N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

Wielkość: px
Rozpocząć pokaz od strony:

Download "N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi."

Transkrypt

1 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy z parametrem : P ( = ) = ( ), dla = 0,,, Wyzacz metodą mometów (ależy wyorzystać średą z próby) estymator parametru 33 Populacja geerala ma rozład o fucj gęstośc xe x = dla x 0 Wylosowao - elemetową próbę prostą otrzymao średą z próby rówą 0,5 Zaleźć putową oceę parametru za pomocą metody mometów 34 Nech, będze próbą prostą z rozładu wyładczego z parametrem Medaa z próby wyos 00l Zaleźć estymator parametru metodą watyl 35 Nech, będze próbą prostą z rozładu o gęstośc x x [0,] = 0 x [0,], gdze > 0 a) wyzacz metodą mometów estymator parametru wyorzystując perwszy momet zwyły; b) wyzacz metodą ajwęszej warogodośc estymator parametru polcz jego wartość oczewaą Czy uzysay estymator jest eobcążoy? (, ) będze próbą losową z rozładu Possoa z parametrem 36 Nech Wyzacz estymator ajwęszej warogodośc parametru Czy jest o estymatorem eobcążoym? Jaa jest waracja tego estymatora? 37 Nech, będą ezależym zmeym losowym z tego samego rozładu o gęstośc 5 4 x 4 x e = dla x (0, + ) Wyzaczyć estymator ajwęszej warogodośc parametru, wyzacz jego wartość oczewaą oraz warację 38 Nech, będą ezależym zmeym losowym o tym samym rozładze jedostajym a przedzale [0, ], gdze jest ezaym parametrem (0, ) a) Wyzacz stałą a ta aby estymator a T (, ) = = był estymatorem eobcążoym parametru Wyzacz warację tego estymatora b) Wyzacz estymator ajwęszej warogodośc parametru Czy jest to estymator eobcążoy? 39 Dyspoujemy obserwacjam,, oraz Y,,, Y tóre są ezależym zmeym losowym Każda ze zmeych ma rozład wyładczy z parametrem, atomast ażda ze zmeych rozład wyładczy z parametrem Wyzacz estymator ajwęszej warogodośc parametru oparty a wszystch obserwacjach m Y ma 30 Pauje przeoae, że lczba T (całych) lat bezawaryjej pracy sprzedaej pral ma rozład t geometryczy: P( T = t) = ( ), gdze t = 0,, Obserwowao przez dwa lata próbę 400 prale wy były astępujące: Czas bezawaryjej pracy Lczba prale 0 lat 30 ro 40 lub węcej 40

2 Oblcz estymator ajwęszej warogodośc parametru,,, będą ezależym zmeym losowym z rozładu 3 Nech ozacza dystrybuatę empryczą a) Oblczyć wartość oczewaą warację F ˆ (0) b) Wyzaczyć rozład graczy dla ( Fˆ (0) ) N (0, ) Nech F ˆ ( t ) 3 Populacja geerala ma rozład ormaly ajwęszej warogodośc Czy uzysae estymatory są eobcążoe? N ( µ, σ ) Wyzacz estymatory parametrów µ σ metodą 33 Nech, będą ezależym zmeym losowym o tym samym rozładze jedostajym a przedzale [, + ], gdze jest ezaym parametrem Wyzacz estymator ajwęszej warogodośc parametru 34 Nech, będze próbą prostą z rozładu wyładczego z parametrem Zapropouj eobcążoy estymator wyrażea e Praca domowa: 3 Nech, będze próbą prostą z rozładu beta B( α, β ) o gęstośc = x ( x) Γ ( + β ) α β Γ( α ) Γ( β ) dla x [0,] Wyzacz estymatory parametrów α β metodą mometów, orzystając z dwóch perwszych mometów zwyłych w rozładze beta 3 Nech, będze próbą prostą z rozładu gamma ( α, β ) parametrów α β, wyorzystując średej waracj tego rozładu Γ Wyzacz estymatory metodą mometów 33 Nech, będze próbą prostą z rozładu Possoa z ezaym parametrem metodą mometów parametrów Czy steje tylo jede ta estymator? 34 Nech, będze próbą prostą z rozładu gęstośc xe x ajwęszej warogodośc parametru, polcz jego wartość oczewaą oraz warację Wyzacz estymatory = dla x 0 Wyzacz estymator 35 Nech, będą ezależym zmeym losowym z tego samego rozładu o gęstośc 3 x x e = dla x (0, + ) Wyzaczyć estymator ajwęszej warogodośc parametru, wyzacz jego wartość oczewaą oraz warację 36 Nech,,, będą ezależym zmeym losowym o tym samym rozładze jedostajym a przedzale [0,] Nech F ˆ ( t ) ozacza dystrybuatę empryczą Oblczyć wartość oczewaą warację F ˆ ( ) 4 37 Wyoujemy ezależe dośwadczea, z prawdopodobeństwem sucesu w ażdym dośwadczeu, dopó e zaobserwujemy sucesów ( jest ustaloą lczbą) Wyzacz estymator ajwęszej warogodośc parametru 38 Nech, będze próbą prostą z rozładu wyładczego z parametrem Czy statystya jest eobcążoym estymatorem wyrażea? T = ( )

3 39 Nech, będze próbą prostą z rozładu Possoa z parametrem Zapropouj eobcążoy estymator wyrażea e 30* Nech, będze próbą prostą z rozładu o dystrybuace F a) Poazać, że ( ˆ P F( t) = ) = ( F( t)) ( F( t)) dla = 0,,,, b) Poazać, że dystrybuata gęstość zmeej losowej : wyoszą odpowedo P( : t) = ( F( t)) ( F ( t)) = f ( t) = f ( t)( F( t)) ( F( t)) : c) Załóżmy, że, [0,] Na podstawe wyu z podputu b) poazać, że : ~ Beta(, + ) są ezależym zmeym losowym z rozładu jedostajego a przedzale 3* Nech,, 9 będze próbą losową z rozładu oraz 9 = ( ) 8 = S µ wyrażea σ? S S = Czy statystya S N ( µ, σ ) Nech 9 9 = =, T = jest estymatorem eobcążoym dla 3* Nech L( ) będze fucją cągła, tóra ma perwszą drugą pochodą cągłą dla ( a, b) ( a, b R; w szczególośc może to być esończoość) Poadto załadamy, że lm L( ) lm L( ) a b L( ) > 0 dla ażdego ( a, b) Poazać, że ˆ ( a, b) jest masmum dla L( ), gdy jest masmum dla l L( ) są sończoe oraz wtedy tylo wtedy, 33* Zmea losowa ma rozład geometryczy z parametrem : P ( = ) = ( ), dla = 0,,, Oblcz wartość oczewaą zmeej losowej Przydate faty defcje Def (dystrybuata emprycza) Nech, będze próbą prostą z rozładu o dystrybuace F Statystyę azywamy dystrybuatą empryczą ˆ ( ) = Ι ( ) = F t t Def (statystya estymator) będze próbą z rozładu o dystrybuace F, gdze Θ Statystyą azywamy dowolą Nech, fucję wetora losowego (, ), tóra e jest fucją, czyl T = T (,, ) Estymatorem ezaego parametru azywamy dowolą statystyę T (,, ) o wartoścach w Θ, czyl T (,, ) : R Θ Def 3 (Estymator eobcążoy) ˆ = ˆ(,, ) będze estymatorem parametru uzysaym a podstawe próby, E ˆ(,, ) = Nech Powemy, że estymator ˆ jest eobcążoy, jeśl Metoda mometów Metoda mometów polega a przyrówau mometów rozładu teoretyczego (tóre zależą od ezaych parametrów) do odpowedch mometów empryczych Powstałe w te sposób rówaa rozwązujemy ze względu a ezae parametry Oczywśce ależy ułożyć tyle rówań, le jest szacowaych parametrów 3

