MATEMATYKA wykład 1. Ciągi. Pierwsze 2 ciągi są rosnące (do nieskończoności), zaś 3-i ciąg jest zbieŝny do zera. co oznaczamy przez

Wielkość: px
Rozpocząć pokaz od strony:

Download "MATEMATYKA wykład 1. Ciągi. Pierwsze 2 ciągi są rosnące (do nieskończoności), zaś 3-i ciąg jest zbieŝny do zera. co oznaczamy przez"

Transkrypt

1 MATEMATYKA wkład Ciągi,, 2, 3, 4,,, 3, 5, 7, 9,,,,,,,,, są przkładami ciągów Pierwsze 2 ciągi są rosące (do ieskończoości), zaś 3-i ciąg jes zbieŝ do zera co ozaczam przez lim a ch 2-óch ciągów, ozaczaa przez = Jeśli mam 2 ciągi a i b o graica sum lim ( a b ) = lim a + lim b + Najbardziej waŝa w Maemace liczba e (będąca podsawą logarmu auralego) bez kórej ie da się policzć odseek od kapiału w baku sosującm ak zwaą kapializację ciągłą (o czm iŝej) jes zdefiiowaa jako graica poiŝszego ciągu a + b liczbowego: a = +, o zacz, e = lim + gd Liczba e wsępuje eŝ w ajbardziej częso sosowam wzorze maemaczm a świecie, miaowicie wzorze Blacka- Scholesa określającm warość opcji kupa akcji Podsawiając za koleje liczb aurale do wzoru a wraz ciągu d orzmujem Ŝe a = 2, a2 = 2,25, a3 = 2,369, a4 = 2,44, a = 2,59, a = 2,75, a = 2,77 Warość pieiądza w czasie (a) warość kapiału raz zaiwesowaego po N okresach iwescjch (p laach, kwarałach, miesiącach, ip) () K ) N = K (+ r, gdzie K = kapiał końcow (po N okresach); K = kapiał począkow (zaiwesowa dziś) Przkład Sude dosał spedium a 3 laa sudiów MoŜe bć oo płae jedoazowo dziś w wsokości 8 zł lub a koiec 3-go roku sudiów w wsokości 22 zł Reowość z boów Skarbu Pańswa wosi 6% (a) Co doradziłbś sudeowi, wiedząc Ŝe właśie wrócił z Work & Travel i ma juŝ dziś wsarczające

2 2 środki fiasowe a 3-leie sudia; (b) Jaka kwoa dziś jes ekwiwaleem 22 zł za 3 laa? Rozwiązaie (a) Obliczm przszłą (za 3 laa) warość 8 zł Ze wzoru () wika iŝ będzie o kwoa K = 8(+,6) 3 = 2438 zł Wika sąd Ŝe sude powiie zdecdować się a spedium płae za 3 laa, czli a kwoę 22 zł, kóra jes wŝsza iŝ ekwiwale 8 zł dziś za 3 laa (b) Zgodie ze wzorem (), aleŝ rozwiązać rówaie 3 x(+,6) = 22,9x= 22 x= 847 zł Defiicja Rea = ciąg ideczch płaości asępującch po sobie a koiec okresu, 2, 3,, k (dla pewego k) Okresem moŝe bć dowol okres czasu, p dzień, dzień, miesiąc, kwarał, rok, ip Podam eraz wzór a dzisiejszą warość (PV) re płacącej x zł a koiec kaŝdego okresu, gd sopa dskoowaia srumieia pieiędz za kaŝd okres rówa jes r : k x x x x (+ (2) PV = = x 2 3 k + r (+ (+ (+ r Podam rówieŝ wzór a przszłą warość (FV) re płacącej x zł a koiec kaŝdego okresu, gd sopa zwrou za kaŝd okres rówa jes r: k k k 2 k 3 (+ (3) FV = x[ ] (+ + (+ + (+ + + (+ + = x Przkład 2 Sude orzmał spedium a 3 laa sudiów płae a koiec kaŝdego z 36 miesięc Wsokość spedium = 5zł, reowość boów skarbowch 6% (a) Ile jes ware dziś o spedium?; (b) Jaki jes ekwiwale ego spedium za 3 laa? Rozwiązaie (a) Zgodie ze wzorem (2), (+ ( 2 (,6)) PV = 5 2 (,6) (,5) = 5, r = 6 436zł, chociaŝ omiala warość ego spedium (ie uwzględiająca warości pieiądza w czasie) rówa jes 5zł 36= 8 zł Naomias przszła warość (FV) 6 436zł zgodie ze wzorem () jes rówa

3 3 (4) FV = PV(+,5) 36 = 6 436(,967) = 9 669zł a więc większa iŝ 8 zł Gdb sude kaŝde 5zł iwesował w bo skarbo- we, o zgodie ze wzorem (3) posiadałb kwoę 36 (,5),967 (5) FV = 5 = 5 = 9669,5,5 zł To Ŝe kwo wsępujące w (4) i (5) są e same wika z: Fak Przszła warość kaŝdej re = przszłej warości jej dzisiejszej warości, z wzór (3) a przszłą warość re daje zawsze e sam wik co wzór () a przszłą warość dzisiejszej kwo K, prz czm za K aleŝ wsawić liczbę wliczoą we wzorze (2), czli dzisiejszą warość re Przkład 3 Wgraa w Too Loku daje ci albo 2 zł dziś albo (do wboru przez ciebie) zł a począku kaŝdego roku wojego Ŝcia Jeśli ie masz długów, a baki oferują ci 5% roczie z ułu odseek, kórą opcję bś wbrał wiedząc Ŝe będziesz Ŝł jeszcze (a) 25 la; (b) 4 la; (c) igd ie umrzesz? Rozwiązaie (a) NaleŜ obliczć dzisiejszą warość srumieia wpła z wgraej w Too Loka Na srumień e składa się kwoa zł dziś plus rea płaa przez 25 la (po raz - za rok) w wsokości zł Sosujem wzór (2) orzmując 25 (,5) PV = = 5533 zł,,5 co łączie z kwoą zł płaą dziś saowi 66 33zł, a więc miej iŝ 2 zł kóre mam prawo dziś odebrać Wbieram więc 2 zł (b) Rozumujem aalogiczie, orzmując 4 (,5) PV = = 8875 zł,,5 co łączie z kwoą zł płaą dziś saowi 99 75zł, a więc miimalie miej iŝ 2 zł kóre mam zagwaraowae ZauwaŜm iŝ Ŝjąc 4 la, wbralibśm reę zamias jedorazowej wpła w wsokości 2 zł gdŝ 4 (,5) PV = = 9238 zł,,5 co łączie z kwoą zł płaą dziś saowi 2 238zł > 2 zł

