Opracowanie wyników pomiarów

Wielkość: px
Rozpocząć pokaz od strony:

Download "Opracowanie wyników pomiarów"

Transkrypt

1 Opracowae wków pomarów Praca w laboratorum fzczm polega a wkoau pomarów, ch terpretacj wcagęcem wosków. Ab dojść do właścwch wosków aleŝ szczególą uwagę zwrócć a poprawość wkoaa pomarów mmalzacj błędów pomarowch. ardzo waŝm elemetem prac w laboratorum jest prezetacja wków ch terpretacja. Przedstawee uzskach rezultatów przejrzśce zgode z ogóle przjętm zasadam ułatwa prawdłową terpretację wków pomarowch. ajczęstszm zadaem stojącm przed studetem wkoującm pomar jest fakt, Ŝe wk pomaru a ogół e pokrwa sę z jej wartoścą merzoą. Przcz tego faktu mogą bć róŝe róŝe sę mogą oe objawać. Jeśl wk pomarów wkazują sstematcze przesuęce w stosuku do wartośc rzeczwstej lub odzaczają sę epowtarzaloścą przekraczającą zacze dokładość przrządów pomarowch, wówczas mówm, Ŝe są oe obarczoe błędam pomarowm. Mówm o błędach sstematczch przpadkowch grub, pomłka. Oczwśce moŝem je, jeśl e welmować to zmmalzować moŝem to zrobć poprzez:. UŜce właścwe dzałającch przrządów pomarowch.. Poprawe przeprowadzee pomarów. 3. Stosowae poprawek matematczch do wzorów przblŝoch. 4. Usuęce z ser pomarowej wku obarczoego błędem grubm. Elmacja źródeł błędów opsach powŝej estet e prowadz do wków jedozacze pokrwającch sę z rzeczwstoścą. KaŜd pomar jest obcąŝo epewoścą pomarową. RozróŜam: - epewość przpadkowe błąd przpadkow, losow - epewośc sstematcze. W serach pomarowch otrzmujem rozrzut wków, śwadcz to o domacj epewośc przpadkowch. Źródłem takch błędów jest sama welkość merzoa jak sam ekspermetator.

2 PREZETACJA REZULTATÓW Wzaczoą welkość fzczą prezetujem z odpoweda dokładoścą wraz z przedzałem epewośc wkłej ze stosowaej metod, uŝtch przrządów pomarowch cz teŝ własośc obektu merzoego. Wk pomarów podajem wraz z epewoścą bezwzględą względą. ezwzględa epewość pomarową określa, o le wk pomaru moŝe róŝc sę od rzeczwstej wartośc o PoewaŜ wartość rzeczwsta zawarta jest w wk asz zapsujem: ±. epewość względą określam jako stosuek epewośc bezwzględej do wartośc wku wraŝam w procetach wzgl. % Wskazae jest b prezetując wk przedstawać błąd bezwzględ względ. Końcowe wk aleŝ podawać we właścwch jedostkach z właścwa preczją. O preczj zapsu wku śwadcz lość zawartch w ej cfr zaczącch 9, zero jest zaczące tlko w przpadku, gd zajduję sę mędz dwema cfram lub a dowolm mejscu po cfrze ebędącej zerem, ale zawartej w lczbe z przeckem 3 moŝem zapsać jako 3 * jedo mejsce zaczące, chcąc zazaczć trz mejsca zaczące zapszem jako 3, * epewośc pomarowe prezetujem z dokładoścą co ajwŝej do dwóch mejsc zaczącch. Wk pomaru zaokrąglam zawsze do takej samej lczb mejsc zaczącch z jaką podajem epewość pomarową. Przkład: temperatura 93 +/- K, T wzgl.,3% Zasad sporządzaa wkresów. Wkres odzwercedlają przeprowadzoe pomar formując o zwązkach fukcjch, a takŝe o błędach pomarowch. Przgotowując wkres aleŝ zwrócć uwagę a poŝsze wszczególee:. Wartośc zmeej ezaleŝej pow bć odkładae a os pozomej X. Obe ose pow bć ozaczoe smbolem lub azwą zmeej wraz z azwa lub smbolem jedostk w jakej jest oa wraŝoa.. Skale obu os pow bć tak dobrae, ab krzwa wkresu przebegała moŝlwe przez całą jego powerzchę. Ozacza to, Ŝe e muszą oe zaczać sę od zera, tlko od wartośc eco mejszej od ajmejszej zmerzoej wartośc. Podzałk skal pow bć wraźe zazaczoe tak dobrae, ab umoŝlwał łatwe odcztae jakegokolwek puktu a wkrese. 3. Pukt dośwadczale pow bć przedstawoe w tak sposób, ab bł wdocze a tle przeprowadzoej krzwej. Welkość zazaczoego puktu prostokąt, krzŝk powa odpowadać wartośc epewośc.

3 4. a wkrese aleŝ zazaczć epewośc pomarowe reprezetowae przez poszczególe pukt. Jeśl tlko jeda welkość jest obarczoa epewoścą, p. zmea zaleŝa Y, to zazaczam to poową kreską o długośc, której środek przpada w dam pukce. W przpadku, gd obe zmee obarczoe są epewoścam pomarowm, zazaczam to w postac krzŝka o ramoach, a przecęcu którch zajduje sę pukt reprezetując da pomar. 5. Prowadząc krzwą, mającą określć charakter przebegu puktów dośwadczalch, aleŝ przede wszstkm zwrócć uwagę a welkośc epewośc pomarowch. Pukt wtczające krzwą e muszą a ej leŝeć, a pow bć raczej rówomere rozmeszczoe powŝej poŝej krzwej. aleŝ jedak dbać o to, b krzwa meścła sę w gracach zazaczoch epewośc pomarowch. 6. Wkres tworzm rsując lę która e powa meć ostrch załamań przebegać jak ajblŝej puktów pomarowch. Metod oblczeń błędów: W zaleŝośc od sposobu pomaru welkośc merzoej oblczea błędów dzelm a dwe grup: bezpośred pomar welkośc fzczej, p. wsokość krzesła pomar bezpośrede, pomar a podstawe którch wlczam poszukwaą welkość pomar pośrede. łąd bezpośred: Wartość rzeczwstą o ajlepej przblŝa wartość średa artmetcza wartość oczekwaa - określa rozrzut wków wokół wartośc rzeczwstej o przblŝam welkoścą lczoą a podstawe wzoru o PoewaŜ e zam jedak wartośc rzeczwstej o, a jede jej oszacowae przez średą artmetczą, posłuŝm sę zatem wzorem S Tak zdefowaa epewość pomarowa os azwę odchlea stadardowego pojedczego pomaru; stosuje sę róweŝ azwę średego błędu kwadratowego. Wkoując pomar stota jest rozbeŝość mędz wartoścam o. Welkoścą oceającą tę rozbeŝość jest odchlee stadardowe średej, oszące róweŝ azwę średego błędu kwadratowego średej, zdefowae wzorem.