4 Przyład Nech, będze próbą z rozładu wyładczego o ezaym parametrze Poeważ jest tylo jede ezay parametr węc wystarczy am tylo jedo rówae Posłużymy sę perwszym mometem zwyłym Nasze rówae przyjmuje węc postać = EY, gdze Y ~ Exp( ) Poeważ EY =, to estymator uzysay metodą mometów wyos ˆ = Metoda watyl Metoda watyl jest aalogcza do metody mometów polega a przyrówau watyl empryczych (wyzaczoe a podstawe prób) do teoretyczych Metoda ajwęszej warogodośc będze próbą z rozładu zmeej losowej zależącego od parametru R Nech, Przez p ozaczamy gęstość zmeej losowej, w przypadu, gdy jest oa cągłą zmeą losową lub fucję prawdopodobeństwa, jeśl jest dysretą zmeą losową Fucję warogodośc defujemy w astępujący sposób: L( ) = f (,, ), gdze f (,, ) jest łączą gęstoścą wetora losowego (, ) Estymator ajwęszej warogodośc parametru a podstawe próby losowej,, to tae ˆ = ˆ(,, ) dla tórego fucja warogodośc przyjmuje masmum, czyl: L( ˆ ) = sup L( ) W pratyce ˆ jest wyzaczae w oparcu o astępujący fat, tóry zacze upraszcza oblczea rachuowe: fucja L( ) osąga masmum w tych samych putach co fucja l L( ) Przyład Nech, będze próbą prostą z rozładu wyładczego o ezaym parametrze, gdze > 0 Metodą ajwęszej warogodośc wyzaczymy estymator parametru Zaczyamy od zdefowaa fucj warogodośc: L( ) f (,, ) f ( ) f ( ) ( e ) e = = = = = = Sorzystalśmy z założea, że zmee losowe, są ezależe rozład łączy rówa sę loczyow rozładów brzegowych Następe sorzystamy z fatu, że L( ) osąga masmum w tym samym puce co l L( ) Czyl zadae sprowadza sę do zalezea masmum fucj: = l( ) = l L( ) = l[ e ] = l = W tym celu lczymy pochodą fucj l( ) przyrówujemy ją do zera: ˆ l ( ) = = 0 = = Pozostaje uzasadć, ż rzeczywśce jest to masmum Moża to zrobć a dwa sposoby Perwszy polega a polczeu drugej pochodej sprawdzeu, że l ( ) l ( ) ( ) 0, l ( ˆ ) < 0 = = < bo > 0 jao średa arytmetycza z lczb dodatch ( pochodzą z rozładu wyładczego, tóry jest oreśloy a R + ) Poadto L( ) jest fucją cągła, L (0) = 0, lm L( ) 0, = co ozacza, że zalezoe masmum loale jest masmum globalym Moża też proścej: L( ) jest fucją cągła, L (0) = 0, lm L( ) = 0 oraz L( ) > 0 dla R + mus steć ta put R, Θ + Czyl w tórym fucja L( ) przyjmuje masmum globale Puty podejrzae to puty w tórych zeruje sę perwsza pochoda fucj l( ), a poeważ w aszym zadau jest tylo jede ta put, to mus być o masmum globalym! Warto podreślć, że metoda ajwęszej warogodośc bardzo łatwo uogóla sę a przypade welowymarowy (tz szacujemy wetor ezaych parametrów - R ) Rozwązae tego typu zadaa 4

5 sprowadza sę do przyrówaa do zera pochodych cząstowych logarytmu fucj warogodośc: l( ) = 0 dla j =,,, j Jeżel celem aszej aalzy jest wyzaczee estymatora ajwęszej warogodośc (ENW) dla g( ), gdze g ENW ( g( )) = g( ˆ ), gdze ˆ = ENW ( ) jest pewą zaą fucją, to 5

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość

Bardziej szczegółowo

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5 L.Kowalsk zadaa ze statystyk opsowej-zestaw 5 Zadae 5. X cea (zł, Y popyt (tys. szt.. Mając dae ZADANIA Zestaw 5 x,5,5 3 3,5 4 4,5 5 y 44 43 43 37 36 34 35 35 Oblcz współczyk korelacj Pearsoa. Oblcz współczyk

Bardziej szczegółowo

L.Kowalski PODSTAWOWE TESTY STATYSTYCZNE WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH

L.Kowalski PODSTAWOWE TESTY STATYSTYCZNE WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH L.Kowalsk PODSTAWOWE TESTY STATYSTYCZNE TESTY STATYSTYCZNE poteza statystycza to dowole przypuszczee dotyczące rozkładu cechy X. potezy statystycze: -parametrycze dotyczą ezaego parametru, -parametrycze

Bardziej szczegółowo

SPOŁECZNA AKDAEMIA NAUK W ŁODZI

SPOŁECZNA AKDAEMIA NAUK W ŁODZI SPOŁECZNA AKDAEMIA NAUK W ŁODZI KIERUNEK STUDIÓW: ZARZĄDZANIE PRZEDMIOT: METODY ILOŚCIOWE W ZARZĄDZANIU (MATERIAŁ POMOCNICZY PRZEDMIOT PODSTAWOWY ) Łódź Sps treśc Moduł Wprowadzee do metod loścowych w

Bardziej szczegółowo

Analiza spektralna stóp zwrotu z inwestycji w akcje

Analiza spektralna stóp zwrotu z inwestycji w akcje Nasz rye aptałowy, 003 r3, str. 38-43 Joaa Góra, Magdalea Osńsa Katedra Eoometr Statysty Uwersytet Mołaja Kopera w Toruu Aalza spetrala stóp zwrotu z westycj w acje. Wstęp Agregacja w eoom eoometr bywa

Bardziej szczegółowo

Reprezentacja krzywych...

