Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej"

Transkrypt

1 Podstawy

2 Mary położea wskazują mejsce wartośc ajlepej reprezetującej wszystke welkośc daej zmeej. Mówą o przecętym pozome aalzowaej cechy.

3 Średa arytmetycza suma wartośc zmeej wszystkch jedostek badaej zborowośc podzeloa przez lczbę tych jedostek. x x x N x 1 N N x gdze: x x N - symbol średej arytmetyczej, - waraty cechy merzalej, - lczebość badaej zborowośc

4 Średa arytmetycza ważoa X 1 1 XW W gdze: w >0 tzw. wag

5 Zadae 3 Chcelbyśmy oblczyć oceę końcową z przedmotu STATYSTYKA z oce cząstkowych, przedstawoych w poższym szeregu: Rodzaj ocey Oc.1 Oc.2 Oc.3 Oc.4 Oc.5 ocey za aktywość ocey z kolokwum psemego ocey z odpowedz ustych 3 4 Dla prowadzącego przedmot, ajstotejszym z puktu wdzea ocey końcowej są ocey z kolokwum psemego. Dlatego też zastosujemy wagę oce w stosuku 2:4. X X ,6

6 Rozwązae zadaa 3 Rodzaj ocey Oc.1 Oc.2 Oc.3 Oc.4 Oc.5 ocey za aktywość ocey z kolokwum psemego ocey z odpowedz ustych 3 4 X w (24) (42, 66) 18, ,1

7 Modala to wartość, która w rozkładze empryczym występuje ajczęścej. W szeregach szczegółowych rozdzelczych jest to wartość cechy, której odpowada ajwększa lczebość. m m 1 Mo x o m m1 m m1 ( ) ( ) k m x 0 m m-1 m+1 k m - dola graca przedzału, w którym występuje modala, - lczebość przedzału modalej, - lczebość klasy poprzedzającej przedzał modalej, - lczebość klasy astępującej po przedzale modalej, - rozpętość przedzału klasowego modalej.

8 Kwatyle dzelą zborowość przedstawoą w postac szeregu statystyczego a określoe częśc pod względem lczby jedostek. Częśc te pozostają w stosuku do sebe w określoych proporcjach. Kwartyl perwszy Q 1 jest to wartość jedostk, dzeląca zborowość w te sposób, że ¼ (25%) jedostek ma od ej wartośc e wększe, a ¾ (75%) e mejsze.

9 Kwartyl drug (medaa, wartość środkowa, Me) to wartość jedostk położoej w te sposób, że dzel zborowość a dwe rówe częśc. m1 km Me xm m 2 1 m x m m k m m1 1 - umer klasy, w której występuje Medaa, - dola graca tej klasy, - lczebość tej klasy, - rozpętość tej klasy, - lczebość skumulowaa do przedzału poprzedzającego klasę, w której występuje medaa.

10 Kwartyl trzec Q 3 to wartość jedostk dzeląca zborowość w te sposób, że ¾ (75%) jedostek ma od ej wartośc e wększe, a ¼ (25%) e mejsze. 25 % wartośc 25 % wartośc 25 % wartośc 25 % wartośc Q 1 Medaa Q 3 Rozstęp kwartylowy Rozstęp

11 MIARY ZMIENNOŚCI Rozstęp jest marą charakteryzującą empryczy obszar zmeośc badaej cechy. R=x max - x m Waracja średa arytmetycza z kwadratów odchyleń poszczególych wartośc zmeej od średej arytmetyczej całej zborowośc. 1 s x x 2 2 ( ) 1

12 Odchylee stadardowe perwastek kwadratowy z waracj. 1 s ( x x) 1 2 Podstawowe własośc odchylea stadardowego: 1) Jest welkoścą oblczaą a podstawe wszystkch obserwacj. 2) Moża je poddawać przekształceom algebraczym. 3) Im zborowość jest bardzej zróżcowaa, tym wększe jest odchylee stadardowe.

13 4) Odchylee stadardowe speła regułę trzech sgm, według której w przypadku rozkładu ormalego lub zblżoego do ormalego: blsko 31,73% wszystkch obserwacj róż sę od średej arytmetyczej węcej ż o ±s, tylko około 5% obserwacj wykracza poza przedzał ( -2s, +2s), tylko 0,3% wszystkch obserwacj wykracza poza przedzał ( -3s, +3s).

14 Współczyk zmeośc jest względą marą rozproszea, służącą do porówywaa zróżcowaa dwóch różych cech lub jedej cechy w dwóch różych grupach. V s x 100% Jeśl współczyk zmeośc przyjmują wartośc lczbowe z przedzału od 0% do 100%, to fakt te śwadczy o ejedorodośc zborowośc. Jeśl V>20%, to zborowość jest zacze zróżcowaa pod względem badaej cechy.

15 Mary asymetr kocetracj =Me=Mo >Me>Mo <Me<Mo - rozkład symetryczy - rozkład o asymetr prawostroej - rozkład o asymetr lewostroej W celu określea keruku sły asymetr stosuje sę współczyk asymetr (skośośc), oblczay wzorem: A s M 3 ( 1)( 2) s 3 gdze: M ( x x)

16 Iterpretacja współczyka asymetr: As = 0 rozkład symetryczy As =>0 asymetra prawostroa As =<0 asymetra lewostroa

17 Współczyk skupea (kurtoza) jest marą skupea poszczególych obserwacj wokół średej. gdze: 1 m ( x x) Iterpretacja współczyka skupea: k <0 rozkład spłaszczoy k =0 rozkład ormaly k >0 rozkład wysmukły

Statystyka Opisowa Wzory

Statystyka Opisowa Wzory tatystyka Opsowa Wzory zereg rozdzelczy: x - wartośc cechy - lczebośc wartośc cechy - lczebość całej zborowośc Wskaźk atężea przy rysowau wykresu szeregu rozdzelczego przedzałowego o erówych przedzałach:

Bardziej szczegółowo

Statystyczne charakterystyki liczbowe szeregu

Statystyczne charakterystyki liczbowe szeregu Statystycze charakterystyk lczbowe szeregu Aalzę badaej zmeej moża uzyskać posługując sę parametram opsowym aczej azywaym statystyczym charakterystykam lczbowym szeregu. Sytetycza charakterystyka zborowośc

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 3,4

STATYSTYKA OPISOWA WYKŁAD 3,4 STATYSTYKA OPISOWA WYKŁAD 3,4 5 Szereg rozdzelczy przedzałowy (dae pogrupowae) (stosujemy w przypadku dużej lczby epowtarzających sę daych) Przedzał (w ; w + ) Środek x& Lczebość Lczebość skumulowaa s

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE

AKADEMIA MORSKA W SZCZECINIE AKADEMIA MORSKA W SZCZECINIE Istytut Iżyer Ruchu Morskego Zakład Urządzeń Nawgacyjych Istrukcja r 0 Wzory do oblczeń statystyczych w ćwczeach z radoawgacj Szczec 006 Istrukcja r 0: Wzory do oblczeń statystyczych

Bardziej szczegółowo

Podstawowe pojcia. Metody probabilistyczne i statystyka Wykład 7: Statystyka opisowa. Rozkłady prawdopodobiestwa wystpujce w statystyce.

Podstawowe pojcia. Metody probabilistyczne i statystyka Wykład 7: Statystyka opisowa. Rozkłady prawdopodobiestwa wystpujce w statystyce. Metody probablstycze statystyka Wykład 7: Statystyka opsowa. Rozkłady prawdopodobestwa wystpujce w statystyce. Podstawowe pojca Populacja geerala - zbór elemetów majcy przyajmej jed włacwo wspól dla wszystkch

Bardziej szczegółowo

dev = y y Miary położenia rozkładu Wykład 9 Przykład: Przyrost wagi owiec Odchylenia Mediana próbkowa: Przykłady Statystyki opisowe Σ dev i =?

dev = y y Miary położenia rozkładu Wykład 9 Przykład: Przyrost wagi owiec Odchylenia Mediana próbkowa: Przykłady Statystyki opisowe Σ dev i =? Mary położea rozkładu Wykład 9 Statystyk opsowe Średa z próby, mea(y) : symbol y ozacza lczbę; arytmetyczą średą z obserwacj Symbol Y ozacza pojęce średej z próby Średa jest środkem cężkośc zboru daych

Bardziej szczegółowo

Miary statystyczne. Katowice 2014

Miary statystyczne. Katowice 2014 Mary statystycze Katowce 04 Podstawowe pojęca Statystyka Populacja próba Cechy zmee Szereg statystycze Wykresy Statystyka Statystyka to auka zajmująca sę loścowym metodam aalzy zjawsk masowych (występujących

Bardziej szczegółowo

Matematyczne metody opracowywania wyników

Matematyczne metody opracowywania wyników Matematycze metody opracowywaa wyów Statystya rachue epewośc Paweł Ża Wydzał Odlewctwa AGH Katedra Iżyer Procesów Odlewczych Kraów, gruda 00 Opracowae rzywej stygęca 3 4 5 6 7 Formuły a przyblżae pochodej

Bardziej szczegółowo

STATYSTYKA EKONOMICZNA I SPOŁECZNA

STATYSTYKA EKONOMICZNA I SPOŁECZNA PROWADZĄCY Dwczea laboratoryje Rok akademck 0/0, semestr let mgr Emla Modraka, Katedra Ekoometr Przestrzeej UŁ emodraka@u.lodz.pl www.em.kep.prv.pl KONSULTACJE Poedzałek: 9.45-.0 Środa: 6.40-7.40 Pokój

Bardziej szczegółowo

Statystyczna analiza danych przedziały ufności

Statystyczna analiza danych przedziały ufności 07-- Probablstyka statystyka Statystycza aalza daych przedzały ufośc Wykład 7 dr ż. Barbara Swatowska Wstęp Podstawowe cele aalzy zborów daych Uogóloy ops poszczególych cech/zeych statystyka opsowa; aalza

Bardziej szczegółowo

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej cechy. Średnia arytmetyczna suma wartości zmiennej wszystkich

Bardziej szczegółowo

Średnia arytmetyczna Klasyczne Średnia harmoniczna Średnia geometryczna Miary położenia inne

Średnia arytmetyczna Klasyczne Średnia harmoniczna Średnia geometryczna Miary położenia inne Mary położea Średa arytmetycza Klasycze Średa harmocza Średa geometrycza Mary położea e Modala Kwartyl perwszy Pozycyje Medaa (kwartyl drug) Kwatyle Kwartyl trzec Decyle Średa arytmetycza = + +... + 2

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematycza Aa Jacka wykład II, 9.0.06 STATYSTYKA OPISOWA, cz. II WSTĘP DO STATYSTYKI MATEMATYCZNEJ Pla a dzsaj. Statystyka opsowa, cz. II: mary położea dokończee mary zróżcowaa mary asymetr

Bardziej szczegółowo

Statystyka opisowa. Stawia się pytania: pytanie co? poprzedza pytanie jak?. Najpierw potrzebna jest miara, potem można badać zmiany tej miary.

