dr Michał Konopczyński Ekonomia matematyczna ćwiczenia

Wielkość: px
Rozpocząć pokaz od strony:

Download "dr Michał Konopczyński Ekonomia matematyczna ćwiczenia"

Transkrypt

1 dr Mchł Koopczńsk Ekoom mtemtcz ćwcze. Ltertur obowązkow Eml Pek red. Podstw ekoom mtemtczej. Mterł do ćwczeń MD r 5 AE Pozń.. Ltertur uzupełjąc Eml Pek Ekoom mtemtcz AE Pozń. Alph C. Chg Podstw ekoom mtemtczej PWE 994. M. Koopczńsk. Kedrowsk Podstw Ekoom Mtemtczej. Elemet teor poptu rówowg rkowej MD r 65 red. Eml Pek AE Pozń Zsd zlcz kolokw 45 9 pkt. ktwość co jwżej pkt. Oce Usprwedlwo eobecość sprwdze jed możlwość ps sprwdzu w terme późejszm o około d. UWAGA Ne m poprw sprwdzów. e-ml mchl.koopczsk@e.poz.pl Moj służbow wtr http//ekomt.e.poz.pl/koopczsk/ Zd. domowe z tdzeń zd ze str. 9; przecztć rozdzł. b z tgode zd 4AC h 5 6 ze str ; przecztć rozdzł. Mchł Koopczńsk CW

2 . Dzł wektorch λ λ λ λ λ. Pojęce ukcj klskcj ukcj Decj ukcj Fukcją ze zboru do zwm tke odwzorowe które kżdemu elemetow ze zboru przporządkowuje jede elemet ze zboru. lczb wektor lczb ukcj sklr jedej zmeej ukcj wektorow jedej zmeej wektor ukcj sklr welu zmech ukcj wektorow welu zmech 3. Pochod ukcj sklrej jedej zmeej Pochodą ukcj w pukce zwm grcę lorzu różcowego lm lm Pochodą ozczm jedm z stępującch smbol ' ' d d [terpretcj geometrcz] d d Mchł Koopczńsk CW

3 Mchł Koopczńsk CW 4. Pochod cząstkow ukcj sklrej welu zmech lm 5. Mootoczość ukcj sklrej jedej lub welu zmech Fukcję zwm emlejącą jeżel Fukcję zwm erosącą jeżel Fukcję zwm rosącą jeżel > Fukcję zwm mlejącą jeżel < A węc ukcj sklr welu zmech jest rosąc jeżel wzrost któregokolwek rgumetu ukcj prz pozostłch rgumetch ezmeoch powoduje wzrost wrtośc ukcj. 6. Cągłość ukcj Fukcję zwm cągłą w pukce wted tlko wted gd dl kżdego cągu { } puktów leżącch do zbeżego do cąg { } jest zbeż do co zpsujem. Fukcję zwm cągłą jeżel jest cągł w kżdm pukce zboru.

4 Mchł Koopczńsk CW 3 7. Wklęsłość wpukłość ukcj Fukcję zwm wklęsłą gd Fukcję zwm sle wklęsłą gd > > Fukcję zwm wpukłą gd Fukcję zwm sle wpukłą gd < > [lustrcj geometrcz skrpt str ]

5 Mchł Koopczńsk CW 4 8. Prędkość stop wzrostu elstczość Prędkość ukcj chlee ukcj względem -tego rgumetu P Stop wzrostu ukcj względem -tego rgumetu SW Elstczość ukcj względem -tego rgumetu ε [terpretcj tch trzech pojęć] 9. Hesj ukcj sklrej welu zmech H Hesj jest mcerzą smetrczą. Zpew to twerdzee Schwrz

6 . odzje określoośc hesju Hesj jest dodto określo gd H > Hesj jest ujeme określo gd H < Hesj jest eujeme określo gd H Hesj jest edodto określo gd H. Twerdzee Slvester o określoośc smetrczej mcerz H H Wrukem koeczm dostteczm to b smetrcz mcerz H bł dodto określo jest to b wzczk wszstkch podmcerz główch mcerz H bł dodte tz > det > det H > Smetrcz mcerz H jest ujeme określo gd jedocześe spełoe są wszstke erówośc 3 < det det 3 < > Mchł Koopczńsk CW 5

7 Smetrcz mcerz H jest eujeme określo gd wzczk wszstkch podmcerz główch mcerz H są eujeme tz det det H Smetrcz mcerz H jest edodto określo gd jedocześe spełoe są wszstke erówośc 3 det det Zwązk określoośc hesju z wklęsłoścą wpukłoścą ukcj Jeżel H jest dodto określo to ukcj jest sle wpukł Jeżel H jest ujeme określo to ukcj jest sle wklęsł Jeżel H jest eujeme określo to ukcj jest wpukł Jeżel H jest edodto określo to ukcj jest wklęsł Uwg Są to mplkcje węc p. e kżd ukcj wklęsł m edodto określo hesj 3. Ekstrem bezwrukowe ukcj sklrej jedej lub welu zmech wruk koecze dosttecze Wruek koecz Jeżel ukcj m w pukce ekstremum steją w tm pukce wszstke pochode cząstkowe perwszego rzędu tej ukcj to wszstke te pochode w pukce mją wrtość zero tz. Pukt zwm puktem stcjorm ukcj. Mchł Koopczńsk CW 6

8 Wruek dosttecz Jeżel ukcj m w pewm otoczeu puktu stcjorego wszstke pochode cząstkowe rzędu drugego cągłe to ukcj m w pukce stcjorm mksmum gd hesj H jest w tm pukce ujeme określo mmum gd hesj H jest w tm pukce dodto określo. Mchł Koopczńsk CW 7

FUNKCJE DWÓCH ZMIENNYCH

FUNKCJE DWÓCH ZMIENNYCH FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam

Bardziej szczegółowo

Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Różczkowae fukcj rzeczywstych welu zmeych rzeczywstych Matematyka Studum doktoracke KAE SGH Semestr let 8/9 R. Łochowsk Pochoda fukcj jedej zmeej e spojrzee Nech f : ( α, β ) R, α, β R, α < β Fukcja f

Bardziej szczegółowo

EKSTREMA FUNKCJI EKSTREMA FUNKCJI JEDNEJ ZMIENNEJ. Tw. Weierstrassa Każda funkcja ciągła na przedziale domkniętym ma wartość najmniejszą i największą.

