1. WSTĘP. METODA EULERA 1 1. WSTĘP. METODA EULERA

Wielkość: px
Rozpocząć pokaz od strony:

Download "1. WSTĘP. METODA EULERA 1 1. WSTĘP. METODA EULERA"

Transkrypt

1 . WSTĘP. MTODA ULRA. WSTĘP. MTODA ULRA Wprowadzee Mowacja pozawaa meod umerczc:. Rozwązwae bardzo dużc kosrukcj o złożoej geomer welu sopac swobod powżej mloa prz różorodm zacowau maerałów.. Śwadome wkorzswae oprogramowaa wmagaem jes posadae podsawowej wedz a ema meod umerczc.. Meod umercze pozwalają a aukę maemak wższej. Meod umercze pozwalają a ormułowae maemaczc problemów rozwązwae c w eekw sposób. Cecą carakersczą meod umerczc jes zasąpee zwkle pracocłoc oblczeń m meodam wmagającm zasosowaa armeczc dzałań. Przed rozwojem przemsłu kompuerowego ajwęcej czasu pośwęcao a rozwązwae problemów rozwązwae rówań algebraczc różczkowc a zacze mej czasu pośwęcao a samo ormułowae problemu erpreację wków. Bło o eekem rudośc w orzmwau rozwązań. Obece kompuer meod umercze saową alerawę dla meod radcjc. Wkorzsując kompuer e jeseśm zmusze do robea welu założeń upraszczającc co zwększa możlwość rozwązwaa złożoc problemów. W końcowm eekce węcej czasu moża pośwęcć a ormułowae problemu erpreację wków. Rówae różczkowe azwam zwczajm gd mam do czea z pocodm lko jedej zmeej ezależej. Będzem rozważać rówaa różczkowe perwszego rzędu: lub układ rówań d d = d d d d d d. z warukem począkowm:. Meod Kompuerowe - Domka Mejbaum Aa Sela Marek Komosa

2 . WSTĘP. MTODA ULRA Zagadea powższe możem zapsać w posac wekorowej: d d.. W przpadku gd = zagadee przjmuje posać jedego rówaa skalarego: d d.5 W m rozdzale będzem rozważać meod całkowaa rówań różczkowc z grup meod Rugego-Ku dla kórc wzór ogól jes posac:.6.7 gdze jes krokem całkowaa ukcj a φ kerukem poszukwaego kolejego puku rozwązaa. Meod Rugego Ku carakerzują sę m że poszukwae rozwązae orzmujem za pomocą wcześej oblczoc warośc. welkość kroku całkowaa - = = φ Rs.. Ierpreacja gracza meod sczc Meod Kompuerowe - Domka Mejbaum Aa Sela Marek Komosa

3 . WSTĘP. MTODA ULRA Meoda ulera Jedą z ajprosszc meod rozwązwaa zagadea.5 jes meoda ulera według kórej keruek jes wrażo przez perwszą pocodą ukcj: W akm raze mam: d.8 d.9. Tak węc perwsza pocoda ukcj o zacz prawa sroa rówaa różczkowego wzacza keruek położea owego puku rozwązaa. Jes o zw. predkor. puk przblżo predk or j błąd kroku puk szuka Rs.. Ierpreacja gracza meod ulera Odległość mędz predkorem a rozwązaem dokładm saow błąd meod. Ze względu a swoją prosoę meoda ulera jes ława do zasosowaa. Dobrze oddaje caraker rozwązaa ale może bć obarczoa dużm błędem. Przkład.: Rozparzm rówae różczkowe posac: d d 85 Zajdźm rozwązae dla przedzału od = do = waruku począkowego = kroku całkowaa =5. Meod Kompuerowe - Domka Mejbaum Aa Sela Marek Komosa

4 . WSTĘP. MTODA ULRA Rozwązae dokłade: d 85 d 8 5 C dla waruku począkowego: C węc rozwązae dokłade ma posać: 85 Rozwązae meodą ulera dla = 5 5 ; ; a pods. wzoru rozwazae umercze rozw.doklade Błąd całkow proceow w pukce = 5 k k ;55 5 doklade doklade 6% umercze % Rozwązae meodą ulera dla = 5 5; a pods. wzoru rozw.umercze 85 roz.dokl. Błąd całkow proceow w pukce = Meod Kompuerowe - Domka Mejbaum Aa Sela Marek Komosa

5 . WSTĘP. MTODA ULRA 5 k % Uzskae rozwązae dla całego przedzału przedsawoo a Rs. gdze dla porówaa zameszczoo róweż rozwązae dokłade. 7 Meoda ulera Rozw. dokłade =5 Rs.. Rozwązae oblczoe dla kroku =5 Poprawee dokładośc moża osągąć p. przez zmejszee kroku. Na Rs. przedsawoo rozwązaa dla kroku całkowaa = =5. Wdać wraźe poprawee dokładośc dla mejszego kroku całkowaa. 7 Meoda ulera Rozw. dokłade = =5 Rs.. Rozwązaa dla różc welkośc kroku Meod Kompuerowe - Domka Mejbaum Aa Sela Marek Komosa

6 . WSTĘP. MTODA ULRA 6 lczba kroków Błąd względ [%] welkość kroku Rs..5 Zależość mędz welkoścą kroku loścą kroków a dokładoścą rozwązaa. Oszacowae błędu w meodze ulera W aalze umerczej wróżam zasadczo dwa p błędów: Błęd zaokragleń wkające z wkowaa dzałań armeczc Błąd meod dskrezacj obcęca. Określm e błąd dla meod ulera. Dowolą ukcję moża przedsawć za pomocą rozwęca w szereg Talora. Gd ozaczm ukcję przez mam: gdze: '' ' R.!!! R. Poeważ asze rówae różczkowe ma posać d zaem możem apsać: d Meod Kompuerowe - Domka Mejbaum Aa Sela Marek Komosa