Statystyka opisowa. Stawia się pytania: pytanie co? poprzedza pytanie jak?. Najpierw potrzebna jest miara, potem można badać zmiany tej miary. Statystyka opsowa Roma Syak Statystyka opsowa Stawa sę pytaa: pytae co? poprzedza pytae jak?. Najperw potrzeba jest mara, potem moża badać zmay tej mary. Potrzebe są mary zborcze, charakteryzujące zborowośc

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version WIII/1

PDF created with FinePrint pdffactory Pro trial version  WIII/1 Statystyka opsowa Statystyka zajmuje sę zasadam metodam uogólaa wyków otrzymaych z próby losowej a całą populację (czyl zborowość, z której została pobraa próba). Take postępowae azywamy woskowaem statystyczym.

Bardziej szczegółowo

Podstawy opracowania wyników pomiarowych, analiza błędów

Podstawy opracowania wyników pomiarowych, analiza błędów Podstawy opracowaa wyków pomarowych, aalza błędów I Pracowa Fzycza IF UJ Grzegorz Zuzel Lteratura I Pracowa fzycza Pod redakcją Adrzeja Magery Istytut Fzyk UJ Kraków 2006 Wstęp do aalzy błędu pomarowego

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystyka 0.06.0 r. Zadae. Ura zawera kul o umerach: 0,,,,. Z ury cągemy kulę, zapsujemy umer kulę wrzucamy z powrotem do ury. Czyość tę powtarzamy, aż kula z każdym umerem zostae wycągęta

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 1 Statystyka opsowa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 W statystyce opsowej mamy pełne nformacje

Bardziej szczegółowo

Lekcja 1. Pojęcia podstawowe: Zbiorowość generalna i zbiorowość próbna

Lekcja 1. Pojęcia podstawowe: Zbiorowość generalna i zbiorowość próbna TECHNIKUM ZESPÓŁ SZKÓŁ w KRZEPICACH PRACOWNIA EKONOMICZNA TEORIA ZADANIA dla klasy II Techkum Marek Kmeck Zespół Szkół Techkum w Krzepcach Wprowadzee do statystyk Lekcja Statystyka - określa zbór formacj

Bardziej szczegółowo

CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (Parametry statystyczne) MIARY POŁOśENIA

CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (Parametry statystyczne) MIARY POŁOśENIA D. Mszczyńsa, M.Mszczyńs, Materały do wyładu ze Statysty, 009/0 [] CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (Parametry statystycze) PARAMETRY STATYSTYCZNE - lczby słuŝące do sytetyczego opsu strutury

Bardziej szczegółowo

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE Marek Cecura, Jausz Zacharsk PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE CZĘŚĆ II STATYSTYKA OPISOWA Na prawach rękopsu Warszawa, wrzeseń 0 Data ostatej aktualzacj: czwartek, 0 paźdzerka

Bardziej szczegółowo

Teoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka

Teoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka Nepewośc pomarowe. Teora praktka. Prowadząc: Dr ż. Adrzej Skoczeń Wższa Szkoła Turstk Ekolog Wdzał Iformatk, rok I Fzka 014 03 30 WSTE Sucha Beskdzka Fzka 1 Iformacje teoretcze zameszczoe a slajdach tej

Bardziej szczegółowo

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym?

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym? Oblczae średej, odchylea tadardowego meday oraz kwartyl w zeregu zczegółowym rozdzelczym? Średa medaa ależą do etymatorów tzw. tedecj cetralej, atomat odchylee tadardowe to etymatorów rozprozea (dyperj)

Bardziej szczegółowo

Miary średnie. Średnią arytmetyczną nazywamy sumę wartości zmiennej wszystkich jednostek badanej zbiorowości podzieloną przez liczbę tych jednostek.

Miary średnie. Średnią arytmetyczną nazywamy sumę wartości zmiennej wszystkich jednostek badanej zbiorowości podzieloną przez liczbę tych jednostek. Węcej doumetów a troe: www.rawczy.hotl.pl Aalza trutury zmerza do wydobyca a jaw charaterytyczych właścwośc zborowośc porówaa ch z ą zborowoścą. Każde badae, tóre w efece ma dać wzechtroą oceę zjawa doprowadzć

Bardziej szczegółowo

O testowaniu jednorodności współczynników zmienności

O testowaniu jednorodności współczynników zmienności NR 6/7/ BIULETYN INSTYTUTU HODOWLI I AKLIMATYZACJI ROŚLIN 003 STANISŁAW CZAJKA ZYGMUNT KACZMAREK Katedra Metod Matematyczych Statystyczych Akadem Rolczej, Pozań Istytut Geetyk Rośl PAN, Pozań O testowau

Bardziej szczegółowo

mgr Anna Matysiak PODSTAWOWE POJĘCIA STATYSTYCZNE

mgr Anna Matysiak PODSTAWOWE POJĘCIA STATYSTYCZNE mgr Aa Matysak PODSTAWOWE POJĘCIA STATYSTYCZNE POPULACJA (ZBIOROWOŚĆ GENERALNA) zbór logcze powązaych jeostek, obektów, wyków wszystkch pomarów, p meszkańcy Polsk, stuec SGH, gospoarstwa omowe w Polsce

Bardziej szczegółowo

Materiały do wykładu 7 ze Statystyki

Materiały do wykładu 7 ze Statystyki Materał do wkładu 7 ze Statstk Aalza ZALEŻNOŚCI pomędz CECHAMI (Aalza KORELACJI REGRESJI) korelacj wkres rozrzutu (korelogram) rodzaje zależośc (brak, elowa, lowa) pomar sł zależośc lowej (współczk korelacj

Bardziej szczegółowo

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki)

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki) Podstawy aalzy epewośc pomarowych (I Pracowa Fzyk) Potr Cygak Zakład Fzyk Naostruktur Naotecholog Istytut Fzyk UJ Pok. 47 Tel. 0-663-5838 e-mal: potr.cygak@uj.edu.pl Potr Cygak 008 Co to jest błąd pomarowy?

