METODY KOMPUTEROWE 10

Wielkość: px
Rozpocząć pokaz od strony:

Download "METODY KOMPUTEROWE 10"

Transkrypt

1 MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Poechnka Poznańska Mchał Płokowak Adam Łodgowsk Mchał PŁOKOWIAK Adam ŁODYGOWSKI Konsace nakowe dr nż. Wod Kąko Poznań 00/00 MEODY KOMPUEROWE 0 RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Równane zaweraące cząskową pochodną neznane fnkc dwóch b węce zmennch nazwa sę cząskowm równanem różnczkowm. Na przkład: (0.) Koeność równana cząskowego różnczkowego zaeż od pochodnch w nm wsępącch zapse sę e od nawększe do namnesze pochodne. RRC es nowe eże wszske ego pochodne są nowe. Ze wzgęd na szeroke zasosowane w bdowncwe nasze rozważana ogranczą sę do RRC nowch drgego rzęd (rząd okreśa maksmaną pochodną aka sę w równan pokaze) z dwema zmennm. Da akch równań można zapsać posać kanonczną: 0 D C B A (0.)

2 MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Kaegore do kórch RRC nowe drgego rzęd można skasfkować (ze wzgęd na wznacznk): Wznacznk B 4AC Kaegora RRC <0 Epczne 0 Paraboczne >0 Hperboczne Przkład Równane Lapace a (znadowane san saonego brak zmenne czasowe) 0 Równane przewodncwa cepnego zagadnena propagac (rozkład fnkc w czase przesrzen) 0 Równana faowe drgana np. srn (rozkład fnkc w czase przesrzen) c Przkład RRC epcznch: Rs.. Przekład RRC epcznch a) rozkład emperar na podgrzewane baszce b) pogąd na przepłw wod pod amą c) rozkład poa eekrcznego w okoc zoaora. Poechnka Poznańska Mchał Płokowak Adam Łodgowsk

3 MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Przkład RRC parabocznch: Rs.. a) Obraz dłgego pręa zoowanego (bez przepłw cepła do ooczena) podgrzewanego z edne sron b) rozwązane zagadnena sanów podgrzewanego pręa w różnch czasach RRC paraboczne możwaą znaezene rozkład zmenne w każde chw.. RÓWNANIA RÓŻNICZKOWE CZĄSKOWE ELIPYCZNE (równane Lapace a) 0 (0.) Jeże kernek rozchodzena sę cepła ne es ednakow (cepło rozchodz sę w dwóch kernkach) można wówczas zapsać: f ( ) (0.4) Poechnka Poznańska Mchał Płokowak Adam Łodgowsk

4 MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Poechnka Poznańska Mchał Płokowak Adam Łodgowsk 4 Korzsaąc z meod eemenów skończonch równane różnczkowe można sprowadzć do agebracznego kład równań: (0.5) Błęd są rzęd () [ ] ( ) [ ] Równana (0.5) podsawam do równana (0.) co w rezace dae: 0 (0.6) Da sak kwadraowe (rs. ) równane (0.6) przme posać: 0 4 (0.7) Rs.. Saka ża do rozwązana RRC parabocznego (ak równane Lapace a) meodą różnc skończonch.

5 MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE 5 Naeż wkorzsać warnk brzegowe Drchea zn. warośc brzegowe mszą bć spreczowane ab zskać konkrene rozwązane. Przkład: Rs. 4. Płka podgrzewana różnm emperaram z różnch sron dane warnk brzegowe ce- obczene emperar w okreśonch pnkach Korzsam ze wzor (0.7) wedząc że Podobną procedrę naeż przeprowadzć da wszskch nnch pnków maąc dość złożon kład równań- rozwązać go. ( ) ( ) (0.8) Poechnka Poznańska Mchał Płokowak Adam Łodgowsk

6 MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE 6 Rozwązane: Równane Forera: W RRC p parabocznego oprócz zman czas wsępe równeż drga zmenna neednokrone ważnesza nż czas. Da podgrzewanego eemen meaowego es o nesanne zmenaąc sę przepłw cepła przez powerzchnę płk. Ab wznaczć ów przepłw korzsam z prawa Forera: q k' q k' (0.9) q n q q Kernek przepłw cepła wznacza sę: q θ an da q > 0 q q θ an π da q < 0 q (0.0) Meoda Lebmann a: Poega na erac da do n do m. Poneważ macerz es dagonana en proces doprowadz do orzmana sabnego rozwązana. (0.) 4 Warnek brzegow Nemanna: (0.) Poechnka Poznańska Mchał Płokowak Adam Łodgowsk

7 MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE 7 Jes o aernawne rozwązane do radcnch warnków brzegowch (np. Drchea). Jes o ak przpadek gd es dana pochodna. 0 (0.) Naeż zwrócć wagę na pnk (-) kór mmo że eż poza obszarem es równeż wmagan w równan. Wdawać b sę mogło że pnk en będze sanowł probem ae właśne przchodz z pomocą pochodna warnk brzegowego. Naeż okreść perwszą pochodną po zmenne w pnkce (0): (0.4) eraz maąc zaeżność na - możem podsawć e do wzor (0.): (0.5) Warnk brzegowe da neregarnch kszałów: Rs. 5. Obraz nerównego brzeg Poechnka Poznańska Mchał Płokowak Adam Łodgowsk

8 MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Poechnka Poznańska Mchał Płokowak Adam Łodgowsk 8 Korzsaąc z różnc cenrane w ł: (0.6) Pochodna wrażene (0.7) wzgędem zmenne : ( ) ( ) Μ (0.7) Wrażene na pochodną wzgędem zmenne wgąda anaogczne: ( ) ( ) β β β β β β (0.8)

9 MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE 9 Okreśane prz neregarnch kszałach: Rs. 6. Zakrzwon brzeg- warnk brzegowe ze wzgęd na dan ką η 7 7 L 8 7 ( ) cosθ η 6 8 anθ 6 L 7 anθ cosθ 6 anθ (0.9). RÓWNANIA RÓŻNICZKOWE CZĄSKOWE PARABOLICZNE Równana doczące przewodncwa cepnego zapsane równanem: k (0.0) Meod p epc (awne) Równana przewodncwa cepła wmagaą aproksmac drge pochodne przesrzen perwsze pochodne czas. Równana e są reprezenowane podobne ak równana Lapace a- meodą cenraną różnc skończonch: Poechnka Poznańska Mchał Płokowak Adam Łodgowsk