EKSTREMA FUNKCJI EKSTREMA FUNKCJI JEDNEJ ZMIENNEJ. Tw. Weierstrassa Każda funkcja ciągła na przedziale domkniętym ma wartość najmniejszą i największą. Joaa Ceślak, aula Bawej ESTREA FUNCJI ESTREA FUNCJI JEDNEJ ZIENNEJ Otoczeem puktu R jest każdy przedzał postac,+, gdze >. Sąsedztwem puktu jest każdy zbór postac,,+, gdze >. Nech R, : R oraz ech. De. ówmy,

Bardziej szczegółowo

1. Relacja preferencji

1. Relacja preferencji dr Mchał Koopczyńsk EKONOMIA MATEMATYCZNA Wykłady, 2, 3 (a podstawe skryptu r 65) Relaca preferec koszyk towarów: przestrzeń towarów: R + = { x R x 0} x = ( x,, x ) X X R+ x 0 x 0 =, 2,, x~y xf y x y x

Bardziej szczegółowo

Ekoenergetyka Matematyka 1. Wykład 8. CIĄGI LICZBOWE

Ekoenergetyka Matematyka 1. Wykład 8. CIĄGI LICZBOWE Ekoeergetk Mtemtk 1. Wkłd 8. CIĄGI LICZBOWE Defiicj (ciąg liczbow) Ciągiem liczbowm zwm fukcję odwzorowującą zbiór liczb turlch w zbiór liczb rzeczwistch. Wrtość tej fukcji dl liczb turlej zwm -tm wrzem

Bardziej szczegółowo

Wykład 7: Pochodna funkcji zastosowania do badania przebiegu zmienności funkcji

Wykład 7: Pochodna funkcji zastosowania do badania przebiegu zmienności funkcji Wkłd 7: Pochodn funkcji zstosowni do bdni przebiegu zmienności funkcji dr Mriusz Grządziel semestr zimow, rok kdemicki 2013/2014 Funkcj logistczn Rozwżm funkcję logistczną = f 0 (t) = 1+5e 0,5t f(t) 0

Bardziej szczegółowo

3. Wykład III: Warunki optymalności dla zadań bez ograniczeń

3. Wykład III: Warunki optymalności dla zadań bez ograniczeń 3 Wkład III: Waruki optmalości dla zadań bez ograiczeń Podae poiże waruki optmalości dla są uogólieiem powszechie zach waruków dla fukci ede zmiee (zerowaie się pierwsze pochode i lokala wpukłość) 3 Twierdzeie

Bardziej szczegółowo

Całkowanie numeryczne Zadanie: obliczyć przybliżenie całki (1) używając wartości funkcji f(x) w punktach równoodległych. Przyjmujemy (2) (3) (4) x n

Całkowanie numeryczne Zadanie: obliczyć przybliżenie całki (1) używając wartości funkcji f(x) w punktach równoodległych. Przyjmujemy (2) (3) (4) x n lkowe_um- łkowe umercze Zde: olczć przlżee cłk ( ) d () użwjąc wrtośc ukcj () w puktc rówoodległc. Przjmujem (), gdze,,, () () tąd / (5) Metod prostokątów d / (6) gdze / / (7) -- :9: /6 lkowe_um- td. td.

Bardziej szczegółowo

Projekt 3 3. APROKSYMACJA FUNKCJI

Projekt 3 3. APROKSYMACJA FUNKCJI Projekt 3 3. APROKSYMACJA FUNKCJI 3. Krter proksmcj. Złóżm że () jest ukcją cągłą w przedzle [ b ]. Zlezee przblże (proksmcj) poleg wzczeu współczków pewego welomu P() któr będze dobrze przblżł w tm przedzle

Bardziej szczegółowo

Metody numeryczne. Wykład nr 5: Aproksymacja i interpolacja. dr Piotr Fronczak

Metody numeryczne. Wykład nr 5: Aproksymacja i interpolacja. dr Piotr Fronczak Metod umerze Wkłd r 5: Aproksmj terpolj dr Potr Frozk Aproksmj terpolj Aproksmj rówem lowm Błąd dopsow E - Fukj dwóh zmeh Fukj E m mmum dl tkh wrtoś, dl którh pohode ząstkowe względem zerują sę: E E Jest

Bardziej szczegółowo

Wykład 1 Pojęcie funkcji, nieskończone ciągi liczbowe, dziedzina funkcji, wykres funkcji, funkcje elementarne, funkcje złożone, funkcje odwrotne.

Wykład 1 Pojęcie funkcji, nieskończone ciągi liczbowe, dziedzina funkcji, wykres funkcji, funkcje elementarne, funkcje złożone, funkcje odwrotne. Wykłd Pojęcie fukcji, ieskończoe ciągi liczbowe, dziedzi fukcji, wykres fukcji, fukcje elemetre, fukcje złożoe, fukcje odwrote.. Fukcje Defiicj.. Mówimy, że w zbiorze liczb X jest określo pew fukcj f,

Bardziej szczegółowo

11. Aproksymacja metodą najmniejszych kwadratów

11. Aproksymacja metodą najmniejszych kwadratów . Aproksmcj metodą jmejszch kwdrtów W ukch przrodczch wkoujem często ekspermet polegjące pomrch pr welkośc, które, jk przpuszczm, są ze sobą powąze jkąś zleżoścą fukcją =f(, p. wdłużee spręż w zleżośc

Bardziej szczegółowo

Rys. 1. Interpolacja funkcji (a) liniowa, (b) kwadratowa, (c) kubiczna.

