Wielokryteriowa optymalizacja liniowa (WPL)

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wielokryteriowa optymalizacja liniowa (WPL)"

Transkrypt

1 arek isyński BO UŁ Wielokryteriowa optymaliaja liniowa (WPL) -. Wielokryteriowa optymaliaja liniowa (WPL) Zadaniem WPL naywamy następująe adanie optymaliaji liniowej: a a m L O L L O L L a a n n n mn n n n n n ma ma b b m () () (3) Jest to adanie PL w którym występuje funkji elu. Zakładamy Ŝe adanie (-3) jest niesprene i posiada skońone rowiąanie optymalne dla kaŝdej funkji elu. Dla kaŝdej funkji elu posukujemy wartośi najwięksej (ma). Wsystkie funkje elu moŝemy potraktować jako jedną funkję wektorową F() i apisać je jako: F ( ) ( ) ( ) ma Stąd biere się ęsto spotykane określenie adania WPL jako adania liniowej optymaliaji wektorowej. Jak kaŝde adanie PL tak i adanie WPL moŝe być ropatrywane w dwóh prestreniah: w prestreni deyji R n tj e wględu na mienne n ora w prestreni kryteriów R tj. e wględu na kryteria. Stosownie do tego podiału onaymy biory rowiąań dopusalnyh: X - biór rowiąań dopusalnyh adania WPL w prestreni deyji ora Y - biór rowiąań dopusalnyh adania WPL w prestreni kryteriów. JeŜeli jakaś funkja elu k ma oryginalnie kierunek posukiwań min (Ŝądanie naleienia wartośi najmniejsej) to wystary pomnoŝyć ją pre -

2 arek isyński BO UŁ Wielokryteriowa optymaliaja liniowa (WPL) -. [] PRZYŁAD (opis sytuaji deyyjnej) Rafineria naftowa otrymała amówienie na dwa rodaje spejalnyh paliw węglowodorowyh X ora Y. Zamówienie opiewa na minimum galonów paliwa X i minimum 400 galonów paliwa Y. Paliwa te mogą być wytwarane niealeŝnie w dwóh proesah: P i P. W iągu godiny trwania proesu P uŝywa się baryłkę ropy A ora 3 baryłki ropy B i otrymuje 00 galonów paliwa X ora 30 galonów paliwa Y. W iągu godiny trwania proesu P uŝywa się 4 baryłki ropy A ora baryłki ropy B i otrymuje 50 galonów paliwa X ora 40 galonów paliwa Y. Zasób ropy A wynosi 30 baryłek a ropy B 40 baryłek. Zysk godiny produkji według proesu P wynosi 00$ a kosty 800$. Zysk godiny produkji według proesu P wynosi 500$ a kosty 00$. PRZYŁAD (-kryterialne WPL wariant trywialny) Dla sytuaji deyyjnej opisanej w prykładie sef produkji posukuje takiej kombinaji proesów P i P (tn. he ustalić na ile godin uruhomić proes P a na ile P) aby osiągnąć: maksymalny ysk ora maksymalną ilość paliw X i Y. Onamy: - as trwania proesu P ora - as trwania proesu P. odel deyyjny w prykładie będie następująy: ma ma ( ysk) ( paliwa) ( paliwo X ) ( paliwo Y ) ( ropa A) ( ropa B) Na rysunku predstawiono biór rowiąań dopusalnyh w prestreni deyji.

3 arek isyński BO UŁ Wielokryteriowa optymaliaja liniowa (WPL) -. [3] Prestreń deyji B ropa A C proes P paliwo X A ropa B 0 paliwo Y proes P Rys.. Ilustraja bioru rowiąań dopusalnyh w prestreni deyji adania WPL w prykładie W tabeli podane są współrędne punktów wierhołkowyh bioru deyji dopusalnyh w prestreni deyji. abela. Współrędne punktów wierhołkowyh bioru deyji dopusalnyh w prestreni deyji w prykładie. współrędne wierhołki A B C D (proes P) (proes P) Problem WPL moŝe być ropatrywany w dwóh prestreniah tj. : w prestreni deyji ora w prestreni kryteriów. wierdenie Zbiór rowiąań dopusalnyh adania w prestreni kryterialnej jest wielośianem wypukłym. aŝdy wierhołek tego wielośianu jest obraem pewnego wierhołka bioru deyji dopusalnyh w prestreni deyyjnej natomiast poostałe punkty to biór wsystkih kombinaji wypukłyh punktów wierhołkowyh. D Obie prestrenie są w ogólnośi róŝnyh wymiarów. Prestreń deyyjna to R n natomiast prestreń kryterialna to R. W rowaŝanym prykładie tylko dla elów ilustrayjnyh pryjęto n yli oba biory są ilustrowane prestreni R.