4 4 (c) Gdbśm Ŝli wieczie, o m bardziej wbralibśm reę gdŝ dzisiejsza warość ej re błab jeszcze większa iŝ 2 238zł Jaka dokładie błab warość wieczej re? Odpowiedź a o paie daje poiŝsz fak Fak 2 Dzisiejsza warość (PV) re wieczej płacącej co roku x zł, biorąc pod uwagę Ŝe -a wpłaa pojawi się za rok wosi x (6) PV = = = 22 zł, r,5 gdzie sopa dskoująca za kaŝd rok rówa jes r Z (6) wika Ŝe w rozparwam przez as przpadku dzisiejsza warość wpła z wgraej w Too Loku rówa się zł + 22 zł = 23 zł Wzór (6) ma wiele zasosowań Na przkład, rzeczozawc mająkowi wceiając magaz, garaŝ, mieszkaie lub jakąkolwiek ią ieruchomość przoszącą co rok x zł z ułu wajmu, sosując wzór (6), przjmując za r sopę zwrou z wieloleich obligacji Skarbu Pańswa Jeśli wajmowaie garaŝu przosi miesięczie 5zł, zaś iwescje w obligacje dają 6% roczie, o warość ego garaŝu moŝa oszacować jako rówą 5 5 (7) warość garaŝu = = = zł 2 (,6),5 Przkład 4 Ile pieiędz (X) powio się zdepoować w baku kór płaci 7% roczie Ŝeb móc wcofwać po zł kaŝdego roku przez 3 la? Rozwiązaie Sosujem wzór (2), orzmując (,7) PV =,7 3 = 24 9zł, co ozacza iŝ dzisiejszą warością re płacącej zł roczie jes 24 9zł Zaem, zdepoowaie akiej kwo (X=24 9) gwarauje wpłaę 3 zł w roczch raach po zł przez 3 la

5 5 Na zakończeie ego fragmeu wkładu poświęcoego warości pieiądza w czasie, podam wzór a warość przszłą K kapiału począkowego K gd bak sosuje kapializację ciągłą: (8) rt K = K e, gdzie r = omiala sopa oproceowaia kapiału, T = czas iwesowaia wraŝo w laach Ozacza o p Ŝe dzień zapiszem jako T = /365 Przkład 5 Kwoa 8zł zosała zdepoowaa w baku z oproceowaiem 7% Zajdź warość depozu po roku gd kapializacja ma miejsce (a) raz w roku; (b) raz a miesiąc; (c) kaŝdego dia; (d) w kaŝdej chwili Rozwiązaie Zgodie ze wzorem (): (a) K = 8(+,7) = 856 zł; (b) K = 8[+(,7/2)] 2 = 8578 zł; (c) K = 8[+(,7/365)] 365 = 858, zł; (d),7 K = e = 8(2,7828, 7 8 )= 858,65 zł, czli o 5,5gr więcej iŝ w przpadku kapializacji dzieej Defiicja 2 Rówaia rekurecje = a b azwam rówaiem rekurecjm (róŝicowm), gdzie + ozacza czas lub umer okresu Zaem, rówaie o mówi iŝ warość pewej zmieej w chwili/okresie zaleŝ od warości zmieej w chwili/okresie ją poprzedzającm zgodie ze wzorem podam powŝej Na przkład, rówaia róŝicowe -go rzędu mogą mieć posać: = + 3, 3 4, ip dla wszskich liczb auralch KaŜde akie rówaie = rekurecje ma ieskończeie wiele rozwiązań poiewaŝ kaŝda warość począko- wa geeruje dokładie jedo rozwiązaie Na przkład, rówaie = 3 4 z warukiem począkowm określa jedozaczie asępujące rozwiązaie: =, 6, 34, 88, id(porówaj przkład gdzie podae jes pełe rozwiązaie ego rówaia), podczas gd o samo rówaie rekurecje ale z warukiem = ma ie rozwiązaie, a miaowicie Ab podać za chwilę posać ogólą rozwiązaia

6 6 dowolego rówaia rekurecjego defiicję = a b, przjmijm asępującą + Defiicja 3 = * azwam rozwiązaiem sałm rówaia = a b jeśli + * spełia o rówaie, o zacz, * = a* + b Ławo sprawdzić iŝ w akim prz- padku * dae jes wzorem * = b a Na przkład, rówaie 3 4 ma = 4 sałe rozwiązaie * = = 7, o czm moŝem się przekoać rówieŝ poprzez 3 prose podsawieie: 7 = Twierdzeie Waruek począkow oraz dowole rówaie jedozacz sposób określają rozwiązaie: (9) *) = * + ( a, * = a b = a b w + Przkład 6 RozwiąŜm rówaie = 3 4 z warukiem począkowm = Zgodie z wzorem (9), rozwiązaiem ego rówaia jes 3 = 7+ ( 7) Podsa- wiając za kolejo, 2, 3, 4 orzmujem = 7+9 = 6; 2 = 7+ 27= 34; = 7+ 8= 88; = = Zagadieie (Opmale zarządzeie mająkiem zgromadzom a rachuku emeralm) Pa Kowalski przepracował 4 la zarabiając miesięczie bruo średio 36zł z czego 3% bło odprowadzae a jego koo emerale Niese, OFE w kórm gromadzoe bł jego składki emerale zarządzał pieiędzmi w sposób pasw kupując lko obligacje lub bo lub depoując w baku w zaleŝości od ego kóra z 3 powŝszch iwescji jes w dam momecie ajlepsza Przjmijm Ŝe uzskaa w e sposób reowość w skali roku (po uwzględieiu iflacji) wosiła zaledwie 2,5% ZałóŜm iŝ Kowalski ma prawo dspoować swm kapiałem emeralm w powŝsz sposób Biorąc pod uwagę Ŝe Kowalski będzie jeszcze Ŝł 9 la, (a) oblicz jaką kwoą będzie dspoował w realch pieiądzach w momecie przejścia a emerurę, oraz (b) oblicz jaką będzie miał emerurę bruo ab po 9 laach pozosało mu zgodie z jego Ŝczeiem a kocie emeralm 3 s zł Zakładam Ŝe

7 7 rachuek emeral przosić będzie rocze zski 3% po uwzględieiu iflacji (sosując powŝszą paswą meodę iwesowaia) Odpowiedzi : (a) zgromadzo kapiał = zł; (b) emerura = 6982,9 zł Rozwiązaie Na emerale koo p Kowalskiego wpłwać będzie co miesiąc przez 4 la 3% z kwo 36zł, j 8zł Pieiądze e przosić będą miesięczie zsk rów /2 z 2,5%, czli,28% Jak wiem z wkładu Maemaka w Ekoomii i Zarządzaiu, przszła warość (FV) akiego srumieia pieiędz po 4 laach wosić będzie w realch pieiądzach 48 (,28) () FV = 8 = zł,,28 przpuszczalie więcej iŝ Kowalski będzie się spodziewał orzmać Co więcej, kwoa a uszczuplaa przez wpłacaą co miesiąc emerurę będzie oproceowaa 3% w skali roku, czli,25% w skali miesiąca (po uwzględieiu iflacji) W związku z m, rówaie róŝicowe podające wielkość posiadaego przez Kowalskiego mająku w miesiącu, licząc czas od momeu przejścia a emerurę, wglądać będzie asępująco: (),25 x, = gdzie x ozacza emerurę bruo kóra będzie wpłacaa przez 9 la Wiem poado Ŝe = , zaś = 3 8 Zasosujem eraz wzór (9), orzmując dla wszskich auralch liczb =,, 2, rówaie rekurecje (2) x x ),25,25 = (,25, czli ) = 4 x+ [ x] (,25 Skoro 3 = 4x+ [ x],39523, więc 8 = 3, o 3 = 4x ,8x, czli 23,8 x = Osaeczie emerura wosić będzie x = 6982,9zł Zagadieie 2(Zarządzaie wielkością zarudieia) Pewa firma zarudia akualie 4 osób, kórz wpracowują w ciągu kaŝdego roku 8 godzi W związku z przechodzeiem a emerur, zwaliaiem się z prac oraz redukcją ilości godzi prac przez osob w sarszm wieku, ogóla liczba przepracowach godzi w m przedsiębiorswie zmiejsza się w ciągu roku o