10 MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Poechnka Poznańska Mchał Płokowak Adam Łodgowsk 0 (0.) Ab okreść przesrzeń czasową wkorzsem schema różncow wprzód. (0.) Podsawam równana (0.) (0.) do równana (0.0) orzmem: k (0.) Co w efekce końcowm dae: ( ) ( ) k gdze λ λ (0.4) Do rozwązwana równań parabocznch wkorzswana es meoda Eer a. Do zskana rozwązana wkorzse sę ż dan krok poprzedn. en zabeg wkorzsem w węzłach wewnęrznch (parz rs. 7): rs. 7. X- pnk do obczena (nasępn poprzedn) O- pnk do obczena przesrzen (pnk obecn nasępn poprzedn)

11 MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Przkład: Wkorzsane meod epc do obczena rozkład emperar da dłgego pręa (parz rs. 8.): Rs. 8. Prę dan w zadan Dane warośc: Dłgość 0cm cm 0s Da 0 (0) 00 0 C (chwa począkowa z ewe sron) (0) 50 0 C (chwa począkowa z prawe sron) k ca s cm C λ 085 (0) ( ) Wkorzsąc zaeżność (0.) możem zapsać da 0 s 46 8 : [ (0) 00] [ (0) 0] 0 [ (0) 0] 0 [ (0) 0] (0.5) Poechnka Poznańska Mchał Płokowak Adam Łodgowsk

12 MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Da 0 s 46 8 wgąda o nasępąco: [ (0875) 00] [ (0) 0875] [ (0) 0] [ (048) 0] (0.6) Rs. 9. Grafczne wnk przkład meod epc da różnch warośc czas Probem zbeżnośc sabnośc: 0 Meoda zbeżna: w akm przpadk zske sę rozwązane dokładne 0 Sabność- oznacza że błęd ne narasaą podczas rozwązwana probem (gd sę całke) Carnahan aor zaeżnośc na sabność równań: Sabność można zskać narzcaąc sne ogranczena na krok czasow: b λ (0.7) k Poechnka Poznańska Mchał Płokowak Adam Łodgowsk

13 MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Sabność a współcznnk λ: λ λ 4 λ 6 bęę ne narasaą ae mogą oscować ne ma oscac mn ma n bą meod Nabezpeczne go żż (0.8) Brak sabnośc przkład obraze wkres gd λ przme 075 Poechnka Poznańska Rs. 0. brak sabnośc prz zb dżm λ Mchał Płokowak Adam Łodgowsk

14 MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE 4 Meod p mpc (neawne) Z powższch rozważań wnka że meoda epc ma dże kłopo ze sabnoścą. Koneczne są węc resrkcne ogranczena ab zachować sabność. Meod mpc są pozbawone ego mankamen koszem bardze skompkowanch agormów. Fndamenana różnca pomędz meodam epc a mpc es pokazana na rs..: Rs.. Pokaze różncę omawanch meod Różnca poega na okreśan pochodne. W przpadk meod mpc pochodną okreśa sę w czase co sprawa że meoda a es pozbawona ogranczeń nezbędnch w meodze epc. (0.9) Ab okreść przesrzeń czasową wkorzsem schema różncow wprzód. (0.0) Poechnka Poznańska Mchał Płokowak Adam Łodgowsk

15 MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Poechnka Poznańska Mchał Płokowak Adam Łodgowsk 5 Wkorzsąc podsawowe równane na równana paraboczne (0.0) orzmam: k (0.) Równane o można proścć: ( ) ( ) k gdze λ λ λ λ (0.) Da kładów gd dane są emperar brzegowe: ( ) 0 0 f (0.) Gdze f 0 ( ) es fnkcą ak emperar brzegowe zmenaą sę w czase. Meoda Cranka- Ncosona Jes o nadokładnesza meoda bez konecznośc dodakowch ogranczeń ze wzgęd na czas przesrzeń. Jes o możwe dzęk zasosowan meod pnk środkowego (obczene pochodne cenrane w pnkach co dae znaczne wększą preczę). da (0.4) Drga pochodna po przesrzen es okreśana w pnkce pośrednm co powode średnene przbżeń w począk ( ) końc ( ) w rezace dae dżo wększą dokładność: (0.5)

16 MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE 6 Rs.. Grafczna nerpreaca meod Cranka- Ncosona (pnk środkowego) Porównane wnków meod: epc mpc Cranka- Ncosona (przkład ze sr. ) λ epc mpc Crank- Ncoson Rozwązane dokładne Jak wdać meoda C-N bła nadokładnesza od samego począk a meoda epc dała sasfakconąc wnk dopero wed gd współcznnk λ spełnł założena ogranczeń czasowch. Poechnka Poznańska Mchał Płokowak Adam Łodgowsk

9. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

9. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 9. RÓWNANIA RÓŻNICZKOWE CZĄSKOWE 9. RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Wsęp. Rónana zaeraące pochodną neznane fnkc dóch b ęce zmennch naza sę cząskom rónanem różnczkom. Na przkład: 5 9. Ze zgęd na szeroke zasosoane

Bardziej szczegółowo

Ą Ń ż ś ż ś Ż ż ść ż ż Ł ś śó ś Ź ź ż Ę Ą ś ż Ę ś ś żą Ź Ę Ń Ź ż Ę Ą ż Ź Ę Ź ś Ę ć ż Ń ż Ń Ą Ż ź ź ż Ę Ł ż ż ś źź ś ś ż ż ż ż ść ż Ę ż ż ż ś ż ś ż ż ś ż ż Ą ż Ń ś ż ż Ę ż ż ż Ę ś Ł ś ż ż ś ś ż ść

Bardziej szczegółowo

III. Przetwornice napięcia stałego

III. Przetwornice napięcia stałego III. Przewornce napęca sałego III.1. Wsęp Przewornce: dosarczane pożądanej warośc napęca sałego koszem energ ze źródła napęca G. Możlwość zmnejszana, zwększana, odwracana polaryzacj lb kszałowane pożądanego

Bardziej szczegółowo

Krzywe na płaszczyźnie.