Rys. 1. Interpolacja funkcji (a) liniowa, (b) kwadratowa, (c) kubiczna. terpolcj.doc Iterpolcj fukcj. Sformułowe problemu: Rs.. Iterpolcj fukcj low, b kwdrtow, c kubcz. De są rgumet,,,. orz odpowdjące m wrtośc fukcj = f, = f,, = f. Postć fukcj = f jest e z lub z. Poszukw jest

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA Woskowe sttstcze - egesj koelcj teść Wpowdzee Regesj koelcj low dwóch zmech Regesj koelcj elow - tsfomcj zmech Regesj koelcj welokot Wpowdzee Jedostk zoowośc sttstczej mogą ć chktezowe

Bardziej szczegółowo

7. Szeregi funkcyjne

7. Szeregi funkcyjne 7 Szeregi ukcyje Podstwowe deiicje i twierdzei Niech u,,,, X o wrtościch w przestrzei Y będą ukcjmi określoymi zbiorze X Mówimy, że szereg ukcyjy u jest zbieży puktowo do sumy, jeżeli ciąg sum częściowych

Bardziej szczegółowo

Rachunek różniczkowy funkcji wielu zmiennych

Rachunek różniczkowy funkcji wielu zmiennych Iormaa - Wład 9 - dr Bogda Ćmel cmelbog@ma.ag.edu.pl Racue różczow ucj welu zmec Z uwag a prosoę zapsu ławe erpreacje gracze ograczm sę jede do ucj lub zmec. Naurale uogólea wprowadzac pojęć a ucje zmec

Bardziej szczegółowo

Rachunek różniczkowy funkcji wielu zmiennych

Rachunek różniczkowy funkcji wielu zmiennych EAIB-Iormaa-Wład 9- dr Adam Ćmel cmel@.ag.edu.pl Racue różczow ucj welu zmec Z uwag a prosoę zapsu ławe erpreacje gracze ograczm sę jede do ucj lub zmec. Naurale uogólea wprowadzac pojęć a ucje zmec zosawam

Bardziej szczegółowo

Granica cigu punktów. ), jest zbieny do punktu P 0 = ( x0. n n. ) n. Zadania. Przykłady funkcji dwu zmiennych

Granica cigu punktów. ), jest zbieny do punktu P 0 = ( x0. n n. ) n. Zadania. Przykłady funkcji dwu zmiennych Gric cigu puktów Ztem Cig puktów P P ; jest zie do puktu P ; gd P P [ ] Oliczm gric cigu l Poiew l l wic cig l jest zie i jego gric jest pukt π π [ ] Oliczm gric cigu si π π π π Poiew si si wic cig si

Bardziej szczegółowo

- macierz o n wierszach i k kolumnach. Macierz jest diagonalna jeśli jest kwadratowa i po za główną przekątną (diagonala) są

- macierz o n wierszach i k kolumnach. Macierz jest diagonalna jeśli jest kwadratowa i po za główną przekątną (diagonala) są Powtórzeie z Algebry 1. Mcierz A k 1 11 1 1k 1 k k - mcierz o wierszch i k kolumch Mcierz est kwdrtow eśli m tyle smo wierszy co kolum ( = k). Mcierz est digol eśli est kwdrtow i po z główą przekątą (digol)

Bardziej szczegółowo

CIĄGI LICZBOWE N = zbiór liczb naturalnych. R zbiór liczb rzeczywistych (zbiór reprezentowany przez punkty osi liczbowej).

CIĄGI LICZBOWE N = zbiór liczb naturalnych. R zbiór liczb rzeczywistych (zbiór reprezentowany przez punkty osi liczbowej). MATEMATYKA I - Lucj Kowlski {,,,... } CIĄGI LICZBOWE N zbiór liczb turlych. R zbiór liczb rzeczywistych (zbiór reprezetowy przez pukty osi liczbowej. Nieskończoy ciąg liczbowy to przyporządkowie liczbom

Bardziej szczegółowo

opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn

opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn ROZKŁAD PRAWDOPODBIEŃSTWA WIELU ZMIENNYCH LOSOWYCH W przpadku gd mam do czea z zmem losowm możem prawdopodobeństwo, ż przjmą oe wartośc,,, opsać welowmarową fukcją rozkładu gęstośc prawdopodobeństwa f(,,,.

Bardziej szczegółowo

MATEMATYKA. Sporządził: Andrzej Wölk

MATEMATYKA. Sporządził: Andrzej Wölk MATEMATYKA Sporządzł: Adrzej ölk . adae Rozwązać rówae różczkowe: b) e X X e rozwązuję całkę żeb wzaczć e X e X z tego wka, że e X X e X e adae a) s d t dt d ( t ) dt dt pochoda d dt s d s s s s d = C

Bardziej szczegółowo

3.1. Ciągi liczbowe - ograniczoność, monotoniczność, zbieżność ciągu. Liczba e. Twierdzenie o trzech ciągach.

3.1. Ciągi liczbowe - ograniczoność, monotoniczność, zbieżność ciągu. Liczba e. Twierdzenie o trzech ciągach. WYKŁAD 6 3 RACHUNEK RÓŻNICZKOWY I CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ 31 Ciągi liczbowe - ogriczoość, mootoiczość, zbieżość ciągu Liczb e Twierdzeie o trzech ciągch 3A+B1 (Defiicj: ieskończoość) Symbole,,

Bardziej szczegółowo

METODY KOMPUTEROWE 1

METODY KOMPUTEROWE 1 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN MTODA ULRA Mcał PŁOTKOWIAK Adam ŁODYGOWSKI Kosultacje aukowe dr z. Wtold Kąkol Pozań 00/00 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN Metod umercze MN pozwalają a ormułowae matematczc

Bardziej szczegółowo

Regresja liniowa. (metoda najmniejszych kwadratów, metoda wyrównawcza, metoda Gaussa)

Regresja liniowa. (metoda najmniejszych kwadratów, metoda wyrównawcza, metoda Gaussa) Regresj low (metod jmejszch kwdrtów, metod wrówwcz, metod Guss) stot metod postult Guss współczk prostej kostrukcj prostej teoretczej trsformcj fukcj elowch przkłd Regresj low czm poleg? Jeśl merzoe dwe

Bardziej szczegółowo

Zadania domowe z Analizy Matematycznej III - czȩść 2 (funkcje wielu zmiennych)

Zadania domowe z Analizy Matematycznej III - czȩść 2 (funkcje wielu zmiennych) Zadaia domowe z AM III dla grup E7 (semestr zimow 07/08) Czȩść Zadaia domowe z Aaliz Matematczej III - czȩść (fukcje wielu zmiech) Zadaie. Obliczć graice lub wkazać że ie istiej a: (a) () (00) (b) + ()