4 arek isyński BO UŁ Wielokryteriowa optymaliaja liniowa (WPL) -. [4] Współrędne wierhołków w prestreni kryterialnej będąe odpowiednikami wierhołków prestreni deyji są wektorami któryh składowe wynaane są pre wartośi kolejnyh funkji elu k (k ) dla danego wierhołka prestreni deyji. Nieh wierhołkiem w prestreni deyji będie wierhołek r. Wówas współrędne jego odpowiednika w prestreni kryteriów wyliymy jako: F ( ) r y y y r r r W tabeli podane są wartośi funkji elu dla kolejnyh punktów wierhołkowyh e bioru deyji dopusalnyh w prestreni kryteriów tj. dla odpowiedników prestreni deyji. abela. Wartośi funkji elu dla punktów wierhołkowyh e bioru deyji dopusalnyh w prestreni kryteriów w prykładie. funkje elu wartośi w wierhołkah A B C D y (ysk) y (paliwa) Prestreń kryteriów D' C' paliwa B' ysk Rys.. Ilustraja bioru rowiąań dopusalnyh w prestreni kryteriów adania WPL w prykładie

5 arek isyński BO UŁ Wielokryteriowa optymaliaja liniowa (WPL) -. [5] Nieroerwalnym pojęiem wiąanym WPL jest pojęie rowiąania idealnego. Rowiąanie idealne w prestreni kryterialnej jest to punkt (I) którego współrędne odpowiadają maksymalnym wartośiom funkji elu. F I y y y ma ma ma r r r Rowiąanie takie najęśiej nie naleŝy do bioru rowiąań dopusalnyh w prestreni kryteriów. W prykładie rowiąanie idealne ilustruje rysunek 3. Prestreń kryteriów D' Idealne C' paliwa B' ysk Rys. 3. Ilustraja rowiąania idealnego w prestreni kryteriów adania WPL w prykładie Rowiąanie idealne naleŝy tutaj do bioru rowiąań dopusalnyh w prestreni kryteriów. Jest to punkt C którego obraem w prestreni deyji jest punkt C. Punkt C wskauje na deyję optymalną: proes P 3 godiny proes P 7 god. Optymalne wartośi fukji elu wynosą: ysk 4000 $ paliwa 0640 galonów.

6 arek isyński BO UŁ Wielokryteriowa optymaliaja liniowa (WPL) -. [6] PRZYŁAD 3 (-kryterialne WPL wariant nietrywialny) Dla sytuaji deyyjnej opisanej w prykładie sef produkji posukuje takiej kombinaji proesów P i P (tn. he ustalić na ile godin uruhomić proes P a na ile P) aby osiągnąć: maksymalny ysk ora minimalny kost. Zadanie WPL ma tutaj postać: ma min ( ysk) ( kosty) ( paliwo X ) ( paliwo Y ) ( ropa A) ( ropa B) Po unifikaji kierunku posukiwań w WPL (maksymaliaja) adanie ma ostateną postać: ' ma ma ( ysk) ( kosty) ( paliwo X ) ( paliwo Y ) ( ropa A) ( ropa B) Zbiór rowiąań dopusalnyh w prestreni deyji poostaje w tym prykładie be mian (por. prykład ). Zmiany w biore funkji kryterialnyh prowadą jednak do miany bioru rowiąań dopusalnyh w prestreni kryteriów. W tabeli 3 pokaano współrędne punktów wierhohłkowyh tego bioru. abela 3. Wartośi funkji elu dla punktów wierhołkowyh bioru deyji dopusalnyh w prestreni deyji w prykładie 3. funkje elu wartośi w wierhołkah A B C D (ysk) (-kosty)