Reprezentacja krzywych... Reprezeacja rzywych... Reprezeacja przy pomocy fcj dwóch zmeych rzywe płase płase - jedej: albo z z f x y x [ x x2] y [ y y2] f x y g x x [ x x2] Wady: rzywe óre dla pewych x y mogą przyjmować wele warośc

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 7 Krzywa retowośc, zadaa (mat. f.), marża w hadlu, NPV IRR, Ustawa o kredyce kosumeckm, fukcje fasowe Excela Krzywa retowośc (dochodowośc) Yeld Curve Krzywa ta jest grafczym

Bardziej szczegółowo

5. OPTYMALIZACJA NIELINIOWA

5. OPTYMALIZACJA NIELINIOWA 5. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często, że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też, oprócz lowych zadań decyzyjych, formułujemy także elowe

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w

Bardziej szczegółowo

Statystyczne charakterystyki liczbowe szeregu

Statystyczne charakterystyki liczbowe szeregu Statystycze charakterystyk lczbowe szeregu Aalzę badaej zmeej moża uzyskać posługując sę parametram opsowym aczej azywaym statystyczym charakterystykam lczbowym szeregu. Sytetycza charakterystyka zborowośc

Bardziej szczegółowo

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym?

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym? Oblczae średej, odchylea tadardowego meday oraz kwartyl w zeregu zczegółowym rozdzelczym? Średa medaa ależą do etymatorów tzw. tedecj cetralej, atomat odchylee tadardowe to etymatorów rozprozea (dyperj)

Bardziej szczegółowo

Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki

Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki tatystycza terpretacja wyków eksperymetu Małgorzata Jakubowska Katedra Chem Aaltyczej Wydzał IŜyer Materałowej Ceramk AGH Podstawowe zadae statystyk tatystyka to uwersale łatwo dostępe arzędze, które pomaga

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska Statystyka Iżyerska dr hab. ż. Jacek Tarasuk AGH, WFIS 013 Wykład 3 DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE, PODSTAWY ESTYMACJI Dwuwymarowa, dyskreta fukcja rozkładu rawdoodobeństwa, Rozkłady brzegowe

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA Zajęcia wyrównawcze AJD w Częstochowie; 2009/2010. Irena Fidytek

RACHUNEK PRAWDOPODOBIEŃSTWA Zajęcia wyrównawcze AJD w Częstochowie; 2009/2010. Irena Fidytek RACHUNEK PRAWDOPODOBIEŃSTWA Zajęca wyrówawcze AJD w Częstochowe; 2009/200 Irea Fdyte PODSTAWOWE WIADOMOŚCI Z KOMBINATORYKI Nech X { x x x } =, 2, będze daym zborem -elemetowym Z elemetów tego zboru a róże

Bardziej szczegółowo

3. OPTYMALIZACJA NIELINIOWA

3. OPTYMALIZACJA NIELINIOWA Wybrae zaadea badań operacyjych dr ż. Zbew Tarapata 3. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też oprócz

Bardziej szczegółowo

Monika Jeziorska - Pąpka Uniwersytet Mikołaja Kopernika w Toruniu

Monika Jeziorska - Pąpka Uniwersytet Mikołaja Kopernika w Toruniu DYNAMICZNE MODELE EKONOMERYCZNE X Ogólopolske Semarum Naukowe, 4 6 wrześa 2007 w oruu Katedra Ekoometr Statystyk, Uwersytet Mkołaja Koperka w oruu Moka Jezorska - Pąpka Uwersytet Mkołaja Koperka w oruu

Bardziej szczegółowo

Podstawy matematyki finansowej i ubezpieczeniowej

Podstawy matematyki finansowej i ubezpieczeniowej Podstawy matematy fasowej ubezpeczeowej oreślea, wzory, przyłady, zadaa z rozwązaam KIELCE 2 SPIS TREŚCI WSTEP... 7 STOPA ZWROTU...... 9 2 RACHUNEK CZASU W MATEMATYCE FINANSOWEJ. 0 2. DOKŁADNA LICZBA DNI

Bardziej szczegółowo

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych dr Ewa Wycka Wyższa Szkoła Bakowa w Gdańsku Wtold Komorowsk, Rafał Gatowsk TZ SKOK S.A. Statystycza aalza mesęczych zma współczyka szkodowośc kredytów hpoteczych Wskaźk szkodowośc jest marą obcążea kwoty/lczby

Bardziej szczegółowo

Metoda Monte-Carlo i inne zagadnienia 1

Metoda Monte-Carlo i inne zagadnienia 1 Metoda Mote-Carlo e zagadea Metoda Mote-Carlo Są przypadk kedy zamast wykoać jakś eksperymet chcelbyśmy symulować jego wyk używając komputera geeratora lczb (pseudolosowych. Wększość bblotek programów

Bardziej szczegółowo

FINANSE II. Model jednowskaźnikowy Sharpe a.

FINANSE II. Model jednowskaźnikowy Sharpe a. ODELE RYNKU KAPITAŁOWEGO odel jedowskaźkowy Sharpe a. odel ryku kaptałowego - CAP (Captal Asset Prcg odel odel wycey aktywów kaptałowych). odel APT (Arbtrage Prcg Theory Teora artrażu ceowego). odel jedowskaźkowy

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

Sterowanie optymalne statkiem w obszarze ze zmiennym prądem problem czasooptymalnej marszruty. Zenon Zwierzewicz

Sterowanie optymalne statkiem w obszarze ze zmiennym prądem problem czasooptymalnej marszruty. Zenon Zwierzewicz Sterowae otymale statem w obszarze ze zmeym rądem roblem czasootymalej marszrty Zeo Zwerzewcz Szczec Zeo Zwerzewcz Sterowae otymale statem w obszarze ze zmeym rądem roblem czasootymalej marszrty W artyle

Bardziej szczegółowo

Modele wartości pieniądza w czasie

Modele wartości pieniądza w czasie Joaa Ceślak, Paula Bawej Modele wartośc peądza w czase Podstawowe pojęca ozaczea Kaptał (ag. prcpal), kaptał początkowy, wartośd początkowa westycj - peądze jake zostały wpłacoe a początku westycj (a początku

Bardziej szczegółowo

Materiały do wykładu 7 ze Statystyki

Materiały do wykładu 7 ze Statystyki Materał do wkładu 7 ze Statstk Aalza ZALEŻNOŚCI pomędz CECHAMI (Aalza KORELACJI REGRESJI) korelacj wkres rozrzutu (korelogram) rodzaje zależośc (brak, elowa, lowa) pomar sł zależośc lowej (współczk korelacj