7 . WSTĘP. MTODA ULRA 7 '!!. Wdać z rówaa. że błąd meod ulera wos: '.! a błąd przblżo ograczam do perwszego wrazu błędu obcęca: a '.5! Jes o błąd lokal a jedm kroku proporcjoal do kwadrau kroku. Moża wkazać że błąd global całkow jes proporcjoal do perwszej poęg kroku. Przkład.: Wzaczć błąd meod ulera dla welomau z poprzedego zadaa. ' ''!! ' 6 ''! ze wzoru. Oblczam poszczególe błęd meod dla pocodej w pukce = Całkow błąd rów jes sume błędów dla poszczególc pocodc: W e sposób oszacowalśm całkow błąd w pukce = e zając dokładego rozwązaa. Zwróćm uwagę że błąd e jes rów dokłade błędow orzmaemu podczas rozwązwaa zadaa w przkładze wżej. Meod Kompuerowe - Domka Mejbaum Aa Sela Marek Komosa

8 . WSTĘP. MTODA ULRA 8 5 um dok Wdać że wraz ze wzrosem rzędu pocodej koleje wraz szeregu Talora warość błędu maleje dlaego ograczam błąd do pocodej drugego rzędu. Dla meod ulera błąd lokal jes węc proporcjoal do kwadrau kroku a błąd global o jede rząd żej low. W celu zmejszea błędu w meodze ulera moża uwzględć wraz wższego rzędu. Przparzm sę jak o będze w przpadku wrazu II rzędu. I ak mam: '.6! '' a.7 Perwszą pocodą musm wzaczć jak dla ukcj uwkłaej. Jes oa asępująca: d d '.8 Druga pocoda będze mała posać: '' d d d d d d d d.9 Wdać że oblczee wższc pocodc wmaga dużego akładu prac jes skomplkowae dlaego uka sę akego podejśca w prakce. Zasąpm jeszcze we wzorze.6 wrażee a dpocodą wrażeem różcowm: ' Orzmam wówczas: osaecze: Powższe rówae możem zapsać róweż jako: Meod Kompuerowe - Domka Mejbaum Aa Sela Marek Komosa

9 . WSTĘP. MTODA ULRA 9 Zwróćm uwagę że powższa ormuła całkowaa ma dokładość O. Jes o zw. zmodkowaa meoda ulera. Powrócm do ej meod w kolejm rozdzale. Meod Kompuerowe - Domka Mejbaum Aa Sela Marek Komosa

METODY KOMPUTEROWE 1

METODY KOMPUTEROWE 1 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN MTODA ULRA Mcał PŁOTKOWIAK Adam ŁODYGOWSKI Kosultacje aukowe dr z. Wtold Kąkol Pozań 00/00 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN Metod umercze MN pozwalają a ormułowae matematczc

Bardziej szczegółowo

Projekt 2 2. Wielomiany interpolujące

Projekt 2 2. Wielomiany interpolujące Proekt Weloma terpoluące Rodzae welomaów terpoluącc uma edomaów Nec w przedzale a, b określoa będze fukca f: ec będze ustaloc m wartośc argumetu :,,, m, m L prz czm: < < L < < m m Pukt o tc odcztac azwa

Bardziej szczegółowo

Rachunek różniczkowy funkcji wielu zmiennych

Rachunek różniczkowy funkcji wielu zmiennych EAIB-Iormaa-Wład 9- dr Adam Ćmel cmel@.ag.edu.pl Racue różczow ucj welu zmec Z uwag a prosoę zapsu ławe erpreacje gracze ograczm sę jede do ucj lub zmec. Naurale uogólea wprowadzac pojęć a ucje zmec zosawam

Bardziej szczegółowo

Rachunek różniczkowy funkcji wielu zmiennych

Rachunek różniczkowy funkcji wielu zmiennych Iormaa - Wład 9 - dr Bogda Ćmel cmelbog@ma.ag.edu.pl Racue różczow ucj welu zmec Z uwag a prosoę zapsu ławe erpreacje gracze ograczm sę jede do ucj lub zmec. Naurale uogólea wprowadzac pojęć a ucje zmec

Bardziej szczegółowo

FUNKCJE DWÓCH ZMIENNYCH

FUNKCJE DWÓCH ZMIENNYCH FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam

Bardziej szczegółowo

f f x f, f, f / / / METODA RÓŻNIC SKOŃCZONYCH niech N = 2 (2 równania różniczkowe zwyczajne liniowe I-rz.) lub jedno II-rzędu

f f x f, f, f / / / METODA RÓŻNIC SKOŃCZONYCH niech N = 2 (2 równania różniczkowe zwyczajne liniowe I-rz.) lub jedno II-rzędu METODA RÓŻIC SKOŃCZOYCH (omówee a przykładze rówań lowych) ech ( rówaa różczkowe zwyczaje lowe I-rz.) lub jedo II-rzędu f / / p( x) f / + q( x) f + r( x) a x b, f ( a) α, f ( b) β dea: a satce argumetu

Bardziej szczegółowo

opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn

opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn ROZKŁAD PRAWDOPODBIEŃSTWA WIELU ZMIENNYCH LOSOWYCH W przpadku gd mam do czea z zmem losowm możem prawdopodobeństwo, ż przjmą oe wartośc,,, opsać welowmarową fukcją rozkładu gęstośc prawdopodobeństwa f(,,,.

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I Pracowa IF UJ Luy 03 PODRĘCZNIKI Wsęp do aalzy błędu pomarowego Joh R. Taylor Wydawcwo Naukowe PWN Warszawa 999 I Pracowa

Bardziej szczegółowo

METODY KOMPUTEROWE 10

METODY KOMPUTEROWE 10 MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Poechnka Poznańska Mchał Płokowak Adam Łodgowsk Mchał PŁOKOWIAK Adam ŁODYGOWSKI Konsace nakowe dr nż. Wod Kąko Poznań 00/00 MEODY KOMPUEROWE 0 RÓWNANIA RÓŻNICZKOWE

Bardziej szczegółowo

Zastosowanie metody najmniejszych kwadratów do pomiaru częstotliwości średniej sygnałów o małej stromości zboczy w obecności zakłóceń

Zastosowanie metody najmniejszych kwadratów do pomiaru częstotliwości średniej sygnałów o małej stromości zboczy w obecności zakłóceń Zasosowae meody ajmejszych kwadraów do pomaru częsolwośc średej sygałów o małej sromośc zboczy w obecośc zakłóceń Elgusz PAWŁOWSKI, Darusz ŚWISULSKI Podsawowe meody pomaru częsolwośc Zlczae okresów w zadaym

