PROGNOZY I SYMULACJE
|
|
- Nina Urbaniak
- 2 lat temu
- Przeglądów:
Transkrypt
1 orecasig is he ar of saig wha will happe, ad he explaiig wh i did. Ch. Chafield (986 PROGNOZY I YMULACJE Kaarza Chud Laskowska kosulacje: p. 400A środa -4 czwarek -4 sroa iereowa: hp://kc.sd.prz.edu.pl/
2 WYKŁAD VII zeregi czasowe III. Liiow model wgładzaia wkładiczego Hola. Model regresji liiowej (czasow
3 . LINIOWY MODEL WYGŁADZANIA WYKŁADNICZEGO HOLTA Model e zajduje zasosowaie w przpadku gd w szeregu czasowm wsępują red oraz wahaia przpadkowe. Jes o model dwurówaiow, w kórm do opisu edecji użwa się wielomiau sopia pierwszego. Model e jes bardziej elascz ze względu a wsępowaie dwóch paramerów wgładzaia: α oraz β. ( ( ( ( łuż do wzaczeia wgładzoch warości szeregu czasowego łuż do wzaczeia wgładzoch warości przrosu redu Ocea warości średiej w okresie -, Przrosu redu w okresie - Paramer modelu o warościach z przedziału [0;] Rówaie progoz a okres > ma posać: ( Do budow modelu Hola porzebe są począkowe warości i, ( i. Propozcja Y 0 Y Y-Y 3 Wraz wol liiowej fukcji redu Oszacowaej a podsawie próbki wsępej Współczik kierukow liiowej fukcji redu oszacowa a podsawie próbki wsępej 3
4 . LINIOWY MODEL WYGŁADZANIA WYKŁADNICZEGO HOLTA - przkład Warość usług w pewm przedsiębiorswie przedsawia szereg: 37, 4, 40, 4, 45, 4, 46, 48, 47, 53, 58, 67, 79, 85, 88. Wzaczć progozę warości usług w kolejm okresie Za warości począkowe przjęo: 70 ==37 Warość usług =- =4-37=4 a= 0,95 β= 0,
5 . LINIOWY MODEL WYGŁADZANIA WYKŁADNICZEGO HOLTA - przkład ( ( ( ( Y a= 0,95 β= 0,45 ( ,95 4+(-0,95(37,0+4,0=4,0 0,45 (4-37+(-0,454=4 37+4= ,95 40+(-0,95(4,0+4,0=40,3 0,45 (40,3-4+(-0,454=,9 4+4= ,95 4+(-0,95(40,3+,9=4, 0,45 (4,-40,3+(-0,45,9=,4 40,3+,9=4,, ,95 45+(-0,95(4,+,4=44,9 0,45 (44,9-4,+(-0,45,4=,5 4,+,4=4,5 6, ,95 4+(-0,95(44,9+,5=4,3 0,45 (4,3-44,9+(-0,45,5=0, 44,9+,5=47,4 8, ,95 46+(-0,95(4,3+0,=45,8 0,45 (45,8-4,3+(-0,450,=,7 4,3+0,=4,5, ,95 48+(-0,95(45,8+,7=48,0 0,45 (48-45,8+(-0,45,7=,9 45,8+,7=47,5 0, ,95 47+(-0,95(48,0+,9=47, 0,45 (47,-48+(-0,45,9=0,7 48+,9=49,9 8, ,95 53+(-0,95(47,+0,7=5,7 0,45 (5,7-47,+(-0,450,7=,9 47,+0,7=47,8 6,8 58 0,95 58+(-0,95(5,7+,9=57,9 0,45 (57,9-5,7+(-0,45,9=3,9 5,7+,9=55,6 5,6 67 0,95 67+(-0,95(57,9+3,9=66,7 0,45 (66,7-57,9+(-0,453,9=6, 57,9+3,9=6,8 7, ,95 79+(-0,95(66,7+6,=78,7 0,45 (78,7-66,7+(-0,456,=8,8 66,7+6,=7,8 37, ,95 85+(-0,95(78,7+8,8=85, 0,45 (85,-78,7+(-0,458,8=7,7 78,7+8,8=87, ,95 88+(-0,95(85,+7,7=88, 0,45 (88,-85,+(-0,457,7=5,6 85,+7,7=9,8 3,3 6-88,+5,6=93,8 Wzaczć progozę 09 Wkoać obliczeia dla pierwszch 4 przpadków gdzie alfa=0,45 a bea 0,95. 5
6 . LINIOWY MODEL WYGŁADZANIA WYKŁADNICZEGO HOLTA - przkład ( ( ( ( ( , 0,95 0,45 (6 88 ( 0,95 (85, 7,7 (88, 85, ( 0,45 7,7 5 5,6 93,8 88, 5,6 Do oce dopuszczalości progoz moża posłużć się błędami progoz wgasłch. Obliczoo średi kwadraow błąd ex pos progoz wgasłch. s s 4 ( k Błąd względ 00% 00% 4,3 39,8 % 6 s k ( ,5 4 aska - przkład 6