4 S łąd z pomarów pośredch: Chcąc wzaczć epewość sstematczą welkośc Y f,,, musm oblczć zmaę Y tej fukcj spowodowaą zmaam jej argumetów o,,...,, które to welkośc są epewoścam sstematczm merzoch bezpośredo welkośc,,...,. Wzaczaa welkość Y f jest fukcją tlko jedej zmeej obarczoej epewoścą pomarową +/-. Chcem oblczć zmaę +/- Y fukcj f prz zmae jej argumetu o +/-. Y ± Y f ± Stosując rozwęce Talora df d f Y ± Y f d d PoewaŜ Y f otrzmujem df Y d gdze zaedbalśm wraz w którch wstępuje w wŝszch potęgach. Uogólając te przpadek a fukcję zmech Y f,,..., postępując w te sam sposób jak w przpadku fukcj jedej zmeej, otrzmujem Y f f Wstępujące we wzorze smbole azwam pochodm cząstkowm. Oblcza sę je w tak sam sposób jak zwkłe pochode fukcj jedej zmeej prz załoŝeu, Ŝe zmeą jest tlko, a pozostałe zmee są welkoścam stałm. PowŜsze wraŝee przpoma róŝczkę zupełą, dlatego często te sposób oblczaa epewośc azwam metodą róŝczk zupełej. W rzeczwstośc róŝ sę oo od róŝczk zupełej wstępowaem we wzorze bezwzględch wartośc pochodch cząstkowch przrostów zmech Omawae metod oblczaa epewośc welkośc złoŝoch stosowae są, gd epewośc sstematcze pomarów bezpośredch są zacze wększe od epewośc przpadkowch. Zakładam prz tm ajbardzej ekorzstą z puktu wdzea ekspermetatora stuację, w której epewośc pomarów bezpośredch e kompesują sę awzajem. Dlatego w te sposób wzaczam maksmale sstematcze epewośc pomarowe, oszące róweŝ azwę błędów maksmalch. Lteratura: H. Szdłowsk: Pomar fzcze. PW, Warszawa 979 r. H. Szdłowsk: Pracowa fzcza. PW, Warszawa 975 r. T. Drńsk: Ćwczea laboratorje z fzk. PW, Warszawa 967 r.

5 GRAFICZE OPRACOWAIE WYIKÓW POMIARÓW METODA AJMIEJSZYCH KWADRATÓW Ked wkoujem serę pomarów welkośc w zaleŝośc od ej welkośc otrzmując wk,,...,, przewdujem Ŝe są zwązae lowo, to teresuje as zalezee takej l prostej A + która jest ajlepej dopasowaa do wków pomarów. Jest to rówowaŝe zalezeu ajlepszego przblŝea stałch A opartego a otrzmach wkach. Jeśl dwe zmee są powązae relacją lową postac: A + to wkres tej zaleŝośc jest prostą o achleu A, przecającą oś w pukce a oś w pukce / A. Jedą z metod dopasowaa takej prostej jest zastosowae metod ajwększego prawdopodobeństwa. W przpadku ormalego rozkładu wków pomarów metoda ta sprowadza sę do tzw. metod ajmejszch kwadratów. Zarówo wk pomarów jak obarczoe są pewm błędam ale dla uproszczea dskusj zakładam Ŝe błęd welkośc są zaedbwale małe. Zakładam, Ŝe wk pomarów welkośc podlegają rozkładow ormalemu Gaussa wokół swojej prawdzwej wartośc, a losow rozrzut zmeej opsa jest odchleem stadardowm. Tak węc prawdopodobeństwo otrzmaa zmerzoej wartośc jest proporcjoale do welkośc: P A, A / e gdze deks A wskazują, Ŝe prawdopodobeństwo to zaleŝ od wartośc ezach parametrów A. Prawdopodobeństwo otrzmaa zboru wków,,..., jest rówe loczow tch prawdopodobeństw χ / P A,,..., P A,...P A, e, 3 gdze χ określoe jest wzorem: A χ 4 Prawdopodobeństwo to jest ajwększe ked χ jest ajmejsze. Ab zaleźć wartośc A, róŝczkujem χ względem tch parametrów przrówujem otrzmae pochode do zera:

6 / A A χ 5 A / χ 6 Rówaa te moŝa apsać w postac układu rówań a parametr A : + A 7 + A 8 Rozwązae tch rówań daje am ajlepsze, w sese metod ajmejszch kwadratów, przblŝee stałch A : A 9 Mając wzaczoe stałe A moŝa, korzstając z prawa propagacj błędów [], określć błęd wzaczea stałch A A, oraz błąd wzaczea δ. Woszą oe odpowedo: A gdze A 3 oraz + A A δ 4 W te sposób stosując metodę ajmejszch kwadratów moŝa wzaczć zarówo wartośc parametrów szukaej prostej A+, jak ch błęd.

7 PRZYKŁAD: Wzaczae temperatur zera bezwzględego. Jeśl gaz deal umeścm w aczu o stałej objętośc, to jego temperatura T jest lową fukcją cśea P przemaa zochorcza, T AP + 4 gdze: A stała zaleŝa od mas objętośc gazu. temperatura zera bezwzględego, merzoa w C. Zbór pęcu wków pomarów przedstawa poŝsza tabela: umer pomaru Cśee Temperatura T AP + I P mm Hg C , , , , Zakładając, Ŝe pukt pomarowe pow układać sę a prostej postac T AP + aleŝ skorzstać ze wzorów 9 zastępując jede przez P przez T. A PT P T P P 3.7 P T P PT 63 C P P W te sposób otrzmalśm ajlepsze według metod ajmejszch kwadratów przblŝee temperatur zera bezwzględego - 63 C. Zając stałe A, moŝa astępe oblczć wartośc AP +, temperatur oczekwaej a podstawe ajlepszego dopasowaa wków prostą T AP +. Wk tego rachuku przedstawoe są w ostatej kolume tabel. MoŜa teraz oblczć róŝce mędz lczbam w ostatch dwóch kolumach tabel zaleźć T AP co daje odchlee stadardowe 6 C. Korzstając ze wzoru moŝa teraz oblczć błąd wzaczea T P 33 C P P

8 stąd 8 C. Wk powŝsze stają sę bardzej cztele jeŝel aese sę je a wkres. temperatura [oc] cśee [mmhg] zalezoa wartość Ab zaleźć wartość zera bezwzględego, prostą przedłuŝoo poza wszstke pukt pomarowe, aŝ do przecęca z osą T. Zatem ostatecz wk wos 63 ±8 C, co zgadza sę z wartoścą tablcową 73 C. Lteratura: [] J.R. Talor, Wstęp do aalz błędu pomarowego, PW, Warszawa 995.