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

Równania różniczkowe zwyczajne

Równania różniczkowe zwyczajne cał Padaows Isu Tecolog Iormacjc w Iżer Lądowej Wdał Iżer Lądowej Poleca Kraowsa Rówaa różcowe wcaje W ajprossm prpadu posuujem ucj jedej meej recwsej x w posac: ( x órej pocoda ( x ma spełać rówae dae

Bardziej szczegółowo

Materiały do wykładu 7 ze Statystyki

Materiały do wykładu 7 ze Statystyki Materał do wkładu 7 ze Statstk Aalza ZALEŻNOŚCI pomędz CECHAMI (Aalza KORELACJI REGRESJI) korelacj wkres rozrzutu (korelogram) rodzaje zależośc (brak, elowa, lowa) pomar sł zależośc lowej (współczk korelacj

Bardziej szczegółowo

OBLICZANIE GEOMETRYCZNYCH MOMENTÓW BEZWŁADNOŚCI FIGUR PŁASKICH, TWIERDZENIE STEINERA LABORATORIUM RACHUNKOWE

OBLICZANIE GEOMETRYCZNYCH MOMENTÓW BEZWŁADNOŚCI FIGUR PŁASKICH, TWIERDZENIE STEINERA LABORATORIUM RACHUNKOWE OBLICZNIE GEOMETRYCZNYCH MOMENTÓW BEZWŁDNOŚCI FIGUR PŁSKICH, TWIERDZENIE STEINER LBORTORIUM RCHUNKOWE Prz oblczeach wtrzmałoścowch dotczącch ektórch przpadków obcążea (p. zgae) potrzeba jest zajomość pewch

Bardziej szczegółowo

STATYKA. Cel statyki. Prof. Edmund Wittbrodt

STATYKA. Cel statyki. Prof. Edmund Wittbrodt STATYKA Cel statyk Celem statyk jest zastąpee dowolego układu sł ym, rówoważym układem sł, w tym układem złożoym z jedej tylko sły jedej pary sł (redukcja do sły mometu główego) lub zbadae waruków, jake

Bardziej szczegółowo

MATEMATYKA STOSOWANA W INŻYNIERII CHEMICZNEJ

MATEMATYKA STOSOWANA W INŻYNIERII CHEMICZNEJ MATEMATYKA STOSOWANA W INŻYNIERII CHEMICZNEJ Wykład Układy rówań metody aaltycze Metody umerycze rozwązywaa rówań lczbowych Prof. Ato Kozoł, Wydzał Chemczy Poltechk Wrocławskej ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ

Bardziej szczegółowo

Matematyka II. x 3 jest funkcja

Matematyka II. x 3 jest funkcja Maemayka II WYKLD. Całka eozaczoa. Rachuek całkowy. Twerdzea o całkach eozaczoych. Całkowae wybraych klas fukcj. Całkowae fukcj wymerych. Całkowae fukcj rygoomeryczych.. Defcja fukcj perwoej. Fukcję F

Bardziej szczegółowo

Mh n. 2 ε. h h/ n n. Ekstrapolacja Richardsona (szacowanie błędu) błąd. ekstrapolowana wartość całki I. kwadratury z adaptowanym krokiem

Mh n. 2 ε. h h/ n n. Ekstrapolacja Richardsona (szacowanie błędu) błąd. ekstrapolowana wartość całki I. kwadratury z adaptowanym krokiem Ekstrapolacja Rchardsoa (szacowae błędu) dla daej, ustaloej metody błąd Mh zakładając, że M jest w przyblżeu ezależe od h I I + Mh h h/ / I I + Mh ekstrapolowaa wartość całk I I e I h / + Ih / ( I h )

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 7

RÓWNANIA RÓŻNICZKOWE WYKŁAD 7 RÓWNANIA RÓŻNIZKOWE WYKŁAD 7 Deiicj Ukłdem rówń różiczkowch rzędu pierwszego w posci ormlej zwm ukłd rówń o iewidomch > zmie iezleż. Uwg Jeżeli = o zzwczj piszem x zmis orz g zmis jeżeli = o piszem x z

Bardziej szczegółowo

RACHUNEK NIEPEWNOŚCI POMIARU

RACHUNEK NIEPEWNOŚCI POMIARU Mędzarodowa Norma Oce Nepewośc Pomaru (Gude to Epresso of Ucertat Measuremets - Mędzarodowa Orgazacja Normalzacja ISO RACHUNEK NIEPEWNOŚCI http://phscs.st./gov/ucertat POMIARU Wrażae Nepewośc Pomaru. Przewodk.

Bardziej szczegółowo

Józef Beluch Akademia Górniczo-Hutnicza w Krakowie. Wpływ wag współrzędnych na wyniki transformacji Helmerta

Józef Beluch Akademia Górniczo-Hutnicza w Krakowie. Wpływ wag współrzędnych na wyniki transformacji Helmerta Józef Beluch Akadema Górczo-Hutcza w Krakowe płw wag współrzędch a wk trasformacj Helmerta . zór a trasformację współrzędch sposobem Helmerta: = c + b = d + a + a b () 2 2. Dwa modele wzaczea parametrów

Bardziej szczegółowo

Opis ruchu we współrzędnych prostokątnych (kartezjańskich)

Opis ruchu we współrzędnych prostokątnych (kartezjańskich) Opis ruchu we współrędch prosokąch (karejańskich) Opis ruchu we współrędch prosokąch jes podob do opisu a pomocą wekora wodącego, kórego pocąek leż w pocąku układu odiesieia. Położeie. Położeie puku A

Bardziej szczegółowo

Niepewności pomiarów. DR Andrzej Bąk

Niepewności pomiarów. DR Andrzej Bąk Nepewośc pomarów DR Adrzej Bąk Defcje Błąd pomar - różca mędz wkem pomar a wartoścą merzoej welkośc fzczej. Bwa też azwa błędem bezwzględm pomar. Poeważ wartość welkośc merzoej wartość prawdzwa jest w

Bardziej szczegółowo

Zastosowanie szeregów potęgowych do rozwiązywania równań różniczkowych

Zastosowanie szeregów potęgowych do rozwiązywania równań różniczkowych Zastosowae szeregów potęgowch do rozwązwaa rówań różczkowch Ogól kształt rówaa lowego drugego rzędu jedorodego o współczkach zmech ma postać: '' + f ' + g = 0 (1) Tego tpu klasa rówań obejmuje wele zjawsk

Bardziej szczegółowo

Całka krzywoliniowa nieskierowana (całka krzywoliniowa funkcji skalarnej)

Całka krzywoliniowa nieskierowana (całka krzywoliniowa funkcji skalarnej) WYŁAD : CAŁI RZYWOLINIOWE Nech - krwa w R : gde [ α β ] ora C [ α β]. Zaem dowol puk krwej moża predsawć w posac j k krwa adaa jes pre wekor parameracj r : r j k. Decja Jeśl krwa e ma puków welokroch.