Bardziej szczegółowo

A B - zawieranie słabe

A B - zawieranie słabe NAZEWNICTWO: : rówoważość defcj : rówość defcj dla każdego steje! ZBIORY steje dokłade jede {,,,...} - całkowte * - całkowte be era - wmere - ujeme plus ero - recwste - espoloe A B - awerae słabe A :

Bardziej szczegółowo

DOPASOWANIE ZALEŻNOŚCI LINIOWEJ DO WYNIKÓW POMIARÓW

DOPASOWANIE ZALEŻNOŚCI LINIOWEJ DO WYNIKÓW POMIARÓW DOPAOWANIE ZALEŻNOŚCI LINIOWEJ DO WYNIKÓW POMIARÓW Jedm stotch gdeń l dch pomroch jest dopsoe leżośc teoretcej do kó pomró. Dotc oo stucj gd dokoo ser pomró pr elkośc które są e soą poąe leżoścą f... m

Bardziej szczegółowo

INFORMATYKA W CHEMII Dr Piotr Szczepański

INFORMATYKA W CHEMII Dr Piotr Szczepański INFORMATYKA W CHEMII Dr Potr Szczepńk Ktedr Chem Fzczej Fzkochem Polmeró ANALIZA REGRESJI REGRESJA LINIOWA. REGRESJA LINIOWA - metod jmejzch kdrtó. REGRESJA WAŻONA 3. ANALIZA RESZT 4. WSPÓŁCZYNNIK KORELACJI,

Bardziej szczegółowo

BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI

BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Wkład z matematki inżnierskiej BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI IMiF UTP 06 przed wkonaniem wkresu... BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Wkonujem wkres funkcji wznaczaja c wcześniej: 1 dziedzinȩ

Bardziej szczegółowo

OBLICZANIE GEOMETRYCZNYCH MOMENTÓW BEZWŁADNOŚCI FIGUR PŁASKICH, TWIERDZENIE STEINERA LABORATORIUM RACHUNKOWE

OBLICZANIE GEOMETRYCZNYCH MOMENTÓW BEZWŁADNOŚCI FIGUR PŁASKICH, TWIERDZENIE STEINERA LABORATORIUM RACHUNKOWE OBLICZNIE GEOMETRYCZNYCH MOMENTÓW BEZWŁDNOŚCI FIGUR PŁSKICH, TWIERDZENIE STEINER LBORTORIUM RCHUNKOWE Prz oblczeach wtrzmałoścowch dotczącch ektórch przpadków obcążea (p. zgae) potrzeba jest zajomość pewch

Bardziej szczegółowo

Ś Ę Ś Ą Ł Ę Ę Ę Ą ć Ę Ę ź ź Ń Ń Ę Ń Ń ź ź Ą ć Ą ć Ę Ą Ń Ń Ą Ę Ę ć Ą Ę ź Ą ć ć Ęć ć Ń ć ć ć ć ć Ś ć Ą ć ć ć Ń Ę Ś Ę Ę Ę ć Ę ć ć Ł ć Ń Ń Ęć Ę ź ć Ą Ę ź ć Ę Ę ź Ę Ą Ę Ą ć ź ź Ę ź Ę Ń ć ź ć ź Ę Ń Ę Ł Ę Ę ć

Bardziej szczegółowo

f x f y f, jest 4, mianowicie f = f xx f xy f yx

f x f y f, jest 4, mianowicie f = f xx f xy f yx Zestaw 14 Pochodne wŝszch rzędów Niech będzie dana funkcja x f określona w pewnm obszarze D Przpuśćm Ŝe f x istnieją pochodne cząstkowe tej funkcji x x Pochodne cząstkowe tch pochodnch jeŝeli istnieją

Bardziej szczegółowo

Wnioskowanie statystyczne dla korelacji i regresji.

Wnioskowanie statystyczne dla korelacji i regresji. STATYSTYKA MATEMATYCZNA WYKŁAD 6 Woskowae statstcze dla korelacj regresj. Aalza korelacj Założee: zmea losowa dwuwmarowa X, Y) ma rozkład ormal o współczku korelacj ρ. X, Y cech adae rówocześe. X X X...

Bardziej szczegółowo

Ekstrema funkcji dwóch zmiennych

Ekstrema funkcji dwóch zmiennych Wkład z matematki inżnierskiej Ekstrema funkcji dwóch zmiennch JJ, IMiF UTP 18 JJ (JJ, IMiF UTP) EKSTREMA 18 1 / 47 Ekstrema lokalne DEFINICJA. Załóżm, że funkcja f (, ) jest określona w pewnm otoczeniu

Bardziej szczegółowo

3. OPTYMALIZACJA NIELINIOWA

3. OPTYMALIZACJA NIELINIOWA Wybrae zaadea badań operacyjych dr ż. Zbew Tarapata 3. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też oprócz

Bardziej szczegółowo

Opracowanie wyników pomiarów

Opracowanie wyników pomiarów Opracowae wków pomarów Praca w laboratorum fzczm polega a wkoau pomarów, ch terpretacj wcagęcem wosków. Ab dojść do właścwch wosków aleŝ szczególą uwagę zwrócć a poprawość wkoaa pomarów mmalzacj błędów

Bardziej szczegółowo

Materiały do wykładu 7 ze Statystyki

Materiały do wykładu 7 ze Statystyki Materał do wkładu 7 ze Statstk Aalza ZALEŻNOŚCI pomędz CECHAMI (Aalza KORELACJI REGRESJI) korelacj wkres rozrzutu (korelogram) rodzaje zależośc (brak, elowa, lowa) pomar sł zależośc lowej (współczk korelacj

Bardziej szczegółowo

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni. Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :

Bardziej szczegółowo

Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2

Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2 Permutacje { 2,,..., } Defcja: Permutacją zboru lczb azywamy dowolą różowartoścową fukcję określoą a tym zborze o wartoścach w tym zborze. Uwaga: Lczba wszystkch permutacj wyos! Permutacje zapsujemy w

Bardziej szczegółowo

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej PŁAKA GEOMETRIA MA Środek cężkośc fgury płaskej Mometam statyczym M x M y fgury płaskej względem os x lub y (rys. 7.1) azywamy gracę algebraczej sumy loczyów elemetarych pól d przez ch odległośc od os,