Bardziej szczegółowo

METODY ANALIZY DANYCH DOŚWIADCZALNYCH

METODY ANALIZY DANYCH DOŚWIADCZALNYCH POLITECHNIKA Ł ÓDZKA TOMASZ W. WOJTATOWICZ METODY ANALIZY DANYCH DOŚWIADCZALNYCH Wybrae zagadea ŁÓDŹ 998 Przedsłowe Specyfką teor pomarów jest jej wtóry charakter w stosuku do metod badawczych stosowaych

Bardziej szczegółowo

WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ

WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ 9 Cel ćwczea Ćwczee 9 WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANE PODCZAS ZDERZENIA CIAŁ Celem ćwczea jest wyzaczee wartośc eerg rozpraszaej podczas zderzea cał oraz współczyka restytucj charakteryzującego

Bardziej szczegółowo

1. Relacja preferencji

1. Relacja preferencji dr Mchał Koopczyńsk EKONOMIA MATEMATYCZNA Wykłady, 2, 3 (a podstawe skryptu r 65) Relaca preferec koszyk towarów: przestrzeń towarów: R + = { x R x 0} x = ( x,, x ) X X R+ x 0 x 0 =, 2,, x~y xf y x y x

Bardziej szczegółowo

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej PŁAKA GEOMETRIA MA Środek cężkośc fgury płaskej Mometam statyczym M x M y fgury płaskej względem os x lub y (rys. 7.1) azywamy gracę algebraczej sumy loczyów elemetarych pól d przez ch odległośc od os,

Bardziej szczegółowo

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA Ćwczee 8 TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA 8.. Cel ćwczea Celem ćwczea jest wyzaczee statyczego współczyka tarca pomędzy walcową powerzchą cała a opasującą je lą. Poadto a drodze eksperymetalej

Bardziej szczegółowo

UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie

UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie B A D A N I A O P E R A C Y J N E I D E C Y J E Nr 2 2007 Aa ĆWIĄKAŁA-MAŁYS*, Woletta NOWAK* UOGÓLNIONA ANALIA WRAŻLIWOŚCI YSKU W PREDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW Przedstawoo ajważejsze elemety

Bardziej szczegółowo

T. Hofman, Wykłady z Termodynamiki technicznej i chemicznej, Wydział Chemiczny PW, kierunek: Technologia chemiczna, sem.

T. Hofman, Wykłady z Termodynamiki technicznej i chemicznej, Wydział Chemiczny PW, kierunek: Technologia chemiczna, sem. . Hofma Wyłady z ermodyam techczej chemczej Wydzał Chemczy PW erue: echologa chemcza sem.3 215/216 WYKŁAD 3-4. D. Blase reatorów chemczych E. II zasada termodyam F. Kosewecje zasad termodyam D. BILANE

Bardziej szczegółowo

METODY KOMPUTEROWE 1

METODY KOMPUTEROWE 1 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN MTODA ULRA Mcał PŁOTKOWIAK Adam ŁODYGOWSKI Kosultacje aukowe dr z. Wtold Kąkol Pozań 00/00 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN Metod umercze MN pozwalają a ormułowae matematczc

Bardziej szczegółowo

INSTYTUT ŁĄCZNOŚCI PAŃSTWOWY INSTYTUT BADAWCZY. Zakład Teletransmisji i Technik Optycznych (Z-14)

INSTYTUT ŁĄCZNOŚCI PAŃSTWOWY INSTYTUT BADAWCZY. Zakład Teletransmisji i Technik Optycznych (Z-14) INSTYTUT ŁĄCZNOŚCI PAŃSTWOWY INSTYTUT BADAWCZY Załad Teletrasmsj Tech Optyczych (Z-4) Aalza badaa efetów zachodzących w śwatłowodowym medum trasmsyjym degradujących jaość trasmsj w systemach DWDM o dużej

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

Analiza danych pomiarowych

Analiza danych pomiarowych Materały pomoccze dla studetów Wydzału Chem UW Opracowała Ageszka Korgul. Aalza daych pomarowych wersja trzeca, uzupełoa Lteratura, Wstęp 3 R OZDZIAŁ SPRAWOZDANIE Z DOŚWIADCZENIA FIZYCZNEGO 4 Stałe elemety

Bardziej szczegółowo

Bajki kombinatoryczne

Bajki kombinatoryczne Artyuł powstał a podstawe odczytu pod tym samym tytułem, wygłoszoego podczas XXXVI Szoły Matematy Poglądowej Pomysł czy rachue? w Grzegorzewcach, styczeń 006. Baj ombatorycze Joaa JASZUŃSKA, Warszawa Ja

Bardziej szczegółowo

KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA. Adrian Kapczyński Maciej Wolny

KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA. Adrian Kapczyński Maciej Wolny KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA Adra Kapczyńsk Macej Woly Wprowadzee Rozwój całego spektrum coraz doskoalszych środków formatyczych

Bardziej szczegółowo

Wyrażanie niepewności pomiaru

Wyrażanie niepewności pomiaru Wyrażae epewośc pomaru Adrzej Kubaczyk Wydzał Fzyk, Poltechka Warszawska Warszawa, 05 Iformacje wstępe Każdy pomar welkośc fzyczej dokoyway jest ze skończoą dokładoścą, co ozacza, że wyk tego pomaru dokoyway

Bardziej szczegółowo

WSTĘP METODY OPRACOWANIA I ANALIZY WYNIKÓW POMIARÓW

WSTĘP METODY OPRACOWANIA I ANALIZY WYNIKÓW POMIARÓW WSTĘP METODY OPRACOWANIA I ANALIZY WYNIKÓW POMIARÓW U podstaw wszystkch auk przyrodczych leży zasada: sprawdzaem wszelkej wedzy jest eksperymet, tz jedyą marą prawdy aukowej jest dośwadczee Fzyka, to auka

Bardziej szczegółowo

Portfel złożony z wielu papierów wartościowych

Portfel złożony z wielu papierów wartościowych Portfel westycyy ćwczea Na odst. Wtold Jurek: Kostrukca aalza, rozdzał 4 dr Mchał Kooczyńsk Portfel złożoy z welu aerów wartoścowych. Zwrot ryzyko Ozaczea: w kwota ulokowaa rzez westora w aery wartoścowe

Bardziej szczegółowo

Ćwiczenia nr 3 Finanse II Robert Ślepaczuk. Teoria portfela papierów wartościowych

Ćwiczenia nr 3 Finanse II Robert Ślepaczuk. Teoria portfela papierów wartościowych Ćczea r 3 Fae II obert Ślepaczuk Teora portfela paperó artoścoych Teora portfela paperó artoścoych jet jedym z ajażejzych dzałó ooczeych faó. Dotyczy oa etycj faoych, a przede zytkm etycj dokoyaych a ryku

Bardziej szczegółowo

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE Marek Cecura, Jausz Zacharsk PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE CZĘŚĆ II STATYSTYKA OPISOWA Na prawach rękopsu Warszawa, wrzeseń 0 Data ostatej aktualzacj: czwartek, 0 paźdzerka

Bardziej szczegółowo

0.1 ROZKŁADY WYBRANYCH STATYSTYK

0.1 ROZKŁADY WYBRANYCH STATYSTYK 0.1. ROZKŁADY WYBRANYCH STATYSTYK 1 0.1 ROZKŁADY WYBRANYCH STATYSTYK Zadaia 0.1.1. Niech X 1,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie. Obliczyć ES 2 oraz D 2 ( 1 i=1 X 2 i ). 0.1.2.