7 7. MODEL REGREJI LINIOWEJ model aalicz Y=a+b Modele aalicze sosuje się do progozowaia zjawisk, kóre charakerzował się w przeszłości regularmi zmiaami, dającmi się opisać za pomocą fukcji czasu i wobec przszłego rozwoju kórch przjęo posawę paswą. (zakłada się iezmieość redu oraz podsawowch składowch szeregu a a b R ( ˆ ( ˆ m s współczik kierukow wraz wol średia współczik deermiacji sadardow błąd oce modelu
8 MODEL REGREJI LINIOWEJ model aalicz - przkład Na podsawie dach doczącch samochodów ciężarowch zarejesrowach w laach dokoać progoz badaej cech a 00 rok. Wkorzsać model regresji liiowej. ŷ ( ˆ ( Rok Y (-śr (-śr^ (-śry ˆ ,5 90,5-993,7 947,7 9397, ,5 6469, ,5 7,5-9787,75 04, 943, , 4867, ,5 56,5-9090,75 36,8 5674, 50938, 4077, ,5 4,5-808,8 3,3 5, ,5 3730, ,5 30,5-787,95 35,9 360, , ,5 0,5-6093,45 40,4 440,8 8057,8 49, ,5,5-5009,9 55,0 6989,6 0958,8 7855, ,5 6,5-378,5 609,6 493,4 5588,03 856, ,5,5-344, 704, 997,0 07, , ,5 0,5-84,45 798,7 3404, 35,8 6586, ,5 0,5 939,55 893, 99,8 35,8 098, ,5,5 968,95 987,8 7, 07, , ,5 6,5 5406,5 08,3 6440,3 5588, , ,5,5 8096,9 76,9 8630,5 0958,8 8504, ,5 0,5 076, 7,5 443,7 8057,8 9778, ,5 30,5 674,75 366,0 3784, , ,5 4,5 555,55 460,6 4607, , , ,5 56,5 8903,75 555, 99, , ,5 7,5 303,45 649,7 3600, , , ,5 90,5 6569,6 744,3 76, , , 3699, , , śr 0,5 845,955 Y (śr b a ˆ a 845, , ,55 94,55 (94,55 0,5 853, 853,0 R ( ˆ ( ,98 s m ˆ ,6 89 8
9 . MODEL REGREJI LINIOWEJ model aalicz przkład ierpreacja amochod ciężarowe zarejesrowe [s. szuk] = 853,0 + 94,558 Cza ˆ Y 94,55 853, amochod ciężarowe zarejesrowe [s. szuk] Korelacja: r =, Y=94,6x + 853, Czas ( 0,95 Prz.Uf. W laach ilość zarejesrowach samochodów ciężarowch wzrasała przecięie o 94,5 s. szuk. Dopasowaie modelu bło bardzo wsokie R =0,98. (W 98% model dopasowa jes do dach Przecięe odchleie warości empirczch od liii redu wiosło 89 s. sz. 9
10 . MODEL REGREJI LINIOWEJ model aalicz przkład progoza Rok Y , , , , , , , , , , , , , , , , , , , , ,8 ŷ Yˆ Progoza pukowa 94,55 Błąd ex ae V 853, T T , Y Model Y=94,55x+853, s 0, ,6 838,8 Względ błąd ex ae 00% 00% 3,47% V ,6 Progoza przedziałowa dla zadaej z gór wiargodości progoz (zazwczaj 95% u współczik związa z wiargodością progoz, rozkładem resz i długością szeregu. P uv uv p u p 0,95 4,47 P 838,8 4,47 98,6 838,8 4,47 98, 6 p [398;379] aska - przkład 0
11 . MODEL REGREJI LINIOWEJ do ierpreacji Dokoać ierpreacji dwóch modeli liiowch Liie kolejowe ekploaowae [km] Liie kolejowe ekploaowae [km] = 664, - 347,7 Korelacja: r = -, ,95 Prz.Uf. Drogi publicze o wardej awierzchi [km] Drogi publicze o wardej awierzchi [km] = 30E + 093,8 Korelacja: r =, ,95 Prz.Uf.