Krzywe na płaszczyźnie. Krzwe na płaszczźnie. Współrzędne paramerczne i biegunowe. Współrzędne biegunowe. Dan jes punk O, zwan biegunem, kór sanowi począek półprosej, zwanej półosią. Dowoln punk P na płaszczźnie można opisać

Bardziej szczegółowo

PROBLEM ODWROTNY DLA RÓWNANIA PARABOLICZNEGO W PRZESTRZENI NIESKOŃCZENIE WYMIAROWEJ THE INVERSE PARABOLIC PROBLEM IN THE INFINITE DIMENSIONAL SPACE

PROBLEM ODWROTNY DLA RÓWNANIA PARABOLICZNEGO W PRZESTRZENI NIESKOŃCZENIE WYMIAROWEJ THE INVERSE PARABOLIC PROBLEM IN THE INFINITE DIMENSIONAL SPACE JAN KOOŃSKI POBLEM ODWOTNY DLA ÓWNANIA PAABOLICZNEGO W PZESTZENI NIESKOŃCZENIE WYMIAOWEJ THE INVESE PAABOLIC POBLEM IN THE INFINITE DIMENSIONAL SPACE S r e s z c z e n e A b s r a c W arykule skonsruowano

Bardziej szczegółowo

Cechy szeregów czasowych

Cechy szeregów czasowych energecznch Cech szeregów czasowch Rozdział Modelowanie szeregów czasowch 7 proces deerminisczn proces kórego warość może bć preczjnie określona w dowolnm czasie =T+τ = a +b T T+τ czas = sin(ω) T T+τ czas

Bardziej szczegółowo

Całka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona

Całka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona Całka nieoznaczona Andrzej Musielak Sr Całka nieoznaczona Całkowanie o operacja odwrona do liczenia pochodnych, zn.: f()d = F () F () = f() Z definicji oraz z abeli pochodnych funkcji elemenarnych od razu

Bardziej szczegółowo

Ą ś Ę ń ń ń Ć ś ć Ę Ę ż ę ę ż ż ż ź ć ż Ę ś ż ż ż ń ź ż ę Ą ę ę Ć ż ć Ę Ę ż Ó ś ż ż ż ś ż ź ć Ą ś ź ę Ę ń śł ż ę ż ń Ą Ó ń Ę Ż Ę ę ę ż ć ż ń ś ń Ć ń ć żę ś Ę ń ę ś Ę Ę ż ćż ć ę ż Ę ż ś Ę ń ć ś ż Ą ń ż

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

Prognozowanie i symulacje

Prognozowanie i symulacje Prognozowanie i smulacje Lepiej znać prawdę niedokładnie, niż dokładnie się mlić. J. M. Kenes dr Iwona Kowalska ikowalska@wz.uw.edu.pl Prognozowanie meod naiwne i średnie ruchome Meod naiwne poziom bez

Bardziej szczegółowo

u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH

u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH METODA ELEMENTÓW SKOŃCZONYCH Szkc rozwązana równana Possona w przestrzen dwuwymarowe. Równane Possona to równae różnczkowe cząstkowe opsuące wele

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem

Bardziej szczegółowo

dr inż. B. Szyszka RRC

dr inż. B. Szyszka RRC RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE opsą zmenność ssemów zależnc od klk zmennc naczęśce od czas zmennc przesrzennc. Wsępą one np. w zagadnenac: ELEKTROTECHNIKI: pole elekrosaczne elekrczne magneosaczne elekromagneczne

Bardziej szczegółowo

Ę ó ą ż Ę Ń ó ś ź ń ś ś Ę óń ż ńó Ę ń ń ń ą ń ź ż ń ś ó Ż ó ąż ż łś ż żń ż ź ó ż ę ż ó ł Ń ń ń Ń ą Ńź óś ńńóń ń ń ń ż śż ó ś ż ż ą ó Ą Ń ż ł ń ą ż ą ż

Ę ó ą ż Ę Ń ó ś ź ń ś ś Ę óń ż ńó Ę ń ń ń ą ń ź ż ń ś ó Ż ó ąż ż łś ż żń ż ź ó ż ę ż ó ł Ń ń ń Ń ą Ńź óś ńńóń ń ń ń ż śż ó ś ż ż ą ó Ą Ń ż ł ń ą ż ą ż Ę ą Ę Ń ś ź ś ś Ę Ę ą ź ś Ż ą ś Ń ź ę Ń Ń ą Ńź ś ś ś ą Ą Ń ą ą Ę ą ą Ę ąą ą Ś ą ę ą Ś ą Ł Ś ś Ń Ą ź ź Ę ź Ć ą ą ś Ść Ą Ż Ł ś ęę ę ś ś ś ć ą ą Ń ę ęś ęść ą ęść ą ą ść ź ć ć ą ś ą ę ć ź ęść ę ć ą ęść ś ść

Bardziej szczegółowo

oznacza przyrost argumentu (zmiennej niezależnej) x 3A82 (Definicja). Granicę (właściwą) ilorazu różnicowego funkcji f w punkcie x x x e x lim x lim

oznacza przyrost argumentu (zmiennej niezależnej) x 3A82 (Definicja). Granicę (właściwą) ilorazu różnicowego funkcji f w punkcie x x x e x lim x lim WYKŁAD 9 34 Pochodna nkcji w pnkcie Inerpreacja geomerczna pochodnej Własności pochodnch Twierdzenia Rolle a Lagrange a Cach ego Regla de lhôspiala Niech ( ) O( ) będzie nkcją określoną w pewnm ooczeni

Bardziej szczegółowo

Kier. MTR Programowanie w MATLABie Laboratorium

Kier. MTR Programowanie w MATLABie Laboratorium Ker. MTR Programowane w MATLABe Laboraorum Ćw. Zasosowane bbloecznych funkcj MATLABa do numerycznego rozwązywana równań różnczkowych. Wprowadzene Układy równań różnczkowych zwyczajnych perwszego rzędu

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

METODY KOMPUTEROWE 1

METODY KOMPUTEROWE 1 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN MTODA ULRA Mcał PŁOTKOWIAK Adam ŁODYGOWSKI Kosultacje aukowe dr z. Wtold Kąkol Pozań 00/00 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN Metod umercze MN pozwalają a ormułowae matematczc