8 8 5 % Mając o a względzie, zarząd posaowił zarudiać kaŝdego roku owe osob w akiej ilości ab odpowiadająca im liczba roboczogodzi zwiększała się o E s w skali kaŝdego roku Nasuwa się u od razu kilka pań: (a) Jakie powi bć E ab w przszłości firma urzmwała zarudieie a poziomie 8 godzi w ciągu roku; (b) Jakie powi bć E i ab zarudieie w kolejch laach usabilizowało się a poziomie 8 4 roboczogodzi? Odpowiedzi: (a) E > 4; (b) E > 42 Rozwiązaie Niech ozacza ilość sięc roboczogodzi wpracowwach w roku Z reści zadaia wika iŝ 5 (3) = + E, Zgodie z wzorem (9), b E E * = = = a 5 5 (4) PoiewaŜ E E = jes liczbą większą od a miejszą od, jej koleje poęgi 5 dąŝą do zera gd i w kosekwecji do zera dąŝ eŝ cał czło (5) E Zaem, ab zagwaraować w przszłości (czli dla duŝch ) zarudieie a poziomie 8 s roboczogodzi, pierwsz czło we wzorze (8) musi bć większ iŝ 8, o jes, E (6) > 8, czli E > 4 (jes o odpowiedź a paie (a)) 5 E ZauwaŜm iŝ ierówość E > 4 implikuje Ŝe 5 > 8, a więc czło (5) jes zawsze miejsz od zera, chociaŝ dąŝ do zera A więc, zgodie ze wzorem (4), E zarudieie będzie w kaŝdm roku miejsze iŝ s roboczogodzi Ab 5 odpowiedzieć a paie (b), rozumujem w aki sam sposób jak poprzedio, dochodząc do ierówości

9 9 E (7) > 84, czli E > 42 (jes o odpowiedź a paie (b)) 5 poiewaŝ ak jak poprzedio drugi czło we wzorze (4), czli wraŝeie (5) dąŝ do zera gd Zagadieie 3(Zapas złoa w Polsce) Polska miała 32 kg złoa w 99 r KaŜdego roku połowa posiadaego złoa bła zuŝwaa, zaś 6 kg bło produkowae (a) Ile złoa będzie w Polsce w roku 29? (b) Na jakim poziomie usabilizuje się poziom zapasów złoa w przszłości? Odpowiedzi: (a) 2,5 kg; (b) 2 kg Rozwiązaie Niech ozacza ilość złoa w kg w roku Zgodie z reścią zadaia, (8) + 6, 32, = 2 6 a więc sałm rozwiązaiem będzie * = = 2 Zgodie ze wzorem (9), 2 ilośc złoa w Polsce w roku przjmując 99 za rok począkow ( = ), wosi (9) = 2 2) = + (32 2)( Odpowiadając a paie (a), w roku 29 ( = 9) będzie w Polsce 9 = 2+ 24,9 = 2,5 kg złoa 9 poiewaŝ ( ) =, 9 Ab odpowiedzieć a paie (b), odwołajm się do 2 (3) ab wwioskować Ŝe poziom złoa w Polsce sabilizować się będzie a poziomie 2 kg poiewaŝ drugi czło sojąc po prawej sroie rówaia (9) będzie dąŝł do zera wraz z

Wartość przyszła FV. Zmienna wartość pieniądza w czasie. złotówka w garści jest warta więcej niŝ złotówka spodziewana w przyszłości

Wartość przyszła FV. Zmienna wartość pieniądza w czasie. złotówka w garści jest warta więcej niŝ złotówka spodziewana w przyszłości Zmiea wartość pieiądza w czasie Zmiea wartość pieiądza w czasie Zmiea wartość pieiądza w czasie jeda z podstawowych prawidłowości wykorzystywaych w fiasach polegająca a tym, Ŝe: złotówka w garści jest

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

Obligacja i jej cena wewnętrzna

Obligacja i jej cena wewnętrzna Obligacja i jej cea wewęrza Obligacja jes o isrume fiasowy (papier warościowy), w kórym jeda sroa, zwaa emieem obligacji, swierdza, że jes dłużikiem drugiej sroy, zwaej obligaariuszem (jes o właściciel

Bardziej szczegółowo

Metody oceny efektywności projektów inwestycyjnych

Metody oceny efektywności projektów inwestycyjnych Opracował: Leszek Jug Wydział Ekoomiczy, ALMAMER Szkoła Wyższa Meody ocey efekywości projeków iwesycyjych Niezbędym warukiem urzymywaia się firmy a ryku jes zarówo skuecze bieżące zarządzaie jak i podejmowaie

Bardziej szczegółowo

Podstawy zarządzania finansami przedsiębiorstwa

Podstawy zarządzania finansami przedsiębiorstwa Podsawy zarządzaia fiasami przedsiębiorswa I. Wprowadzeie 1. Gospodarowaie fiasami w przedsiębiorswie polega a: a) określeiu spodziewaych korzyści i koszów wyikających z form zaagażowaia środków fiasowych

Bardziej szczegółowo

Matematyka finansowa 06.10.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVII Egzamin dla Aktuariuszy z 6 października 2008 r.