FUNKCJE DWÓCH ZMIENNYCH

FUNKCJE DWÓCH ZMIENNYCH FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam

Bardziej szczegółowo

Teoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka

Teoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka Nepewośc pomarowe. Teora praktka. Prowadząc: Dr ż. Adrzej Skoczeń Wższa Szkoła Turstk Ekolog Wdzał Iformatk, rok I Fzka 014 03 30 WSTE Sucha Beskdzka Fzka 1 Iformacje teoretcze zameszczoe a slajdach tej

Bardziej szczegółowo

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki)

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki) Podstawy aalzy epewośc pomarowych (I Pracowa Fzyk) Potr Cygak Zakład Fzyk Naostruktur Naotecholog Istytut Fzyk UJ Pok. 47 Tel. 0-663-5838 e-mal: potr.cygak@uj.edu.pl Potr Cygak 008 Co to jest błąd pomarowy?

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

METODY KOMPUTEROWE 1

METODY KOMPUTEROWE 1 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN MTODA ULRA Mcał PŁOTKOWIAK Adam ŁODYGOWSKI Kosultacje aukowe dr z. Wtold Kąkol Pozań 00/00 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN Metod umercze MN pozwalają a ormułowae matematczc

Bardziej szczegółowo

Materiały do wykładu 7 ze Statystyki

Materiały do wykładu 7 ze Statystyki Materał do wkładu 7 ze Statstk Aalza ZALEŻNOŚCI pomędz CECHAMI (Aalza KORELACJI REGRESJI) korelacj wkres rozrzutu (korelogram) rodzaje zależośc (brak, elowa, lowa) pomar sł zależośc lowej (współczk korelacj

Bardziej szczegółowo

Wyrażanie niepewności pomiaru

Wyrażanie niepewności pomiaru Wyrażae epewośc pomaru Adrzej Kubaczyk Wydzał Fzyk, Poltechka Warszawska Warszawa, 05 Iformacje wstępe Każdy pomar welkośc fzyczej dokoyway jest ze skończoą dokładoścą, co ozacza, że wyk tego pomaru dokoyway

Bardziej szczegółowo

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość

Bardziej szczegółowo

RACHUNEK NIEPEWNOŚCI POMIARU

RACHUNEK NIEPEWNOŚCI POMIARU Mędzarodowa Norma Oce Nepewośc Pomaru (Gude to Epresso of Ucertat Measuremets - Mędzarodowa Orgazacja Normalzacja ISO RACHUNEK NIEPEWNOŚCI http://phscs.st./gov/ucertat POMIARU Wrażae Nepewośc Pomaru. Przewodk.

Bardziej szczegółowo

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej Podstawy Mary położea wskazują mejsce wartośc ajlepej reprezetującej wszystke welkośc daej zmeej. Mówą o przecętym pozome aalzowaej cechy. Średa arytmetycza suma wartośc zmeej wszystkch jedostek badaej

Bardziej szczegółowo

Józef Beluch Akademia Górniczo-Hutnicza w Krakowie. Wpływ wag współrzędnych na wyniki transformacji Helmerta

Józef Beluch Akademia Górniczo-Hutnicza w Krakowie. Wpływ wag współrzędnych na wyniki transformacji Helmerta Józef Beluch Akadema Górczo-Hutcza w Krakowe płw wag współrzędch a wk trasformacj Helmerta . zór a trasformację współrzędch sposobem Helmerta: = c + b = d + a + a b () 2 2. Dwa modele wzaczea parametrów

Bardziej szczegółowo

Podstawy opracowania wyników pomiarowych, analiza błędów

Podstawy opracowania wyników pomiarowych, analiza błędów Podstawy opracowaa wyków pomarowych, aalza błędów I Pracowa Fzycza IF UJ Grzegorz Zuzel Lteratura I Pracowa fzycza Pod redakcją Adrzeja Magery Istytut Fzyk UJ Kraków 2006 Wstęp do aalzy błędu pomarowego

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I Pracowa IF UJ Luy 03 PODRĘCZNIKI Wsęp do aalzy błędu pomarowego Joh R. Taylor Wydawcwo Naukowe PWN Warszawa 999 I Pracowa

Bardziej szczegółowo

Statystyczne charakterystyki liczbowe szeregu

Statystyczne charakterystyki liczbowe szeregu Statystycze charakterystyk lczbowe szeregu Aalzę badaej zmeej moża uzyskać posługując sę parametram opsowym aczej azywaym statystyczym charakterystykam lczbowym szeregu. Sytetycza charakterystyka zborowośc

Bardziej szczegółowo

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1 POPULACJA I PRÓBA POPULACJĄ w statystyce matematyczej azywamy zbór wszystkch elemetów (zdarzeń elemetarych charakteryzujących sę badaą cechą opsywaą zmeą losową. Zbadae całej populacj (przeprowadzee tzw.

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki

Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki tatystycza terpretacja wyków eksperymetu Małgorzata Jakubowska Katedra Chem Aaltyczej Wydzał IŜyer Materałowej Ceramk AGH Podstawowe zadae statystyk tatystyka to uwersale łatwo dostępe arzędze, które pomaga

Bardziej szczegółowo

OBLICZANIE GEOMETRYCZNYCH MOMENTÓW BEZWŁADNOŚCI FIGUR PŁASKICH, TWIERDZENIE STEINERA LABORATORIUM RACHUNKOWE

OBLICZANIE GEOMETRYCZNYCH MOMENTÓW BEZWŁADNOŚCI FIGUR PŁASKICH, TWIERDZENIE STEINERA LABORATORIUM RACHUNKOWE OBLICZNIE GEOMETRYCZNYCH MOMENTÓW BEZWŁDNOŚCI FIGUR PŁSKICH, TWIERDZENIE STEINER LBORTORIUM RCHUNKOWE Prz oblczeach wtrzmałoścowch dotczącch ektórch przpadków obcążea (p. zgae) potrzeba jest zajomość pewch

Bardziej szczegółowo

Badania Maszyn CNC. Nr 2

Badania Maszyn CNC. Nr 2 Poltechka Pozańska Istytut Techolog Mechaczej Laboratorum Badaa Maszy CNC Nr 2 Badae dokładośc pozycjoowaa os obrotowych sterowaych umerycze Opracował: Dr. Wojcech Ptaszy sk Mgr. Krzysztof Netter Pozań,