Bardziej szczegółowo

Ł ń ń ć ź Ą ć Ń ć Źń Ą ć ź ź ń ź ń ń ń Ą ń ź Ą ć Ą ń Ą ń ń Źń ń ć ń ń ć ń ć ń ź ź ź ź ć Źń ń Ń ć ć ć ń ć ń ź ń ć Ł ć ć Ł Ń ć Ń ć ń ć ć ć ź ć ć ńń ź ź ć ń ć ć Źń ń ź ć ń ń źć ć ń ć ń ć ć ń ń ć ć ź ń ć ć

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

Ż ż Ź ż ż ć ż ż ż ż ć ż Ź ż ż ż ć Ś ż Ś ć ż ć ż ż ż ć ć ż Ź ż ćż ż ż ż Ż ż Ą ż żć ż ż Ś ż ż ż ć ż ż ż ż ż ż ż ć Ć ż Ą Ż Ż ć Ś ż ż Ś Ś Ęż ż ć ż Ż Żż Ć ż ż ż ż ż ć Ż ż Ćż Ż ż ż ż Ą ż ż ć ż ć ż ż ć ż ż ż

Bardziej szczegółowo

Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7

Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7 ozwiązwanie ram płaskich wznaczanie reakcji i wkresów sił przekrojowch 7 Obciążenie ram płaskiej, podobnie jak w przpadku beek rozdział 6, mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe

Bardziej szczegółowo

Stateczność układów ramowych

Stateczność układów ramowych tateczność układów ramowych PRZYPONIENIE IŁ KRYTYCZN DL POJEDYNCZYCH PRĘTÓW tateczność ustrou tateczność ustrou est to zdoność ustrou do zachowana nezmennego położena (kształtu) ub nacze mówąc układ po

Bardziej szczegółowo

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx 5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.

Bardziej szczegółowo

Ą ź ń Ś Ź ń Ę Ś ź Ę ń ć ć ż ż ż ż ć ń Ę Ż ń ż ć ć Ł Ż Ż ćń Ą ć ć Ą Ż Ź Ą ż Ż ż Ą Ą Ę ń ć ć ń ń Ę ń ź ń Ż ż ć ń Ż ż ć Ż ń ż Ą ć ć Ą Ż Ą Ż Ł ź Ą ń Ź ń Ę ż Ń Ę Ń ż ć ż Ń ń ń Ę Ę ż Ź Ż ć Ą Ż ń ń Ż ć ż Ż ń

Bardziej szczegółowo

Ą ć ę ż ż Ż ć ć Ż ć ń ę ę Ż ń ż ęż ę ę Ę ż ż ĘŚ ę Ż Ż Ż Ż Ż Ż Ż Ż ż ż ń ę ęż ęż Ó ęź Ą ń ę Ś Ż ć ę Ą ę ż ę ż ć ę ę Ż ę ż ż ę ń ń ę Ą ż ę Ł Ą ę ż ę Ą ę ę Ę Ą ę ę ęć ż Ę ęż ż ę Ą Ę ę ę Ą ę ę Ą Ą Ż ć ć Ń

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

Współczynnik korelacji liniowej oraz funkcja regresji liniowej dwóch zmiennych

Współczynnik korelacji liniowej oraz funkcja regresji liniowej dwóch zmiennych Współcznnk korelacj lnowej oraz funkcja regresj lnowej dwóch zmennch S S r, cov współcznnk determnacj R r Współcznnk ndetermnacj ϕ r Zarówno współcznnk determnacj jak ndetermnacj po przemnożenu przez 00

Bardziej szczegółowo

Ę ć ń ż ć Ń ń ż ć ć ń ż ć ń ź ń Ę Ń ń ń ż ć ż ć ć Ń ż ć ń ć ż ń ż ć ć Ń ż ć Ń ż Ń Ń Ń ż ż Ń ż ż Ń ń ź Ń ń Ń ń ń Ą ń ń ź ń Ń Ń ć Ę ż Ń ż ć ć ć Ę ńż ń Ą ć ć Ę ż ż ć ż ć Ń ż Ń ż Ń ż ż ń ć ń Ń ń Ę ż Ł Ń ż

Bardziej szczegółowo

Ą Ż Ł ś ż ńż ż ż ś ź ź ć ź ś ń ż ć ź ź ź ż ź ś ź ń ź Ę ż ź ź ź ż ż ś ń ż ż ś ż ź ż ź źń ż ż ż ź ś ś ż ś ż ż Ż Ł ń ż ś ż ń ź ź ż żń ść ż ż ń ń ń ń ń ż ś ź ż ń ż ś ń ż ć ż ś ż ż ć ń ż ż ź ż ć ż ż ś ż ż ć

Bardziej szczegółowo

Ó Ż ź Ó Ą Ż Ó ń ń ć ć ĘŚ Ś ŚĆ Ę ć ć ć ć Ś Ź ń ź ŚĆ ń Ś ź ć ć Ó ć ć ź ć ć ć ń ń Ł ć ź ć ń Ś ć ć ć Ł Ę Ś Ł Ę Ł ć ń ć Ś ź Ć Ś Ś ć ź Ó ź ć ć Ś ń ź Ś ź Ó Ś Ó Ś Ś ń Ś Ś ć ć ń ć ć Ż Ś ć ń ń Ł Ł ń ć ź ć ć Ó ć

Bardziej szczegółowo

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe

Bardziej szczegółowo

; -1 x 1 spełnia powyższe warunki. Ale

; -1 x 1 spełnia powyższe warunki. Ale Funkcje uwkłane Przkła.ozważm równane np. nech. Ptane Cz la owolneo [ ] stneje tak że? Nech. Wówczas unkcja - spełna powższe warunk. Ale spełna je także unkcja [ ] Q. Dokłaając warunek cąłośc unkcj [ ]

Bardziej szczegółowo

Budownictwo, II rok sem IV METODY OBLICZENIOWE. dr inŝ. Piotr Srokosz IP Temat 8

Budownictwo, II rok sem IV METODY OBLICZENIOWE. dr inŝ. Piotr Srokosz IP Temat 8 Bdownctwo, II rok sem IV MEODY OBLICZEIOWE dr nŝ. Potr Srokosz IP- emat 8 emat 8 Równana róŝnczkowe cząstkowe Metoda Elementów Skończonch (MES) Zagadnene brzegowe Sformłowane zagadnena fzcznego Równana