Matematyka finansowa 06.10.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVII Egzamin dla Aktuariuszy z 6 października 2008 r. Komisja Egzamiacyja dla Aktuariuszy XLVII Egzami dla Aktuariuszy z 6 paździerika 2008 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut . Kredytobiorca

Bardziej szczegółowo

BEZRYZYKOWNE BONY I LOKATY BANKOWE ALTERNATYWĄ DLA PRZYSZŁYCH EMERYTÓW. W tym krótkim i matematycznie bardzo prostym artykule pragnę osiągnąc 3 cele:

BEZRYZYKOWNE BONY I LOKATY BANKOWE ALTERNATYWĄ DLA PRZYSZŁYCH EMERYTÓW. W tym krótkim i matematycznie bardzo prostym artykule pragnę osiągnąc 3 cele: 1 BEZRYZYKOWNE BONY I LOKATY BANKOWE ALTERNATYWĄ DLA PRZYSZŁYCH EMERYTÓW Leszek S. Zaremba (Polish Open Universiy) W ym krókim i maemaycznie bardzo prosym arykule pragnę osiągnąc cele: (a) pokazac że kupowanie

Bardziej szczegółowo

i 0,T F T F 0 Zatem: oprocentowanie proste (kapitalizacja na koniec okresu umownego 0;N, tj. w momencie t N : F t F 0 t 0;N, F 0

i 0,T F T F 0 Zatem: oprocentowanie proste (kapitalizacja na koniec okresu umownego 0;N, tj. w momencie t N : F t F 0 t 0;N, F 0 Maemayka finansowa i ubezpieczeniowa - 1 Sopy procenowe i dyskonowe 1. Sopa procenowa (sopa zwrou, sopa zysku) (Ineres Rae). Niech: F - kapiał wypoŝyczony (zainwesowany) w momencie, F T - kapiał zwrócony

Bardziej szczegółowo

Efektywność projektów inwestycyjnych. Statyczne i dynamiczne metody oceny projektów inwestycyjnych

Efektywność projektów inwestycyjnych. Statyczne i dynamiczne metody oceny projektów inwestycyjnych Efekywość projeków iwesycyjych Saycze i dyamicze meody ocey projeków iwesycyjych Źródła fiasowaia Iwesycje Rzeczowe Powiększeie mająku rwałego firmy, zysk spodzieway w dłuższym horyzocie czasowym. Fiasowe

Bardziej szczegółowo

OCENA POPYTU POPYT POJĘCIA WSTĘPNE. Definicja: Popyt to ilość dobra, jaką nabywcy gotowi są zakupić przy różnych poziomach ceny.

OCENA POPYTU POPYT POJĘCIA WSTĘPNE. Definicja: Popyt to ilość dobra, jaką nabywcy gotowi są zakupić przy różnych poziomach ceny. OCENA POPYTU POPYT POJĘCIA WSTĘPNE Defiicja: Pop o ilość dobra, jaką abwc goowi są zakupić prz różch poziomach ce. Deermia popu: (a) Cea daego dobra (b) Ilość i ce dóbr subsucjch (zw. kokurecjch) (c) Ilość

Bardziej szczegółowo

3. Wykład III: Warunki optymalności dla zadań bez ograniczeń

3. Wykład III: Warunki optymalności dla zadań bez ograniczeń 3 Wkład III: Waruki optmalości dla zadań bez ograiczeń Podae poiże waruki optmalości dla są uogólieiem powszechie zach waruków dla fukci ede zmiee (zerowaie się pierwsze pochode i lokala wpukłość) 3 Twierdzeie

Bardziej szczegółowo

Wykaz zmian wprowadzonych do skrótu prospektu informacyjnego KBC Parasol Funduszu Inwestycyjnego Otwartego w dniu 04 stycznia 2010 r.

Wykaz zmian wprowadzonych do skrótu prospektu informacyjnego KBC Parasol Funduszu Inwestycyjnego Otwartego w dniu 04 stycznia 2010 r. Wykaz zmia wprowadzoych do skróu prospeku iformacyjego KBC Parasol Fuduszu Iwesycyjego Owarego w diu 0 syczia 200 r. Rozdział I Dae o Fuduszu KBC Subfudusz Papierów DłuŜych Brzmieie doychczasowe: 6. Podsawowe

Bardziej szczegółowo

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy I Etap ZADANIA 27 lutego 2013r.

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy I Etap ZADANIA 27 lutego 2013r. V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizka się licz I Etap ZDNI 7 lutego 3r.. Dwa pociski wstrzeloo jeocześie w tę saą stroę z wóch puktów oległch o o. Pierwsz pocisk wstrzeloo z prękością o po kąte α. Z jaką

Bardziej szczegółowo

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa Matematyka fiasowa 8.05.0 r. Komisja Egzamiacyja dla Aktuariuszy LX Egzami dla Aktuariuszy z 8 maja 0 r. Część I Matematyka fiasowa WERJA EU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut

Bardziej szczegółowo

TRANZYSTORY POLOWE JFET I MOSFET

TRANZYSTORY POLOWE JFET I MOSFET POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora

Bardziej szczegółowo

FUNKCJE DWÓCH ZMIENNYCH

FUNKCJE DWÓCH ZMIENNYCH FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam

Bardziej szczegółowo

Egzaminy. na wyższe uczelnie 2003. zadania

Egzaminy. na wyższe uczelnie 2003. zadania zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM RACHUNEK EKONOMICZNY W ELEKTROENERGETYCE INSTRUKCJA DO ĆWICZENIA

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r.

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r. Matematyka fiasowa 08.10.2007 r. Komisja Egzamiacyja dla Aktuariuszy XLIII Egzami dla Aktuariuszy z 8 paździerika 2007 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:...

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

Gretl konstruowanie pętli Symulacje Monte Carlo (MC)

Gretl konstruowanie pętli Symulacje Monte Carlo (MC) Grel kosruowaie pęli Symulacje Moe Carlo (MC) W Grelu, aby przyspieszyć pracę, wykoać iesadardową aalizę (ie do wyklikaia ) możliwe jes użycie pęli. Pęle realizuje komeda loop, kóra przyjmuje zesaw iych

Bardziej szczegółowo

DEA podstawowe modele

DEA podstawowe modele Marek Miszczński KBO UŁ 2008 - Aaliza dach graiczch (EA) cz.2 (przkład aaliza damiki rakigi) EA podsawowe modele WPROWAZENIE Efekwość (produkwość) obieku gospodarczego o es defiiowaa ako sosuek sum ważoch

Bardziej szczegółowo

Matematyka finansowa 20.03.2006 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r.

Matematyka finansowa 20.03.2006 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r. Komisja Egzaminacyjna dla Akuariuszy XXXVIII Egzamin dla Akuariuszy z 20 marca 2006 r. Część I Maemayka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minu 1 1. Ile

Bardziej szczegółowo

a n 7 a jest ciągiem arytmetycznym.

a n 7 a jest ciągiem arytmetycznym. ZADANIA MATURALNE - CIĄGI LICZBOWE - POZIOM PODSTAWOWY Opracowała mgr Dauta Brzezińska Zad.1. ( pkt) Ciąg a określoy jest wzorem 5.Wyzacz liczbę ujemych wyrazów tego ciągu. Zad.. ( 6 pkt) a Day jest ciąg

Bardziej szczegółowo

FINANSE PRZEDSIĘBIORSTW konwersatorium, 21 godzin, zaliczenie pisemne, zadania + interpretacje

FINANSE PRZEDSIĘBIORSTW konwersatorium, 21 godzin, zaliczenie pisemne, zadania + interpretacje mgr Joaa Sikora jsikora@ wsb.gda.pl joaasikora@wordpress.com FINANS PRZDSIĘBIORSTW kowersaorium, 21 godzi, zaliczeie piseme, zadaia + ierpreacje Treści programowe Wprowadzeie do fiasów korporacyjych podsawowe

Bardziej szczegółowo

Marża zakupu bid (pkb) Marża sprzedaży ask (pkb)

Marża zakupu bid (pkb) Marża sprzedaży ask (pkb) Swap (IRS) i FRA Przykład. Sandardowy swap procenowy Dealer proponuje nasępujące sałe sopy dla sandardowej "plain vanilla" procenowej ransakcji swap. ermin wygaśnięcia Sopa dla obligacji skarbowych Marża

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

Analiza matematyczna. Robert Rałowski

Analiza matematyczna. Robert Rałowski Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................