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 6 Matematyka fasowa c.d. Rachuek retowy (autetowy) Maem rachuku retowego określa sę regulare płatośc w stałych odstępach czasu przy założeu stałej stopy procetowej. Przykłady

Bardziej szczegółowo

Spis treści ZŁOŻONOŚĆ OBLICZEŃ 5 ELEMENTY TEORII ZŁOŻONOŚCI OBLICZENIOWEJ I PROBLEM DZIELNIKÓW 5

Spis treści ZŁOŻONOŚĆ OBLICZEŃ 5 ELEMENTY TEORII ZŁOŻONOŚCI OBLICZENIOWEJ I PROBLEM DZIELNIKÓW 5 Ss treśc SPIS TREŚCI WYKŁAD 5 ZŁOŻONOŚĆ OBLICZEŃ 5 ELEMENTY TEORII ZŁOŻONOŚCI OBLICZENIOWEJ I PROBLEM DZIELNIKÓW 5 WYKŁAD 9 TESTY PIERWSZOŚCI I LICZBY PSEUDOPIERWSZE 9 LICZBY PSEUDOPIERWSZE EULERA WYKŁAD

Bardziej szczegółowo

Miary statystyczne. Katowice 2014

Miary statystyczne. Katowice 2014 Mary statystycze Katowce 04 Podstawowe pojęca Statystyka Populacja próba Cechy zmee Szereg statystycze Wykresy Statystyka Statystyka to auka zajmująca sę loścowym metodam aalzy zjawsk masowych (występujących

Bardziej szczegółowo

FUNKCJE DWÓCH ZMIENNYCH

FUNKCJE DWÓCH ZMIENNYCH FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam

Bardziej szczegółowo

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację.

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację. Wrażlwość oblgacj Jedym z czyków ryzyka westowaa w oblgacje jest zmeość rykowych stóp procetowych. Iżyera fasowa dyspouje metodam pozwalającym zabezpeczyć portfel przed egatywym skutkam zma stóp procetowych.

Bardziej szczegółowo

Teoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka

Teoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka Nepewośc pomarowe. Teora praktka. Prowadząc: Dr ż. Adrzej Skoczeń Wższa Szkoła Turstk Ekolog Wdzał Iformatk, rok I Fzka 014 03 30 WSTE Sucha Beskdzka Fzka 1 Iformacje teoretcze zameszczoe a slajdach tej

Bardziej szczegółowo

Szeregi czasowe, modele DL i ADL, przyczynowość, integracja

Szeregi czasowe, modele DL i ADL, przyczynowość, integracja Szereg czasowe, modele DL ADL, rzyczyowość, egracja Szereg czasowy, o cąg realzacj zmeej losowej, owedzmy y, w kolejych okresach czasu: { y } T, co rówoważe możemy zasać: = 1 y = { y1, y,..., y T }. Najogólej

Bardziej szczegółowo

Lekcja 1. Pojęcia podstawowe: Zbiorowość generalna i zbiorowość próbna

Lekcja 1. Pojęcia podstawowe: Zbiorowość generalna i zbiorowość próbna TECHNIKUM ZESPÓŁ SZKÓŁ w KRZEPICACH PRACOWNIA EKONOMICZNA TEORIA ZADANIA dla klasy II Techkum Marek Kmeck Zespół Szkół Techkum w Krzepcach Wprowadzee do statystyk Lekcja Statystyka - określa zbór formacj

Bardziej szczegółowo

Pomiary parametrów napięć i prądów przemiennych

Pomiary parametrów napięć i prądów przemiennych Ćwczee r 3 Pomary parametrów apęć prądów przemeych Cel ćwczea: zapozae z pomaram wartośc uteczej, średej, współczyków kształtu, szczytu, zekształceń oraz mocy czyej, berej, pozorej współczyka cosϕ w obwodach

Bardziej szczegółowo

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki)

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki) Podstawy aalzy epewośc pomarowych (I Pracowa Fzyk) Potr Cygak Zakład Fzyk Naostruktur Naotecholog Istytut Fzyk UJ Pok. 47 Tel. 0-663-5838 e-mal: potr.cygak@uj.edu.pl Potr Cygak 008 Co to jest błąd pomarowy?

Bardziej szczegółowo

ZASTOSOWANIE MODELU LOGITOWEGO DO ANALIZY WYNIKÓW EGZAMINU

ZASTOSOWANIE MODELU LOGITOWEGO DO ANALIZY WYNIKÓW EGZAMINU Haa Dudek a, Moka Dybcak b a Katedra Ekoometr Iformatyk SGGW b studetka Mędzywydzałowego Studum Iformatyk Ekoometr e-mal: hdudek@mors.sggw.waw.pl ZASTOSOWANIE MODELU LOGITOWEGO DO ANALIZY WYNIKÓW EGZAMINU

Bardziej szczegółowo

PRZEDZIAŁOWE METODY ROZWIĄZYWANIA ALGEBRAICZNYCH RÓWNAŃ NIELINIOWYCH MECHANIKI KONSTRUKCJI

PRZEDZIAŁOWE METODY ROZWIĄZYWANIA ALGEBRAICZNYCH RÓWNAŃ NIELINIOWYCH MECHANIKI KONSTRUKCJI Adrzej POWNUK *) PRZEDZIAŁOWE METODY ROZWIĄZYWANIA ALGEBRAICZNYCH RÓWNAŃ NIELINIOWYCH MECHANIKI KONSTRUKCJI. Wprowadzee Mechaka lowa staow jak dotąd podstawowy obszar zateresowań żyerskch. Isteje jedak

Bardziej szczegółowo

Sprzedaż finalna - sprzedaż dóbr i usług konsumentowi lub firmie, którzy ostatecznie je zużytkują, nie poddając dalszemu przetworzeniu.