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA. Wkład wstępn. Teora prawdopodobeństwa element kombnatork. Zmenne losowe ch rozkład 3. Populacje prób danch, estmacja parametrów 4. Testowane hpotez statstcznch 5. Test parametrczne

Bardziej szczegółowo

; -1 x 1 spełnia powyższe warunki. Ale

; -1 x 1 spełnia powyższe warunki. Ale AIB-Inormatka-Wkła - r Aam Ćmel cmel@.ah.eu.pl Funkcje uwkłane Przkła.ozważm równane np. nech. Ptane Cz la owolneo [] stneje tak że? Nech. Wówczas unkcja - spełna powższe warunk. Ale [ ] Q spełna je także

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x

Bardziej szczegółowo

ń Ę Ę Ę Ę ń ń Ś ź Ę ś ś Ę Ś Ą Ę Ę Ę Ę Ż Ę Ę ść Ą Ł Ę Ć ć Ś Ę Ę ś Ę Ż Ś Ę Ę ń Ż Ę Ć ź ć Ł ś Ę ś Ż ś Ś ś Ę ć Ł ś Ż ŚĆ Ę ń ŚĆ ść ś ś ń ś Ś ś ś Ęś Ę ć ś ść ń ń Ć ś Ą ń ć Ą Ś ń ś ś ć ć ś źć ć ź ś ń Ę ś Ę ć

Bardziej szczegółowo

Diagonalizacja macierzy kwadratowej

Diagonalizacja macierzy kwadratowej Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an

Bardziej szczegółowo

Ę ż Ł ś ą ł ść ó ą ż ę ł Ł ś ą ś Ż ż ż ń ż ł ś ń ż żę Ł ż ó ń ę ż ł ńó ó ł ń ą ż ę ż ą ą ż Ń ż ż ż óź ź ź ż Ę ż ś ż ł ó ń ż ć óź ż ę ż ż ńś ś ó ń ó ś

Ę ż Ł ś ą ł ść ó ą ż ę ł Ł ś ą ś Ż ż ż ń ż ł ś ń ż żę Ł ż ó ń ę ż ł ńó ó ł ń ą ż ę ż ą ą ż Ń ż ż ż óź ź ź ż Ę ż ś ż ł ó ń ż ć óź ż ę ż ż ńś ś ó ń ó ś Ę Ł ś ą ł ść ą ę ł Ł ś ą ś Ż ł ś ę Ł ę ł ł ą ę ą ą Ń ź ź ź Ę ś ł ć Ź ę ś ś ś Ę ł ś ć Ę ś ł ś ą ź ą ą ą ą ą ą ą ą ś ą ęń ś ł ą ś Ł ś ś ź Ą ł ć ą ą Ę ą ś ź Ł ź ć ś ę ę ź ą Ż ć ć Ą ć ć ł ł ś ł ś ę ą łą ć

Bardziej szczegółowo

Ą Ą Ł ĘŁ ą ą ą ą ż Ę ć ą ó ą ę ą ą ź ę ż ó ą ć ą ą ą ć ż ó ó ó Ń ńą ą ę ą Ń ę ż ą ó ą ą ą ą ą ą ą ó ęż ęż ę ą ą ę ą ą ę ż ą ż ĘŚ ź ę ą ż ą ó ą ą ó ą ę Ą ą ż ń ęż ęż ń ę ó ć ż ą ń ń ż ń ó ć ą ą ó ó ę ń

Bardziej szczegółowo

J. Szantyr Wykład 8 Warstwy przyścienne i ślady 1

J. Szantyr Wykład 8 Warstwy przyścienne i ślady 1 J. Szantr Wkład 8 Warstw przścienne i ślad 1 Warstwa przścienna jest to część obszar przepłw bezpośrednio sąsiadjąca z powierzchnią opłwanego ciała. W warstwie przściennej znaczącą rolę odgrwają sił lepkości

Bardziej szczegółowo

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna rzykład.. Kratownca dwukrotne statyczne newyznaczana oecene: korzystaąc z metody sł wyznaczyć sły w prętach ponższe kratowncy. const Rozwązane zadana rozpoczynamy od obczena stopna statyczne newyznaczanośc

Bardziej szczegółowo

ń Ż Ż Ż ź Ś ź ń ŚĆ ć ń Ę ć Ć ń Ę ć ń ć ć Ż Ę Ę Ś ń Ó ć Ę Ć ć ć Ę Ę Ż ń ć ć Ś ń Ę ć ń Ś Ś ć ź Ś ŹĆ Ż Ś Ż ć ć ć ć ć ć ń ć ć ń ć ć Ś Ć ń Ś Ą ć ć ć ć ć ć ń ć ń ć Ć ć ń ć Ą ń ć ć Ę Ś ć ń ź ń Ć Ć ń ć ć ć Ś ć

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

Ó Ó ą ć ą ą ą Ź ą ą Ż Ż Ę Ó Ż ą ć ć ź Ó Ź ź ź ą Ó Ś ą ą ć ć Ż ą Ż ą Ó ą ć ą Ż Ó ć ć ć Ę ą Ó Ł Ó Ź Ę ą ć ć ź Ó Ź Ó Ź ć ć ą Ż ą ź Ż Ź ć ć ć Ż Ę Ą ą ą Ź Ż Ź Ź ź ź Ź ć ą ą ź ź Ż Ż Ą ź Ę ą ć ą ą Ó Ź ć Ę ź ź

Bardziej szczegółowo

Zajęcia 2. Estymacja i weryfikacja modelu ekonometrycznego

Zajęcia 2. Estymacja i weryfikacja modelu ekonometrycznego Zajęcia. Esmacja i werfikacja modelu ekonomercznego Celem zadania jes oszacowanie liniowego modelu opisującego wpłw z urski zagranicznej w danm kraju w zależności od wdaków na urskę zagraniczną i liczb

Bardziej szczegółowo

Ł Ź Ź Ł Ź Ę Ś Ę Ę Ś Ą Ę Ś Ą Ć Ć ć Ę Ą Ł Ś ć ń ć Ł ć Ź ć Ę Ą Ą Ź ź ź ć ć ć ć ć ń ń ć ć ń Ó ź Ę Ą ć ć ć Ź ć Ź ć ć ń ń ć ń Ó ć Ą ń ć Ę Ą Ą ń ń ń ń ć ń ć ć Ź ć ń Ź ń ń Ć ń ń ń Ę Ą Ś Ą ń ć ń ć ź ń Ę Ś Ą Ąć

Bardziej szczegółowo

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się: Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili

Bardziej szczegółowo

I.1. Paradoksy Zenona z Elei.