Bardziej szczegółowo

Struktura czasowa stóp procentowych (term structure of interest rates)

Struktura czasowa stóp procentowych (term structure of interest rates) Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,

Bardziej szczegółowo

PODSTAWY MATEMATYKI FINANSOWEJ

PODSTAWY MATEMATYKI FINANSOWEJ PODSTAWY MATEMATYKI INANSOWEJ WZORY I POJĘCIA PODSTAWOWE ODSETKI, A STOPA PROCENTOWA KREDYTU (5) ODSETKI OD KREDYTU KWOTA KREDYTU R R- rocza stopa oprocetowaia kredytu t - okres trwaia kredytu w diach

Bardziej szczegółowo

Chemia Teoretyczna I (6).

Chemia Teoretyczna I (6). Chemia Teoretycza I (6). NajwaŜiejsze rówaia róŝiczkowe drugiego rzędu o stałych współczyikach w chemii i fizyce cząstka w jedowymiarowej studi potecjału Cząstka w jedowymiarowej studi potecjału Przez

Bardziej szczegółowo

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce! Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,

Bardziej szczegółowo

3. Funkcje elementarne

3. Funkcje elementarne 3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących

Bardziej szczegółowo

Ocena ekonomicznej efektywności przedsięwzięć inwestycyjnych w elektrotechnice. 2. Podstawowe pojęcia obliczeń ekonomicznych w elektrotechnice

Ocena ekonomicznej efektywności przedsięwzięć inwestycyjnych w elektrotechnice. 2. Podstawowe pojęcia obliczeń ekonomicznych w elektrotechnice opracował: prof. dr hab. iż. Józef Paska, mgr iż. Pior Marchel POLITECHNIKA WARSZAWSKA Isyu Elekroeergeyki, Zakład Elekrowi i Gospodarki Elekroeergeyczej Ekoomika w elekroechice laboraorium Ćwiczeie r

Bardziej szczegółowo

Niepewności pomiarowe

Niepewności pomiarowe Niepewości pomiarowe Obserwacja, doświadczeie, pomiar Obserwacja zjawisk fizyczych polega a badaiu ych zjawisk w warukach auralych oraz a aalizie czyików i waruków, od kórych zjawiska e zależą. Waruki

Bardziej szczegółowo

Matematyka finansowa 25.01.2003 r.

Matematyka finansowa 25.01.2003 r. Memyk fisow 5.0.003 r.. Kóre z poiższych ożsmości są prwdziwe? (i) ( ) i v v i k m k m + (ii) ( ) ( ) ( ) m m v (iii) ( ) ( ) 0 + + + v i v i i Odpowiedź: A. ylko (i) B. ylko (ii) C. ylko (iii) D. (i),

Bardziej szczegółowo

Wykład 11. a, b G a b = b a,

Wykład 11. a, b G a b = b a, Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada

Bardziej szczegółowo

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił 3.7.. Reducja dowolego uładu sił do sił i par sił Dowolm uładem sił będiem awać uład sił o liiach diałaia dowolie romiescoch w prestrei. tm pucie ajmiem się sprowadeiem (reducją) taiego uładu sił do ajprostsej

Bardziej szczegółowo

1.3. Metody pomiaru efektu kreacji wartości przedsiębiorstwa

1.3. Metody pomiaru efektu kreacji wartości przedsiębiorstwa 48 Warość przedsiębiorswa 1.3. Meody pomiaru efeku kreacji warości przedsiębiorswa Przesłaki pomiaru efeku kreacji warości przedsiębiorswa Aby kocepcja zarządzaia warością mogła być wprowadzoa w Ŝycie,

Bardziej szczegółowo

LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.

LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Komisja Egzamiacyja la Akuariuszy LIII Egzami la Akuariuszy z 3 paźzirika 0 r. Część II Mamayka ubzpiczń życiowych Imię i azwisko osoby gzamiowaj:... Czas gzamiu: 00 miu Warszawa, 3 paźzirika 0 r. Mamayka

Bardziej szczegółowo

Czas trwania obligacji (duration)

Czas trwania obligacji (duration) Czas rwaia obligacji (duraio) Do aalizy ryzyka wyikającego ze zmia sóp proceowych (szczególie ryzyka zmiay cey) wykorzysuje się pojęcie zw. średiego ermiu wykupu obligacji, zwaego rówież czasem rwaia obligacji

Bardziej szczegółowo

Kongruencje Wykład 4. Kongruencje kwadratowe symbole Legendre a i Jac

Kongruencje Wykład 4. Kongruencje kwadratowe symbole Legendre a i Jac Kogruecje kwadratowe symbole Legedre a i Jacobiego Kogruecje Wykład 4 Defiicja 1 Kogruecję w ostaci x a (mod m), gdzie a m, azywamy kogruecją kwadratową; jej bardziej ogóla ostać ax + bx + c może zostać

Bardziej szczegółowo

Zasada indukcji matematycznej. Dowody indukcyjne.

Zasada indukcji matematycznej. Dowody indukcyjne. Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,

Bardziej szczegółowo

3. Wzory skróconego mnożenia, działania na wielomianach. Procenty. Elementy kombinatoryki: dwumian Newtona i trójkąt Pascala. (c.d.

3. Wzory skróconego mnożenia, działania na wielomianach. Procenty. Elementy kombinatoryki: dwumian Newtona i trójkąt Pascala. (c.d. Jarosław Wróblewski Matematyka dla Myślących 009/10 3 Wzory skrócoego możeia działaia a wielomiaach Procety Elemety kombiatoryki: dwumia Newtoa i trójkąt Pascala (cd) paździerika 009 r 0 Skometować frgmet

Bardziej szczegółowo

Studia ekonomiczne 1 Economic studies nr 1 (LXXVI) 2013. Witold Kwaśnicki * w ekonomii

Studia ekonomiczne 1 Economic studies nr 1 (LXXVI) 2013. Witold Kwaśnicki * w ekonomii Sudia ekoomicze 1 Ecoomic sudies r 1 (LXXVI) 13 Wiold Kwaśicki, Problemy aalizy wymiarowej w ekoomii Wiold Kwaśicki * Problemy aalizy wymiarowej w ekoomii Ekoomia główego uru (a zwłaszcza ekoomia eoklasycza)