Sprzedaż finalna - sprzedaż dóbr i usług konsumentowi lub firmie, którzy ostatecznie je zużytkują, nie poddając dalszemu przetworzeniu. W 1 Rachu maroeoomcze 1. Produ rajowy bruo Sprzedaż fala - sprzedaż dóbr usług osumeow lub frme, órzy osaecze je zużyują, e poddając dalszemu przeworzeu. Sprzedaż pośreda - sprzedaż dóbr usług zaupoych

Bardziej szczegółowo

OKREŚLANIE NIEPEWNOŚCI POMIARÓW (poradnik do Laboratorium Fizyki)

OKREŚLANIE NIEPEWNOŚCI POMIARÓW (poradnik do Laboratorium Fizyki) Adrzej Kubaczyk Laboratorum Fzyk I Wydzał Fzyk Poltechka Warszawska OKREŚLANIE NIEPEWNOŚCI POMIARÓW (poradk do Laboratorum Fzyk) ROZDZIAŁ Wstęp W roku 995 z cjatywy Mędzyarodowego Komtetu Mar (CIPM) zostały

Bardziej szczegółowo

$y = XB KLASYCZNY MODEL REGRESJI LINIOWEJ Z WIELOMA ZMIENNYMI NIEZALEŻNYMI

$y = XB KLASYCZNY MODEL REGRESJI LINIOWEJ Z WIELOMA ZMIENNYMI NIEZALEŻNYMI KASYCZNY ODE REGRESJI INIOWEJ Z WIEOA ZIENNYI NIEZAEŻNYI. gdz: wtor obsrwacj a zmj Y, o wmarach ( macrz obsrwacj a zmch zalżch, o wmarach ( ( wtor paramtrów struturalch (wtor współczów, o wmarach (( wtor

Bardziej szczegółowo

STATYSTYKA OPISOWA. Państwowa Wyższa Szkoła Zawodowa w Koninie. Materiały pomocnicze do ćwiczeń. Materiały dydaktyczne 17 ARTUR ZIMNY

STATYSTYKA OPISOWA. Państwowa Wyższa Szkoła Zawodowa w Koninie. Materiały pomocnicze do ćwiczeń. Materiały dydaktyczne 17 ARTUR ZIMNY Państwowa Wższa Szkoła Zawodowa w Koe Materał ddaktcze 17 ARTUR ZIMNY STATYSTYKA OPISOWA Materał pomoccze do ćwczeń wdae druge zmeoe Ko 010 Ttuł Statstka opsowa Materał pomoccze do ćwczeń wdae druge zmeoe

Bardziej szczegółowo

Wstęp do prawdopodobieństwa. Dr Krzysztof Piontek. Literatura:

Wstęp do prawdopodobieństwa. Dr Krzysztof Piontek. Literatura: Studum podyplomowe altyk Fasowy Wstęp do prawdopodobeństwa Lteratura: Ostasewcz S., Rusak Z., Sedlecka U.: Statystyka elemety teor zadaa, kadema Ekoomcza we Wrocławu 998. mr czel: Statystyka w zarządzau,

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Aradusz Atcza Poltecha Pozańsa Wydzał Budowy Maszy Zarządzaa N u m e r y c z e w e r y f o w a e r o z w ą - z a e r ó w a a r u c h u o j e d y m s t o p u s w o b o d y Autor: Aradusz Atcza Promotor:

Bardziej szczegółowo

Laboratorium Metod Statystycznych ĆWICZENIE 2 WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI

Laboratorium Metod Statystycznych ĆWICZENIE 2 WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI Laboatoum Metod tatystyczych ĆWICZENIE WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI Oacowała: Katazya tąo Weyfkaca hotez Hoteza statystycza to dowole zyuszczee dotyczące ozkładu oulac. Wyóżamy hotezy: aametycze

Bardziej szczegółowo

WYKORZYSTANIE FILTRU CZĄSTECZKOWEGO W PROBLEMIE IDENTYFIKACJI UKŁADÓW AUTOMATYKI

WYKORZYSTANIE FILTRU CZĄSTECZKOWEGO W PROBLEMIE IDENTYFIKACJI UKŁADÓW AUTOMATYKI Piotr KOZIERSKI WYKORZYSTAIE FILTRU CZĄSTECZKOWEGO W PROBLEMIE IDETYFIKACJI UKŁADÓW AUTOMATYKI STRESZCZEIE W artyule przedstawioo sposób idetyfiacji parametryczej obietów ieliiowych zapisaych w przestrzei

Bardziej szczegółowo

Przetwarzanie danych meteorologicznych

Przetwarzanie danych meteorologicznych Sps teśc I Rozważaa ogóle 5 Pzetwazae daych meteoologczych Notat z wyładu pokhamaa Wyoała: Alesada Kadaś I Iomacja odowae 5 I Poces pzetwazaa daych 5 I Aalza 6 I Syteza 7 I3 Edycja wzualzacja 7 I3 Dae

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

Janusz Górczyński. Moduł 1. Podstawy prognozowania. Model regresji liniowej

Janusz Górczyński. Moduł 1. Podstawy prognozowania. Model regresji liniowej Materały omoccze do e-leargu Progozowae symulacje Jausz Górczyńsk Moduł. Podstawy rogozowaa. Model regresj lowej Wyższa Szkoła Zarządzaa Marketgu Sochaczew Od Autora Treśc zawarte w tym materale były erwote

Bardziej szczegółowo

Statystyka Opisowa Wzory

Statystyka Opisowa Wzory tatystyka Opsowa Wzory zereg rozdzelczy: x - wartośc cechy - lczebośc wartośc cechy - lczebość całej zborowośc Wskaźk atężea przy rysowau wykresu szeregu rozdzelczego przedzałowego o erówych przedzałach:

Bardziej szczegółowo

Opracowanie wyników pomiarów

Opracowanie wyników pomiarów Opracowae wków pomarów Praca w laboratorum fzczm polega a wkoau pomarów, ch terpretacj wcagęcem wosków. Ab dojść do właścwch wosków aleŝ szczególą uwagę zwrócć a poprawość wkoaa pomarów mmalzacj błędów

Bardziej szczegółowo

www.bdas.pl Rozdział 3 Zastosowanie języka SQL w statystyce opisowej 1 Wprowadzenie

www.bdas.pl Rozdział 3 Zastosowanie języka SQL w statystyce opisowej 1 Wprowadzenie Rozdzał moogaf: 'Bazy Daych: Nowe Techologe', Kozelsk S., Małysak B., Kaspowsk P., Mozek D. (ed.), WKŁ 007 Rozdzał 3 Zastosowae języka SQL w statystyce opsowej Steszczee. Relacyje bazy daych staową odpowede

Bardziej szczegółowo

Ze względu na sposób zapisu wielkości błędu rozróżnia się błędy bezwzględne i względne.