Bardziej szczegółowo

Statystyka. Katarzyna Chudy Laskowska

Statystyka. Katarzyna Chudy Laskowska Statstka Katarza Chud Laskowska http://kc.sd.prz.edu.pl/ Aalza korelacj umożlwa stwerdzee wstępowaa zależośc oraz oceę jej atężea ZALEŻNOŚCI pomędz CECHAMI: CECHY: ILOŚCIOWA ILOŚCIOWA CECHY: JAKOŚCIOWA

Bardziej szczegółowo

Prognozowanie i symulacje

Prognozowanie i symulacje Prognozowanie i smulacje Lepiej znać prawdę niedokładnie, niż dokładnie się mlić. J. M. Kenes dr Iwona Kowalska ikowalska@wz.uw.edu.pl Prognozowanie meod naiwne i średnie ruchome Meod naiwne poziom bez

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

Schrödingera. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Schrödingera. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok Wykła 0: Rówae Schrögera Dr ż. Zbgew Szklarsk Kaera lekrok paw. C- pok.3 szkla@agh.eu.pl hp://layer.uc.agh.eu.pl/z.szklarsk/ 0.06.07 Wyzał Iforayk lekrok Telekoukacj - Teleforayka Rówae Schrögera jeo z

Bardziej szczegółowo

Teoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka

Teoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka Nepewośc pomarowe. Teora praktka. Prowadząc: Dr ż. Adrzej Skoczeń Wższa Szkoła Turstk Ekolog Wdzał Iformatk, rok I Fzka 014 03 30 WSTE Sucha Beskdzka Fzka 1 Iformacje teoretcze zameszczoe a slajdach tej

Bardziej szczegółowo

Lista 6. Kamil Matuszewski 26 listopada 2015

Lista 6. Kamil Matuszewski 26 listopada 2015 Lsta 6 Kaml Matuszews 6 lstopada 5 4 5 6 7 8 9 4 5 X X X X X X X X X X X D X X N Gdze X-spsae, D-Delarowae, N-edelarowae. Zadae Zadae jest westą odpowedego pomalowaa. Weźmy sobe szachowcę x, poumerujmy

Bardziej szczegółowo

Natalia Nehrebecka. Dariusz Szymański

Natalia Nehrebecka. Dariusz Szymański atala ehreecka Darusz Szmańsk Wkład . MK przpadek welu zmech. Własośc hperpłaszczz regresj 3. Doroć ć dopasowaa rówaa regresj. Współczk determacj R Dekompozcjawaracj zmeejzależejzależej Współczk determacj

Bardziej szczegółowo

Politechnika Opolska. Skrypt Nr 237 ISSN 1427-9932 (wersja elektroniczna) Ewald Macha. Niezawodność maszyn

Politechnika Opolska. Skrypt Nr 237 ISSN 1427-9932 (wersja elektroniczna) Ewald Macha. Niezawodność maszyn Polechka Opolska Skrp Nr 37 ISSN 47-993 (wersja elekrocza) Ewald Macha Nezawodość masz Opole 3 Sps reśc Przedmowa 5 Wkaz ważejszch ozaczeń 6. Podsawowe pojęca eor ezawodośc 7.. Pojęca ezawodośc...7.. Defcja

Bardziej szczegółowo

Kier. MTR Programowanie w MATLABie Laboratorium

Kier. MTR Programowanie w MATLABie Laboratorium Ker. MTR Programowane w MATLABe Laboraorum Ćw. Zasosowane bbloecznych funkcj MATLABa do numerycznego rozwązywana równań różnczkowych. Wprowadzene Układy równań różnczkowych zwyczajnych perwszego rzędu

Bardziej szczegółowo

Całkowanie numeryczne Zadanie: obliczyć przybliżenie całki (1) używając wartości funkcji f(x) w punktach równoodległych. Przyjmujemy (2) (3) (4) x n

Całkowanie numeryczne Zadanie: obliczyć przybliżenie całki (1) używając wartości funkcji f(x) w punktach równoodległych. Przyjmujemy (2) (3) (4) x n lkowe_um- łkowe umercze Zde: olczć przlżee cłk ( ) d () użwjąc wrtośc ukcj () w puktc rówoodległc. Przjmujem (), gdze,,, () () tąd / (5) Metod prostokątów d / (6) gdze / / (7) -- :9: /6 lkowe_um- td. td.

Bardziej szczegółowo

MODELOWANIE I PROGNOZOWANIE

MODELOWANIE I PROGNOZOWANIE L.Kowalsk-Modelowae progozowae MODELOWANIE I PROGNOZOWANIE MATERIAŁY DYDAKTYCZNE o Podsawowe charakersk dach sasczch, o Ideks, o Progozowae- wadomośc wsępe, o Modele ekoomercze, o Jedorówaow model low,

Bardziej szczegółowo

Cechy szeregów czasowych

Cechy szeregów czasowych energecznch Cech szeregów czasowch Rozdział Modelowanie szeregów czasowch 7 proces deerminisczn proces kórego warość może bć preczjnie określona w dowolnm czasie =T+τ = a +b T T+τ czas = sin(ω) T T+τ czas

Bardziej szczegółowo

ANALIZA DYNAMIKI ZJAWISK (dok.) WYGŁADZANIE szeregu czasowego

ANALIZA DYNAMIKI ZJAWISK (dok.) WYGŁADZANIE szeregu czasowego D. Miszczńska,M.Miszczński, Maeriał do wkładu 6 ze Saski, 009/0 [] ANALIZA DYNAMIKI ZJAWISK (dok.). szereg czasow, chroologicz (momeów, okresów). średi poziom zjawiska w czasie (średia armecza, średia