Bardziej szczegółowo

Szacowanie składki w ubezpieczeniu od ryzyka niesamodzielności

Szacowanie składki w ubezpieczeniu od ryzyka niesamodzielności Skłaki w ubezpieczeiu o ryzyka iesamozielości EDYTA SIDOR-BANASZEK Szacowaie skłaki w ubezpieczeiu o ryzyka iesamozielości Kalkulacja skłaki w ubezpieczeiach jes barzo ważym zagaieiem związaym z maemayką

Bardziej szczegółowo

WYCENA KONTRAKTÓW FUTURES, FORWARD I SWAP

WYCENA KONTRAKTÓW FUTURES, FORWARD I SWAP Krzyszof Jajuga Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Uniwersye Ekonomiczny we Wrocławiu WYCENA KONRAKÓW FUURES, FORWARD I SWAP DWA RODZAJE SYMERYCZNYCH INSRUMENÓW POCHODNYCH Symeryczne insrumeny

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fiasowy gospodarki Zajęcia r 5 Matematyka fiasowa Wartość pieiądza w czasie 1 złoty posiaday dzisiaj jest wart więcej iż 1 złoty posiaday w przyszłości, p. za rok. Powody: Suma posiadaa dzisiaj

Bardziej szczegółowo

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D. Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)

Bardziej szczegółowo

Ćwiczenie 5 ITERACYJNY ALGORYTM LS. IDENTYFIKACJA OBIEKTÓW NIESTACJONARNYCH ALGORYTM Z WYKŁADNICZYM ZAPOMINANIEM.

Ćwiczenie 5 ITERACYJNY ALGORYTM LS. IDENTYFIKACJA OBIEKTÓW NIESTACJONARNYCH ALGORYTM Z WYKŁADNICZYM ZAPOMINANIEM. Kompterowe Sstem Idetfikacji Laboratorim Ćwiczeie 5 IERACYJY ALGORY LS. IDEYFIKACJA OBIEKÓW IESACJOARYCH ALGORY Z WYKŁADICZY ZAPOIAIE. gr iż. Piotr Bros, bros@agh.ed.pl Kraków 26 Kompterowe Sstem Idetfikacji

Bardziej szczegółowo

kapitał trwały środki obrotowe

kapitał trwały środki obrotowe Obliczeia ekoomicze i ocea przesięwzięć iwesycyjych oraz racjoalizujących użykowaie eergii (J. Paska). Posawowe pojęcia rachuku ekoomiczego w elekroechice Całkowie akłay iwesycyje (wyaki kapiałowe - capial

Bardziej szczegółowo

co wskazuje, że ciąg (P n ) jest ciągiem arytmetycznym o różnicy K 0 r. Pierwszy wyraz tego ciągu a więc P 1 z uwagi na wzór (3) ma postać P

co wskazuje, że ciąg (P n ) jest ciągiem arytmetycznym o różnicy K 0 r. Pierwszy wyraz tego ciągu a więc P 1 z uwagi na wzór (3) ma postać P Wiadomości wstępe Odsetki powstają w wyiku odjęcia od kwoty teraźiejszej K kwoty początkowej K, zatem Z = K K. Z ekoomiczego puktu widzeia właściciel kapitału K otrzymuje odsetki jako zapłatę od baku za

Bardziej szczegółowo

Spis treści. I. Wiadomości wstępne... 3

Spis treści. I. Wiadomości wstępne... 3 Spis treści I. Wiadomości wstępe... 3 II. Pojęcia ogóle wraz z twierdzeiami... 4 1. Jedostka urojoa... 4. Liczba zespoloa... 4 3. Iterpretacja geometrycza... 7 4. Moduł liczby zespoloej... 8 5. Liczba

Bardziej szczegółowo

Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi

Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi Zatem rzyszła wartość kaitału o okresie kaitalizacji wyosi m k m* E Z E( m r) 2 Wielkość K iterretujemy jako umowa włatę, zastęującą w rówoważy sosób, w sesie kaitalizacji rostej, m włat w wysokości E

Bardziej szczegółowo

Scenariusz lekcji Zwierciadła i obrazy w zwierciadłach

Scenariusz lekcji Zwierciadła i obrazy w zwierciadłach Scenariusz lekcji. Temat lekcji: Zwierciadła i obraz w zwierciadłach 2. Cele: a) Cele poznawcze: Uczeń wie: - co to jest promień świetln, - Ŝe światło rozchodzi się prostoliniowo, - na czm polega zjawisko

Bardziej szczegółowo

14. Grupy, pierścienie i ciała.

14. Grupy, pierścienie i ciała. 4. Grup, pierścienie i ciała. Definicja : Zbiór A nazwam grupą jeśli jest wposaŝon w działanie wewnętrzne łączne, jeśli to działanie posiada element neutraln i kaŝd element zbioru A posiada element odwrotn.

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

Stała potencjalnego wzrostu w rachunku kapitału ludzkiego

Stała potencjalnego wzrostu w rachunku kapitału ludzkiego 252 Dr Wojciech Kozioł Kaedra Rachunkowości Uniwersye Ekonomiczny w Krakowie Sała poencjalnego wzrosu w rachunku kapiału ludzkiego WSTĘP Prowadzone do ej pory badania naukowe wskazują, że poencjał kapiału

Bardziej szczegółowo

Rys.. Cash flow wypływów. Rys.. Cash flow: wypływów (strzałki skierowane w dół) i wpływów (strzałki skierowane w górę).

Rys.. Cash flow wypływów. Rys.. Cash flow: wypływów (strzałki skierowane w dół) i wpływów (strzałki skierowane w górę). 3 WARTOŚĆ PIENIĄDZA W CZASIE Ziea watość pieiądza w czasie to ieodłączy atybut pieiądza właściwy ie tylko aszy czaso W teoii fiasów, okesowe płatości azywa się stuieie pieiędzy, pzepływe pieiędzy lub z

Bardziej szczegółowo

Egzamin maturalny z matematyki CZERWIEC 2011

Egzamin maturalny z matematyki CZERWIEC 2011 Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr

Bardziej szczegółowo

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20 Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informayki Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Krzyszof Pionek Weryfikacja modeli Blacka-Scholesa oraz AR-GARCH

Bardziej szczegółowo

Materiały dydaktyczne. Matematyka. Semestr II

Materiały dydaktyczne. Matematyka. Semestr II Projekt współfiasowa ze środków Uii Europejskiej w ramach Europejskiego Fuduszu Społeczego Materiał ddaktcze Matematka Semestr II Ćwiczeia Projekt Rozwój i promocja kieruków techiczch w Akademii Morskiej

Bardziej szczegółowo

Moduł 4. Granica funkcji, asymptoty

Moduł 4. Granica funkcji, asymptoty Materiały pomocicze do e-learigu Matematyka Jausz Górczyński Moduł. Graica fukcji, asymptoty Wyższa Szkoła Zarządzaia i Marketigu Sochaczew Od Autora Treści zawarte w tym materiale były pierwotie opublikowae