Bardziej szczegółowo

. Wtedy E V U jest równa

. Wtedy E V U jest równa Prawdopodobeństwo statystyka 7.0.0r. Zadae Dwuwymarowa zmea losowa Y ma rozkład cągły o gęstośc gdy ( ) 0 y f ( y) 0 w przecwym przypadku. Nech U Y V Y. Wtedy E V U jest rówa 8 7 5 7 8 8 5 Prawdopodobeństwo

Bardziej szczegółowo

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość

Bardziej szczegółowo

Statystyka. Analiza zależności. Rodzaje zależności między zmiennymi występujące w praktyce: Funkcyjna

Statystyka. Analiza zależności. Rodzaje zależności między zmiennymi występujące w praktyce: Funkcyjna Aalza zależośc Rodzaje zależośc mędzy zmeym występujące w praktyce: Fukcyja wraz ze zmaą wartośc jedej zmeej astępuje ścśle określoa zmaa wartośc drugej zmeej (p. w fzyce: spadek swobody gt s ) tochastycza

Bardziej szczegółowo

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5 L.Kowalsk zadaa ze statystyk opsowej-zestaw 5 Zadae 5. X cea (zł, Y popyt (tys. szt.. Mając dae ZADANIA Zestaw 5 x,5,5 3 3,5 4 4,5 5 y 44 43 43 37 36 34 35 35 Oblcz współczyk korelacj Pearsoa. Oblcz współczyk

Bardziej szczegółowo

[, ] [, ] [, ] ~ [23, 2;163,3] 19,023 2,7

[, ] [, ] [, ] ~ [23, 2;163,3] 19,023 2,7 6. Przez 0 losowo wybrayh d merzoo zas dojazdu do pray paa A uzyskują próbkę x,..., x 0. Wyk przedstawały sę astępująo: jest to próbka losowa z rozkładu 0 0 x 300, 944. x Zakładamy, że N ( µ, z ezaym parametram

Bardziej szczegółowo

Wykład ze statystyki. Maciej Wolny

Wykład ze statystyki. Maciej Wolny Wykład ze statystyk Macej Woly T: Zajęca orgazacyje Ageda. Program wykładu. Cel zajęć 3. Nabyte umejętośc 4. Lteratura 5. Waruk zalczea Program wykładu T: Zajęca orgazacyje [h] T: Przedmot zadaa statystyk

Bardziej szczegółowo

METODY OPISU STRUKTURY ZBIOROWOŚCI

METODY OPISU STRUKTURY ZBIOROWOŚCI METODY OPISU STRUKTURY ZBIOROWOŚCI Wkaźk atężea WSKAŹIK STRUKTURY I ATĘŻEIA Iloraz lczby jedotek jedej zborowośc ( ) do lczby jedotek drugej zborowośc (m ). Wyraża ę wzorem: W m Gdze: W wkaźk atężee; lczebośd

Bardziej szczegółowo

Materiały wspomagające wykład ze statystyki. Maciej Wolny

Materiały wspomagające wykład ze statystyki. Maciej Wolny Materały wspomagające wykład ze statystyk Macej Woly T: Zajęca orgazacyje Ageda. Program wykładu. Cel zajęć 3. Nabyte umejętośc 4. Lteratura 5. Waruk zalczea Program wykładu T: Zajęca orgazacyje [h] T:

Bardziej szczegółowo

Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna.

Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna. Podstawy Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna. Funkcja informacyjna umożliwia pełny i obiektywny obraz badanych zjawisk Funkcja analityczna umożliwia określenie czynników

Bardziej szczegółowo

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych dr Ewa Wycka Wyższa Szkoła Bakowa w Gdańsku Wtold Komorowsk, Rafał Gatowsk TZ SKOK S.A. Statystycza aalza mesęczych zma współczyka szkodowośc kredytów hpoteczych Wskaźk szkodowośc jest marą obcążea kwoty/lczby

Bardziej szczegółowo

będą niezależnymi zmiennymi losowymi z rozkładu o gęstości

będą niezależnymi zmiennymi losowymi z rozkładu o gęstości Prawdopodobeństwo statystyka 4.0.00 r. Zadae Nech... będą ezależym zmeym losowym z rozkładu o gęstośc θ f ( x) = θ xe gdy x > 0. Estymujemy dodat parametr θ wykorzystując estymator ajwększej warogodośc

Bardziej szczegółowo

Zmienna losowa X ma taki rozkład, jeśli przyjmuje wartości k=0,1,2,...,n z prawdopodobieństwami określonymi wzorem:

Zmienna losowa X ma taki rozkład, jeśli przyjmuje wartości k=0,1,2,...,n z prawdopodobieństwami określonymi wzorem: . Jaka jest różca mędzy cechą skokową cągłą? podać przykłady każdej z ch. Cecha loścowa : skokowa przyjmująca pewe wartośc lczbowe e przyjmująca wartośc pośredch cecha ta też jest azywaa dyskretą, przykład:

Bardziej szczegółowo

Średnia harmoniczna (cechy o charakterze ilorazu np. Prędkość, gęstość zaludnienia)

Średnia harmoniczna (cechy o charakterze ilorazu np. Prędkość, gęstość zaludnienia) Mary przecęte Średa arytmetycza Dla szeregu rozdzelczego cechy skokowej x k x k Średa harmocza (cechy o charakterze lorazu p. Prędkość, gęstość zaludea) x H k x Średa geometrycza x x x... G x średa arytmetycza

Bardziej szczegółowo

ZAJĘCIA 3. Pozycyjne miary dyspersji, miary asymetrii, spłaszczenia i koncentracji