I.1. Paradoksy Zenona z Elei. I.1. Paradoksy Zenona z Eei. Janusz B. Kępka Ruch absouny i wzgędny Arysoees ze Sagiry w swej FIZYCE mówi o paradoksach Zenona z Eei (fiozof grecki, ok.490 430 p.n.e.): Isnieją czery argumeny Zenona doyczące

Bardziej szczegółowo

4.4. Obliczanie elementów grzejnych

4.4. Obliczanie elementów grzejnych 4.4. Obiczanie eemenów grzejnych Po wyznaczeniu wymiarów przewodu grzejnego naeży zaprojekować eemen grzejny, a więc okreśić wymiary skręki grzejnej czy eemenu faisego (wężownicy grzejnej, meandra grzejnego).

Bardziej szczegółowo

ż ń ęą ą ąą ą ą ń ą ż ń ż ń ęą ą ą ą ą ń ę ę ę ż ń ęą ą ą ą ą ń ą ą ą ą ź ń ż ń ęą ą ą ą ą ń ą ą ą ą ź ń ż ń ęą ą ą ą ą ń ą ą ą ą ź ń o o o o o o o ż ń ęą ą ą ą ź ś ść ż ś ść ń ę ą ą ę ą ą ż ń ęą

Bardziej szczegółowo

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp

Bardziej szczegółowo

Egzamin poprawkowy z Analizy II 11 września 2013

Egzamin poprawkowy z Analizy II 11 września 2013 Egzamn poprawkowy z nalzy II 11 wrześna 13 Uwag organzacyjne: każde zadane rozwązujemy na osobnej kartce Każde zadane należy podpsać menem nazwskem własnym oraz prowadzącego ćwczena Na wszelk wypadek prosmy

Bardziej szczegółowo

ć ć ń ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ę Ź ź ń ć ź ń ć ź ń ź ć ń ć ć ć ć Ł Ł ń Ę ć ć ć ń ć ć ć ć Ź ć Ł ć ć Ę ć Ą Ą ć Ę Ą ć ń ź ź ń ć Ę ć ć ć Ś ć ć Ż ć ć Ą ć ć ć ć Ś ć ź Ę ć ć ń ć ć ć ć ć ć Ś ć ć ć ć ń ć ń ź

Bardziej szczegółowo

PODSTAWOWE MIERNIKI DYNAMIKI ZJAWISK

PODSTAWOWE MIERNIKI DYNAMIKI ZJAWISK PODSTAWOWE MIERNIKI DYNAMIKI ZJAWISK Założena Nech oznacza ozom (warość) badanego zjawska (zmennej) w kolejnch momenach czasu T0, gdze T 0 0,1,..., n 1 oznacza worz szereg czasow. zbór numerów czasu. Cąg

Bardziej szczegółowo

Związek między ruchem harmonicznym a ruchem jednostajnym po okręgu

Związek między ruchem harmonicznym a ruchem jednostajnym po okręgu Związek międz ruchem harmonicznm a ruchem jednosajnm po okręgu Rozważm rzu Q i R punku P na osie i : Q cos v r R sin R Q P δ Q cos ( δ ) R sin ( δ ) Jeżeli punk P porusza się ruchem jednosajnm po okręgu,

Bardziej szczegółowo

Wrocław, dnia 24 czerwca 2016 r. Poz UCHWAŁA NR XXVI/540/16 RADY MIEJSKIEJ WROCŁAWIA. z dnia 16 czerwca 2016 r.

Wrocław, dnia 24 czerwca 2016 r. Poz UCHWAŁA NR XXVI/540/16 RADY MIEJSKIEJ WROCŁAWIA. z dnia 16 czerwca 2016 r. DZE UZĘDY EÓDZA DLŚLĄE, d 24 2016 2966 UCHAŁA XXV/540/16 ADY EE CŁAA d 16 2016 ś g bdó b ó d gó d 18 2 15 d 8 1990 ąd g (D U 2016 446) 12 11 92 1 d 5 1998 ąd (D U 2015 1445 1890), ą 17 4 5 d 7 ś 1991 ś

Bardziej szczegółowo

WYZNACZENIE ROZKŁADU TEMPERATUR STANU USTALONEGO W MODELU 2D PRZY UŻYCIU PROGRMU EXCEL

WYZNACZENIE ROZKŁADU TEMPERATUR STANU USTALONEGO W MODELU 2D PRZY UŻYCIU PROGRMU EXCEL Zeszyty robemowe Maszyny Eetryczne Nr /203 (98) 233 Andrze ałas BOBRME KOMEL, Katowce WYZNACZENIE ROZKŁADU TEMERATUR STANU USTALONEGO W MODELU 2D RZY UŻYCIU ROGRMU EXCEL SOLVING STEADY STATE TEMERATURE

Bardziej szczegółowo

Wygładzanie metodą średnich ruchomych w procesach stałych

Wygładzanie metodą średnich ruchomych w procesach stałych Wgładzanie meodą średnich ruchomch w procesach sałch Cel ćwiczenia. Przgoowanie procedur Średniej Ruchomej (dla ruchomego okna danch); 2. apisanie procedur do obliczenia sandardowego błędu esmacji;. Wizualizacja

Bardziej szczegółowo

PODSTAWY AUTOMATYKI 4. Schematy blokowe

PODSTAWY AUTOMATYKI 4. Schematy blokowe Politechnika Warzawka Inttt Atomatki i Robotki Prof. dr hab. inż. Jan Maciej Kościeln PODSTAWY AUTOMATYKI. Schemat blokowe Schemat blokow Schemat blokowe trktralne: przedtawiają wzajemne powiązania pomiędz

Bardziej szczegółowo

Teoria sterowania - studia niestacjonarne AiR 2 stopień

Teoria sterowania - studia niestacjonarne AiR 2 stopień Teoria serowania - sdia niesacjonarne Ai 2 sopień Kazimierz Dzinkiewicz, dr hab. Inż. Kaedra Inżnerii Ssemów Serowania Wkład 2a - 216/217 Dnamika obieków zapis za pomocą modeli Kazimierz Dzinkiewicz, dr