7 arek isyński BO UŁ Wielokryteriowa optymaliaja liniowa (WPL) -. [7] Na rysunku 4 pokaano biór rowiąań dopusalnyh w prestreni kryteriów dla prykładu 3 ora anaono połoŝenie rowiąania idealnego. Jak widać rowiąanie idealne nie naleŝy do bioru rowiąań dopusalnyh w prestreni kryteriów. W takim prypadku nie jesteśmy w stanie wskaać jednonanie rowiąania najlepsego (optymalnego w sensie WPL) dla problemu prykładu 3. Prestreń kryteriów D' Idealne kosty B' C' ysk Rys. 4. Ilustraja bioru rowiąań dopusalnyh ora rowiąania idealnego w prestreni kryteriów adania WPL w prykładie 3 StoŜki rowiąań dominująyh i dominowanyh Zanamy w prestreni kryteriów dowolny punkt Y. Punkt taki podieli prestreń na tery obsary (stoŝki). Będą to w sensie WPL następująe stoŝki: stoŝek punktów (rowiąań) dominująyh punkt Y stoŝek punktów (rowiąań) dominowanyh pre punkt Y ora dwa stoŝki punktów (rowiąań) nieporównywalnyh punktem Y. Ilustraję takih stoŝków pokaano na rysunku 5.

8 arek isyński BO UŁ Wielokryteriowa optymaliaja liniowa (WPL) -. [8] y StoŜek rowiąań nieporównywalnyh Y StoŜek rowiąań dominująyh Y Y StoŜek rowiąań dominowanyh pre Y StoŜek rowiąań nieporównywalnyh Y y Rys. 5. Ilustraja stoŝków rowiąań WPL w prestreni kryteriów (R ). Rowiąanie niedominowane w prestreni kryteriów i rowiąania sprawne w prestreni deyji Def. Rowiąania w prestreni deyyjnej odpowiadająe rowiąaniom niedominowanym naywamy rowiąaniami sprawnymi. Są to rowiąania optymalne WPL w sensie Pareto (rowiąania Pareto-optymalne). Na rysunku 5 rowiąaniem niedominowanym w prestreni kryteriów będie punkt Y. W prykładie 3 biór rowiąań niedominowanyh w prestreni kryteriów pokaano na rysunku 6 (pogrubione krawędie). Zbiorem tym są wsystkie punkty leŝąe na łamanej D ' B' B' C'. Niedominowanymi punktami wierhołkowymi bioru rowiąań dopusalnyh w prestreni kryteriów są wierhołki D ' ora C '. Wierhołkowymi rowiąaniami sprawnymi są ih odpowiedniki w prestreni deyji tj. wierhołki D A ora C (rowiąania wierhołkowe Pareto-optymalne). Na rysunku 7 pokaano w prestreni deyji biór rowiąań sprawnyh dla prykładu 3 (pogrubione krawędie). Zbiorem tym są wsystkie punkty leŝąe na łamanej DA AB BC.

9 arek isyński BO UŁ Wielokryteriowa optymaliaja liniowa (WPL) -. [9] Prestreń kryteriów D' kosty B' C' ysk Rys. 6. Ilustraja bioru rowiąań niedominowanyh w prestreni kryteriów adania WPL w prykładie 3 Prestreń deyji B C 60 P 40 A Rys. 7. Ilustraja bioru rowiąań sprawnyh w prestreni deyji adania WPL w prykładie 3 (rowiąania Pareto-optymalne). P D

10 arek isyński BO UŁ Wielokryteriowa optymaliaja liniowa (WPL) -. [0] Rowiąanie optymalne adania WPL JeŜeli rowiąanie idealne w prestreni kryteriów jest rowiąaniem dopusalnym to adanie WPL posiada rowiąanie optymalne i jest nim obra (wierhołek) tego rowiąania w prestreni deyji. JeŜeli rowiąanie idealne w prestreni kryteriów nie jest rowiąaniem dopusalnym to adanie WPL nie posiada jednonanego rowiąania optymalnego. Rowiąaniem optymalnym WPL będie wówas dowolne rowiąanie sprawne które będie rowiąaniem kompromisowo-optymalnym. Wybrane metody generowania rowiąań sprawnyh (skalaryaja WPL) - następny wykład Rowiąanie sprawne adania WPL moŝemy otrymać międy innymi popre: śiągnięie punktu idealnego do bioru rowiąań dopusalnyh w prestreni kryteriów uŝyie dowolnej funkji elu (rowiąanie adania jednokryterialnego) waŝenie wsystkih funkji elu ustalenie dla - kryteriów satysfakjonująyh poiomów hierarhiaję kryteriów wykorystanie podejśia optymaliaji elowej wykorystanie metody interaktywnej itp.

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego.

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego. Transformator Φ r Φ M Φ r i i u u Φ i strumień magnetycny prenikający pre i-ty wój pierwsego uwojenia; siła elektromotorycna indukowana w i-tym woju: dφ ei, licba wojów uwojenia pierwotnego i wtórnego.