Bardziej szczegółowo

Regresja linowa metoda najmniejszych kwadratów. Tadeusz M. Molenda Instytut Fizyki US

Regresja linowa metoda najmniejszych kwadratów. Tadeusz M. Molenda Instytut Fizyki US Regresja lowa metoda ajmejszch kwadratów Tadeusz M. Moleda Isttut Fzk US Regresja lowa (też: metoda ajmejszch kwadratów, metoda wrówawcza, metoda Gaussa) Zagadea stota metod postulat Gaussa współczk prostej

Bardziej szczegółowo

1. Relacja preferencji

1. Relacja preferencji dr Mchał Koopczyńsk EKONOMIA MATEMATYCZNA Wykłady, 2, 3 (a podstawe skryptu r 65) Relaca preferec koszyk towarów: przestrzeń towarów: R + = { x R x 0} x = ( x,, x ) X X R+ x 0 x 0 =, 2,, x~y xf y x y x

Bardziej szczegółowo

Równania różniczkowe cząstkowe

Równania różniczkowe cząstkowe Meod ecze Wkład Rówaa óżczkowe cząskowe d hab. Po Foczak Rówaa óżczkowe cząskowe RRC lczba zech F ząd ówaa: ząd awższe pochode 3 3 b chaakeska: lowe qas-lowe elowe C B A F E D C B A b c b a : : : : : :

Bardziej szczegółowo

CZYNNIKOWY MODEL ZARZĄDZANIA PORTFELEM OBLIGACJI

CZYNNIKOWY MODEL ZARZĄDZANIA PORTFELEM OBLIGACJI Zeszyy Naukowe Wydzału Iorayczych echk Zarządzaa Wyższej Szkoły Iorayk Sosowaej Zarządzaa Współczese robley Zarządzaa Nr /0 CZYNNIKOWY MOE ZARZĄZANIA OREEM OBIGACJI Adrzej Jakubowsk Isyu Badań Syseowych

Bardziej szczegółowo

Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Różczkowae fukcj rzeczywstych welu zmeych rzeczywstych Matematyka Studum doktoracke KAE SGH Semestr let 8/9 R. Łochowsk Pochoda fukcj jedej zmeej e spojrzee Nech f : ( α, β ) R, α, β R, α < β Fukcja f

Bardziej szczegółowo

Opracowanie wyników pomiarów

Opracowanie wyników pomiarów Opracowae wków pomarów Praca w laboratorum fzczm polega a wkoau pomarów, ch terpretacj wcagęcem wosków. Ab dojść do właścwch wosków aleŝ szczególą uwagę zwrócć a poprawość wkoaa pomarów mmalzacj błędów

Bardziej szczegółowo

ć Ó ć Ź ć ć ć ć ć ć Ś Ą ć ź Ź ć Ź Ź ć ć ć Ą Ź ĄĄ ć ź ć ć ć ć ć ć Ą ź Ó ć ć ć ć ć ć ć Ą ć ź ć ć ć Ś Ą ź ć Ó ć ć ć Ł ć ć Ą ć ć Ą Ó ć ć ć ć ź ć ć ć ć ć ć Ść ć ć Ó ć Ę ć ć ÓĄ Ś ć ć ć Ą ć ć Ź ź Ś ć Ź ć ć ć

Bardziej szczegółowo

UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie

UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie B A D A N I A O P E R A C Y J N E I D E C Y J E Nr 2 2007 Aa ĆWIĄKAŁA-MAŁYS*, Woletta NOWAK* UOGÓLNIONA ANALIA WRAŻLIWOŚCI YSKU W PREDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW Przedstawoo ajważejsze elemety

Bardziej szczegółowo

INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe.

INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe. INSTRUKCJA LABORATORIUM Metrologa techcza sstem pomarowe. MTSP pomar MTSP 00 Autor: dr ż. Potr Wcślok Stroa / 5 Cel Celem ćwczea jest wkorzstae w praktce pojęć: mezurad, estmata, błąd pomaru, wk pomaru,

Bardziej szczegółowo

Wnioskowanie statystyczne dla korelacji i regresji.

Wnioskowanie statystyczne dla korelacji i regresji. STATYSTYKA MATEMATYCZNA WYKŁAD 6 Woskowae statstcze dla korelacj regresj. Aalza korelacj Założee: zmea losowa dwuwmarowa X, Y) ma rozkład ormal o współczku korelacj ρ. X, Y cech adae rówocześe. X X X...

Bardziej szczegółowo

BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ

BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ Matematka statstka matematcza dla rolków w SGGW Aa Rajfura, KDB WYKŁAD 2 BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ Matematka statstka matematcza dla rolków w SGGW Aa Rajfura, KDB Przkład.

Bardziej szczegółowo

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5 L.Kowalsk zadaa ze statystyk opsowej-zestaw 5 Zadae 5. X cea (zł, Y popyt (tys. szt.. Mając dae ZADANIA Zestaw 5 x,5,5 3 3,5 4 4,5 5 y 44 43 43 37 36 34 35 35 Oblcz współczyk korelacj Pearsoa. Oblcz współczyk

Bardziej szczegółowo

PROGNOZY I SYMULACJE

PROGNOZY I SYMULACJE orecasig is he ar of saig wha will happe, ad he explaiig wh i did. Ch. Chafield (986 PROGNOZY I YMULACJE Kaarza Chud Laskowska kosulacje: p. 400A środa -4 czwarek -4 sroa iereowa: hp://kc.sd.prz.edu.pl/

Bardziej szczegółowo

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych dr Ewa Wycka Wyższa Szkoła Bakowa w Gdańsku Wtold Komorowsk, Rafał Gatowsk TZ SKOK S.A. Statystycza aalza mesęczych zma współczyka szkodowośc kredytów hpoteczych Wskaźk szkodowośc jest marą obcążea kwoty/lczby

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZA 1. Wkład wstęp. Teora prawdopodobeństwa elemet kombatork. Zmee losowe ch rozkład 3. Populacje prób dach, estmacja parametrów 4. Testowae hpotez statstczch 5. Test parametrcze (a

Bardziej szczegółowo

... MATHCAD - PRACA 1/A

... MATHCAD - PRACA 1/A Nazwsko Imę (drukowaym) KOD: Dzeń+godz. (p. Śr) MATHCAD - PRACA /A. Stablcuj fukcję: f() = s() + /6. w przedzale od a do b z podzałem a rówych odcków. Sporządź wykres f() sprawdź, le ma mejsc zerowych.