Bardziej szczegółowo

WYZNACZENIE DYSYPACJI KINETYCZNEJ ENERGII TURBULENCJI PRZY UŻYCIU PRAWA -5/3. E c = E k + E p + E w

WYZNACZENIE DYSYPACJI KINETYCZNEJ ENERGII TURBULENCJI PRZY UŻYCIU PRAWA -5/3. E c = E k + E p + E w Metrologa... - "W y z n ac z an e d y s y p ac z p raw a -5 / " WYZNACZENIE DYSYPACJI KINETYCZNEJ ENERGII TRBLENCJI PRZY ŻYCI PRAWA -5/. WPROWADZENIE Energa przepływaącego płyn E c dem E p dem E c E k

Bardziej szczegółowo

ŚĆ Ć ć ż ć ń Ę Ę ż ż Ą ń ż ć ż Ę ż Ę Ę Ć ż Ę ż Ś ż ż ż ż ż Ł ż ż Ę ż ĘŚ ż ć ć ŚĆ ć ń Ś ź ć ć ć ć ć ć ć ń ć Ę Ę ć ć ć Ł Ę Ą ź Ą Ę Ę Ł ć ć ż ć ż ż ć ż ż ż Ł ć ń ż Ł ż ń ń ż ż ć ż Ę ż Ę ć ż ż Ą ĘŚ ń ż ź Ę

Bardziej szczegółowo

ĺ ĺ ę ĺ ż ż ĺ ś ń ś Ł ś ś ę ń ś ś ś ĺ Ż ś ę ń ę ę ę Ż ś ę ń ń ĺ Ł Ż ęć ś Í ż ĺ Ż ę ż ę ę ĺ ę ę ń ĺ ń ĺ ę ś ť ę ś ť Ě ę ń ę ń ż ę ż ę őż ę ę ő ś Ż ś ś í í í ę ô ę ę Í ę ś ę ń ń Ł ń ż ę ś ś ż ś ę ę í ő ę

Bardziej szczegółowo

Małe drgania wokół położenia równowagi.

Małe drgania wokół położenia równowagi. ałe rgana woół położena równowag. ałe rgana Anazuemy ułay a tórych potencał Vqq,q,..,q posaa mnmum a oreśonych wartośc współrzęnych uogónonych q,, -czba stopn swoboy. ożemy ta przesaować te współrzęne

Bardziej szczegółowo

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1) Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza

Bardziej szczegółowo

V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH

V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH Krs na Stdach Doktoranckch Poltechnk Wrocławskej wersja: lty 007 34 V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH. Zbór np. lczb rzeczywstych a, b elementy zbor A a A b A, podzbór B zbor A : B A, sma zborów

Bardziej szczegółowo

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4 Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 4-5

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 4-5 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch - Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs... s.. rzed przstąpieniem

Bardziej szczegółowo

WYZNACZENIE ODKSZTAŁCEŃ, PRZEMIESZCZEŃ I NAPRĘŻEŃ W ŁAWACH FUNDAMENTOWYCH NA PODŁOŻU GRUNTOWYM O KSZTAŁCIE WYPUKŁYM

WYZNACZENIE ODKSZTAŁCEŃ, PRZEMIESZCZEŃ I NAPRĘŻEŃ W ŁAWACH FUNDAMENTOWYCH NA PODŁOŻU GRUNTOWYM O KSZTAŁCIE WYPUKŁYM Budownctwo 7 Mkhal Hrtsuk, Rszard Hulbo WYZNACZNI ODKSZTAŁCŃ, PRZMISZCZŃ I NAPRĘŻŃ W ŁAWACH FNDAMNTOWYCH NA PODŁOŻ GRNTOWYM O KSZTAŁCI WYPKŁYM Wprowadzene Prz rozwązanu zagadnena przmuem, że brła fundamentowa

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 Równania różniczkowe liniowe Metoda przewidwań Metoda przewidwań całkowania równania niejednorodnego ' p( x) opiera się na następującm twierdzeniu. Twierdzenie f ( x) Suma

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,

Bardziej szczegółowo

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale

Bardziej szczegółowo

WYBRANE ASPEKTY HARMONOGRAMOWANIA PROCESU MAGAZYNOWEGO

WYBRANE ASPEKTY HARMONOGRAMOWANIA PROCESU MAGAZYNOWEGO PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 64 Transpor 28 Tomasz AMBROZIAK, Konrad LEWCZUK Wydzał Transporu Polechnk Warszawske Zakład Logsyk Sysemów Transporowych ul. Koszykowa 75, -662 Warszawa am@.pw.edu.pl;

Bardziej szczegółowo

( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia.

( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia. Adam Bdnar: Wtrzmałść Materiałów Analiza płaskieg stanu naprężenia 5 ANALIZA PŁASKIEGO STANU NAPRĘŻENIA 5 Naprężenia na dwlnej płaszczźnie Jak pamiętam płaski stan naprężenia w punkcie cechuje t że wektr

Bardziej szczegółowo

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: = ROZŁADOWANIE KONDENSATORA I. el ćwiczenia: wyznaczenie zależności napięcia (i/lub prądu I ) rozładowania kondensaora w funkcji czasu : = (), wyznaczanie sałej czasowej τ =. II. Przyrządy: III. Lieraura:

Bardziej szczegółowo

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy Wstęp Numeryczne Modeowanie Układów Ciągłych Podstawy Metody Eementów Skończonych Metoda Eementów Skończonych służy do rozwiązywania probemów początkowo-brzegowych, opisywanych równaniami różniczkowymi

Bardziej szczegółowo

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego

Bardziej szczegółowo

ć ć Ą Ą Ę ć ń ć Ę ć ć Ę Ń Ą ćń ć ć Ą ź ń ć ć ć ć ć Ę ń ńć ć ć Ń ń ć ć ć ć ć ć ć ń ć ź ń ć ć ć ć ć ć ć ć ń ń ń ń ć Ę Ń ÓŁ ź ń ń ź ń Ś ć Ą Ę Ą ń Ń ń Ń Ń ź Ę ć Ń Ą Ą ŚĆ ń ź ń Ą ć ń ć Ą ń Ę ń ń ć ń Ą ź ć Ę

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 2

Stanisław Cichocki Natalia Nehrebecka. Wykład 2 Sansław Cchock Naala Nehrebecka Wykład 2 1 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 4. Zmenne znegrowane 2 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 4. Zmenne znegrowane 3 Szereg

Bardziej szczegółowo

Ć w i c z e n i e K 2 a Wyznaczanie siły krytycznej pręta o przekroju prostokątnym posiadającego krzywiznę początkową.