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 2 ESTYMACJA PUNKTOWA

STATYSTYKA MATEMATYCZNA WYKŁAD 2 ESTYMACJA PUNKTOWA STATYSTYKA MATEMATYCZNA WYKŁAD ESTYMACJA PUNKTOWA Nech - ezay parametr rozkładu cechy X. Wartość parametru będzemy estymować (przyblżać) a podstawe elemetowej próby. - wyberamy statystykę U o rozkładze

Bardziej szczegółowo

5. OPTYMALIZACJA NIELINIOWA

5. OPTYMALIZACJA NIELINIOWA 5. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często, że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też, oprócz lowych zadań decyzyjych, formułujemy także elowe

Bardziej szczegółowo

Wykład Analiza jakościowa równań różniczkowych

Wykład Analiza jakościowa równań różniczkowych Na podstawie książki J. Rusinka, Równania różniczkowe i różnicowe w zarządzaniu, Oficna Wdawnicza WSM, Warszawa 2005. 21 maja 2012 Definicja Stabilność Niech = F (x, ) będzie równaniem różniczkowm. Rozwiązanie

Bardziej szczegółowo

Ciągi i szeregi liczbowe. Ciągi nieskończone.

Ciągi i szeregi liczbowe. Ciągi nieskończone. Ciągi i szeregi liczbowe W zbiorze liczb X jest określoa pewa fukcja f, jeŝeli kaŝdej liczbie x ze zbioru X jest przporządkowaa dokładie jeda liczba pewego zbioru liczb Y Przporządkowaie to zapisujem w

Bardziej szczegółowo

8.1 Zbieżność ciągu i szeregu funkcyjnego

8.1 Zbieżność ciągu i szeregu funkcyjnego Rozdzał 8 Cąg szereg fukcyje 8.1 Zbeżość cągu szeregu fukcyjego Dla skrócea zapsu przyjmjmy pewe ozaczee. Defcja. Nech X, Y. Przez Y X ozaczamy zbór wszystkch fukcj określoych a zborze X o wartoścach w

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Poltechnk Gdńsk Wydzł Elektrotechnk Automtyk Ktedr Inżyner Systemów Sterown Teor sterown Podstwy lgebry mcerzy Mterły pomocncze do ćwczeń lbortoryjnych 1 Część 3 Oprcowne: Kzmerz Duznkewcz, dr hb. nż.

Bardziej szczegółowo

Rachunek różniczkowy funkcji jednej zmiennej

Rachunek różniczkowy funkcji jednej zmiennej Rachunek różniczkow funkcji jednej zmiennej wkład z MATEMATYKI Budownictwo, studia niestacjonarne sem. I, rok ak. 2008/2009 Katedra Matematki Wdział Informatki Politechnika Białostocka 1 Iloraz różnicow

Bardziej szczegółowo

Ł Ż ć Ę Ę Ę Ę Ż Ę Ź ć ć ć Ł Ż ć Ę ć Ł ć Ę ź Ż ć Ę ć ć Ł Ł ć ź Ż Ż Ż ć ć Ż ć ć ć ć ć ć ć ć ć ć ć ć ć Ś ć ć Ę Ę Ł ć Ś ć Ł Ż Ę ć ć ć Ż Ż Ę Ł Ę ć Ę ć ć ć ć ć Ę ć ć ć Ł ź Ż Ę Ż Ż ć Ę źć źć ź Ż Ł ć ć ć Ż Ę ź

Bardziej szczegółowo

Ł Ś ÓŻ Ż Ż Ż Ż Ś Ś Ę Ł ć Ą ŚĆ Ś Ą ć Ą Ś Ą Ś ź ć ź ć ć Ą ć Ą Ń ź ź ć Ą ć ć Ą ź Ę Ś Ą ź Ś ź Ą Ą ć Ę ć ź Ą ć Ą ć ć ć Ą Ą Ą Ą ŚĆ Ść ć Ń Ś ć ć Ę Ź ć Ę Ń ć Ć ć ć ć ć Ę Ń ć ć ć Ł ć Ą ć Ą Ą Ę Ć źć ć Ś ź Ę Ą Ś

Bardziej szczegółowo

Ó Ę Ę ź ź ź Ź ź ź ź Ż Ś Ś Ż Ś ź ź Ó Ś Ż ź ć Ść Ź Ż ć Ż Ć ć ź Ź Ź Ó Ś ć ć Ż Ć Ś ć ź Ż ć Ść ć ć Ż Ś Ż ć Ż ź ć ź Ż ź ć ć Ś Ź Ż ć ć ć ć ć Ś Ś Ż ź Ę Ś Ś Ś Ż ć ź ć ć ć Ż Ż ć ć Ż Ź ć Ś Ś Ś Ś Ź Ó Ś Ś ć Ś ć Ć ź

Bardziej szczegółowo

ż Ą ż Ó Ę Ś ć ż ć ż ć Ś ż Ś ż Ń ż ż Ź ż Ź ż Ą Ś ż ć ć Ś Ą ż ż ż ź ż ż Ń Ę ż ż ć Ń ż Ń ż ż ź ż ż ż ż ż ź Ś ż ż ź ż Ś Ś ż ź ź ż ź Ą ż Ź ż ź ź Ź ź Ź ź ż Ź ż ź Ę ż ż Ę ż Ó Ń ż ź ć ż ź ż Ę ż ć ż ź ź ź ż ż

Bardziej szczegółowo

Ę Ś ź Ę Ę ć ć ź ć ć ć ć ć źć ć ć ć ć Ź ź Ś ć Ł Ę ć ć Ą ź ć Ó Ł ź ć ć Ź Ł ć ć ć ć ć ć ć ź ć ć ć ć ź Ź ć ź ć ć ź ć ź Ź Ź ź ź ź Ś ź ź ć ć Ś Ę ć ź ć ć Ś ć ć ć ć ź ź ć ź ć ć ć Ź Ź ć Ś Ę ć Ć ć ź ć Ę ć ć ć ć