Ze względu na sposób zapisu wielkości błędu rozróżnia się błędy bezwzględne i względne. Katedra Podsta Systemó Techczych - Podstay metrolog - Ćczee 3. Dokładość pomaró, yzaczae błędó pomaroych Stroa:. BŁĘDY POMIAROWE, PODSTAWOWE DEFINICJE Każdy yk pomaru bez określea dokładośc pomaru jest

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

2012-10-11. Definicje ogólne

2012-10-11. Definicje ogólne 0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj

Bardziej szczegółowo

Fizyka, technologia oraz modelowanie wzrostu kryształów

Fizyka, technologia oraz modelowanie wzrostu kryształów Fzyka, techologa oaz modelowae wzostu kyształów Stasław Kukowsk Mchał Leszczyńsk Istytut Wysokch Cśeń PA 0-4 Waszawa, ul Sokołowska 9/37 tel: 88 80 44 e-mal: stach@upess.waw.pl, mke@upess.waw.pl Zbgew

Bardziej szczegółowo

Portfel. Portfel pytania. Portfel pytania. Analiza i Zarządzanie Portfelem cz. 2. Katedra Inwestycji Finansowych i Zarządzania Ryzykiem

Portfel. Portfel pytania. Portfel pytania. Analiza i Zarządzanie Portfelem cz. 2. Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Katedra Ietycj Faoych Zarządzaa yzykem Aalza Zarządzae Portfelem cz. Dr Katarzya Kuzak Co to jet portfel? Portfel grupa aktyó (trumetó faoych, aktyó rzeczoych), które zotały yelekcjooae, którym ależy zarządzać

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

Badania Maszyn CNC. Nr 2

Badania Maszyn CNC. Nr 2 Poltechka Pozańska Istytut Techolog Mechaczej Laboratorum Badaa Maszy CNC Nr 2 Badae dokładośc pozycjoowaa os obrotowych sterowaych umerycze Opracował: Dr. Wojcech Ptaszy sk Mgr. Krzysztof Netter Pozań,

Bardziej szczegółowo

ĆWICZENIE 1 Symulacja doświadczeń losowych Statystyka opisowa Estymacja parametryczna i nieparametryczna T E O R I A

ĆWICZENIE 1 Symulacja doświadczeń losowych Statystyka opisowa Estymacja parametryczna i nieparametryczna T E O R I A ĆWICZENIE Symulacja doświadczeń losowych Statystya opisowa Estymacja parametrycza i ieparametrycza T E O R I A Opracowała: Katarzya Stąpor Opis programu MS EXCEL. Iformacje ogóle Program Microsoft Excel

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I Pracowa IF UJ Luy 03 PODRĘCZNIKI Wsęp do aalzy błędu pomarowego Joh R. Taylor Wydawcwo Naukowe PWN Warszawa 999 I Pracowa

Bardziej szczegółowo

BQR FMECA/FMEA. czujnik DI CPU DO zawór. Rys. 1. Schemat rozpatrywanego systemu zabezpieczeniowego PE

BQR FMECA/FMEA. czujnik DI CPU DO zawór. Rys. 1. Schemat rozpatrywanego systemu zabezpieczeniowego PE BQR FMECA/FMEA Przed rozpoczęcem aalzy ależy przeprowadzć dekompozycję systemu a podsystemy elemety. W efekce dekompozycj uzyskuje sę klka pozomów: pozom systemu, pozomy podsystemów oraz pozom elemetów.

Bardziej szczegółowo

5. Obiegi wielostopniowe (kaskadowe). Metoda obliczania obiegów kaskadowych.

5. Obiegi wielostopniowe (kaskadowe). Metoda obliczania obiegów kaskadowych. . Chrw, Pdtawy Krge, wyład 8.. Obeg weltwe (aadwe). etda blczaa begów aadwych. W ażdym, dwle mlwaym begu rgeczym mża wyróżć te, w tórych wytwarzaa jet mc chłdcza rzez realzację jedyczeg rceu termdyamczeg.

Bardziej szczegółowo

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił 3.7.. Reducja dowolego uładu sił do sił i par sił Dowolm uładem sił będiem awać uład sił o liiach diałaia dowolie romiescoch w prestrei. tm pucie ajmiem się sprowadeiem (reducją) taiego uładu sił do ajprostsej

Bardziej szczegółowo

Wykład 11. a, b G a b = b a,

Wykład 11. a, b G a b = b a, Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada

Bardziej szczegółowo

Kombinacje, permutacje czyli kombinatoryka dla testera

Kombinacje, permutacje czyli kombinatoryka dla testera Magazie Kombiacje, permutacje czyli ombiatorya dla testera Autor: Jace Oroje O autorze: Absolwet Wydziału Fizyi Techiczej, Iformatyi i Matematyi Stosowaej Politechii Łódziej, specjalizacja Sieci i Systemy

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2010, Oeconomica 280 (59), 13 20

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2010, Oeconomica 280 (59), 13 20 FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Fola Pomer. Unv. Technol. Stetn. 2010, Oeconomca 280 (59), 13 20 Iwona Bą, Agnesza Sompolsa-Rzechuła LOGITOWA ANALIZA OSÓB UZALEŻNIONYCH OD ŚRODKÓW

Bardziej szczegółowo

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 + Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch

Bardziej szczegółowo

Zależność kosztów produkcji węgla w kopalni węgla brunatnego Konin od poziomu jego sprzedaży

Zależność kosztów produkcji węgla w kopalni węgla brunatnego Konin od poziomu jego sprzedaży Gawlk L., Kasztelewcz Z., 2005 Zależość kosztów produkcj węgla w kopal węgla bruatego Ko od pozomu jego sprzedaży. Prace aukowe Istytutu Górctwa Poltechk Wrocławskej r 2. Wyd. Ofcya Wydawcza Poltechk Wrocławskej,

Bardziej szczegółowo

Projekt 3 Analiza masowa

Projekt 3 Analiza masowa Wydzał Mechaczy Eergetyk Lotctwa Poltechk Warszawskej - Zakład Saolotów Śgłowców Projekt 3 Aalza asowa Nejszy projekt składa sę z dwóch częśc. Perwsza polega projekce wstępy wętrza kaby (kadłuba). Druga

Bardziej szczegółowo

Elementy arytmetyki komputerowej

Elementy arytmetyki komputerowej Elemety arytmetyk komputerowej cz. I Elemety systemów lczbowych /materał pomocczy do wykładu Iformatyka sem II/ Sps treśc. Wprowadzee.... Wstępe uwag o systemach lczbowych... 3. Przegląd wybraych systemów