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

Strona: 1 1. CEL ĆWICZENIA

Strona: 1 1. CEL ĆWICZENIA Katedra Podstaw Sstemów Techczch - Podstaw metrolog - Ćwczee 4. Wzaczae charakterstk regulacjej slka prądu stałego Stroa:. CEL ĆWICZENIA Celem ćwczea jest pozae zasad dzałaa udow slka prądu stałego, zadae

Bardziej szczegółowo

WSTĘP METODY OPRACOWANIA I ANALIZY WYNIKÓW POMIARÓW

WSTĘP METODY OPRACOWANIA I ANALIZY WYNIKÓW POMIARÓW WSTĘP METODY OPRACOWANIA I ANALIZY WYNIKÓW POMIARÓW U podstaw wszystkch auk przyrodczych leży zasada: sprawdzaem wszelkej wedzy jest eksperymet, tz jedyą marą prawdy aukowej jest dośwadczee Fzyka, to auka

Bardziej szczegółowo

. Wtedy E V U jest równa

. Wtedy E V U jest równa Prawdopodobeństwo statystyka 7.0.0r. Zadae Dwuwymarowa zmea losowa Y ma rozkład cągły o gęstośc gdy ( ) 0 y f ( y) 0 w przecwym przypadku. Nech U Y V Y. Wtedy E V U jest rówa 8 7 5 7 8 8 5 Prawdopodobeństwo

Bardziej szczegółowo

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5 L.Kowalsk zadaa ze statystyk opsowej-zestaw 5 Zadae 5. X cea (zł, Y popyt (tys. szt.. Mając dae ZADANIA Zestaw 5 x,5,5 3 3,5 4 4,5 5 y 44 43 43 37 36 34 35 35 Oblcz współczyk korelacj Pearsoa. Oblcz współczyk

Bardziej szczegółowo

Analiza danych pomiarowych

Analiza danych pomiarowych Materały pomoccze dla studetów Wydzału Chem UW Opracowała Ageszka Korgul. Aalza daych pomarowych wersja trzeca, uzupełoa Lteratura, Wstęp 3 R OZDZIAŁ SPRAWOZDANIE Z DOŚWIADCZENIA FIZYCZNEGO 4 Stałe elemety

Bardziej szczegółowo

Michał Gruca ZASADY OPRACOWANIA WYNIKÓW POMIARÓW

Michał Gruca ZASADY OPRACOWANIA WYNIKÓW POMIARÓW Michał Gruca ZASADY OPRACOWANIA WYNIKÓW POMIARÓW 1. Wstęp Pomiarem jest procesem pozawczm, któr umożliwia odwzorowaie właściwości fizczch obiektów w dziedziie liczb. Sam proces pomiarow jest ciągiem czości

Bardziej szczegółowo

KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA. Adrian Kapczyński Maciej Wolny

KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA. Adrian Kapczyński Maciej Wolny KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA Adra Kapczyńsk Macej Woly Wprowadzee Rozwój całego spektrum coraz doskoalszych środków formatyczych

Bardziej szczegółowo

WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ

WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ 9 Cel ćwczea Ćwczee 9 WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANE PODCZAS ZDERZENIA CIAŁ Celem ćwczea jest wyzaczee wartośc eerg rozpraszaej podczas zderzea cał oraz współczyka restytucj charakteryzującego

Bardziej szczegółowo

Wiek statku a prawdopodobieństwo wystąpienia wypadku na morzu analiza współzależności

Wiek statku a prawdopodobieństwo wystąpienia wypadku na morzu analiza współzależności BOGALECKA Magda 1 Wek statku a prawdopodobeństwo wstąpea wpadku a morzu aalza współzależośc WSTĘP Obserwowa od blsko weku tesw rozwój trasportu morskego, oprócz lądowego powetrzego, jest kosekwecją wzmożoej

Bardziej szczegółowo

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA Ćwczee 8 TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA 8.. Cel ćwczea Celem ćwczea jest wyzaczee statyczego współczyka tarca pomędzy walcową powerzchą cała a opasującą je lą. Poadto a drodze eksperymetalej

Bardziej szczegółowo

OKREŚLANIE NIEPEWNOŚCI POMIARÓW (poradnik do Laboratorium Fizyki)

OKREŚLANIE NIEPEWNOŚCI POMIARÓW (poradnik do Laboratorium Fizyki) Adrzej Kubaczyk Laboratorum Fzyk I Wydzał Fzyk Poltechka Warszawska OKREŚLANIE NIEPEWNOŚCI POMIARÓW (poradk do Laboratorum Fzyk) ROZDZIAŁ Wstęp W roku 995 z cjatywy Mędzyarodowego Komtetu Mar (CIPM) zostały

Bardziej szczegółowo

STATYSTYKA OPISOWA. Państwowa Wyższa Szkoła Zawodowa w Koninie. Materiały pomocnicze do ćwiczeń. Materiały dydaktyczne 17 ARTUR ZIMNY

STATYSTYKA OPISOWA. Państwowa Wyższa Szkoła Zawodowa w Koninie. Materiały pomocnicze do ćwiczeń. Materiały dydaktyczne 17 ARTUR ZIMNY Państwowa Wższa Szkoła Zawodowa w Koe Materał ddaktcze 17 ARTUR ZIMNY STATYSTYKA OPISOWA Materał pomoccze do ćwczeń wdae druge zmeoe Ko 010 Ttuł Statstka opsowa Materał pomoccze do ćwczeń wdae druge zmeoe

Bardziej szczegółowo

Miary statystyczne. Katowice 2014

Miary statystyczne. Katowice 2014 Mary statystycze Katowce 04 Podstawowe pojęca Statystyka Populacja próba Cechy zmee Szereg statystycze Wykresy Statystyka Statystyka to auka zajmująca sę loścowym metodam aalzy zjawsk masowych (występujących

Bardziej szczegółowo

BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ

BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ Matematka statstka matematcza dla rolków w SGGW Aa Rajfura, KDB WYKŁAD 2 BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ Matematka statstka matematcza dla rolków w SGGW Aa Rajfura, KDB Przkład.