Bardziej szczegółowo

2... Pˆ - teoretyczna wielkość produkcji (wynikająca z modelu). X X,..., b b,...,

2... Pˆ - teoretyczna wielkość produkcji (wynikająca z modelu). X X,..., b b,..., Główne zynniki produkji w teorii ekonoii: praa żywa (oznazenia: L, ), praa uprzediotowiona (kapitał) (oznazenia: K, ), zieia (zwłaszza w rolnitwie). Funkja produkji Cobba-Douglasa: b b b P ˆ b... k 0 k

Bardziej szczegółowo

Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona.

Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona. Wykład - LICZBY ZESPOLONE Algebra licb espolonych, repreentacja algebraicna i geometrycna, geometria licb espolonych. Moduł, argument, postać trygonometrycna, wór de Moivre a.' Zbiór Licb Zespolonych Niech

Bardziej szczegółowo

Metody dokładne w zastosowaniu do rozwiązywania łańcuchów Markowa

Metody dokładne w zastosowaniu do rozwiązywania łańcuchów Markowa Metody dokładne w astosowaniu do rowiąywania łańcuchów Markowa Beata Bylina, Paweł Górny Zakład Informatyki, Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej Plac Marii Curie-Skłodowskiej 5, 2-31

Bardziej szczegółowo

1. Wprowadzenie... 2. 2. Oznaczenia... 4. 3. Model obliczeniowy i granice stosowania... 5

1. Wprowadzenie... 2. 2. Oznaczenia... 4. 3. Model obliczeniowy i granice stosowania... 5 Informaje uupełniająe: Projektowanie podstawy słupa utwierdonego W tym dokumenie predstawiono asady dotyąe projektowania podstaw słupów utwierdonyh. Zasady te ograniają się do symetrynyh, nieustywnionyh

Bardziej szczegółowo

Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych

Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydiał Mechanicny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 3 1. CEL ĆWICZENIA Wybrane

Bardziej szczegółowo

D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne [1]

D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne [1] D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne [1] Co to są badania operacyjne? Termin "badanie operacji" (Operations' Research) powstał podczas II wojny światowej i przetrwał do dzisiaj. W terminologii

Bardziej szczegółowo

Przestrzeń liniowa R n.

Przestrzeń liniowa R n. MATEMATYKA IIb - Lcjan Kowalski Prestreń liniowa R n. Element (wektor) prestreni R n będiem onacać [,,, ] Element erow [,, L, ]. Diałania. a) ilocn element pre licbę: b) sma elementów [ c, c, ] c L, c

Bardziej szczegółowo

A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)!

A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)! Wstęp do rachunku prawdopodobieństwa i statystyki matematycnej MAP037 wykład dr hab. A. Jurlewic WPPT Fiyka, Fiyka Technicna, I rok, II semestr Prykłady - Lista nr : Prestreń probabilistycna. Prawdopodobieństwo

Bardziej szczegółowo

Matematyka A, kolokwium trzecie, 1 czerwca 2010, rozwia. a b. y = = ( 2) 13 5 ( 5) = 1, wie c macierz

Matematyka A, kolokwium trzecie, 1 czerwca 2010, rozwia. a b. y = = ( 2) 13 5 ( 5) = 1, wie c macierz Matematyka A, kolokwium treie, erwa 00, rowia ania. 0 pt. Wykaać, że dla dowolnyh lib a lkowityh a, b istnieja takie liby a lkowite, y, że 5 5 3 y = a b 5 Znaleźć wartośi i wektory w lasne maiery A = 5

Bardziej szczegółowo

Zastosowanie funkcji inżynierskich w arkuszach kalkulacyjnych zadania z rozwiązaniami

Zastosowanie funkcji inżynierskich w arkuszach kalkulacyjnych zadania z rozwiązaniami Tadeus Wojnakowski Zastosowanie funkcji inżynierskich w arkusach kalkulacyjnych adania rowiąaniami Funkcje inżynierskie występują we wsystkich arkusach kalkulacyjnych jak Excel w MS Office Windows cy Gnumeric

Bardziej szczegółowo

Zaproszenie do współpracy przy organizacji wydarzeń społecznych (CSR) w zakresie warsztatów edukacyjnych na PGE Narodowym

Zaproszenie do współpracy przy organizacji wydarzeń społecznych (CSR) w zakresie warsztatów edukacyjnych na PGE Narodowym Zaprosenie do współpracy pry organiacji wydareń społecnych (CSR) w akresie warstatów edukacyjnych na m WSTĘP Na podstawie Umowy dierżawy i powierenia arądania Stadionem m w Warsawie awartej pre PL.202+