Bardziej szczegółowo

3. Wykład III: Warunki optymalności dla zadań bez ograniczeń

3. Wykład III: Warunki optymalności dla zadań bez ograniczeń 3 Wkład III: Waruki optmalości dla zadań bez ograiczeń Podae poiże waruki optmalości dla są uogólieiem powszechie zach waruków dla fukci ede zmiee (zerowaie się pierwsze pochode i lokala wpukłość) 3 Twierdzeie

Bardziej szczegółowo

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1 POPULACJA I PRÓBA POPULACJĄ w statystyce matematyczej azywamy zbór wszystkch elemetów (zdarzeń elemetarych charakteryzujących sę badaą cechą opsywaą zmeą losową. Zbadae całej populacj (przeprowadzee tzw.

Bardziej szczegółowo

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej Podstawy Mary położea wskazują mejsce wartośc ajlepej reprezetującej wszystke welkośc daej zmeej. Mówą o przecętym pozome aalzowaej cechy. Średa arytmetycza suma wartośc zmeej wszystkch jedostek badaej

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Iducja matematycza Twerdzee. zasada ducj matematyczej Nech T ozacza pewą tezę o lczbe aturalej. Jeżel dla pewej lczby aturalej 0 teza T 0 jest prawdzwa dla ażdej lczby aturalej 0 z prawdzwośc tezy T wya

Bardziej szczegółowo

Wygładzanie metodą średnich ruchomych w procesach stałych

Wygładzanie metodą średnich ruchomych w procesach stałych Wgładzanie meodą średnich ruchomch w procesach sałch Cel ćwiczenia. Przgoowanie procedur Średniej Ruchomej (dla ruchomego okna danch); 2. apisanie procedur do obliczenia sandardowego błędu esmacji;. Wizualizacja

Bardziej szczegółowo

Średnia arytmetyczna Klasyczne Średnia harmoniczna Średnia geometryczna Miary położenia inne

Średnia arytmetyczna Klasyczne Średnia harmoniczna Średnia geometryczna Miary położenia inne Mary położea Średa arytmetycza Klasycze Średa harmocza Średa geometrycza Mary położea e Modala Kwartyl perwszy Pozycyje Medaa (kwartyl drug) Kwatyle Kwartyl trzec Decyle Średa arytmetycza = + +... + 2

Bardziej szczegółowo

MATEMATYKA STOSOWANA W INŻYNIERII CHEMICZNEJ

MATEMATYKA STOSOWANA W INŻYNIERII CHEMICZNEJ MATEMATYKA STOSOWANA W INŻYNIERII CHEMICZNEJ Wkład 4 Matematcze opracowwae wków ekspermetalch Cz. I. Metoda ajmejszch kwadratów Cz. II. Metod statstcze UWAGI OGÓLNE Ekspermet wkowae w auce moża podzelć

Bardziej szczegółowo

dr Michał Konopczyński Ekonomia matematyczna ćwiczenia

dr Michał Konopczyński Ekonomia matematyczna ćwiczenia dr Mchł Koopczńsk Ekoom mtemtcz ćwcze. Ltertur obowązkow Eml Pek red. Podstw ekoom mtemtczej. Mterł do ćwczeń MD r 5 AE Pozń.. Ltertur uzupełjąc Eml Pek Ekoom mtemtcz AE Pozń. Alph C. Chg Podstw ekoom

Bardziej szczegółowo

Niezawodność. systemów nienaprawialnych. 1. Analiza systemów w nienaprawialnych. 2. System nienaprawialny przykładowe

Niezawodność. systemów nienaprawialnych. 1. Analiza systemów w nienaprawialnych. 2. System nienaprawialny przykładowe Nezawoość sysemów eaprawalych. Aalza sysemów w eaprawalych. Sysemy eaprawale - przykłaowe srukury ezawooścowe 3. Sysemy eaprawale - przykłay aalzy. Aalza sysemów w eaprawalych Sysem eaprawaly jes o sysem

Bardziej szczegółowo

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA Ćwczee 8 TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA 8.. Cel ćwczea Celem ćwczea jest wyzaczee statyczego współczyka tarca pomędzy walcową powerzchą cała a opasującą je lą. Poadto a drodze eksperymetalej

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzee macerzowe werdzee: Dla dwóch macerzy A B o tych samych wymarach zachodz: ( ) ( ) wersz a) R A R B A ~ B Dowód: wersz a) A ~ B stee P taka że PA B 3 0 A 4 3 0 0 E A B 0 0 0 E B 3 6 4 0 0 0

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

Matematyka II. Wykład 11. Całka podwójna. Zamiana na całkę iterowaną. Obliczanie pól obszarów i objętości brył.

Matematyka II. Wykład 11. Całka podwójna. Zamiana na całkę iterowaną. Obliczanie pól obszarów i objętości brył. Wkład. Całka podwója. Zamaa a całkę terowaą. Oblczae pól obszarów objętośc brł.. Całka podwója w prostokące. Jak pamętam, całka ozaczoa z cągłej fukcj jedej zmeej wprowadzoa bła w celu oblczaa pola powerzch

Bardziej szczegółowo

Pomiary parametrów napięć i prądów przemiennych

Pomiary parametrów napięć i prądów przemiennych Ćwczee r 3 Pomary parametrów apęć prądów przemeych Cel ćwczea: zapozae z pomaram wartośc uteczej, średej, współczyków kształtu, szczytu, zekształceń oraz mocy czyej, berej, pozorej współczyka cosϕ w obwodach

Bardziej szczegółowo

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość

Bardziej szczegółowo

Zmiana bazy i macierz przejścia

Zmiana bazy i macierz przejścia Auomaya Roboya Algebra -Wyład - dr Adam Ćmel cmel@agh.edu.pl Zmaa bazy macerz prześca Nech V będze wymarową przesrzeą lową ad całem K. Nech Be e będze bazą przesrze V. Rozważmy ową bazę B e... e. Oczywśce

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w

Bardziej szczegółowo

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym?