Bardziej szczegółowo

11. Aproksymacja metodą najmniejszych kwadratów

11. Aproksymacja metodą najmniejszych kwadratów . Aproksmcj metodą jmejszch kwdrtów W ukch przrodczch wkoujem często ekspermet polegjące pomrch pr welkośc, które, jk przpuszczm, są ze sobą powąze jkąś zleżoścą fukcją =f(, p. wdłużee spręż w zleżośc

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE

AKADEMIA MORSKA W SZCZECINIE AKADEMIA MORSKA W SZCZECINIE Istytut Iżyer Ruchu Morskego Zakład Urządzeń Nawgacyjych Istrukcja r 0 Wzory do oblczeń statystyczych w ćwczeach z radoawgacj Szczec 006 Istrukcja r 0: Wzory do oblczeń statystyczych

Bardziej szczegółowo

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE Marek Cecura, Jausz Zacharsk PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE CZĘŚĆ II STATYSTYKA OPISOWA Na prawach rękopsu Warszawa, wrzeseń 0 Data ostatej aktualzacj: czwartek, 0 paźdzerka

Bardziej szczegółowo

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym?

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym? Oblczae średej, odchylea tadardowego meday oraz kwartyl w zeregu zczegółowym rozdzelczym? Średa medaa ależą do etymatorów tzw. tedecj cetralej, atomat odchylee tadardowe to etymatorów rozprozea (dyperj)

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy

Bardziej szczegółowo

5. OPTYMALIZACJA NIELINIOWA

5. OPTYMALIZACJA NIELINIOWA 5. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często, że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też, oprócz lowych zadań decyzyjych, formułujemy także elowe

Bardziej szczegółowo

Pomiary parametrów napięć i prądów przemiennych

Pomiary parametrów napięć i prądów przemiennych Ćwczee r 3 Pomary parametrów apęć prądów przemeych Cel ćwczea: zapozae z pomaram wartośc uteczej, średej, współczyków kształtu, szczytu, zekształceń oraz mocy czyej, berej, pozorej współczyka cosϕ w obwodach

Bardziej szczegółowo

Ze względu na sposób zapisu wielkości błędu rozróżnia się błędy bezwzględne i względne.

Ze względu na sposób zapisu wielkości błędu rozróżnia się błędy bezwzględne i względne. Katedra Podsta Systemó Techczych - Podstay metrolog - Ćczee 3. Dokładość pomaró, yzaczae błędó pomaroych Stroa:. BŁĘDY POMIAROWE, PODSTAWOWE DEFINICJE Każdy yk pomaru bez określea dokładośc pomaru jest

Bardziej szczegółowo

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację.

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację. Wrażlwość oblgacj Jedym z czyków ryzyka westowaa w oblgacje jest zmeość rykowych stóp procetowych. Iżyera fasowa dyspouje metodam pozwalającym zabezpeczyć portfel przed egatywym skutkam zma stóp procetowych.

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w

Bardziej szczegółowo

Elementy arytmetyki komputerowej

Elementy arytmetyki komputerowej Elemety arytmetyk komputerowej cz. I Elemety systemów lczbowych /materał pomocczy do wykładu Iformatyka sem II/ Sps treśc. Wprowadzee.... Wstępe uwag o systemach lczbowych... 3. Przegląd wybraych systemów

Bardziej szczegółowo

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej PŁAKA GEOMETRIA MA Środek cężkośc fgury płaskej Mometam statyczym M x M y fgury płaskej względem os x lub y (rys. 7.1) azywamy gracę algebraczej sumy loczyów elemetarych pól d przez ch odległośc od os,

Bardziej szczegółowo

Monika Jeziorska - Pąpka Uniwersytet Mikołaja Kopernika w Toruniu

Monika Jeziorska - Pąpka Uniwersytet Mikołaja Kopernika w Toruniu DYNAMICZNE MODELE EKONOMERYCZNE X Ogólopolske Semarum Naukowe, 4 6 wrześa 2007 w oruu Katedra Ekoometr Statystyk, Uwersytet Mkołaja Koperka w oruu Moka Jezorska - Pąpka Uwersytet Mkołaja Koperka w oruu

Bardziej szczegółowo

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych dr Ewa Wycka Wyższa Szkoła Bakowa w Gdańsku Wtold Komorowsk, Rafał Gatowsk TZ SKOK S.A. Statystycza aalza mesęczych zma współczyka szkodowośc kredytów hpoteczych Wskaźk szkodowośc jest marą obcążea kwoty/lczby

Bardziej szczegółowo

Lekcja 1. Pojęcia podstawowe: Zbiorowość generalna i zbiorowość próbna

Lekcja 1. Pojęcia podstawowe: Zbiorowość generalna i zbiorowość próbna TECHNIKUM ZESPÓŁ SZKÓŁ w KRZEPICACH PRACOWNIA EKONOMICZNA TEORIA ZADANIA dla klasy II Techkum Marek Kmeck Zespół Szkół Techkum w Krzepcach Wprowadzee do statystyk Lekcja Statystyka - określa zbór formacj

Bardziej szczegółowo

Statystyka Opisowa Wzory

Statystyka Opisowa Wzory tatystyka Opsowa Wzory zereg rozdzelczy: x - wartośc cechy - lczebośc wartośc cechy - lczebość całej zborowośc Wskaźk atężea przy rysowau wykresu szeregu rozdzelczego przedzałowego o erówych przedzałach:

Bardziej szczegółowo

Laboratorium fizyczne

Laboratorium fizyczne Laboratorum fzcze L a portalu WIKMP CMF PŁ cmf.edu.p.lodz.pl Klkam odośk Laboratorum fzk Właścwą strukcję ależ pobrać ze stro Pracow zazajomć sę z jej treścą przed zajęcam!!! grupa I grupa II edzela

Bardziej szczegółowo

STATYKA. Cel statyki. Prof. Edmund Wittbrodt

STATYKA. Cel statyki. Prof. Edmund Wittbrodt STATYKA Cel statyk Celem statyk jest zastąpee dowolego układu sł ym, rówoważym układem sł, w tym układem złożoym z jedej tylko sły jedej pary sł (redukcja do sły mometu główego) lub zbadae waruków, jake

Bardziej szczegółowo

dr Michał Konopczyński Ekonomia matematyczna ćwiczenia

dr Michał Konopczyński Ekonomia matematyczna ćwiczenia dr Mchł Koopczńsk Ekoom mtemtcz ćwcze. Ltertur obowązkow Eml Pek red. Podstw ekoom mtemtczej. Mterł do ćwczeń MD r 5 AE Pozń.. Ltertur uzupełjąc Eml Pek Ekoom mtemtcz AE Pozń. Alph C. Chg Podstw ekoom

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 7 Krzywa retowośc, zadaa (mat. f.), marża w hadlu, NPV IRR, Ustawa o kredyce kosumeckm, fukcje fasowe Excela Krzywa retowośc (dochodowośc) Yeld Curve Krzywa ta jest grafczym

