktowaia do zadań zamkiętych Nr zad 3 4 6 7
Wstęp do programowania
Wstęp do programowania Programowanie dynamiczne Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. X Jesień 2013 1 / 21 Dziel i zwyciężaj przypomnienie 1 Podział problemu na 2 lub
Scenariusz lekcji: Kombinatoryka utrwalenie wiadomości
Sceariusz lekcji: Kombiatoryka utrwaleie wiadomości 1 1. Cele lekcji a) Wiadomości Uczeń: za pojęcia: permutacja, wariacja i kombiacja, zdarzeie losowe, prawdopodobieństwo, za iezbęde wzory. b) Umiejętości
a) symbole logiczne (wspólne dla wszystkich języków) zmienne przedmiotowe: x, y, z, stałe logiczne:,,,,,, symbole techniczne: (, )
PROGRAMOWANIE W JĘZYU OGII WPROWADZENIE OGIA PIERWSZEGO RZĘDU Symbole języka pierwszego rzędu dzielą się a: a symbole logicze (wspóle dla wszystkich języków zmiee przedmiotowe: x y z stałe logicze: symbole
Zasada indukcji matematycznej. Dowody indukcyjne.
Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,
201. a 1 a 2 a 3...a n a 2 1 +a 2 2 +a a 2 n n a 4 1 +a 4 2 +a a 4 n n. a1 + a 2 + a a n 204.
Liczby rzeczywiste dodatie a 1, a 2, a 3,...a spełiają waruek a 1 +a 2 +a 3 +...+a =. Wpisać w kratkę zak lub i udowodić podaą ierówość bez korzystaia z gotowych twierdzeń (moża korzystać z wcześiejszych
KLUCZ ODPOWIEDZI I ZASADY PUNKTOWANIA PRÓBNEGO EGZAMINU MATURALNEGO Z MATEMATYKI POZIOM PODSTAWOWY
KLUCZ ODPOWIEDZI I ZASADY PUNKTOWANIA PRÓBNEGO EGZAMINU MATURALNEGO Z MATEMATYKI POZIOM PODSTAWOWY Nr zadaia Odpowiedzi Pukty Badae umiejtoci Obszar stadardu 1. B 0 1 plauje i wykouje obliczeia a liczbach
Programowanie dynamiczne cz. 2
Programowanie dynamiczne cz. 2 Wykład 7 16 kwietnia 2019 (Wykład 7) Programowanie dynamiczne cz. 2 16 kwietnia 2019 1 / 19 Outline 1 Mnożenie ciągu macierzy Konstruowanie optymalnego rozwiązania 2 Podstawy