Bardziej szczegółowo

4. MODELE ZALEŻNE OD ZDARZEŃ

4. MODELE ZALEŻNE OD ZDARZEŃ 4. MODELE ZALEŻNE OD ZDARZEŃ 4.. Wrowadzeie W sysemach zależych od zdarzeń wyzwalaie określoego zachowaia się układu jes iicjowae rzez dyskree zdarzeia. Modelowaie akich syuacji ma a celu symulacyją aalizę

Bardziej szczegółowo

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów

Bardziej szczegółowo

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków

Bardziej szczegółowo

Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości)

Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości) Kospekt lekcji (Kółko matematycze, kółko przedsiębiorczości) Łukasz Godzia Temat: Paradoks skąpej wdowy. O procecie składaym ogólie. Czas lekcji 45 miut Cele ogóle: Uczeń: Umie obliczyć procet składay

Bardziej szczegółowo

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 + Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch

Bardziej szczegółowo

ROZDZIAŁ 11 WPŁYW ZMIAN KURSU WALUTOWEGO NA RYNEK PRACY

ROZDZIAŁ 11 WPŁYW ZMIAN KURSU WALUTOWEGO NA RYNEK PRACY Rszard Sefański ROZDZIAŁ 11 WPŁYW ZMIAN KURSU WALUTOWEGO NA RYNEK PRACY Absrak Ocena wpłwu zmian kursu waluowego na rnek prac jes szczególnie isona dla polskiej gospodarki w najbliższch laach. Spośród

Bardziej szczegółowo

Zarządzanie ryzykiem. Lista 3

Zarządzanie ryzykiem. Lista 3 Zaządzanie yzykiem Lisa 3 1. Oszacowano nasępujący ozkład pawdopodobieńswa dla sóp zwou z akcji A i B (Tabela 1). W chwili obecnej Akcja A ma waość ynkową 70, a akcja B 50 zł. Ile wynosi pięciopocenowa

Bardziej szczegółowo

Zacznij oszczędzać na emeryturę

Zacznij oszczędzać na emeryturę Zaczij oszczędzać a emeryturę - to TWOJA sprawa! ZAPEWNIJ SOBIE FINANSOWĄ PRZYSZŁOŚĆ! Kto się będzie Tobą opiekował, gdy przejdziesz a emeryturę? Aktualie państwowa emerytura wyosi EUR 193,30 tygodiowo

Bardziej szczegółowo

40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40.

40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40. Portfele polis Poieważ składka jest ustalaa jako wartość oczekiwaa rzeczywistego, losowego kosztu ubezpieczeia, więc jest tym bliższa średiej wydatków im większa jest liczba ubezpieczoych Polisy grupuje

Bardziej szczegółowo

INWESTYCJE MATERIALNE

INWESTYCJE MATERIALNE OCENA EFEKTYWNOŚCI INWESTYCJI INWESTCJE: proces wydatkowaia środków a aktywa, z których moża oczekiwać dochodów pieiężych w późiejszym okresie. Każde przedsiębiorstwo posiada pewą liczbę możliwych projektów

Bardziej szczegółowo

Poziom rozszerzony. 5. Ciągi. Uczeń:

Poziom rozszerzony. 5. Ciągi. Uczeń: PIOTR LUDWIKOWSKI Materiał z wykładu z aalizy dla uczestików koerecji Podstawa programowa z kometarzami Tom 6 Edukacja matematycza i techicza w szkole podstawowej, gimazjum i liceum matematyka, zajęcia

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 760 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 59 2013

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 760 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 59 2013 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 760 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 59 203 ANDRZEJ JAKI POMIAR I OCENA EFEKTYWNOŚCI KREOWANIA WARTOŚCI W PRZEDSIĘBIORSTWIE Słowa kluczowe: efekywość

Bardziej szczegółowo

Analiza efektywności kosztowej w oparciu o wskaźnik dynamicznego kosztu jednostkowego

Analiza efektywności kosztowej w oparciu o wskaźnik dynamicznego kosztu jednostkowego TRANSFORM ADVICE PROGRAMME Invesmen in Environmenal Infrasrucure in Poland Analiza efekywności koszowej w oparciu o wskaźnik dynamicznego koszu jednoskowego dr Jana Rączkę Warszawa, 13.06.2002 2 Spis reści

Bardziej szczegółowo

O PEWNYCH KRYTERIACH INWESTOWANIA W OPCJE NA AKCJE

O PEWNYCH KRYTERIACH INWESTOWANIA W OPCJE NA AKCJE MEODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH om XIII/3, 01, sr 43 5 O EWNYCH KRYERIACH INWESOWANIA W OCJE NA AKCJE omasz Warowny Kaedra Meod Ilościowych w Zarządzaniu oliechnika Lubelska e-mail: warowny@pollubpl

Bardziej szczegółowo

OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD

OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI ALGORYTM DO PROGRAMU MATHCAD 1 PRAWA AUTORSKIE BUDOWNICTWOPOLSKIE.PL GRUDZIEŃ 2010 Rozpatrujemy belkę swobodie podpartą obciążoą siłą skupioą, obciążeiem rówomierie

Bardziej szczegółowo

( r) n. = n 10 10 10 YTM + Obligacje zerokuponowe Ŝadne odsetki nie przysługują ich posiadaczowi przed okresem

( r) n. = n 10 10 10 YTM + Obligacje zerokuponowe Ŝadne odsetki nie przysługują ich posiadaczowi przed okresem Obligacje zerkupnwe Ŝadne dseki nie przysługują ich psiadaczwi przed kresem wykupu. P upływie eg erminu psiadacz bligacji rzymuje kwę równą warści nminalnej bligacji. Oprcenwanie ych bligacji wynika ze

Bardziej szczegółowo

Nieklasyczne modele kolorowania grafów

Nieklasyczne modele kolorowania grafów 65 Nieklasycze modele kolorowaia grafów 66 Kolorowaie sprawiedliwe Def. Jeli wierzchołki grafu G moa podzieli a k takich zbiorów iezaleych C,...,C k, e C i C j dla wszystkich i,j,...,k, to mówimy, e G

Bardziej szczegółowo

Inwestycje. MPK = R/P = uc (1) gdzie uc - realny koszt pozyskania kapitału. Przyjmując, że funkcja produkcji ma postać Cobba-Douglasa otrzymamy: (3)

Inwestycje. MPK = R/P = uc (1) gdzie uc - realny koszt pozyskania kapitału. Przyjmując, że funkcja produkcji ma postać Cobba-Douglasa otrzymamy: (3) Dr Barłomij Rokicki Ćwiczia z Makrokoomii II Iwsycj Iwsycj są ym składikim PB, kóry wykazuj ajwiększą skłoość do flukuacji czyli wahań. Spadk popyu a dobra i usługi jaki js obsrwoway podczas rcsji zwykl

Bardziej szczegółowo

Zarządzanie finansami

Zarządzanie finansami STOWARZYSZENIE KSIĘGOWYCH W POLSCE ODDZIAŁ W POZNANIU Zarządzaie fiasami DR LESZEK CZAPIEWSKI - POZNAŃ - WARTOŚĆ PIENIĄDZA W CZASIE Pieiądze posiadają określoą wartość. Wartość w diu dzisiejszym omialej