Bardziej szczegółowo

3. OPTYMALIZACJA NIELINIOWA

3. OPTYMALIZACJA NIELINIOWA Wybrae zaadea badań operacyjych dr ż. Zbew Tarapata 3. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też oprócz

Bardziej szczegółowo

3. Wykład III: Warunki optymalności dla zadań bez ograniczeń

3. Wykład III: Warunki optymalności dla zadań bez ograniczeń 3 Wkład III: Waruki optmalości dla zadań bez ograiczeń Podae poiże waruki optmalości dla są uogólieiem powszechie zach waruków dla fukci ede zmiee (zerowaie się pierwsze pochode i lokala wpukłość) 3 Twierdzeie

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia. J. de Lucas

Analiza Matematyczna Ćwiczenia. J. de Lucas Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystyka 0.06.0 r. Zadae. Ura zawera kul o umerach: 0,,,,. Z ury cągemy kulę, zapsujemy umer kulę wrzucamy z powrotem do ury. Czyość tę powtarzamy, aż kula z każdym umerem zostae wycągęta

Bardziej szczegółowo

będą niezależnymi zmiennymi losowymi z rozkładu o gęstości

będą niezależnymi zmiennymi losowymi z rozkładu o gęstości Prawdopodobeństwo statystyka 4.0.00 r. Zadae Nech... będą ezależym zmeym losowym z rozkładu o gęstośc θ f ( x) = θ xe gdy x > 0. Estymujemy dodat parametr θ wykorzystując estymator ajwększej warogodośc

Bardziej szczegółowo

Centralna Izba Pomiarów Telekomunikacyjnych (P-12) Komputerowe stanowisko do wzorcowania generatorów podstawy czasu w częstościomierzach cyfrowych

Centralna Izba Pomiarów Telekomunikacyjnych (P-12) Komputerowe stanowisko do wzorcowania generatorów podstawy czasu w częstościomierzach cyfrowych Cetrala Izba Pomarów Telekomukacyjych (P-1) Komputerowe staowsko do wzorcowaa geeratorów podstawy czasu w częstoścomerzach cyrowych Praca r 1300045 Warszawa, grudzeń 005 Komputerowe staowsko do wzorcowaa

Bardziej szczegółowo

Tekst oraz ilustracje do niniejszego opracowania zaczerpnięto z następujących podręczników, publikacji i wydawnictw popularno naukowych:

Tekst oraz ilustracje do niniejszego opracowania zaczerpnięto z następujących podręczników, publikacji i wydawnictw popularno naukowych: UZUPEŁNIAJĄCE MATERIAŁY DYDAKTYCZNE DLA UCZNIÓW TECHNIKUM MECHANICZNEGO PRZYGOTOWUJĄCYCH SIĘ DO ZEWNĘTRZNEGO EGZAMINU KWALIFIKACYJNEGO METROLOGIA TECHNICZNA (materały wybrae) Materały zebrał : mgr ż. Aatol

Bardziej szczegółowo

JEDNOWYMIAROWA ZMIENNA LOSOWA

JEDNOWYMIAROWA ZMIENNA LOSOWA JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E będze zborem zdarzeń elemetarych daego dośwadczea. Fucję X(e) przyporządowującą ażdemu zdarzeu elemetaremu e E jedą tylo jedą lczbę X(e)=x azywamy ZMIENNĄ LOSOWĄ. Przyład:

Bardziej szczegółowo

dev = y y Miary położenia rozkładu Wykład 9 Przykład: Przyrost wagi owiec Odchylenia Mediana próbkowa: Przykłady Statystyki opisowe Σ dev i =?

dev = y y Miary położenia rozkładu Wykład 9 Przykład: Przyrost wagi owiec Odchylenia Mediana próbkowa: Przykłady Statystyki opisowe Σ dev i =? Mary położea rozkładu Wykład 9 Statystyk opsowe Średa z próby, mea(y) : symbol y ozacza lczbę; arytmetyczą średą z obserwacj Symbol Y ozacza pojęce średej z próby Średa jest środkem cężkośc zboru daych

Bardziej szczegółowo

L.Kowalski PODSTAWOWE TESTY STATYSTYCZNE WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH

L.Kowalski PODSTAWOWE TESTY STATYSTYCZNE WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH L.Kowalsk PODSTAWOWE TESTY STATYSTYCZNE TESTY STATYSTYCZNE poteza statystycza to dowole przypuszczee dotyczące rozkładu cechy X. potezy statystycze: -parametrycze dotyczą ezaego parametru, -parametrycze

Bardziej szczegółowo

STATYSTYKA I stopień ZESTAW ZADAŃ

STATYSTYKA I stopień ZESTAW ZADAŃ Stattka ZADAIA STATYSTYKA I topeń ZESTAW ZADAŃ dr Adam Sojda. Aalza truktur jedowmarowego rozkładu emprczego..... Badae wpółzależośc w dwuwmarowm rozkładze emprczm. 8 3. Aalza zeregów czaowch.... 4. Aalza

Bardziej szczegółowo

Metoda Monte-Carlo i inne zagadnienia 1

Metoda Monte-Carlo i inne zagadnienia 1 Metoda Mote-Carlo e zagadea Metoda Mote-Carlo Są przypadk kedy zamast wykoać jakś eksperymet chcelbyśmy symulować jego wyk używając komputera geeratora lczb (pseudolosowych. Wększość bblotek programów

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem

Bardziej szczegółowo

METODY ANALIZY DANYCH DOŚWIADCZALNYCH

METODY ANALIZY DANYCH DOŚWIADCZALNYCH POLITECHNIKA Ł ÓDZKA TOMASZ W. WOJTATOWICZ METODY ANALIZY DANYCH DOŚWIADCZALNYCH Wybrae zagadea ŁÓDŹ 998 Przedsłowe Specyfką teor pomarów jest jej wtóry charakter w stosuku do metod badawczych stosowaych

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 3,4

STATYSTYKA OPISOWA WYKŁAD 3,4 STATYSTYKA OPISOWA WYKŁAD 3,4 5 Szereg rozdzelczy przedzałowy (dae pogrupowae) (stosujemy w przypadku dużej lczby epowtarzających sę daych) Przedzał (w ; w + ) Środek x& Lczebość Lczebość skumulowaa s

Bardziej szczegółowo

ZASTOSOWANIE MODELU LOGITOWEGO DO ANALIZY WYNIKÓW EGZAMINU

ZASTOSOWANIE MODELU LOGITOWEGO DO ANALIZY WYNIKÓW EGZAMINU Haa Dudek a, Moka Dybcak b a Katedra Ekoometr Iformatyk SGGW b studetka Mędzywydzałowego Studum Iformatyk Ekoometr e-mal: hdudek@mors.sggw.waw.pl ZASTOSOWANIE MODELU LOGITOWEGO DO ANALIZY WYNIKÓW EGZAMINU