PROGNOZOWANIE. Ćwiczenia 3. tel.: (061)
Ćwiczeia 3 mgr iż.. Mara Krueger mara.krueger@edu.wsl.com.pl mara.krueger@ilim.poza.pl el.: (06 850 49 57 Meod progozowaia krókoermiowego sał poziom red sezoowość Y Y Y Czas Czas Czas Model aiw Modele
ANALIZA DYNAMIKI ZJAWISK (dok.) WYGŁADZANIE szeregu czasowego
D. Miszczńska,M.Miszczński, Maeriał do wkładu 6 ze Saski, 009/0 [] ANALIZA DYNAMIKI ZJAWISK (dok.). szereg czasow, chroologicz (momeów, okresów). średi poziom zjawiska w czasie (średia armecza, średia
PROGNOZOWANIE. mgr Żaneta Pruska. Katedra Systemów Logistycznych.
PROGNOZOWANIE Kaedra Ssemów Logisczch mgr Żaea Pruska zaea_pruska@wp.pl zaea.pruska@wsl.com.pl PROJEKT 0 pk. (grup 4-osobowe) Projek: Wersja w Wordzie Powia zawierać opis projeku z zasosowaiem eapów progozowaia.
Prognozowanie i symulacje
Progozowaie i smulacje Ramow pla wkładu. Wprowadzeie w przedmio. rafość dopuszczalość i błąd progoz 3. Progozowaie a podsawie szeregów czasowch 4. Progozowaie a podsawie modelu ekoomerczego 5. Heurscze
PROGNOZOWANIE. mgr Żaneta Pruska. Katedra Systemów Logistycznych.
PROGNOZOWANIE Kaedra Ssemów Logisczch mgr Żaea Pruska zaea_pruska@wp.pl zaea.pruska@wsl.com.pl PROJEKT 5 pk. (grup 4-osobowe) Projek: Wersja w Wordzie Powia zawierać opis projeku z zasosowaiem eapów progozowaia.
Prognozowanie i symulacje
Prognozowanie i smulacje Lepiej znać prawdę niedokładnie, niż dokładnie się mlić. J. M. Kenes dr Iwona Kowalska ikowalska@wz.uw.edu.pl Prognozowanie meod naiwne i średnie ruchome Meod naiwne poziom bez
ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1
ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,
EKONOMETRIA. Liniowy model ekonometryczny (regresji) z jedną zmienną objaśniającą
EKONOMETRIA Tema wykładu: Liiowy model ekoomeryczy (regresji z jedą zmieą objaśiającą Prowadzący: dr iż. Zbigiew TARAPATA e-mail: Zbigiew.Tarapaa Tarapaa@isi.wa..wa.edu.pl hp:// zbigiew.arapaa.akcja.pl/p_ekoomeria/
PROGNOZY I SYMULACJE
oecasig is he a of saig wha will happe, ad he explaiig wh i did. h. hafield 98 PROGNOZY I YMULAJE Kaaza hud Laskowska kosulacje: p. 00A śoda - czwaek - soa ieeowa: hp://kc.sd.pz.edu.pl/ WYKŁAD VIII zeegi
PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1
PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,
Metody statystyczne w naukach biologicznych
Meod sascze w aukach biologiczch 6-6- Wkład: Szeregi czasowe i progozowaie Aaliza damiki iesie ze sobą ową jakość. Pozwala oa zbadać rozkład cech sasczej w czasie. Szeregi damicze przedsawiają kszałowaie
WSPOMAGANIE PROCESÓW DECYZYJNYCH
WSPOMAGANIE PROCESÓW DECYZYJNYCH doc. dr Beaa Pułaska-Tura Zakład Badań Operacjch Zarządzaia, pokój B505 e-mail: urab@mail.wz.uw.edu.pl el: (22) 55 34 44 Mgr Pior Ja Gadecki e-mail: ifo@pgadecki.pl www:
Prognozowanie na podstawie szeregów czasowych.
Progozowaie a podsawie szeregów czasowch. Sładowe szeregów czasowch. Szereg czasow sładowa ssemacza sładowa przpadowa red sał poziom sładowa oresowa wahaia clicze wahaia sezoowe Tred (edecja rozwojowa
PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA
1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje
KURS STATYSTYKA. Lekcja 7 Analiza dynamiki zjawisk (zjawiska w czasie) ZADANIE DOMOWE. Strona 1
KURS STATYSTYKA Lekcja 7 Aaliza damiki zjawisk (zjawiska w czasie) ZADANIE DOMOWE www.erapez.pl Sroa Część : TEST Zazacz poprawą odpowiedź (lko jeda jes prawdziwa). Paie Szereg damicz o: a) ciąg prędkości
Analiza szeregów czasowych uwagi dodatkowe
Analiza szeregów czasowch uwagi dodakowe Jerz Sefanowski Poliechnika Poznańska Zaawansowana Eksploracja Danch Prognozowanie Wbór i konsrukcja modelu o dobrch własnościach predkcji przszłch warości zmiennej.
Wykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie
Wykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy
PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK
1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny
OCENA POPYTU POPYT POJĘCIA WSTĘPNE. Definicja: Popyt to ilość dobra, jaką nabywcy gotowi są zakupić przy różnych poziomach ceny.
OCENA POPYTU POPYT POJĘCIA WSTĘPNE Defiicja: Pop o ilość dobra, jaką abwc goowi są zakupić prz różch poziomach ce. Deermia popu: (a) Cea daego dobra (b) Ilość i ce dóbr subsucjch (zw. kokurecjch) (c) Ilość
TRANZYSTORY POLOWE JFET I MOSFET
POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora
licencjat Pytania teoretyczne:
Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie
Prognozowanie i symulacje
Prognozowanie i smulacje Ramow plan wkładu.wprowadzenie w przedmio.rafność dopuszczalność i błąd prognoz 3.Prognozowanie na podsawie szeregów czasowch 4.Prognozowanie na podsawie modelu ekonomercznego
DEA podstawowe modele
Marek Miszczński KBO UŁ 2008 - Aaliza dach graiczch (EA) cz.2 (przkład aaliza damiki rakigi) EA podsawowe modele WPROWAZENIE Efekwość (produkwość) obieku gospodarczego o es defiiowaa ako sosuek sum ważoch
PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński
Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne
Wygładzanie metodą średnich ruchomych w procesach stałych
Wgładzanie meodą średnich ruchomch w procesach sałch Cel ćwiczenia. Przgoowanie procedur Średniej Ruchomej (dla ruchomego okna danch); 2. apisanie procedur do obliczenia sandardowego błędu esmacji;. Wizualizacja
Statystyka Wzory I. Analiza struktury
Uiwersytet Ekooiczy w Katowicach Wzory I. Aaliza struktury 1. Miary tedecji cetralej (średie, przecięte Średia arytetycza Dla sz. ważoego Dla sz. ważoego dla z. ciągłej Dla szeregu wyliczającego: dla zieej
Konspekty wykładów z ekonometrii
Konspek wkładów z ekonomerii Budowa i werfikaca modelu - reść przkładu W wniku ssemacznch badań popu na warzwa w pewnm mieście, orzmano nasępuące szeregi czasowe: przros (zmian) popu na warzwa (w zł. na
Ocena dopasowania modelu do danych empirycznych
Ocea dopasowaia modelu do dach empirczch Po oszacowaiu parametrów modelu ależ zbadać, cz zbudowa model dobrze opisuje badae zależości. Jeśli okaże się, że rozbieżość międz otrzmam modelem a dami empirczmi
Cechy szeregów czasowych
energecznch Cech szeregów czasowch Rozdział Modelowanie szeregów czasowch 7 proces deerminisczn proces kórego warość może bć preczjnie określona w dowolnm czasie =T+τ = a +b T T+τ czas = sin(ω) T T+τ czas
NIEPEWNOŚĆ POMIAROWA - WPROWADZENIE
NIEPENOŚĆ POMIAROA - PROADZENIE - bezwzęda iepewość poiarowa (dokładość poiaru). Jej źródłe oże bć: przpadkow rozrzu wików poiarów dokładość przrządu. Niepewości poiarowe ierzoe bezpośredio związae z dokładością
Sygnały pojęcie i klasyfikacja, metody opisu.
Sygały pojęcie i klasyfikacja, meody opisu. Iformacja przekazywaa jes za pośredicwem sygałów, kóre przeoszą eergię. Sygał jes o fukcja czasowa dowolej wielkości o charakerze eergeyczym, w kórym moża wyróżić
Metody prognozowania: Szeregi czasowe. Dr inż. Sebastian Skoczypiec. ver Co to jest szereg czasowy?
Meody prognozowania: Szeregi czasowe Dr inż. Sebasian Skoczypiec ver. 11.20.2009 Co o jes szereg czasowy? Szereg czasowy: uporządkowany zbiór warości badanej cechy lub warości określonego zjawiska, zaobserwowanych
Miary rozproszenia. Miary położenia. Wariancja. Średnia. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.
Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla
Efektywność projektów inwestycyjnych. Statyczne i dynamiczne metody oceny projektów inwestycyjnych
Efekywość projeków iwesycyjych Saycze i dyamicze meody ocey projeków iwesycyjych Źródła fiasowaia Iwesycje Rzeczowe Powiększeie mająku rwałego firmy, zysk spodzieway w dłuższym horyzocie czasowym. Fiasowe
Analiza i prognozowanie szeregów czasowych
Analiza i pognozowanie szeegów czasowych Pojęcie szeegu czasowego Szeeg czasowy (chonologiczny, dynamiczny, ozwojowy) pezenuje ozwój wybanego zjawiska w czasie; zawiea waości zjawiska y w jednoskach czasu,,
Miary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.
Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla
PROGNOZY I SYMULACJE
Forecasing is he ar of saing wha will happen, and hen explaining wh i didn. Ch. Chafield (986) PROGNOZY I SYMULACJE Kaarzna Chud Laskowska konsulacje: p. 400A środa -4 czwarek -4 srona inerneowa: hp://kc.sd.prz.edu.pl/
Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n
Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam
21. CAŁKA KRZYWOLINIOWA NIESKIEROWANA. x = x(t), y = y(t), a < t < b,
CAŁA RZYWOLINIOWA NIESIEROWANA rzywą o rówaiach parameryczych: = (), y = y(), a < < b, azywamy łukiem regularym (gładkim), gdy spełioe są asępujące waruki: a) fukcje () i y() mają ciągłe pochode, kóre
Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych
Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II
Analiza rynku projekt
Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes
Pobieranie próby. Rozkład χ 2
Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie
WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH
SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów
STATYSTYKA OPISOWA PODSTAWOWE WZORY
MIARY POŁOŻENIA Średia Dla daych idywidualych: x = 1 STATYSTYKA OPISOWA PODSTAWOWE WZORY x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału Domiata (moda Liczba ajczęściej
Wnioskowanie statystyczne dla korelacji i regresji.
STATYSTYKA MATEMATYCZNA WYKŁAD 6 Woskowae statstcze dla korelacj regresj. Aalza korelacj Założee: zmea losowa dwuwmarowa X, Y) ma rozkład ormal o współczku korelacj ρ. X, Y cech adae rówocześe. X X X...
STATYSTYKA OPISOWA PODSTAWOWE WZORY
MIARY POŁOŻENIA Średia Dla daych idywidualych: STATYSTYKA OPISOWA PODSTAWOWE WZORY Q i = x lmi + i mi 1 4 j h m i mi x = 1 x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału
D:\materialy\Matematyka na GISIP I rok DOC\07 Pochodne\8A.DOC 2004-wrz-15, 17: Obliczanie granic funkcji w punkcie przy pomocy wzoru Taylora.
D:\maerialy\Maemayka a GISIP I rok DOC\7 Pochode\8ADOC -wrz-5, 7: 89 Obliczaie graic fukcji w pukcie przy pomocy wzoru Taylora Wróćmy do wierdzeia Taylora (wzory (-( Tw Szczególie waża dla dalszych R rozważań
MODELOWANIE I PROGNOZOWANIE
L.Kowalsk-Modelowae progozowae MODELOWANIE I PROGNOZOWANIE MATERIAŁY DYDAKTYCZNE o Podsawowe charakersk dach sasczch, o Ideks, o Progozowae- wadomośc wsępe, o Modele ekoomercze, o Jedorówaow model low,
PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH
STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Barbara Baóg Iwona Foryś PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH Wsęp Koszy dosarczenia wody
ĆWICZENIE Z PRZEDMIOTU OCHRONA ŚRODOWISKA W BUDOWNICTWIE WODNYM
ĆWICZENIE Z PRZEDMIOTU OCHRONA ŚRODOWISKA W BUDOWNICTWIE WODNYM Tema: Określenie czas i przebieg zamulenia małego zbiornika wodnego Projekowana objęość zbiornika V =.. [ys m 3 ] Powierzchnia zlewni do
Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego
Część VII. Analiza szeregu czasowego 1 DEFINICJA SZEREGU CZASOWEGO Szeregiem czasowym nazywamy zbiór warości cechy w uporządkowanych chronologicznie różnych momenach (okresach) czasu. Oznaczając przez
POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU
Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów
MATEMATYKA wykład 1. Ciągi. Pierwsze 2 ciągi są rosnące (do nieskończoności), zaś 3-i ciąg jest zbieŝny do zera. co oznaczamy przez
MATEMATYKA wkład Ciągi,, 2, 3, 4,,, 3, 5, 7, 9,,,,,,,,, są przkładami ciągów 2 4 6 8 Pierwsze 2 ciągi są rosące (do ieskończoości), zaś 3-i ciąg jes zbieŝ do zera co ozaczam przez lim a ch 2-óch ciągów,
Analiza autokorelacji
Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.
( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =
ROZŁADOWANIE KONDENSATORA I. el ćwiczenia: wyznaczenie zależności napięcia (i/lub prądu I ) rozładowania kondensaora w funkcji czasu : = (), wyznaczanie sałej czasowej τ =. II. Przyrządy: III. Lieraura:
Zasady budowania prognoz ekonometrycznych
Zasad budowania prognoz ekonometrcznch Klasczne założenia teorii predkcji 1. Znajomość modelu kształtowania się zmiennej prognozowanej Znajomość postaci analitcznej wstępującch zależności międz zmiennmi
E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny
E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,
2. Schemat ideowy układu pomiarowego
1. Wiadomości ogóle o prostowikach sterowaych Układy prostowikowe sterowae są przekształtikami sterowaymi fazowo. UmoŜliwiają płya regulację średiej wartości apięcia wyprostowaego, a tym samym średiej
Prognozowanie średniego miesięcznego kursu kupna USD
Prognozowanie średniego miesięcznego kursu kupna USD Kaarzyna Halicka Poliechnika Białosocka, Wydział Zarządzania, Kaedra Informayki Gospodarczej i Logisyki, e-mail: k.halicka@pb.edu.pl Jusyna Godlewska
STATYSTYKA I ANALIZA DANYCH
TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica
EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.
EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b
Ćwiczenie 5 ITERACYJNY ALGORYTM LS. IDENTYFIKACJA OBIEKTÓW NIESTACJONARNYCH ALGORYTM Z WYKŁADNICZYM ZAPOMINANIEM.
Kompterowe Sstem Idetfikacji Laboratorim Ćwiczeie 5 IERACYJY ALGORY LS. IDEYFIKACJA OBIEKÓW IESACJOARYCH ALGORY Z WYKŁADICZY ZAPOIAIE. gr iż. Piotr Bros, bros@agh.ed.pl Kraków 26 Kompterowe Sstem Idetfikacji
Instytut Logistyki i Magazynowania
Insu Logiski i Magaznowania Ćwiczenia 1 mgr Dawid Doliński Dawid.Dolinski@ilim.poznan.pl lub Dawid.Dolinski@wsl.com.pl Tel. 0(61) 850 49 45 ZALICZENIE PRZEDMIOTU 5 punków Blok zajęć z Panem mgr D.Dolińskim
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12
Wykład Korelacja i regresja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Wykład 8. Badaie statystycze ze względu
Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006
Modele dynamiczne Paweł Cibis pcibis@o2.pl 27 kwietnia 2006 1 Wyodrębnianie tendencji rozwojowej 2 Etap I Wyodrębnienie tendencji rozwojowej Etap II Uwolnienie wyrazów szeregu empirycznego od trendu Etap
Metody Ilościowe w Socjologii
Meod Ilościowe w Socjologii wkład 5, 6, 7 PROGNOZOWANIE I SYMULACJE dr inż. Maciej Woln AGENDA I. Prognozowanie i smulacje podsawowe informacje II. Prognozowanie szeregów czasowch III. Dekompozcja szeregu,
Wpływ stanu nawierzchni drogi na hałas samochodowy
Instytut Akustyki UAM ul. Umultowska 85, 6-64 64 Poznań Wpływ stanu nawierzchni drogi na hałas samochodowy Roman Gołębiewski roman_g@amu.edu.pl http://www.ia.amu.edu.pl Celle,, 5-7 7 listopad 2006 Program
Niepewności pomiarowe
Niepewości pomiarowe Obserwacja, doświadczeie, pomiar Obserwacja zjawisk fizyczych polega a badaiu ych zjawisk w warukach auralych oraz a aalizie czyików i waruków, od kórych zjawiska e zależą. Waruki
MODELE PROGNOSTYCZNE SPRZEDAśY ENERGII ELEKTRYCZNEJ ODBIORCOM WIEJSKIM OPARTE NA WYMIARZE FRAKTALNYM, LOGISTYCZNE I KRZYśOWANIA HEURYSTYCZNEGO
InŜynieria Rolnicza 11/2006 Małgorzaa Trojanowska Kaedra Energeyki Rolniczej Akademia Rolnicza w Krakowie MODELE PROGNOSTYCZNE SPRZEDAśY ENERGII ELEKTRYCZNEJ ODBIORCOM WIEJSKIM OPARTE NA WYMIARZE FRAKTALNYM,
Szeregi czasowe, analiza zależności krótkoi długozasięgowych
Szeregi czasowe, analiza zależności krótkoi długozasięgowych Rafał Weron rweron@im.pwr.wroc.pl Definicje Mając dany proces {X t } autokowariancję definiujemy jako : γ(t, t ) = cov(x t, X t ) = = E[(X t
1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o
1. Wioskowaie statystycze. W statystyce idetyfikujemy: Cecha-Zmiea losowa Rozkład cechy-rozkład populacji Poadto miaem statystyki określa się także fukcje zmieych losowych o tym samym rozkładzie. Rozkłady
ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK
1 ANALIZA, PROGNOZOWANIE I SYMULACJA 2 POBRAĆ Z INTERNETU Plaforma WSL on-line Nazwisko prowadzącego Maryna Kupczyk Folder z nazwą przedmiou - Analiza, prognozowanie i symulacja Plik o nazwie Baza do ćwiczeń
RÓWNANIA RÓŻNICZKOWE WYKŁAD 7
RÓWNANIA RÓŻNIZKOWE WYKŁAD 7 Deiicj Ukłdem rówń różiczkowch rzędu pierwszego w posci ormlej zwm ukłd rówń o iewidomch > zmie iezleż. Uwg Jeżeli = o zzwczj piszem x zmis orz g zmis jeżeli = o piszem x z
Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz
Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia
ZESTAW VI. ε, są składnikami losowymi. Oba modele są nieliniowe. Model (1) Y X Y = = Y X NIELINIOWE MODELE EKONOMETRYCZNE, FUNKCJA PRODUKCJI
NIELINIOWE MODELE EKONOMETRYCZNE, FUNKCJA PRODUKCJI ZESTAW VI Przykład: Weźmy pod uwagę dwa modele ednorównaniowe: () Y = a+ b + c, () Y = + g + g Z + ξ, Gdzie,Y,Z oznaczaą zmienne, a,b,c,,g paramery srukuralne
Badanie zależności cech
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i element kombinatorki. Zmienne losowe i ich rozkład 3. Populacje i prób danch, estmacja parametrów 4. Testowanie hipotez 5. Test parametrczne (na przkładzie
Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ
Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,
Statystyka opisowa. () Statystyka opisowa 24 maja / 8
Część I Statystyka opisowa () Statystyka opisowa 24 maja 2010 1 / 8 Niech x 1, x 2,..., x będą wyikami pomiarów, p. temperatury, ciśieia, poziomu rzeki, wielkości ploów itp. Przykład 1: wyiki pomiarów
Metody poprawy jakości obrazu (image enchancement)
Metody poprawy jakości obrazu imae echacemet) Są to metody wstępeo przetwarzaia obrazu. Celem tych metod jest oóla poprawa jakości obrazu poprzez modyikację jeo jasości, kotrastu lub historamu. Metody
Metody oceny efektywności projektów inwestycyjnych
Opracował: Leszek Jug Wydział Ekoomiczy, ALMAMER Szkoła Wyższa Meody ocey efekywości projeków iwesycyjych Niezbędym warukiem urzymywaia się firmy a ryku jes zarówo skuecze bieżące zarządzaie jak i podejmowaie
Metody Lagrange a i Hamiltona w Mechanice
Meody Lagrange a i Hamilona w Mechanice Mariusz Przybycień Wydział Fizyki i Informayki Sosowanej Akademia Górniczo-Hunicza Wykład 7 M. Przybycień (WFiIS AGH) Meody Lagrange a i Hamilona... Wykład 7 1 /
PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK
1 PROGNOZOWANIE I SYMULACJE 2 http://www.outcome-seo.pl/excel1.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodatek Solver jest dostępny w menu Narzędzia. Jeżeli Solver nie jest
ĆWICZENIE 6. Komputerowe wspomaganie analizy i syntezy układów sterowania Liniowe układy jedno- oraz wielowymiarowe
ĆWIZENIE 6 Kompuerowe wspomagaie aaliz i sez układów serowaia Liiowe układ jedo- oraz wielowmiarowe 6. el ćwiczeia odsawowm celem ćwiczeia jes ugruowaie wiadomości z zakresu projekowaia sez oraz smulacji
WNIOSKOWANIE STATYSTYCZNE
Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml
WYKORZYSTANIE METODY MOVING BLOCK BOOTSTRAP W PROGNOZOWANIU SZEREGÓW CZASOWYCH Z WAHANIAMI OKRESOWYMI *
Grzegorz Kończak Michał Miłek Uiwersye Ekoomiczy w Kaowicach WYKORZYSTANIE METODY MOVING BLOCK BOOTSTRAP W PROGNOZOWANIU SZEREGÓW CZASOWYCH Z WAHANIAMI OKRESOWYMI * Wprowadzeie Celem aalizy szeregu czasowego
Obligacja i jej cena wewnętrzna
Obligacja i jej cea wewęrza Obligacja jes o isrume fiasowy (papier warościowy), w kórym jeda sroa, zwaa emieem obligacji, swierdza, że jes dłużikiem drugiej sroy, zwaej obligaariuszem (jes o właściciel
Wykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak
Dr hab. iż. Władysław Arur Woźiak Wykład FIZYKA I. Kiemayka puku maerialego Dr hab. iż. Władysław Arur Woźiak Isyu Fizyki Poliechiki Wrocławskiej hp://www.if.pwr.wroc.pl/~woziak/fizyka1.hml Dr hab. iż.