Ć w i c z e n i e K 2 a Wyznaczanie siły krytycznej pręta o przekroju prostokątnym posiadającego krzywiznę początkową. Akademia Górniczo Hutnicza Wdział Inżnierii Mechanicznej i Robotki Katedra Wtrzmałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wdział Górnictwa i Geoinżnierii Grua nr: Ocena:

Bardziej szczegółowo

ć Ą ą ą Ż Ż ó ą ż Ć ą ĆŻ Ż Ó Ó Ó ą Ó ń ą ę ą ę Ź ń ą Ó ą ą ą ą ą ą Ó Ż ęż ę ą ę ą ą ż ĘĆ ż ę Żą ż ą ń Ó ą Ó ą ę ż ęż ó ó ć ż ń ęż ń ń ć ń ż ć ć ą ą Ó Ó ó ó ń ó ę ó Ó ą ż Ć ę Ó ę ż Ó ó ą ó Ó ż Ć ę ó Ó ó

Bardziej szczegółowo

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna

Bardziej szczegółowo

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając

Bardziej szczegółowo

f x f y f, jest 4, mianowicie f = f xx f xy f yx

f x f y f, jest 4, mianowicie f = f xx f xy f yx Zestaw 14 Pochodne wŝszch rzędów Niech będzie dana funkcja x f określona w pewnm obszarze D Przpuśćm Ŝe f x istnieją pochodne cząstkowe tej funkcji x x Pochodne cząstkowe tch pochodnch jeŝeli istnieją

Bardziej szczegółowo

Metody rachunku kosztów Metoda rachunku kosztu działań Podstawowe pojęcia metody ABC Kalkulacja obiektów kosztowych metodą ABC Zasobowy rachunek

Metody rachunku kosztów Metoda rachunku kosztu działań Podstawowe pojęcia metody ABC Kalkulacja obiektów kosztowych metodą ABC Zasobowy rachunek Meody rachunku koszów Meoda rachunku koszu Podsawowe pojęcia meody ABC Kalkulacja obieków koszowych meodą ABC Zasobowy rachunek koszów Kalkulacja koszów meodą ABC podsawową informacja dla rachunkowości

Bardziej szczegółowo

ANALIZA SZEREGÓW CZASOWYCH

ANALIZA SZEREGÓW CZASOWYCH ANALIZA SZEREGÓW CZASWYCH Szereg czasow zbór warośc baanej cech lub warośc baanego zjawska zaobserwowanch w różnch momenach czasu uporząkowan chronologczne. Skłank szeregu czasowego:. enencja rozwojowa

Bardziej szczegółowo

ĆWICZENIE NR 43 U R I (1)

ĆWICZENIE NR 43 U R I (1) ĆWCZENE N 43 POMY OPO METODĄ TECHNCZNĄ Cel ćwiczenia: wyznaczenie warości oporu oporników poprzez pomiary naężania prądu płynącego przez opornik oraz napięcia na oporniku Wsęp W celu wyznaczenia warości

Bardziej szczegółowo

ZADANIE 9.5. p p T. Dla dwuatomowego gazu doskonałego wykładnik izentropy = 1,4 (patrz tablica 1). Temperaturę spiętrzenia obliczymy następująco

ZADANIE 9.5. p p T. Dla dwuatomowego gazu doskonałego wykładnik izentropy = 1,4 (patrz tablica 1). Temperaturę spiętrzenia obliczymy następująco ZADANIE 9.5. Do dyszy Bendemanna o rzekroju wylotowym A = mm doływa owetrze o cśnenu =,85 MPa temeraturze t = C, z rędkoścą w = 5 m/s. Cśnene owetrza w rzestrzen, do której wyływa owetrze z dyszy wynos

Bardziej szczegółowo

Problem nośności granicznej płyt żelbetowych w ujęciu aktualnych przepisów normowych. Prof. dr hab. inż. Piotr Konderla, Politechnika Wrocławska

Problem nośności granicznej płyt żelbetowych w ujęciu aktualnych przepisów normowych. Prof. dr hab. inż. Piotr Konderla, Politechnika Wrocławska Proble nośnośc grancznej płt żelbetowch w ujęcu aktualnch przepsów norowch Prof. dr hab. nż. Potr Konderla Poltechnka Wrocławska 1. Wprowadzene Przedote analz jest płta żelbetowa zbrojona ortogonalne paraetrzowana

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 4

Natalia Nehrebecka. Zajęcia 4 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów Z n a k s p r a w y G C S D Z P I 2 7 1 07 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U s ł u g i s p r z» t a n i a o b i e k t Gó w d y s k i e g o C e n

Bardziej szczegółowo

Metody Eulera i Eulera-Cauchy'ego rozwiązywania równań różniczkowych zwyczajnych. y 3 := x 2 (1) ( ) Rozwiązanie dokładne równania (1) (2)

Metody Eulera i Eulera-Cauchy'ego rozwiązywania równań różniczkowych zwyczajnych. y 3 := x 2 (1) ( ) Rozwiązanie dokładne równania (1) (2) euler-przkl_.xmcd Metod Eulera i Eulera-Cauch'ego rozwiązwania równań różniczkowch zwczajnch ' ( x, ) : x () + Rozwiązanie dokładne równania () ( x, C) : + C exp( atan( x) ) () Sprawdzenie: d dx ( x, C)

Bardziej szczegółowo

3.1 Zagadnienie brzegowo-początkowe dla struny ograniczonej. = f(x, t) dla x [0; l], l > 0, t > 0 (3.1)

3.1 Zagadnienie brzegowo-początkowe dla struny ograniczonej. = f(x, t) dla x [0; l], l > 0, t > 0 (3.1) Temat 3 Metoda Fouriera da równań hiperboicznych 3.1 Zagadnienie brzegowo-początkowe da struny ograniczonej Rozważać będziemy następujące zagadnienie. Znaeźć funkcję u (x, t) spełniającą równanie wraz

Bardziej szczegółowo