Bardziej szczegółowo

Siła ciężkości. Siła ciężkości jest to siła grawitacyjna wynikająca z oddziaływania na siebie dwóch ciał. Jej wartość obliczamy z zależności

Siła ciężkości. Siła ciężkości jest to siła grawitacyjna wynikająca z oddziaływania na siebie dwóch ciał. Jej wartość obliczamy z zależności Sła cężkośc Sła cężkośc jest to sła grawtacja wkająca oddałwaa a sebe dwóch cał. Jej wartość obcam aeżośc G gde: G 6,674 10-11 Nm /kg M m r stała grawtacja, M, m mas cał, r odegłość pomęd masam. Jeże mam

Bardziej szczegółowo

Matematyka dyskretna. 10. Funkcja Möbiusa

Matematyka dyskretna. 10. Funkcja Möbiusa Matematyka dyskreta 10. Fukcja Möbusa Defcja 10.1 Nech (P, ) będze zborem uporządkowaym. Mówmy, że zbór uporządkoway P jest lokale skończoy, jeśl każdy podzał [a, b] P jest skończoy, a, b P Uwaga 10.1

Bardziej szczegółowo

Projekt 3 Analiza masowa

Projekt 3 Analiza masowa Wydzał Mechaczy Eergetyk Lotctwa Poltechk Warszawskej - Zakład Saolotów Śgłowców Projekt 3 Aalza asowa Nejszy projekt składa sę z dwóch częśc. Perwsza polega projekce wstępy wętrza kaby (kadłuba). Druga

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5 Stasław Cchock Natala Nehreecka Zajęca 5 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartośd oczekwaa eocążoośd estymatora Waracja

Bardziej szczegółowo

Politechnika Opolska. Skrypt Nr 237 ISSN 1427-9932 (wersja elektroniczna) Ewald Macha. Niezawodność maszyn

Politechnika Opolska. Skrypt Nr 237 ISSN 1427-9932 (wersja elektroniczna) Ewald Macha. Niezawodność maszyn Polechka Opolska Skrp Nr 37 ISSN 47-993 (wersja elekrocza) Ewald Macha Nezawodość masz Opole 3 Sps reśc Przedmowa 5 Wkaz ważejszch ozaczeń 6. Podsawowe pojęca eor ezawodośc 7.. Pojęca ezawodośc...7.. Defcja

Bardziej szczegółowo

GEODEZJA INŻYNIERYJNA SEMESTR 6 STUDIA NIESTACJONARNE

GEODEZJA INŻYNIERYJNA SEMESTR 6 STUDIA NIESTACJONARNE GEODEZJ INŻNIERJN SEMESTR 6 STUDI NIESTCJONRNE CZNNIKI WPŁWJĄCE N GEOMETRIĘ UDNKU/OIEKTU Zmaę geometr budyku mogą powodować m.: czyk atmosferycze, erówomere osadae płyty fudametowej mogące skutkować wychyleem

Bardziej szczegółowo

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości Podstawowe pojęca procesu pomarowego kreślene jakośc poznana rzeczywstośc Δ zmerzone rzeczywste 17 9 Zalety stosowana elektrycznych przyrządów 1/ 1. możlwość budowy czujnków zamenających werne każdą welkość

Bardziej szczegółowo

Zagadnienia optymalizacji kosztów w projektowaniu gazowych sieci rozdzielczych

Zagadnienia optymalizacji kosztów w projektowaniu gazowych sieci rozdzielczych Zagadea optymalzacj kosztów w projektowau gazowych sec rozdzelczych Autorzy: dr Ŝ. ech Dobrowolsk, m Ŝ. Wtold Maryka ( Ryek Eerg 6/200) Słowa kluczowe: rozdzelcza seć gazowa, stacje gazowe redukcyje, gazocąg

Bardziej szczegółowo

FINANSE II. Model jednowskaźnikowy Sharpe a.

FINANSE II. Model jednowskaźnikowy Sharpe a. ODELE RYNKU KAPITAŁOWEGO odel jedowskaźkowy Sharpe a. odel ryku kaptałowego - CAP (Captal Asset Prcg odel odel wycey aktywów kaptałowych). odel APT (Arbtrage Prcg Theory Teora artrażu ceowego). odel jedowskaźkowy

Bardziej szczegółowo

11/22/2014 STRATEGIE MIESZANE - MOTYWACJA. ROZWAśMY PRZYKŁAD:

11/22/2014 STRATEGIE MIESZANE - MOTYWACJA. ROZWAśMY PRZYKŁAD: //4 Gry o sue zero - gry rozgrywae w strategach eszaych STRATEGIE IESZANE - OTYWACJA. ROZWAśY PRZYKŁAD: 5 DEFINICJA..6 Strategą eszaą π gracza P azyway kaŝdy rozkład prawdopodobeństwa określoy a zborze

Bardziej szczegółowo

Materiały dydaktyczne. Matematyka. Semestr II

Materiały dydaktyczne. Matematyka. Semestr II Projekt współfiasowa ze środków Uii Europejskiej w ramach Europejskiego Fuduszu Społeczego Materiał ddaktcze Matematka Semestr II Ćwiczeia Projekt Rozwój i promocja kieruków techiczch w Akademii Morskiej

Bardziej szczegółowo

Portfel złożony z wielu papierów wartościowych

Portfel złożony z wielu papierów wartościowych Portfel westycyy ćwczea Na odst. Wtold Jurek: Kostrukca aalza, rozdzał 4 dr Mchał Kooczyńsk Portfel złożoy z welu aerów wartoścowych. Zwrot ryzyko Ozaczea: w kwota ulokowaa rzez westora w aery wartoścowe

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 2

INSTRUKCJA DO ĆWICZENIA NR 2 KATEDRA MECHANIKI STOSOWANEJ Wydzał Mehazy POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 PRZEDMIOT TEMAT OPRACOWAŁ MECHANIKA TECHNICZNA Wyzazee położee środka ężkoś układu mehazego Dr ż. K. Kęk 1.