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym? Oblczae średej, odchylea tadardowego meday oraz kwartyl w zeregu zczegółowym rozdzelczym? Średa medaa ależą do etymatorów tzw. tedecj cetralej, atomat odchylee tadardowe to etymatorów rozprozea (dyperj)

Bardziej szczegółowo

Sprzedaż finalna - sprzedaż dóbr i usług konsumentowi lub firmie, którzy ostatecznie je zużytkują, nie poddając dalszemu przetworzeniu.

Sprzedaż finalna - sprzedaż dóbr i usług konsumentowi lub firmie, którzy ostatecznie je zużytkują, nie poddając dalszemu przetworzeniu. W 1 Rachu maroeoomcze 1. Produ rajowy bruo Sprzedaż fala - sprzedaż dóbr usług osumeow lub frme, órzy osaecze je zużyują, e poddając dalszemu przeworzeu. Sprzedaż pośreda - sprzedaż dóbr usług zaupoych

Bardziej szczegółowo

Linie regresji II-go rodzaju

Linie regresji II-go rodzaju Lam regresj II-go rodzaju zmeej () względem () azwam zadae krzwe g(;,, ) oraz h(;,, ) gd spełają oe odpowedo waruk: E E Le regresj II-go rodzaju ( ( )) ( ) ( ) ( ) ( ) g ;,,... g ;,,... f, dd m,,... (

Bardziej szczegółowo

więc powyższy warunek będzie zapisany jako dy dt

więc powyższy warunek będzie zapisany jako dy dt Meo maemaczne w echnologii maeriałów Krzszof Szszkiewicz Wprowadzenie DEFINICJA. Równaniem różniczkowm zwczajnm rzędu pierwszego nazwam równanie posaci gdzie f : f (, ), () U jes daną funkcją. Rozwiązaniem

Bardziej szczegółowo

KORELACJA KORELACJA I REGRESJA. X, Y - cechy badane równocześnie. Dane statystyczne zapisujemy w szeregu statystycznym dwóch cech

KORELACJA KORELACJA I REGRESJA. X, Y - cechy badane równocześnie. Dane statystyczne zapisujemy w szeregu statystycznym dwóch cech KORELACJA I REGRESJA. KORELACJA X, Y - cech badae rówocześe. Dae statstcze zapsujem w szeregu statstczm dwóch cech...... lub w tablc korelacjej. X Y... l.... l.... l................... k k k... kl k..j......l

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 3. tel.: (061)

PROGNOZOWANIE. Ćwiczenia 3.  tel.: (061) Ćwiczeia 3 mgr iż.. Mara Krueger mara.krueger@edu.wsl.com.pl mara.krueger@ilim.poza.pl el.: (06 850 49 57 Meod progozowaia krókoermiowego sał poziom red sezoowość Y Y Y Czas Czas Czas Model aiw Modele

Bardziej szczegółowo

ANALIZA SZEREGÓW CZASOWYCH

ANALIZA SZEREGÓW CZASOWYCH ANALIZA SZEREGÓW CZASWYCH Szereg czasow zbór warośc baanej cech lub warośc baanego zjawska zaobserwowanch w różnch momenach czasu uporząkowan chronologczne. Skłank szeregu czasowego:. enencja rozwojowa

Bardziej szczegółowo

WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ

WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ 9 Cel ćwczea Ćwczee 9 WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANE PODCZAS ZDERZENIA CIAŁ Celem ćwczea jest wyzaczee wartośc eerg rozpraszaej podczas zderzea cał oraz współczyka restytucj charakteryzującego

Bardziej szczegółowo

TMM-2 Analiza kinematyki manipulatora metodą analityczną

TMM-2 Analiza kinematyki manipulatora metodą analityczną Opracował: dr ż. Przemysław Szumńsk Laboratorum Teor Mechazmów Automatyka Robotyka, Mechatroka TMM- Aalza kematyk mapulatora metodą aaltyczą Celem ćwczea jest zapozae sę ze sposobem aalzy kematyk mechazmu

Bardziej szczegółowo

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej PŁAKA GEOMETRIA MA Środek cężkośc fgury płaskej Mometam statyczym M x M y fgury płaskej względem os x lub y (rys. 7.1) azywamy gracę algebraczej sumy loczyów elemetarych pól d przez ch odległośc od os,

Bardziej szczegółowo

Podstawy opracowania wyników pomiarowych, analiza błędów

Podstawy opracowania wyników pomiarowych, analiza błędów Podstawy opracowaa wyków pomarowych, aalza błędów I Pracowa Fzycza IF UJ Grzegorz Zuzel Lteratura I Pracowa fzycza Pod redakcją Adrzeja Magery Istytut Fzyk UJ Kraków 2006 Wstęp do aalzy błędu pomarowego

Bardziej szczegółowo

MODEL SHARP A - MIARY WRAŻLIWOŚCI

MODEL SHARP A - MIARY WRAŻLIWOŚCI MODEL SHARP A - MIARY WRAŻLIWOŚCI Współzależość cech Rozważam jedostk zborowośc badae ze względu a dwe, lub węcej zmech W przpadku obserwacj opartch a dwóch zmech możem wkreślć dagram korelacj. Każda obserwacja

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Zaawasowae metod umercze Programowae lowe (problem dual, program low w lczbach całkowtch) Dualość est kluczowm poęcem programowaa lowego. Pozwala a udowodee że otrzmwae rozwązaa są optmale. Zagadee duale

Bardziej szczegółowo

3. OPTYMALIZACJA NIELINIOWA

3. OPTYMALIZACJA NIELINIOWA Wybrae zaadea badań operacyjych dr ż. Zbew Tarapata 3. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też oprócz

Bardziej szczegółowo

EKSTREMA FUNKCJI EKSTREMA FUNKCJI JEDNEJ ZMIENNEJ. Tw. Weierstrassa Każda funkcja ciągła na przedziale domkniętym ma wartość najmniejszą i największą.