ZAJĘCIA 3. Pozycyjne miary dyspersji, miary asymetrii, spłaszczenia i koncentracji ZAJĘCIA Pozycyjne ary dyspersj, ary asyetr, spłaszczena koncentracj MIARY DYSPERSJI: POZYCYJNE, BEZWZGLĘDNE Rozstęp dwartkowy (ędzykwartylowy) Rozstęp dwartkowy określa rozpętośd tej częśc obszaru zennośc

Bardziej szczegółowo

Statystyka powtórzenie (II semestr) Rafał M. Frąk

Statystyka powtórzenie (II semestr) Rafał M. Frąk Statstka powtórzee (II semestr) Rafał M. Frąk TEORIA, OZNACZENIA, WZORY Rodzaje mar statstczch mar położea - wzaczają przecęta wartość cech statstczej mar zróżcowaa (lub zmeośc, rozproszea, dspersj) -

Bardziej szczegółowo

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej PŁAKA GEOMETRIA MA Środek cężkośc fgury płaskej Mometam statyczym M x M y fgury płaskej względem os x lub y (rys. 7.1) azywamy gracę algebraczej sumy loczyów elemetarych pól d przez ch odległośc od os,

Bardziej szczegółowo

ZAJĘCIA 2. Metody opisu struktury i natężenia, metody opisu tendencji centralnej, klasyczne metody opisu dyspersji. i n

ZAJĘCIA 2. Metody opisu struktury i natężenia, metody opisu tendencji centralnej, klasyczne metody opisu dyspersji. i n ZAJĘCIA Metody opu truktury atężea, metody opu tedecj cetralej, klaycze metody opu dyperj. WSKAŹIK STRUKTURY I ATĘŻEIA METODY OPISU STRUKTURY I ATĘŻEIA Wkaźk atężea Iloraz lczby jedotek jedej zborowośc

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

L.Kowalski PODSTAWOWE TESTY STATYSTYCZNE WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH

L.Kowalski PODSTAWOWE TESTY STATYSTYCZNE WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH L.Kowalsk PODSTAWOWE TESTY STATYSTYCZNE TESTY STATYSTYCZNE poteza statystycza to dowole przypuszczee dotyczące rozkładu cechy X. potezy statystycze: -parametrycze dotyczą ezaego parametru, -parametrycze

Bardziej szczegółowo

Średnia harmoniczna Za pomocą średniej harmonicznej obliczamy np. średnią prędkość jazdy samochodem.

Średnia harmoniczna Za pomocą średniej harmonicznej obliczamy np. średnią prędkość jazdy samochodem. Statystyka Statystyka jest auką, która zajmuje sę zberaem daych ch aalzą. Praca statystyka polega główe a zebrau dużej lośc daych opsujących jakeś zjawsko ch aalze terpretacj. Ne będzemy zajmować sę oczywśce

Bardziej szczegółowo

SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY

SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY Opsowa analza struktury zjawsk masowych Demografa statystyka PROJEKT DOFINANSOWANY ZE ŚRODKÓW NARODOWEGO BANKU POLSKIEGO URZĄD STATYSTYCZNY

Bardziej szczegółowo

Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej).

Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej). Cetrale miary położeia Średia; Moda (domiata) Mediaa Kwatyle (kwartyle, decyle, cetyle) Moda (Mo, D) wartość cechy występującej ajczęściej (ajlicziej). Mediaa (Me, M) dzieli uporządkoway szereg liczbowy

Bardziej szczegółowo

Badania Maszyn CNC. Nr 2

Badania Maszyn CNC. Nr 2 Poltechka Pozańska Istytut Techolog Mechaczej Laboratorum Badaa Maszy CNC Nr 2 Badae dokładośc pozycjoowaa os obrotowych sterowaych umerycze Opracował: Dr. Wojcech Ptaszy sk Mgr. Krzysztof Netter Pozań,

Bardziej szczegółowo

Wyrażanie niepewności pomiaru

Wyrażanie niepewności pomiaru Wyrażae epewośc pomaru Adrzej Kubaczyk Wydzał Fzyk, Poltechka Warszawska Warszawa, 05 Iformacje wstępe Każdy pomar welkośc fzyczej dokoyway jest ze skończoą dokładoścą, co ozacza, że wyk tego pomaru dokoyway

Bardziej szczegółowo

STATYSTYKA OPISOWA. Państwowa Wyższa Szkoła Zawodowa w Koninie. Materiały pomocnicze do ćwiczeń. Materiały dydaktyczne 17 ARTUR ZIMNY

STATYSTYKA OPISOWA. Państwowa Wyższa Szkoła Zawodowa w Koninie. Materiały pomocnicze do ćwiczeń. Materiały dydaktyczne 17 ARTUR ZIMNY Państwowa Wższa Szkoła Zawodowa w Koe Materał ddaktcze 17 ARTUR ZIMNY STATYSTYKA OPISOWA Materał pomoccze do ćwczeń wdae druge zmeoe Ko 010 Ttuł Statstka opsowa Materał pomoccze do ćwczeń wdae druge zmeoe

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 1 i 2

STATYSTYKA OPISOWA WYKŁAD 1 i 2 STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5 Stasław Cchock Natala Nehreecka Zajęca 5 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartośd oczekwaa eocążoośd estymatora Waracja

Bardziej szczegółowo

Pierwszym etapem analizy danych jest wykonanie szeregu rozdzielczego prostego (w skrócie nazywany szeregiem rozdzielczym) i kumulacyjnego

Pierwszym etapem analizy danych jest wykonanie szeregu rozdzielczego prostego (w skrócie nazywany szeregiem rozdzielczym) i kumulacyjnego Statytyka opowa: tabularycze grafcze przedtawae daych, rozkład empryczy cechy, mary położea, cetrale, rozprozea, kośośc, płazczea Zmee przedtawa ę w potac zeregów tatytyczych, tj. cągu welkośc tatytyczych,

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna. Estymacja przedziałowa parametrów strukturalnych zbiorowości generalnej

Rachunek prawdopodobieństwa i statystyka matematyczna. Estymacja przedziałowa parametrów strukturalnych zbiorowości generalnej Rachek prawdopodobeńswa saysyka maemaycza Esymacja przedzałowa paramerów srkralych zborowośc geeralej Częso zachodz syacja, że koecze jes zbadae ogół poplacj pod pewym kąem p. średa oce z pewego przedmo.