Bardziej szczegółowo

MODELOWANIE I PROGNOZOWANIE

MODELOWANIE I PROGNOZOWANIE L.Kowalsk-Modelowae progozowae MODELOWANIE I PROGNOZOWANIE MATERIAŁY DYDAKTYCZNE o Podsawowe charakersk dach sasczch, o Ideks, o Progozowae- wadomośc wsępe, o Modele ekoomercze, o Jedorówaow model low,

Bardziej szczegółowo

( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min

( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min Fukca warogodośc Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x;. Fukcą warogodośc dla próby x azywamy welkość: ( x; f ( x ; L Twerdzee (Cramera-Rao: Mmala wartość warac m dowolego eobcążoego

Bardziej szczegółowo

Regresja REGRESJA

Regresja REGRESJA Regresja 39. REGRESJA.. Regresja perwszego rodzaju Nech (, będze dwuwyarową zeą losową, dla które steje kowaracja. Nech E( y ozacza warukową wartość oczekwaą zdefowaą dla przypadku zeych losowych typu

Bardziej szczegółowo

1. Relacja preferencji

1. Relacja preferencji dr Mchał Koopczyńsk EKONOMIA MATEMATYCZNA Wykłady, 2, 3 (a podstawe skryptu r 65) Relaca preferec koszyk towarów: przestrzeń towarów: R + = { x R x 0} x = ( x,, x ) X X R+ x 0 x 0 =, 2,, x~y xf y x y x

Bardziej szczegółowo

... MATHCAD - PRACA 1/A

... MATHCAD - PRACA 1/A Nazwsko Imę (drukowaym) KOD: Dzeń+godz. (p. Śr) MATHCAD - PRACA /A. Stablcuj fukcję: f() = s() + /6. w przedzale od a do b z podzałem a rówych odcków. Sporządź wykres f() sprawdź, le ma mejsc zerowych.

Bardziej szczegółowo

REGRESJA LINIOWA. gdzie

REGRESJA LINIOWA. gdzie REGREJA LINIOWA Jeżel zmerzoo obarczoe tlko błędam przpadkowm wartośc (, ),,,..., dwóch różch welkośc fzczch X Y, o którch wadomo, że są zwązae ze sobą zależoścą lową f(), to ajlepszm przblżeem współczków

Bardziej szczegółowo

NOWE ĆWICZENIA LABORATORYJNE Z FIZYKI. w studenckim laboratorium z fizyki Instytutu Fizyki Politechniki Szczecińskiej

NOWE ĆWICZENIA LABORATORYJNE Z FIZYKI. w studenckim laboratorium z fizyki Instytutu Fizyki Politechniki Szczecińskiej NOWE ĆWICZENIA LABORATORYJNE Z FIZYKI w stdekm laboratorm fk Isttt Fk Poltehk Seńskej Se 007 PRZEDMOWA Sps treś. Aala epewoś pomarowh M.Lewadowska, J.Tpek. Waae stałej grawtajej a pomoą skompterowaej wag

Bardziej szczegółowo

Funkcja wiarogodności

Funkcja wiarogodności Fukca warogodośc Defca: Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x; θ. Fukcą warogodośc dla próby x azywamy welkość: ( x; θ f ( x ; θ L Uwaga: Fukca warogodośc to e to samo co łącza

Bardziej szczegółowo

Programowanie nieliniowe optymalizacja funkcji wielu zmiennych

Programowanie nieliniowe optymalizacja funkcji wielu zmiennych Ekonomia matematczna II Ekonomia matematczna II Prowadząc ćwiczenia Programowanie nieliniowe optmalizacja unkcji wielu zmiennch Modele programowania liniowego często okazują się niewstarczające w modelowaniu

Bardziej szczegółowo

Reprezentacja krzywych...

Reprezentacja krzywych... Reprezeacja rzywych... Reprezeacja przy pomocy fcj dwóch zmeych rzywe płase płase - jedej: albo z z f x y x [ x x2] y [ y y2] f x y g x x [ x x2] Wady: rzywe óre dla pewych x y mogą przyjmować wele warośc

Bardziej szczegółowo

2.27. Oblicz wartość wyrażenia 3 a Wykaż, że jeżeli x i y są liczbami dodatnimi oraz x+ y =16, to ( 1+

2.27. Oblicz wartość wyrażenia 3 a Wykaż, że jeżeli x i y są liczbami dodatnimi oraz x+ y =16, to ( 1+ MATURA z matematki w roku,, fragmet Liza log log log log log 7 log 8 jest: 7 A iewmiera, B ałkowita, C kwadratem liz aturalej, D większa od 7 : B 7 Oliz wartość wrażeia a wiedzą, że a a 7 Wskazówka: Zauważ,

Bardziej szczegółowo

Pomiar bezpośredni przyrządem wskazówkowym elektromechanicznym

Pomiar bezpośredni przyrządem wskazówkowym elektromechanicznym . Rodzaj poiaru.. Poiar bezpośredni (prost) W przpadku poiaru pojednczej wielkości przrząde wskalowan w jej jednostkach wartość niedokładności ± określa graniczn błąd przrządu analogowego lub cfrowego

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Iducja matematycza Twerdzee. zasada ducj matematyczej Nech T ozacza pewą tezę o lczbe aturalej. Jeżel dla pewej lczby aturalej 0 teza T 0 jest prawdzwa dla ażdej lczby aturalej 0 z prawdzwośc tezy T wya

Bardziej szczegółowo

Ćwiczenia nr 3 Finanse II Robert Ślepaczuk. Teoria portfela papierów wartościowych

Ćwiczenia nr 3 Finanse II Robert Ślepaczuk. Teoria portfela papierów wartościowych Ćczea r 3 Fae II obert Ślepaczuk Teora portfela paperó artoścoych Teora portfela paperó artoścoych jet jedym z ajażejzych dzałó ooczeych faó. Dotyczy oa etycj faoych, a przede zytkm etycj dokoyaych a ryku

Bardziej szczegółowo

będą niezależnymi zmiennymi losowymi o tym samym 2 x

będą niezależnymi zmiennymi losowymi o tym samym 2 x Prawdopodobeństwo statystyka 8.0.007 r. Zadae. Nech,,, rozkładze z gęstoścą Oblczyć m E max będą ezależym zmeym losowym o tym samym { },,, { },,, gdy x > f ( x) = x. 0 gdy x 8 8 Prawdopodobeństwo statystyka

Bardziej szczegółowo

BADANIE STATYSTYCZNEJ CZYSTOŚCI POMIARÓW

BADANIE STATYSTYCZNEJ CZYSTOŚCI POMIARÓW INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII RODUKCJI I TECHNOLOGII MATERIAŁÓW OLITECHNIKA CZĘSTOCHOWSKA RACOWNIA DETEKCJI ROMIENIOWANIA JĄDROWEGO Ć W I C Z E N I E N R J-6 BADANIE STATYSTYCZNEJ CZYSTOŚCI OMIARÓW

Bardziej szczegółowo