Bardziej szczegółowo

Wprowadzenie. metody elementów skończonych

Wprowadzenie. metody elementów skończonych Metody komputerowe Wprowadzeie Podstawy fizycze i matematycze metody elemetów skończoych Literatura O.C.Ziekiewicz: Metoda elemetów skończoych. Arkady, Warszawa 972. Rakowski G., acprzyk Z.: Metoda elemetów

Bardziej szczegółowo

METODY KOMPUTEROWE 10

METODY KOMPUTEROWE 10 MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Poechnka Poznańska Mchał Płokowak Adam Łodgowsk Mchał PŁOKOWIAK Adam ŁODYGOWSKI Konsace nakowe dr nż. Wod Kąko Poznań 00/00 MEODY KOMPUEROWE 0 RÓWNANIA RÓŻNICZKOWE

Bardziej szczegółowo

BIULETYN MATURALNY NR 4 CENTRALNEJ KOMISJI EGZAMINACYJNEJ MATEMATYKA

BIULETYN MATURALNY NR 4 CENTRALNEJ KOMISJI EGZAMINACYJNEJ MATEMATYKA BIULETYN MATURALNY NR 4 CENTRALNEJ KOMISJI EGZAMINACYJNEJ MATEMATYKA SPIS TREŚCI Rozdział I O egzamiie... Rozdział II Elemety matematyki fiasowej dr hab. Michał Szurek... 6 Rozdział III Wzory... 9 Rozdział

Bardziej szczegółowo

ĆWICZENIE 6. Komputerowe wspomaganie analizy i syntezy układów sterowania Liniowe układy jedno- oraz wielowymiarowe

ĆWICZENIE 6. Komputerowe wspomaganie analizy i syntezy układów sterowania Liniowe układy jedno- oraz wielowymiarowe ĆWIZENIE 6 Kompuerowe wspomagaie aaliz i sez układów serowaia Liiowe układ jedo- oraz wielowmiarowe 6. el ćwiczeia odsawowm celem ćwiczeia jes ugruowaie wiadomości z zakresu projekowaia sez oraz smulacji

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI Miejsce a aklejkę z kodem szkoły dysleksja MIN-R_P-072 EGZAMIN MATURALNY Z INFORMATYKI MAJ ROK 2007 POZIOM ROZSZERZONY CZĘŚĆ I Czas pracy 90 miut Istrukcja dla zdającego. Sprawdź, czy arkusz egzamiacyjy

Bardziej szczegółowo

O pewnym algorytmie rozwiązującym problem optymalnej alokacji zasobów. Cezary S. Zaremba*, Leszek S. Zaremba ** WPROWADZENIE

O pewnym algorytmie rozwiązującym problem optymalnej alokacji zasobów. Cezary S. Zaremba*, Leszek S. Zaremba ** WPROWADZENIE O pewnym algorymie rozwiązującym problem opymalnej alokacji zasobów Cezary S. Zaremba*, Leszek S. Zaremba ** WPROWADZENIE W kierowaniu firmą Zarząd częso saje wobec problemu rozdysponowania (alokacji)

Bardziej szczegółowo

Wykład 3 POLITYKA PIENIĘŻNA POLITYKA FISKALNA

Wykład 3 POLITYKA PIENIĘŻNA POLITYKA FISKALNA Makroekonomia II Wykład 3 POLITKA PIENIĘŻNA POLITKA FISKALNA PLAN POLITKA PIENIĘŻNA. Podaż pieniądza. Sysem rezerwy ułamkowej i podaż pieniądza.2 Insrumeny poliyki pieniężnej 2. Popy na pieniądz 3. Prowadzenie

Bardziej szczegółowo

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja Iwestycja Wykład Celowo wydatkowae środki firmy skierowae a powiększeie jej dochodów w przyszłości. Iwestycje w wyiku użycia środków fiasowych tworzą lub powiększają majątek rzeczowy, majątek fiasowy i

Bardziej szczegółowo

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof. Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 6 Matematyka fasowa c.d. Rachuek retowy (autetowy) Maem rachuku retowego określa sę regulare płatośc w stałych odstępach czasu przy założeu stałej stopy procetowej. Przykłady

Bardziej szczegółowo

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,

Bardziej szczegółowo

500 1,1. b) jeŝeli w kolejnych latach stopy procentowe wynoszą odpowiednio 10%, 9% i 8%, wówczas wartość obecna jest równa: - 1 -

500 1,1. b) jeŝeli w kolejnych latach stopy procentowe wynoszą odpowiednio 10%, 9% i 8%, wówczas wartość obecna jest równa: - 1 - Zdyskotowae pzepływy pieięŝe - Pzepływy pieięŝe płatości ozłoŝoe w czasie - Pzepływy występujące w kilku óŝych okesach ie są poówywale z uwagi a zmiaę watość pieiądza w czasie - śeby poówywać pzepływy

Bardziej szczegółowo

Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak

Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak Ocena wyników zarządzania porelem Analiza i Zarządzanie Porelem cz. 6 Dr Kaarzyna Kuziak Eapy oceny wyników zarządzania porelem: - (porolio perormance measuremen) - Przypisanie wyników zarządzania porelem

Bardziej szczegółowo

2. Ciągi liczbowe. Definicja 2.1 Funkcję a : N R nazywamy ciągiem liczbowym. Wartość funkcji a(n) oznaczamy symbolem a

2. Ciągi liczbowe. Definicja 2.1 Funkcję a : N R nazywamy ciągiem liczbowym. Wartość funkcji a(n) oznaczamy symbolem a Ciągi liczbowe Defiicj Fukcję : N R zywmy iem liczbowym Wrtość fukcji () ozczmy symbolem i zywmy -tym lub ogólym wyrzem u Ciąg Przykłdy Defiicj róŝic zpisujemy rówieŝ w postci { } + Ciąg liczbowy { } zywmy

Bardziej szczegółowo

System zielonych inwestycji (GIS Green Investment Scheme)

System zielonych inwestycji (GIS Green Investment Scheme) PROGRAM PRIORYTETOWY Tyuł programu: Sysem zielonych inwesycji (GIS Green Invesmen Scheme) Część 6) SOWA Energooszczędne oświelenie uliczne. 1. Cel programu Ograniczenie lub uniknięcie emisji dwulenku węgla

Bardziej szczegółowo

Wyższa Szkoła Marketingu i Zarządzania w Lesznie

Wyższa Szkoła Marketingu i Zarządzania w Lesznie Wyższa Szkoła Markeingu i Zarządzania w Lesznie MATERIAŁY ROBOCZE NA ZAJĘCIA Z PRZEDMIOTU BIZNES PLAN Opracowali: dr Jacek Kowalewski mgr Kazimierz Linowski Leszno 2008 2 S P I S T R E Ś C I WPROWADZENIE.

Bardziej szczegółowo