Bardziej szczegółowo

ORGANIZACJA I ZARZĄDZANIE

ORGANIZACJA I ZARZĄDZANIE P O L I T E C H N I K A W A R S Z A W S K A WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ ORGANIZACJA I ZARZĄDZANIE Optymaliacja transportu wewnętrnego w akładie mechanicnym

Bardziej szczegółowo

Informacje uzupełniające: Wyboczenie z płaszczyzny układu w ramach portalowych. Spis treści

Informacje uzupełniające: Wyboczenie z płaszczyzny układu w ramach portalowych. Spis treści S032a-PL-EU Informacje uupełniające: Wybocenie płascyny układu w ramach portalowych Ten dokument wyjaśnia ogólną metodę (predstawioną w 6.3.4 E1993-1-1 sprawdania nośności na wybocenie płascyny układu

Bardziej szczegółowo

Rozwiązanie Powyższe zadanie możemy przedstawić jako następujące zagadnienie programowania liniowego:

Rozwiązanie Powyższe zadanie możemy przedstawić jako następujące zagadnienie programowania liniowego: Zadanie Rafineria naftowa otrzymała zamówienie na dwa rodzaje specjalnych paliw węglowodorowych X oraz Y. Zamówienie opiewa na minimum 4 000 galonów paliwa X i minimum 2 400 galonów paliwa Y. Paliwa te

Bardziej szczegółowo

FUNKCJA KWADRATOWA. Poziom podstawowy

FUNKCJA KWADRATOWA. Poziom podstawowy FUNKCJA KWADRATOWA Poziom podstawowy Zadanie ( pkt) Wykres funkji y = ax + bx+ przehodzi przez punkty: A = (, ), B= (, ), C = (,) a) Wyznaz współzynniki a, b, (6 pkt) b) Zapisz wzór funkji w postai kanoniznej

Bardziej szczegółowo

BADANIA OPERACYJNE PROGRAMOWANIE WIELOKRYTERIALNE

BADANIA OPERACYJNE PROGRAMOWANIE WIELOKRYTERIALNE DR ADAM SOJDA Czasem istnieje wiele kryteriów oceny. Kupno samochodu: cena prędkość maksymalna spalanie kolor typ nadwozia bagażnik najniższa najwyższa najniższe {czarny*, czerwony, } {sedan, coupe, SUV,

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM. Rok szkolny 2015/16

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM. Rok szkolny 2015/16 WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM Rok skolny 2015/16 POZIOMY WYMAGAŃ EDUKACYJNYCH: (2) - ocena dopscająca (2); (3) - ocena dostatecna (3); (4) - ocena dobra (4);

Bardziej szczegółowo

J. Szantyr - Wykład 7 Ruch ogólny elementu płynu

J. Szantyr - Wykład 7 Ruch ogólny elementu płynu J. Santr - Wkład 7 Rch ogóln element płn Rch ogóln ciała stwnego można predstawić jako smę premiescenia liniowego i obrot. Ponieważ płn nie mają stwności postaciowej, w rch płn dochodi dodatkowo do odkstałcenia

Bardziej szczegółowo

Rozdział 9. Baza Jordana

Rozdział 9. Baza Jordana Rodiał 9 Baa Jordana Niech X będie n wmiarową prestrenią wektorową nad ciałem F = R lub F = C Roważm dowoln endomorfim f : X X Wiem, że postać macier endomorfimu ależ od wboru ba w prestreni X Wiem również,

Bardziej szczegółowo

Rozważa się dwa typy odwzorowań: 1. Parametryzacja prosta

Rozważa się dwa typy odwzorowań: 1. Parametryzacja prosta WYKŁAD MODELOWANIE I WIZUALIZACJA TEKSTURY. Co to jest tekstra obiekt T(,, (,, t( =... tn(,,,, Plan wkład: Co to jest tekstra? Generowanie worów tekstr Wialiaja tekstr Filtrowanie tekstr Co może oiswać

Bardziej szczegółowo

ZARZĄDZENIE NR 5 / 2015

ZARZĄDZENIE NR 5 / 2015 ZARZĄDZENIE NR 5 / 2015 Dyrektora Wielkopolskiego Parku Narodowego w sprawie asad wędkowania na jeiorach WPN w 2014 roku. 1 Na podstawie art. 8a ust. 1 pkt. 2 ustawy o ochronie pryrody dnia 16 kwietnia