Bardziej szczegółowo

VI. TWIERDZENIA GRANICZNE

VI. TWIERDZENIA GRANICZNE VI. TWIERDZENIA GRANICZNE 6.. Wprowadzee Twerdzea gracze dotyczą własośc graczych cągów zmeych losowych dzelą sę a:! twerdzea lokale opsują zbeżośc cągu fukcj prawdopodobeństwa w przypadku cągu {X } zmeych

Bardziej szczegółowo

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są

Bardziej szczegółowo

JEDNOWYMIAROWA ZMIENNA LOSOWA

JEDNOWYMIAROWA ZMIENNA LOSOWA JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E będze zborem zdarzeń elemetarych daego dośwadczea. Fucję X(e) przyporządowującą ażdemu zdarzeu elemetaremu e E jedą tylo jedą lczbę X(e)=x azywamy ZMIENNĄ LOSOWĄ. Przyład:

Bardziej szczegółowo

Opracowanie wyników pomiarów

Opracowanie wyników pomiarów Opracowae wków pomarów Praca w laboratorum fzczm polega a wkoau pomarów, ch terpretacj wcagęcem wosków. Ab dojść do właścwch wosków aleŝ szczególą uwagę zwrócć a poprawość wkoaa pomarów mmalzacj błędów

Bardziej szczegółowo

Wykład nr 2. Statystyka opisowa część 2. Plan wykładu

Wykład nr 2. Statystyka opisowa część 2. Plan wykładu Wykład r 2 Statystyka opisowa część 2 Pla wykładu 1. Uwagi wstępe 2. Miary tedecji cetralej 2.1. Wartości średie 2.2. Miary pozycyje 2.3. Domiata 3. Miary rozproszeia 4. Miary asymetrii 5. Miary kocetracji

Bardziej szczegółowo

d wymiarowy wektor losowy Niech (Ω, S, P) przestrzeń probabilistyczna Definicja Odwzorowanie X: Ω R nazywamy 1-wymiarowym wektorem

d wymiarowy wektor losowy Niech (Ω, S, P) przestrzeń probabilistyczna Definicja Odwzorowanie X: Ω R nazywamy 1-wymiarowym wektorem d wymiarowy wektor losowy Niech (Ω, S, P) przestrzeń probabilistycza Defiicja Odwzorowaie X: Ω R d azywamy d-wymiarowym wektorem losowym jeśli dla każdego (x 1, x 2,,x d ) є R d zbiór Uwaga {ω є Ω: X(ω)

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ. W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

ROZKŁADY ZMIENNYCH LOSOWYCH

ROZKŁADY ZMIENNYCH LOSOWYCH ROZKŁADY ZMIENNYCH LOSOWYCH ZMIENNA LOSOWA Defcja. Zmeą losową jest fukcja: X: E -> R która każdemu zdarzeu elemetaremu E przypsuje lczbę rzeczywstą e X ( e) R DYSTRYBUANTA Dystrybuatą zmeej losowej X

Bardziej szczegółowo

Instrukcja do wykonania zadania. Masa ciała. Wys. Ciała

Instrukcja do wykonania zadania. Masa ciała. Wys. Ciała Itrukcja do wykoaa zadaa W perwzej kolejośc ależy przygotowad tabelę z daym. W ejzej trukcj przyjęto, że do każdego wyku z tabel perwotej dodao wartośd 6. Zatem tabela wygląda atępująco: Icjały Grupa Płeć

Bardziej szczegółowo

Plan wykładu. Analiza danych Wykład 1: Statystyka opisowa. Literatura. Podstawowe pojęcia

Plan wykładu. Analiza danych Wykład 1: Statystyka opisowa. Literatura. Podstawowe pojęcia Pla wykładu Aaliza daych Wykład : Statystyka opisowa. Małgorzata Krętowska Wydział Iformatyki Politechika Białostocka. Statystyka opisowa.. Estymacja puktowa. Własości estymatorów.. Rozkłady statystyk

Bardziej szczegółowo

Monika Jeziorska - Pąpka Uniwersytet Mikołaja Kopernika w Toruniu

Monika Jeziorska - Pąpka Uniwersytet Mikołaja Kopernika w Toruniu DYNAMICZNE MODELE EKONOMERYCZNE X Ogólopolske Semarum Naukowe, 4 6 wrześa 2007 w oruu Katedra Ekoometr Statystyk, Uwersytet Mkołaja Koperka w oruu Moka Jezorska - Pąpka Uwersytet Mkołaja Koperka w oruu

Bardziej szczegółowo

Pomiary bezpośrednie i pośrednie obarczone błędem przypadkowym

Pomiary bezpośrednie i pośrednie obarczone błędem przypadkowym Pomary bezpośrede pośrede obarczoe błędem przypadkowym I. Szacowae wartośc przyblŝoej graczego błędu przypadkowego a przykładze bezpośredego pomaru apęca elem ćwczea jest oszacowae wartośc przyblŝoej graczego

Bardziej szczegółowo

Wnioskowanie statystyczne dla korelacji i regresji.

Wnioskowanie statystyczne dla korelacji i regresji. STATYSTYKA MATEMATYCZNA WYKŁAD 6 Woskowae statstcze dla korelacj regresj. Aalza korelacj Założee: zmea losowa dwuwmarowa X, Y) ma rozkład ormal o współczku korelacj ρ. X, Y cech adae rówocześe. X X X...