Bardziej szczegółowo

ANALIZA FOURIEROWSKA szybkie transformaty Fouriera

ANALIZA FOURIEROWSKA szybkie transformaty Fouriera AALIZA FOURIEROWSKA szybi trasformaty Fourira dowola fuję priodyzą F( w zasi lub przstrzi (tx, ors T) moża przdstawić jao () F( b o + [ a si( + b os( ] gdzi π / T lub ω zauważmy, ż ω, jst ajiższą zęstośią

Bardziej szczegółowo

STATYSTYKA MORANA W ANALIZIE ROZKŁADU CEN NIERUCHOMOŚCI

STATYSTYKA MORANA W ANALIZIE ROZKŁADU CEN NIERUCHOMOŚCI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XII/, 0, tr. 3 STATYSTYKA MORANA W ANALIZIE ROZKŁADU CEN NIERUCHOMOŚCI Dorota Kozoł-Kaczorek Katedra Ekoomk Rolcta Mędzyarodoych Stoukó Gopodarczych Szkoła

Bardziej szczegółowo

PLANOWANIE I WNIOSKOWANIE STATYSTYCZNE W BADANIACH ROLNICZYCH

PLANOWANIE I WNIOSKOWANIE STATYSTYCZNE W BADANIACH ROLNICZYCH INSTYTUT HODOWLI I AKLIMATYZACJI ROLIN PLANOWANIE I WNIOSKOWANIE STATYSTYCZNE W BADANIACH ROLNICZYCH MATERIAY SZKOLENIOWE Dr hab. Zbgew Laudask, prof. adzw. Katedra Bometr Wydza Rolctwa Bolog SGGW Warszawa

Bardziej szczegółowo

Zagadnienia optymalizacji kosztów w projektowaniu gazowych sieci rozdzielczych

Zagadnienia optymalizacji kosztów w projektowaniu gazowych sieci rozdzielczych Zagadea optymalzacj kosztów w projektowau gazowych sec rozdzelczych Autorzy: dr Ŝ. ech Dobrowolsk, m Ŝ. Wtold Maryka ( Ryek Eerg 6/200) Słowa kluczowe: rozdzelcza seć gazowa, stacje gazowe redukcyje, gazocąg

Bardziej szczegółowo

Zmienna losowa X ma taki rozkład, jeśli przyjmuje wartości k=0,1,2,...,n z prawdopodobieństwami określonymi wzorem:

Zmienna losowa X ma taki rozkład, jeśli przyjmuje wartości k=0,1,2,...,n z prawdopodobieństwami określonymi wzorem: . Jaka jest różca mędzy cechą skokową cągłą? podać przykłady każdej z ch. Cecha loścowa : skokowa przyjmująca pewe wartośc lczbowe e przyjmująca wartośc pośredch cecha ta też jest azywaa dyskretą, przykład:

Bardziej szczegółowo

µ = Test jest następujący: jeŝeli X > 0.01 to odrzucamy H. 0

µ = Test jest następujący: jeŝeli X > 0.01 to odrzucamy H. 0 7. Testowaie hipotez statystyczych 7. Populacja ma rozkład ciągły opisay fukcją gęstości f ( x) ( + ) x dla x [,]. Testowaa jest hipoteza, Ŝe wobec hipotezy alteratywej, Ŝe. Wioskujemy a podstawie jedoelemetowej

Bardziej szczegółowo

WPŁYW SPÓŁEK AKCYJNYCH NA LOKALNY RYNEK PRACY

WPŁYW SPÓŁEK AKCYJNYCH NA LOKALNY RYNEK PRACY ZESZYTY NAUKOWE WYDZIAŁU NAUK EKONOMICZNYCH Mara KLONOWSKA-MATYNIA Natala CENDROWSKA WPŁYW SPÓŁEK AKCYJNYCH NA LOKALNY RYNEK PRACY Zarys treśc: Nejsze opracowae pośwęcoe zostało spółkom akcyjym, które

Bardziej szczegółowo

ANALIZA INPUT - OUTPUT

ANALIZA INPUT - OUTPUT Aalza put - output Notatk S Dorosewcz J Staseńko Stroa z 28 SŁAWOMIR DOROSIEWICZ JUSTYNA STASIEŃKO ANALIZA INPUT - OUTPUT NOTATKI Istytut Ekoometr SGH Aalza put - output Notatk S Dorosewcz J Staseńko Stroa

Bardziej szczegółowo

Wybór projektu inwestycyjnego ze zbioru wielu propozycji wymaga analizy następujących czynników:

Wybór projektu inwestycyjnego ze zbioru wielu propozycji wymaga analizy następujących czynników: Wybór projeu wesycyjego ze zboru welu propozycj wymaga aalzy asępujących czyów:. Korzyśc z przyjęca do realzacj daego projeu. 2. Ryzya z m zwązaego. 3. Czasu, óry powoduje zmaę warośc peądza. Czy czasu

Bardziej szczegółowo

STATYSTYKA I stopień ZESTAW ZADAŃ

STATYSTYKA I stopień ZESTAW ZADAŃ Stattka ZADAIA STATYSTYKA I topeń ZESTAW ZADAŃ dr Adam Sojda. Aalza truktur jedowmarowego rozkładu emprczego..... Badae wpółzależośc w dwuwmarowm rozkładze emprczm. 8 3. Aalza zeregów czaowch.... 4. Aalza

Bardziej szczegółowo

KARBOWNICZEK Dagmara doktorantka, mgr inż. ; LEJDA Kazimierz ; prof. dr hab. inż. Politechnika Rzeszowska, Katedra Silników Spalinowych i Transportu

KARBOWNICZEK Dagmara doktorantka, mgr inż. ; LEJDA Kazimierz ; prof. dr hab. inż. Politechnika Rzeszowska, Katedra Silników Spalinowych i Transportu НАЦІОНАЛЬНИЙ ТРАНСПОРТНИЙ УНІВЕРСИТЕТ 1 013 KARBOWNICZEK Dagmara doktoratka, mgr ż. ; LEJDA Kazmerz ; prof. dr hab. ż. oltechka Rzeszowska, Katedra Slków Spalowych Trasportu ANALIZA WSKAŹNIKA GŁĘBOKOŚCI

Bardziej szczegółowo

ESTYMATORY ODPORNE ZMIENNOŚCI W MODELU BLACKA - SCHOLESA WSTĘP

ESTYMATORY ODPORNE ZMIENNOŚCI W MODELU BLACKA - SCHOLESA WSTĘP Justya Majewska Katedra Statystyk, Akadema Ekoomcza w Katowcach e-mal: majewskaj@wp.pl ESTYMATORY ODPORNE ZMIENNOŚCI W MODELU BLACKA - SCHOLESA Streszczee: NajwaŜejszym etapem przy wycee opcj jest właścwe

Bardziej szczegółowo