Bardziej szczegółowo

Jakie nowe możliwości daje właścicielom i zarządcom budynków znowelizowana Ustawa termomodrnizacyjna

Jakie nowe możliwości daje właścicielom i zarządcom budynków znowelizowana Ustawa termomodrnizacyjna dr inż. Wiesław Sarosiek mgr inż. Beata Sadowska mgr inż. Adam Święcicki Katedra Podstaw Budownictwa i Fiyki Budowli Politechniki Białostockiej Narodowa Agencja Posanowania Energii S.A. Filia w Białymstoku

Bardziej szczegółowo

2.3.1. Iloczyn skalarny

2.3.1. Iloczyn skalarny 2.3.1. Ilon sklrn Ilonem sklrnm (sklrowm) dwóh wektorów i nwm sklr równ ilonowi modułów ou wektorów pre kosinus kąt wrtego międ nimi. α O Rs. 2.8. Ilustrj do definiji ilonu sklrnego Jeżeli kąt międ wektormi

Bardziej szczegółowo

2015-01-15. Edycja pierwsza 2014/1015. dla kierunku fizyka medyczna, I rok, studia magisterskie

2015-01-15. Edycja pierwsza 2014/1015. dla kierunku fizyka medyczna, I rok, studia magisterskie 05-0-5. Opis różnicę pomiędy błędem pierwsego rodaju a błędem drugiego rodaju Wyniki eksperymentu składamy w dwie hipotey statystycne: H0 versus H, tak, by H0 odrucić i pryjąć H. Jeśli decydujemy, że pryjmujemy

Bardziej szczegółowo

Analiza transformatora

Analiza transformatora ĆWICZENIE 4 Analia transformatora. CEL ĆWICZENIA Celem ćwicenia jest ponanie bodowy, schematu astępcego ora ocena pracy transformatora.. PODSTAWY TEORETYCZNE. Budowa Podstawowym adaniem transformatora

Bardziej szczegółowo

Regulamin Promocji kredytu gotówkowego Oprocentowanie niższe niż najniższe - edycja świąteczna. Obowiązuje od 13.11.2014 r. do 30.04.2015 r.

Regulamin Promocji kredytu gotówkowego Oprocentowanie niższe niż najniższe - edycja świąteczna. Obowiązuje od 13.11.2014 r. do 30.04.2015 r. Regulamin Promocji kredytu gotówkowego Oprocentowanie niżse niż najniżse - edycja świątecna Obowiąuje od 13.11.2014 r. do 30.04.2015 r. 1. Organiator Promocji 1. Promocja Oprocentowanie niżse niż najniżse

Bardziej szczegółowo

Zestaw zadań 12: Przekształcenia liniowe. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t. x y + 2t 2x 3y + 5z t x z t

Zestaw zadań 12: Przekształcenia liniowe. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t. x y + 2t 2x 3y + 5z t x z t Zesaw adań : Preksałcenia liniowe () Kóre podanch niżej preksałceń ϕ : K n K m są preksałceniami liniowmi: a) n = m = 3, ϕ( + +, b) n = m = 3, ϕ( +, 3 + + + +, d) n = m = 3, ϕ( +, c) n = m = 3, ϕ( e) n

Bardziej szczegółowo

Animowana grafika 3D. Opracowanie: J. Kęsik.

Animowana grafika 3D. Opracowanie: J. Kęsik. Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollb.pl Transformacje 3D Podobnie jak w prestreni -wymiarowej, dla prestreni 3-wymiarowej definijemy transformacje RST: presnięcie miana skali obrót

Bardziej szczegółowo

W siła działająca na bryłę zredukowana do środka masy ( = 0

W siła działająca na bryłę zredukowana do środka masy ( = 0 Popęd i popęd bryły Bryła w ruchu posępowym. Zasada pędu i popędu ma posać: p p S gdie: p m v pęd bryły w ruchu posępowym S c W d popęd siły diałającej na bryłę w ruchu posępowym aś: v c prędkość środka

Bardziej szczegółowo

SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ KATEDRA TECHNIKI POŻARNICZEJ

SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ KATEDRA TECHNIKI POŻARNICZEJ SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ KATEDRA TECHNIKI POŻARNICZEJ ZAKŁAD ELEKTROENERGETYKI Ćwicenie: URZĄDZENIA PRZECIWWYBUCHOWE BADANIE TRANSFORMATORA JEDNOFAZOWEGO Opracował: kpt.dr inż. R.Chybowski Warsawa