Bardziej szczegółowo

Ł Ę Ł Ż ż Ń Ą Ó Ó ż Ś Ź ć ż ż ć Ć ż Ż ć Ó ż Ś Ó Ś ż Ó ż Ś ć ć Ż Ł ż ż ż ć ć ż Ó Ó Ę Ż Ó Ż ż Ó ż Ó Ź Ż ż Ó Ó ć Ó ż ż ć ż Ś Ż ć Ó ż Ś Ś ż ć ć Ó ż Ó Ó ż Ź Ę Ł Ż Ł Ź Ż ż Ó ż ż ż ż Ż ż ż Ż ż Ł ć Ż ż Ż ż Ó Ż

Bardziej szczegółowo

ć Ł ć ć ź Ą ć ć ć źć Ź Ź ŹĆ ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ą ć Ł ć ć ć ć ć ć ć ŚĆ Ś ź ć ć ć Ć Ó Ć ć Ą Ł Ł Ł ź Ś Ł ć ć Ą Ą ź ć ć Ą ć ź ć ź ź ć ź ź Ą Ą Ń ć ź Ł ć Ć ć ź ć Ś ć ć ć ć ć ć ć Ś ć ć ć ć

Bardziej szczegółowo

ć Ń Ż Ł ć ć Ś ź ŚĆ Ą ć ź ć ć Ż Ś ź Ą ć Ń Ć Ć ć ć Ą ć źć Ń Ł Ł Ł ź ć Ą ź Ś ź ć Ń Ń ć Ć Ć ź Ś ź ć Ś Ś Ł ź Ś Ś ź ć ź ć Ś ć Ś ć ć Ż ć Ż ź ź Ą ć Ł Ń Ć ć Ż Ś ć ć ć ć Ś ć ć ć Ą ć ć ź ć ć ć ć ć Ń Ż Ż Ż Ż Ś ć Ą

Bardziej szczegółowo

Ś ć ć Ż ć ć Ż ć ć ć ć ć Ę Ź Ż Ż ć Ę ć Ę Ź Ź Ó ć ć Ź ć Ó Ś ć Ź Ę Ę Ę ć Ń ć Ś ć Ż ć Ę Ę ć Ż Ł ź Ź Ś Ą ć Ą Ą ć Ą Ę ć ć Ę ć ć ć Ż ć Ź Ą Ł ć ć ć ć Ę ć Ź ć Ź ć Ą ć Ą ć ć ć ć Ą ć Ą ć Ż Ą ć ć ć ć ć ć Ść ć źć Ę

Bardziej szczegółowo

Ł Ł Ź Ź ź ź ć ź ć Ę Ź Ś Ś ć ć Ś ć ć ć Ź ć źć ć ć ć ć Ź ć ć ć ć ć ć ź ć Ś ć ć Ą ć Ź ć Ś Ó Ź Ś ź ć ź Ś ć Ł Ą ć ć ć ć Ź Ź ć Ź ć ć ć Ź ź ć ć ć ć ć Ś ć ć ć ć ć Ł ć Ś ć Ź Ź Ź ć ć Ś Ś ć ć ć ź Ą ć ć ć ć ć ć ć

Bardziej szczegółowo

ń ć ć ń Ń ź ć ć ć ć ź ć ć ń ć źć ń ź ć ć ć ć ć Ę ć ń ć ć ć Ę ź ń ń ć ć ń ć ć ć ć ć ć ć ć ć ć ń ć ź ć ć ć ć ź ć ń ć ć ć ń ć ć ć Ń ć ź ć ć ń ć ć ć ć ć ć ć ć ć ć ź ć ć ć ć ć ć ć ć ź Ń ń ź ń ć ń ć ć ć Ę ć

Bardziej szczegółowo

Ę Ę ć Ó ć ć Ń ź ź Ó Ć Ó ć ć ź ź ć ć ć Ń ć Ó ć ć ć ć Ó Ó ć Ó ć ć Ó Ę Ó ÓÓ Ę ć Ó ć ć Ó ć ć Ó Ę ć Ć Ó Ź Ę Ó Ó Ó ć Ó ź Ó ź Ń Ę Ó Ę Ę Ę ć ć Ć ć Ę Ę Ó Ó Ó ć ź Ń ć Ź ć ź ć ć Ę ć Ę ć ź ć Ó Ó Ę ć ć ć ź ć Ę ć Ź

Bardziej szczegółowo

Ó ż ń Ą ź ń ż ć Ó ń ć Ć Ą ż Ą ć Ł Ę Ę Ą ć Ó ź ć ć ć ń Ń Ą ć ć ż Ó ź Ł Ł Ę ć ż ć Ę Ł ć Ń Ą Ł Ł Ę Ł ć ż ż ż Ł ć ć Ę Ń Ę Ą ń Ą ń ń ż ż ń ż ź Ń ź ć ź ń Ó ń ć Ł Ą Ą ż ż ć Ó Ł ć ć ź Ó ź ź Ę ć ć ń źć Ą ż Ą ż

Bardziej szczegółowo

Ć Ć Ą ź ń ć ń Ź ń ć Ą ć ć ć Ę ć ń Ą Ą ź ń ź ń ń Ę ń ć ć Ę Ę ć Ę Ź Ź Ą Ę ń ń ń Ę ń ń Ą ń ń Ą Ą Ć Ą ć ń ć ń ć Ć ń ń Ą ń Ą Ą ć ć ź ź Ź ć ń ń Ą ń ń ń Ę Ą ć ń Ą ć Ą Ę ć ć Ę ń Ć Ę ń Ą Ź Ę ń Ę ń ń ć ć Ń ń Ą ń

Bardziej szczegółowo

Programowanie nieliniowe optymalizacja funkcji wielu zmiennych

Programowanie nieliniowe optymalizacja funkcji wielu zmiennych Ekonomia matematczna II Ekonomia matematczna II Prowadząc ćwiczenia Programowanie nieliniowe optmalizacja unkcji wielu zmiennch Modele programowania liniowego często okazują się niewstarczające w modelowaniu

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 7

RÓWNANIA RÓŻNICZKOWE WYKŁAD 7 RÓWNANIA RÓŻNIZKOWE WYKŁAD 7 Deiicj Ukłdem rówń różiczkowch rzędu pierwszego w posci ormlej zwm ukłd rówń o iewidomch > zmie iezleż. Uwg Jeżeli = o zzwczj piszem x zmis orz g zmis jeżeli = o piszem x z

Bardziej szczegółowo

I. CIĄGI I SZEREGI FUNKCYJNE. odwzorowań zbioru X w zbiór R [lub C] nazywamy ciągiem funkcyjnym.

I. CIĄGI I SZEREGI FUNKCYJNE. odwzorowań zbioru X w zbiór R [lub C] nazywamy ciągiem funkcyjnym. I. CIĄGI I SZEREGI FUNKCYJNE 1. Zbieżość puktow i jedostj ciągów fukcyjych Niech X będzie iepustym podzbiorem zbioru liczb rzeczywistych R (lub zbioru liczb zespoloych C). Defiicj 1.1. Ciąg (f ) N odwzorowń

Bardziej szczegółowo

( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu.

( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu. Elementy rchunku prwdopodoeństw f 0 f() - gęstość rozkłdu prwdopodoeństw X f d P< < = f( d ) F = f( tdt ) - dystryunt rozkłdu E( X) = tf( t) dt - wrtość średn D ( X) = E( X ) E( X) - wrncj = f () F ()

Bardziej szczegółowo

Matematyka II. Wykład 11. Całka podwójna. Zamiana na całkę iterowaną. Obliczanie pól obszarów i objętości brył.

Matematyka II. Wykład 11. Całka podwójna. Zamiana na całkę iterowaną. Obliczanie pól obszarów i objętości brył. Wkład. Całka podwója. Zamaa a całkę terowaą. Oblczae pól obszarów objętośc brł.. Całka podwója w prostokące. Jak pamętam, całka ozaczoa z cągłej fukcj jedej zmeej wprowadzoa bła w celu oblczaa pola powerzch

Bardziej szczegółowo

UWAGI O ROZKŁADZIE FUNKCJI ZMIENNEJ LOSOWEJ.

UWAGI O ROZKŁADZIE FUNKCJI ZMIENNEJ LOSOWEJ. L.Kowls - Uwg o rozłdz uc zm losow UWAI O ROZKŁADZIE UNKCJI ZMIENNEJ LOSOWEJ. - d zm losow cągł o gęstośc. Y g g - borlows tz. g - B BR dl B BR Wzczć gęstość g zm losow Y. Jśl g - ścśl mootocz różczowl

Bardziej szczegółowo

MODELE OBIEKTÓW W 3-D3 część

MODELE OBIEKTÓW W 3-D3 część WYKŁAD 5 MODELE OBIEKTÓW W -D część la wykładu: Kocepcja krzywej sklejaej Jedorode krzywe B-sklejae ejedorode krzywe B-sklejae owerzche Bezera, B-sklejae URBS 1. Kocepcja krzywej sklejaej Istotą z praktyczego

Bardziej szczegółowo

12. FUNKCJE WIELU ZMIENNYCH. z = x + y jest R 2, natomiast jej

12. FUNKCJE WIELU ZMIENNYCH. z = x + y jest R 2, natomiast jej 1. FUNKCJE WIELU ZMIENNYCH 1.1. FUNKCJE DWÓCH ZMIENNYCH Funkcją dwóch zmiennch określoną w zbiorze D R nazwam przporządkowanie każdej parze liczb () D dokładnie jednej liczb rzeczwistej z. Piszem prz tm

Bardziej szczegółowo

(rachunek różniczkowy dot. funkcji ciągłych)

(rachunek różniczkowy dot. funkcji ciągłych) Podstaw matematczne (rachunek różniczkow dot. unkcji ciągłch) 1) Pochodna unkcji 1 zmiennej () de. () d ( ) d d d lim h ( h) h ( ) (h) () h UWAGA: () tg(α) tangens kąta nachlenia stcznej Warunki e k s

Bardziej szczegółowo

Johann Wolfgang Goethe Def.

Johann Wolfgang Goethe Def. "Maemac ą ja Facuz: coolwe m ę powe od azu pzeładają o a wój wła jęz wówcza aje ę o czmś zupełe m." Joha Wola Goehe Weźm : m m Jeżel zdeujem ucje pomoccze j : j dla j = m o = m dze = Czl wacz pzeaalzowad

Bardziej szczegółowo

0, co implikuje tezę. W interpretacji geometrycznej: musi istnieć punkt, w którym styczna ( f (c)

0, co implikuje tezę. W interpretacji geometrycznej: musi istnieć punkt, w którym styczna ( f (c) RACHUNEK RÓŻNCZKOWY cd Twierdzeie Lagrage a: Jeżeli jest ciągła w [a,b], jest różiczkwala w a,b), t ca,b) : b)-a)= c) b-a) b) Dwód Wystarczy rzpatrzyć ukcję t) t) t a), t[a,b], która b a spełia załżeia

Bardziej szczegółowo

2.1. Określenie i rodzaje wektorów. Mnożenie wektora przez skalar

2.1. Określenie i rodzaje wektorów. Mnożenie wektora przez skalar 2.1. kreślenie i rodje wektorów. Mnożenie wektor pre sklr Wielkości ficne wstępujące w mechnice i innch diłch fiki możn podielić n sklr i wektor. A określić wielkość sklrną, wstrc podć tlko jedną licę.

Bardziej szczegółowo

1. Określ monotoniczność podanych funkcji, miejsce zerowe oraz punkt przecięcia się jej wykresu z osią OY

1. Określ monotoniczność podanych funkcji, miejsce zerowe oraz punkt przecięcia się jej wykresu z osią OY . Określ ootoiczość podch fukcji, iejsce zerowe orz pukt przecięci się jej wkresu z osią OY ) 8 ) 8 c) Określjąc ootoiczość fukcji liiowej = + korzst z stępującej włsości: Jeżeli > to fukcj liiow jest

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia. J. de Lucas

Analiza Matematyczna Ćwiczenia. J. de Lucas Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania MODELOWANIE I PODSTAWY IDENTYFIKACJI

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania MODELOWANIE I PODSTAWY IDENTYFIKACJI Poltechka Gdańska Wydzał Elektrotechk Automatyk Katedra Iżyer Systemów Sterowaa MODELOWANIE I PODSAWY IDENYFIKACI Wybrae zagadea z optymalzacj. Materały pomoccze do zajęć ćwczeowych 5 Opracowae: Kazmerz

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Zaawasowae metod umercze Programowae lowe (problem dual, program low w lczbach całkowtch) Dualość est kluczowm poęcem programowaa lowego. Pozwala a udowodee że otrzmwae rozwązaa są optmale. Zagadee duale