EKSTREMA FUNKCJI EKSTREMA FUNKCJI JEDNEJ ZMIENNEJ. Tw. Weierstrassa Każda funkcja ciągła na przedziale domkniętym ma wartość najmniejszą i największą. Joaa Ceślak, aula Bawej ESTREA FUNCJI ESTREA FUNCJI JEDNEJ ZIENNEJ Otoczeem puktu R jest każdy przedzał postac,+, gdze >. Sąsedztwem puktu jest każdy zbór postac,,+, gdze >. Nech R, : R oraz ech. De. ówmy,

Bardziej szczegółowo

Krzywe na płaszczyźnie.

Krzywe na płaszczyźnie. Krzwe na płaszczźnie. Współrzędne paramerczne i biegunowe. Współrzędne biegunowe. Dan jes punk O, zwan biegunem, kór sanowi począek półprosej, zwanej półosią. Dowoln punk P na płaszczźnie można opisać

Bardziej szczegółowo

Narzędzia matematyczne potrzebne w kursie Reakcje w ciele stałym

Narzędzia matematyczne potrzebne w kursie Reakcje w ciele stałym Narzędzia maemacze porzebe w kursie Reakcje w ciele sałm Pochoda fukcji jedej zmieej Defiicja, własości rachukowe, wzór a pochodą fukcji złożoej, szereg Talora, pochode fukcji elemearch. Pochoda fukcji

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ. W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA. Adrian Kapczyński Maciej Wolny

KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA. Adrian Kapczyński Maciej Wolny KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA Adra Kapczyńsk Macej Woly Wprowadzee Rozwój całego spektrum coraz doskoalszych środków formatyczych

Bardziej szczegółowo

MODELE OBIEKTÓW W 3-D3 część

MODELE OBIEKTÓW W 3-D3 część WYKŁAD 5 MODELE OBIEKTÓW W -D część la wykładu: Kocepcja krzywej sklejaej Jedorode krzywe B-sklejae ejedorode krzywe B-sklejae owerzche Bezera, B-sklejae URBS 1. Kocepcja krzywej sklejaej Istotą z praktyczego

Bardziej szczegółowo

Metody Eulera i Eulera-Cauchy'ego rozwiązywania równań różniczkowych zwyczajnych. y 3 := x 2 (1) ( ) Rozwiązanie dokładne równania (1) (2)

Metody Eulera i Eulera-Cauchy'ego rozwiązywania równań różniczkowych zwyczajnych. y 3 := x 2 (1) ( ) Rozwiązanie dokładne równania (1) (2) euler-przkl_.xmcd Metod Eulera i Eulera-Cauch'ego rozwiązwania równań różniczkowch zwczajnch ' ( x, ) : x () + Rozwiązanie dokładne równania () ( x, C) : + C exp( atan( x) ) () Sprawdzenie: d dx ( x, C)

Bardziej szczegółowo

ZMIENNE LOSOWE WIELOWYMIAROWE

ZMIENNE LOSOWE WIELOWYMIAROWE L.Kowals Zmee losowe welowmarowe ( ΩS P ZMIENNE LOSOWE WIELOWMIAROWE - ustaloa przestrzeń probablstcza. (... - zmea losowa - wmarowa (wetor losow cąg losow. : Ω R (fuca borelowsa P : Β R [0 - rozład zmee

Bardziej szczegółowo

( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min

( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min Fukca warogodośc Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x;. Fukcą warogodośc dla próby x azywamy welkość: ( x; f ( x ; L Twerdzee (Cramera-Rao: Mmala wartość warac m dowolego eobcążoego

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna. Estymacja przedziałowa parametrów strukturalnych zbiorowości generalnej

Rachunek prawdopodobieństwa i statystyka matematyczna. Estymacja przedziałowa parametrów strukturalnych zbiorowości generalnej Rachek prawdopodobeńswa saysyka maemaycza Esymacja przedzałowa paramerów srkralych zborowośc geeralej Częso zachodz syacja, że koecze jes zbadae ogół poplacj pod pewym kąem p. średa oce z pewego przedmo.

Bardziej szczegółowo

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki)

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki) Podstawy aalzy epewośc pomarowych (I Pracowa Fzyk) Potr Cygak Zakład Fzyk Naostruktur Naotecholog Istytut Fzyk UJ Pok. 47 Tel. 0-663-5838 e-mal: potr.cygak@uj.edu.pl Potr Cygak 008 Co to jest błąd pomarowy?

Bardziej szczegółowo

Wykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 2. Kinematyka punktu materialnego.  Dr hab. inż. Władysław Artur Woźniak Dr hab. iż. Władysław Arur Woźiak Wykład FIZYKA I. Kiemayka puku maerialego Dr hab. iż. Władysław Arur Woźiak Isyu Fizyki Poliechiki Wrocławskiej hp://www.if.pwr.wroc.pl/~woziak/fizyka1.hml Dr hab. iż.

Bardziej szczegółowo

MATEMATYKA wykład 1. Ciągi. Pierwsze 2 ciągi są rosnące (do nieskończoności), zaś 3-i ciąg jest zbieŝny do zera. co oznaczamy przez

MATEMATYKA wykład 1. Ciągi. Pierwsze 2 ciągi są rosnące (do nieskończoności), zaś 3-i ciąg jest zbieŝny do zera. co oznaczamy przez MATEMATYKA wkład Ciągi,, 2, 3, 4,,, 3, 5, 7, 9,,,,,,,,, są przkładami ciągów 2 4 6 8 Pierwsze 2 ciągi są rosące (do ieskończoości), zaś 3-i ciąg jes zbieŝ do zera co ozaczam przez lim a ch 2-óch ciągów,

Bardziej szczegółowo

OCENA POPYTU POPYT POJĘCIA WSTĘPNE. Definicja: Popyt to ilość dobra, jaką nabywcy gotowi są zakupić przy różnych poziomach ceny.

OCENA POPYTU POPYT POJĘCIA WSTĘPNE. Definicja: Popyt to ilość dobra, jaką nabywcy gotowi są zakupić przy różnych poziomach ceny. OCENA POPYTU POPYT POJĘCIA WSTĘPNE Defiicja: Pop o ilość dobra, jaką abwc goowi są zakupić prz różch poziomach ce. Deermia popu: (a) Cea daego dobra (b) Ilość i ce dóbr subsucjch (zw. kokurecjch) (c) Ilość

Bardziej szczegółowo