Bardziej szczegółowo

MODEL MUNDELLA-FLEMINGA

MODEL MUNDELLA-FLEMINGA Danuta Miłasewic Uniwersytet Sceciński MODEL MUNDELLA-FLEMINGA 1. OPIS MODELU MUNDELLA-FLEMINGA Model ten, stworony na pocątku lat seśćdiesiątych XX wieku pre Roberta A. Mundella i Markusa Fleminga, opisuje

Bardziej szczegółowo

ANALIZA ROZDZIAŁU SIŁ HAMOWANIA POJAZDU HYBRYDOWEGO Z NAPĘDEM NA KOŁA TYLNE W ASPEKCIE REKUPERACJI ENERGII

ANALIZA ROZDZIAŁU SIŁ HAMOWANIA POJAZDU HYBRYDOWEGO Z NAPĘDEM NA KOŁA TYLNE W ASPEKCIE REKUPERACJI ENERGII Zesyty Problemowe Masyny Elektrycne Nr 9/211 15 Marcin Fice, Rafał Setlak Politechnika Śląska, Gliwice ANALIZA ROZDZIAŁU SIŁ HAMOWANIA POJAZDU HYBRYDOWEGO Z NAPĘDEM NA KOŁA TYLNE W ASPEKCIE REKUPERACJI

Bardziej szczegółowo

AIESEC Polska. Budowanie wizerunku,pracodawcy. www.aiesec.pl

AIESEC Polska. Budowanie wizerunku,pracodawcy. www.aiesec.pl AIESEC Polska Budowanie wierunku,pracodawcy www.aiesec.pl Dni Kariery to najwiękse targi pracy, praktyk i staży skierowane do społecności studenckiej. Targi odbywają się już od ponad 20 lat w 11 najwięksych

Bardziej szczegółowo

ĆWICZENIE 5 BADANIE ZASILACZY UPS

ĆWICZENIE 5 BADANIE ZASILACZY UPS ĆWICZENIE 5 BADANIE ZASILACZY UPS Cel ćwicenia: aponanie budową i asadą diałania podstawowych typów asilacy UPS ora pomiar wybranych ich parametrów i charakterystyk. 5.1. Podstawy teoretycne 5.1.1. Wstęp

Bardziej szczegółowo

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne.

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne. Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Strukturalne element smetrii. Krstalograficne grup prestrenne. god. Cel ćwicenia: aponanie się diałaniem elementów smetrii

Bardziej szczegółowo

PROWIZJA I AKORD1 1 2

PROWIZJA I AKORD1 1 2 PROWIZJA I AKORD 1 1 1. Pracodawca może ustalić wynagrodenie w formie prowiji lub akordu. 2. Prowija lub akord mogą stanowić wyłącną formę wynagradania lub występować jako jeden e składników wynagrodenia.

Bardziej szczegółowo

Automatyczna kompensacja mocy biernej z systemem monitorowania kopalnianej sieci 6 kv

Automatyczna kompensacja mocy biernej z systemem monitorowania kopalnianej sieci 6 kv dr inż MARIAN HYLA Politechnika Śląska w Gliwicach Automatycna kompensacja mocy biernej systemem monitorowania kopalnianej sieci 6 kv W artykule predstawiono koncepcję, realiację ora efekty diałania centralnego

Bardziej szczegółowo

UZĘBIENIA CZOŁOWE O ŁUKOWO KOŁOWEJ LINII ZĘBÓW KSZTAŁTOWANE NARZĘDZIEM JEDNOOSTRZOWYM

UZĘBIENIA CZOŁOWE O ŁUKOWO KOŁOWEJ LINII ZĘBÓW KSZTAŁTOWANE NARZĘDZIEM JEDNOOSTRZOWYM MODELOWANIE INŻYNIESKIE ISSN 896-77X 40, s. 7-78, Gliwice 00 UZĘBIENIA CZOŁOWE O ŁUKOWO KOŁOWEJ LINII ZĘBÓW KSZTAŁTOWANE NAZĘDZIEM JEDNOOSTZOWYM PIOT FĄCKOWIAK Instytut Technologii Mechanicnej, Politechnika

Bardziej szczegółowo

Przedmiot przedsięwzięcia i jego lokalizacja

Przedmiot przedsięwzięcia i jego lokalizacja Predmiot predsięwięcia i jego lokaliacja Predmiotem opisanego predsięwięcia jest opracowanie koncepcji programowo-prestrennej Trasy Mostu Północnego od węła ulicą Marymoncką do węła ulicą Modlińską wra