Bardziej szczegółowo

Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki

Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki tatystycza terpretacja wyków eksperymetu Małgorzata Jakubowska Katedra Chem Aaltyczej Wydzał IŜyer Materałowej Ceramk AGH Podstawowe zadae statystyk tatystyka to uwersale łatwo dostępe arzędze, które pomaga

Bardziej szczegółowo

Analiza struktury zbiorowości statystycznej

Analiza struktury zbiorowości statystycznej Analza struktury zborowośc statystycznej.analza tendencj centralnej. Średne klasyczne Średna arytmetyczna jest parametrem abstrakcyjnym. Wyraża przecętny pozom badanej zmennej (cechy) w populacj generalnej:

Bardziej szczegółowo

UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie

UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie B A D A N I A O P E R A C Y J N E I D E C Y J E Nr 2 2007 Aa ĆWIĄKAŁA-MAŁYS*, Woletta NOWAK* UOGÓLNIONA ANALIA WRAŻLIWOŚCI YSKU W PREDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW Przedstawoo ajważejsze elemety

Bardziej szczegółowo

( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min

( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min Fukca warogodośc Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x;. Fukcą warogodośc dla próby x azywamy welkość: ( x; f ( x ; L Twerdzee (Cramera-Rao: Mmala wartość warac m dowolego eobcążoego

Bardziej szczegółowo

Analiza niepewności pomiarów Definicje

Analiza niepewności pomiarów Definicje Teora pomarów Aalza epewośc pomarów Defce Dr hab. ż. Paweł Mada www.pmada.zt.ed.pl Podstawowa defca Nepewość pomar to parametr zwązay z wykem pomar, charakteryzący rozrzt wartośc, który w zasadoy sposób

Bardziej szczegółowo

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np. Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas

Bardziej szczegółowo

k k M. Przybycień Rachunek Prawdopodobieństwa i Statystyka Wykład 13-2

k k M. Przybycień Rachunek Prawdopodobieństwa i Statystyka Wykład 13-2 Pojęce przedzału ufośc Przyład: Rozważmy pewe rzad proces (tz. ta tórego lczba zajść podlega rozładow Possoa). W cągu pewego czasu zaobserwowao =3 tae zdarzea. Oceć możlwy przedzał lczby zdarzeń tego typu

Bardziej szczegółowo

Statystyka powtórzenie (I semestr) Rafał M. Frąk

Statystyka powtórzenie (I semestr) Rafał M. Frąk Statystyka powtórzeie (I semestr) Rafał M. Frąk TEORIA Statystyka Statystyka zajmuje się badaiem procesu zbieraia oraz iterpretacji daych liczbowych lub jakościowych. Przedmiotem statystyki są metody badaia

Bardziej szczegółowo

Statystyka. Katarzyna Chudy Laskowska

Statystyka. Katarzyna Chudy Laskowska Statstka Katarza Chud Laskowska http://kc.sd.prz.edu.pl/ Aalza korelacj umożlwa stwerdzee wstępowaa zależośc oraz oceę jej atężea ZALEŻNOŚCI pomędz CECHAMI: CECHY: ILOŚCIOWA ILOŚCIOWA CECHY: JAKOŚCIOWA

Bardziej szczegółowo

będą niezależnymi zmiennymi losowymi o tym samym 2 x

będą niezależnymi zmiennymi losowymi o tym samym 2 x Prawdopodobeństwo statystyka 8.0.007 r. Zadae. Nech,,, rozkładze z gęstoścą Oblczyć m E max będą ezależym zmeym losowym o tym samym { },,, { },,, gdy x > f ( x) = x. 0 gdy x 8 8 Prawdopodobeństwo statystyka

Bardziej szczegółowo

FINANSE II. Model jednowskaźnikowy Sharpe a.

FINANSE II. Model jednowskaźnikowy Sharpe a. ODELE RYNKU KAPITAŁOWEGO odel jedowskaźkowy Sharpe a. odel ryku kaptałowego - CAP (Captal Asset Prcg odel odel wycey aktywów kaptałowych). odel APT (Arbtrage Prcg Theory Teora artrażu ceowego). odel jedowskaźkowy

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I Pracowa IF UJ Luy 03 PODRĘCZNIKI Wsęp do aalzy błędu pomarowego Joh R. Taylor Wydawcwo Naukowe PWN Warszawa 999 I Pracowa

Bardziej szczegółowo

Plan: Wykład 3. Zmienne losowe i ich rozkłady. Wstęp do probabilistyki i statystyki. Pojęcie zmiennej losowej

Plan: Wykład 3. Zmienne losowe i ich rozkłady. Wstęp do probabilistyki i statystyki. Pojęcie zmiennej losowej --8 Wstęp do probablsty statysty Wyład. Zmee losowe ch rozłady dr hab.ż. Katarzya Zarzewsa, prof.agh, Katedra Eletro, WIET AGH Wstęp do probablsty statysty. wyład Pla: Pojęce zmeej losowej Iloścowy ops

Bardziej szczegółowo

STATYSTYKA OPISOWA PODSTAWOWE WZORY

STATYSTYKA OPISOWA PODSTAWOWE WZORY MIARY POŁOŻENIA Średia Dla daych idywidualych: STATYSTYKA OPISOWA PODSTAWOWE WZORY Q i = x lmi + i mi 1 4 j h m i mi x = 1 x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału

Bardziej szczegółowo

opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn

opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn ROZKŁAD PRAWDOPODBIEŃSTWA WIELU ZMIENNYCH LOSOWYCH W przpadku gd mam do czea z zmem losowm możem prawdopodobeństwo, ż przjmą oe wartośc,,, opsać welowmarową fukcją rozkładu gęstośc prawdopodobeństwa f(,,,.