Bardziej szczegółowo

Ekonomia matematyczna - 1.1

Ekonomia matematyczna - 1.1 Ekoomia matematycza - 1.1 Elemety teorii kosumeta 1. Pole preferecji Ozaczmy R x x 1,...,x : x j 0 x x, x j1 j. R rozpatrujemy z ormą x j 2. Dla x x 1,...,x,p p 1,...,p Ip x, p x j p j x 1 p 1 x 2 p 2...x

Bardziej szczegółowo

V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH

V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH Krs na Stdach Doktoranckch Poltechnk Wrocławskej wersja: lty 007 34 V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH. Zbór np. lczb rzeczywstych a, b elementy zbor A a A b A, podzbór B zbor A : B A, sma zborów

Bardziej szczegółowo

Całka krzywoliniowa nieskierowana (całka krzywoliniowa funkcji skalarnej)

Całka krzywoliniowa nieskierowana (całka krzywoliniowa funkcji skalarnej) WYŁAD : CAŁI RZYWOLINIOWE Nech - krwa w R : gde [ α β ] ora C [ α β]. Zaem dowol puk krwej moża predsawć w posac j k krwa adaa jes pre wekor parameracj r : r j k. Decja Jeśl krwa e ma puków welokroch.

Bardziej szczegółowo

Teoria i metody optymalizacji

Teoria i metody optymalizacji Sforułowae owae zaaa otyalzacj elowej bez ograczeń: Fukcja celu f( : Zaae otyalzacj olega a zalezeu wektora zeych ecyzyjych aleŝącego o zboru rozwązań ouszczalych R takego Ŝe la R Co jest rówozacze zasow:

Bardziej szczegółowo

Różniczkowalność, pochodne, ekstremum funkcji. x 2 1 x x 2 k

Różniczkowalność, pochodne, ekstremum funkcji. x 2 1 x x 2 k Różnczkowalność, pochodne, ekstremum funkcj Ćwczene 1 Polczyć pochodn a kerunkow a funkcj: 1 1 1 x 1 x 2 x k ϕ(x 1,, x k ) x 2 1 x 2 2 x 2 k x k 1 1 x k 1 2 x k 1 w dowolnym punkce p [x 1, x 2,, x k T

Bardziej szczegółowo

n R ZałóŜmy, Ŝe istnieje d, dla którego: Metody optymalizacji Dr inŝ. Ewa Szlachcic otwarte otoczenie R n punktu x, Ŝe

n R ZałóŜmy, Ŝe istnieje d, dla którego: Metody optymalizacji Dr inŝ. Ewa Szlachcic otwarte otoczenie R n punktu x, Ŝe Sforułowae owae zaaa otyalzacj elowej bez ograczeń: Fukcja celu f() : Zaae otyalzacj olega a zalezeu wektora zeych ecyzyjych aleŝącego o zboru rozwązań ouszczalych R takego Ŝe la R Co jest rówozacze zasow:

Bardziej szczegółowo

Projekt 2 2. Wielomiany interpolujące

Projekt 2 2. Wielomiany interpolujące Proekt Weloma terpoluące Rodzae welomaów terpoluącc uma edomaów Nec w przedzale a, b określoa będze fukca f: ec będze ustaloc m wartośc argumetu :,,, m, m L prz czm: < < L < < m m Pukt o tc odcztac azwa

Bardziej szczegółowo

Zastosowanie działań na hipersześcianach binarnych w diagnostyce sieci komputerowych

Zastosowanie działań na hipersześcianach binarnych w diagnostyce sieci komputerowych toowe dłń hpereścch brych w dgotyce ec komputerowych Formle, -wymrowym hpereścem brym ywmy grf wykły o węłch których kżdy opy jet ym wektorem brym (,..., ),( {, }, ) or o krwędch, łącących te węły, których

Bardziej szczegółowo

Matematyka II: Zadania przed 3. terminem S tu niektóre zadania z egzaminu z rozwi zaniami i troch dodatkowych

Matematyka II: Zadania przed 3. terminem S tu niektóre zadania z egzaminu z rozwi zaniami i troch dodatkowych Matematka II: Zadania przed 3. terminem S tu niektóre zadania z egzaminu z rozwi zaniami i troch dodatkowch. Znale¹ ekstrema lokalne funkcji f(, ) = ( 2 + 2 2 )e (2 + 2 ) Odp. Jedno minimum (w p. (, )),

Bardziej szczegółowo

Wersja najbardziej zaawansowana. Zestaw nr 1: Ciągi liczbowe własności i granica

Wersja najbardziej zaawansowana. Zestaw nr 1: Ciągi liczbowe własności i granica Wersja ajbardziej zaawasowaa. Zestaw r : Ciągi liczbowe własości i graica.. Niech a dla.... Sprawdzić cz a jest ciągiem mootoiczm artmetczm... Sprawdzić cz astępując ciąg jest ciągiem geometrczm. Wpisać

Bardziej szczegółowo

SYSTEMY ROZMYTO-NEURONOWE REALIZUJĄCE RÓŻNE SPOSOBY ROZMYTEGO WNIOSKOWANIA

SYSTEMY ROZMYTO-NEURONOWE REALIZUJĄCE RÓŻNE SPOSOBY ROZMYTEGO WNIOSKOWANIA POLIECHIK CZĘSOCHOWSK KEDR IŻYIERII KOMPUEROWEJ PRC DOKORSK SYSEMY ROZMYO-EUROOWE RELIZUJĄCE RÓŻE SPOSOY ROZMYEGO WIOSKOWI Roert owc Promotor: dr h. ż. Dut Rutows rof. dzw. P.Cz. Częstochow 999 eszm chcłm

Bardziej szczegółowo

ROZKŁADY ZMIENNYCH LOSOWYCH

ROZKŁADY ZMIENNYCH LOSOWYCH ROZKŁADY ZMIENNYCH LOSOWYCH ZMIENNA LOSOWA Defcja. Zmeą losową jest fukcja: X: E -> R która każdemu zdarzeu elemetaremu E przypsuje lczbę rzeczywstą e X ( e) R DYSTRYBUANTA Dystrybuatą zmeej losowej X

Bardziej szczegółowo