ESTYMACJA PARAMETRÓW FUNKCJI REGRESJI METODĄ KLASYCZNĄ ORAZ METODAMI BOOTSTRAPOWYMI**
Góricwo i Geoiżyieria Rok 30 Zeszy 3/ 006 Dariusz Foszcz* ESTYMACJA PARAMETRÓW FUNKCJI REGRESJI METODĄ KLASYCZNĄ ORAZ METODAMI BOOTSTRAPOWYMI**. Wsęp W zmieiającej się rzeczywisości przebiegu procesów
FINANSOWE SZEREGI CZASOWE WYKŁAD 3
FINANSOWE SZEREGI CZASOWE WYKŁAD 3 dr Tomasz Wójowcz Wydzał Zarządzana AGH 3800 3300 800 300 800 300 800 0 0 30 40 50 60 70 Kraków 0 Tomasz Wójowcz, WZ AGH Kraków przypomnene MA(q): gdze ε są d(0,σ ).
Wykład 5 Elementy teorii układów liniowych stacjonarnych odpowiedź na dowolne wymuszenie
Wykład 5 Elemeny eorii układów liniowych sacjonarnych odpowiedź na dowolne wymuszenie Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska
Podstawowe oznaczenia i wzory stosowane na wykładzie i laboratorium Część I: estymacja
Podstawowe ozaczeia i wzory stosowae a wykładzie i laboratorium Część I: estymacja 1 Ozaczeia Zmiee losowe (cechy) ozaczamy a wykładzie dużymi literami z końca alfabetu. Próby proste odpowiadającymi im
Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji
Agnieszka Przybylska-Mazur * Meody badania wpływu zmian kursu waluowego na wskaźnik inflacji Wsęp Do oceny łącznego efeku przenoszenia zmian czynników zewnęrznych, akich jak zmiany cen zewnęrznych (szoki
STATYSTYKA MATEMATYCZNA WYKŁAD listopada 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 7 23 listopada 2009 Wykład 6 (16.XI.2009) zakończył się zdefiniowaniem współczynnika korelacji: E X µ x σ x Y µ y σ y = T WSPÓŁCZYNNIK KORELACJI ρ X,Y = ρ Y,X (!) WSPÓŁCZYNNIK
Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,
ANALIZA KORELACJI IREGRESJILINIOWEJ
ANALIZA KORELACJI IREGRESJILINIOWEJ 1. ZALEŻNOŚCI STOCHASTYCZNE Badajac zjawiska o charakterze masowym, w tym szczególie zjawiska spo leczo-ekoomicze, stwierdzamy, że każde z ich jest uwarukowae dzia laiem
STATYSTYCZNA OCENA WYNIKÓW POMIARÓW.
Statytycza ocea wyików pomiaru STATYSTYCZNA OCENA WYNIKÓW POMIARÓW CEL ĆWICZENIA Celem ćwiczeia jet: uświadomieie tudetom, że każdy wyik pomiaru obarczoy jet błędem o ie zawze zaej przyczyie i wartości,
Ł Ł ć ć ż ż ż ź ź Ć ń ł ź ż ś ł ź ń ś ż ś ś ś ś ż ź ż ż ź ł ż ż ż ś ś ś ś ż ś ś ź Ś ś ż ś ś ł ż ś ś ł ź ź Ź ś ź ł ż ż ń ł ść ł ś ść ś ż ć ś ż ś ś ź ń ć ź ść ź ż ż ść ć ść ść Ź Ź ł ś ń ł ś ś ł ł ś ś ś ś