Bardziej szczegółowo

Portfel złożony z wielu papierów wartościowych

Portfel złożony z wielu papierów wartościowych Portfel westycyy ćwczea Na odst. Wtold Jurek: Kostrukca aalza, rozdzał 4 dr Mchał Kooczyńsk Portfel złożoy z welu aerów wartoścowych. Zwrot ryzyko Ozaczea: w kwota ulokowaa rzez westora w aery wartoścowe

Bardziej szczegółowo

Probabilistyka i statystyka. Korelacja

Probabilistyka i statystyka. Korelacja 06-05-08 Probablstyka statystyka Korelacja Probablstyka statystyka - wykład 9 dla Elektrok Korelacja Aalza korelacj zajmuje sę badaam stea zależośc lowej mędzy dwema cecham X Y. Podstawową marą jest współczyk

Bardziej szczegółowo

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2. Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,

Bardziej szczegółowo

Statystyka opisowa. W szeregu tym prezentowana jest ilość wystąpień w próbie każdej wartości cechy.

Statystyka opisowa. W szeregu tym prezentowana jest ilość wystąpień w próbie każdej wartości cechy. Statystyka osowa Statystyka osowa óż sę od statystyk matematyczej tym, że óby statystyczej dotyczącej daej cechy, e wykozystuje sę do woskowaa a temat oulacj, z któej óba ta została wylosowaa, a jedye

Bardziej szczegółowo

BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ

BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ Matematka statstka matematcza dla rolków w SGGW Aa Rajfura, KDB WYKŁAD 2 BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ Matematka statstka matematcza dla rolków w SGGW Aa Rajfura, KDB Przkład.

Bardziej szczegółowo

Zjawiska masowe takie, które mogą wystąpid nieograniczoną ilośd razy. Wyrazów Obcych)

Zjawiska masowe takie, które mogą wystąpid nieograniczoną ilośd razy. Wyrazów Obcych) Statystyka - nauka zajmująca sę metodam badana przedmotów zjawsk w ch masowych przejawach ch loścową lub jakoścową analzą z punktu wdzena nauk, do której zakresu należą.

Bardziej szczegółowo

Statystyka opisowa. W szeregu tym prezentowana jest ilość wystąpień w próbie każdej wartości cechy.

Statystyka opisowa. W szeregu tym prezentowana jest ilość wystąpień w próbie każdej wartości cechy. Statystyka osowa Statystyka osowa óż sę od statystyk matematyczej tym, że óy statystyczej dotyczącej daej cechy, e wykozystuje sę do woskowaa a temat oulacj, z któej óa ta została wylosowaa, a jedye aalzuje

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym)

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym) Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych (w zakresie materiału przedstawioego a wykładzie orgaizacyjym) Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli

Bardziej szczegółowo

Józef Beluch Akademia Górniczo-Hutnicza w Krakowie. Wpływ wag współrzędnych na wyniki transformacji Helmerta

Józef Beluch Akademia Górniczo-Hutnicza w Krakowie. Wpływ wag współrzędnych na wyniki transformacji Helmerta Józef Beluch Akadema Górczo-Hutcza w Krakowe płw wag współrzędch a wk trasformacj Helmerta . zór a trasformację współrzędch sposobem Helmerta: = c + b = d + a + a b () 2 2. Dwa modele wzaczea parametrów

Bardziej szczegółowo

OKREŚLANIE NIEPEWNOŚCI POMIARÓW (poradnik do Laboratorium Fizyki)

OKREŚLANIE NIEPEWNOŚCI POMIARÓW (poradnik do Laboratorium Fizyki) Adrzej Kubaczyk Laboratorum Fzyk I Wydzał Fzyk Poltechka Warszawska OKREŚLANIE NIEPEWNOŚCI POMIARÓW (poradk do Laboratorum Fzyk) ROZDZIAŁ Wstęp W roku 995 z cjatywy Mędzyarodowego Komtetu Mar (CIPM) zostały

Bardziej szczegółowo

STATYSTYKA OPISOWA PODSTAWOWE WZORY

STATYSTYKA OPISOWA PODSTAWOWE WZORY MIARY POŁOŻENIA Średia Dla daych idywidualych: x = 1 STATYSTYKA OPISOWA PODSTAWOWE WZORY x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału Domiata (moda Liczba ajczęściej

Bardziej szczegółowo

MODELE OBIEKTÓW W 3-D3 część

MODELE OBIEKTÓW W 3-D3 część WYKŁAD 5 MODELE OBIEKTÓW W -D część la wykładu: Kocepcja krzywej sklejaej Jedorode krzywe B-sklejae ejedorode krzywe B-sklejae owerzche Bezera, B-sklejae URBS 1. Kocepcja krzywej sklejaej Istotą z praktyczego

Bardziej szczegółowo

METODY ANALIZY DANYCH DOŚWIADCZALNYCH

METODY ANALIZY DANYCH DOŚWIADCZALNYCH POLITECHNIKA Ł ÓDZKA TOMASZ W. WOJTATOWICZ METODY ANALIZY DANYCH DOŚWIADCZALNYCH Wybrae zagadea ŁÓDŹ 998 Przedsłowe Specyfką teor pomarów jest jej wtóry charakter w stosuku do metod badawczych stosowaych

Bardziej szczegółowo

1. Relacja preferencji

1. Relacja preferencji dr Mchał Koopczyńsk EKONOMIA MATEMATYCZNA Wykłady, 2, 3 (a podstawe skryptu r 65) Relaca preferec koszyk towarów: przestrzeń towarów: R + = { x R x 0} x = ( x,, x ) X X R+ x 0 x 0 =, 2,, x~y xf y x y x

Bardziej szczegółowo