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu miennch wkład MATEMATYKI Automatka i robotka studia niestacjonarne sem II, rok ak 2009/2010 Katedra Matematki Wdiał Informatki Politechnika Białostocka Niech R ndef ={( 1, 2,, n ): 1 R 2

Bardziej szczegółowo

Zestaw zadań 12: Przekształcenia liniowe. Macierze przekształceń liniowych. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t

Zestaw zadań 12: Przekształcenia liniowe. Macierze przekształceń liniowych. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t Zesaw adań : Preksałcenia liniowe. Maciere preksałceń liniowch () Kóre podanch niżej preksałceń ϕ : K n K m są preksałceniami liniowmi: a) n = m = 3, ϕ( + ) = +, b) n = m = 3, ϕ( ) = +, 3 + + + +, d) n

Bardziej szczegółowo

,..., u x n. , 2 u x 2 1

,..., u x n. , 2 u x 2 1 . Równania różnickowe cąstkowe Definicja. Równaniem różnickowm cąstkowm (rrc) nawam równanie różnickowe, w którm wstępuje funkcja niewiadoma dwóch lub więcej miennch i jej pochodne cąstkowe. Ogólna postać

Bardziej szczegółowo

Lp. Czy wojewódzki PZG ma podpisane umowy/ porozumienia umożliwiające korzystanie z pomocy tłumacza migowego z placówkami udzielającymi świadczeń

Lp. Czy wojewódzki PZG ma podpisane umowy/ porozumienia umożliwiające korzystanie z pomocy tłumacza migowego z placówkami udzielającymi świadczeń Lp. ojeódto Data płyu odpoiedi Cy osoby niesłysące mogą korystać pomocy PZG kontakcie e śiadceniodacą? Cy każda osoba głucha może korystać pomocy PZG 1. dolnośląskie 06.08.2014 TAK NIE tylko cłonkoie 2.

Bardziej szczegółowo

Czego nas uczą wypadki i katastrofy

Czego nas uczą wypadki i katastrofy Cego s ucą wypadki i katastrofy Tadeus Missala Premysłowy Instytut Automatyki i Pomiarów PIAP w Warsawie Strescenie: Predstawiono skrótowy opis dwóch katastrof lokalnych polskich (pożar w EC Żerań i katastrofa

Bardziej szczegółowo

ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE

ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 6 nr Archiwum Technologii Masn i Automatacji 6 ROMAN STANIEK * ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE W artkule predstawiono ależności matematcne

Bardziej szczegółowo

Przykład: Projektowanie poŝarowe nieosłoniętego słupa stalowego według standardowej krzywej temperatura-czas

Przykład: Projektowanie poŝarowe nieosłoniętego słupa stalowego według standardowej krzywej temperatura-czas Dokument Ref: SX043a-PL-EU Strona 1 5 Prykład: Projektowanie poŝarowe nieosłoniętego słupa stalowego według standardowej krywej temperatura-cas Wykonał Z. Sokol Data styceń 006 Sprawdił F. Wald Data styceń

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne Instrukja do ćwizeń laboratoryjnyh z przedmiotu: adania operayjne Temat ćwizenia: Komputerowe wspomaganie rozwiązywania zadań programowania liniowego, dobór struktury asortymentowej Zahodniopomorski Uniwersytet

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Matematyka plusem dla gimnajum PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM

Bardziej szczegółowo

ALGORYTMY OPTYMALIZACJI wyklad 1.nb 1. Wykład 1

ALGORYTMY OPTYMALIZACJI wyklad 1.nb 1. Wykład 1 ALGORYTMY OPTYMALIZACJI wyklad.nb Wykład. Sformułowanie problemu optymalizacyjnego Z ksiąŝki Practical Optimization Methods: With Mathematica Applications by: M.A.Bhatti, M.Asghar Bhatti ü Przykład. (Zagadnienie

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA. Wydział Elektroniki i Technik Informacyjnych ROZPRAWA DOKTORSKA. mgr inż. Paweł Chudzian

POLITECHNIKA WARSZAWSKA. Wydział Elektroniki i Technik Informacyjnych ROZPRAWA DOKTORSKA. mgr inż. Paweł Chudzian POLITECHNIKA WARSZAWSKA Wydział Elektroniki i Tehnik Informayjnyh ROZPRAWA DOKTORSKA mgr inż. Paweł Chudzian Optymalizaja parametrów przekształenia jadrowego w zadaniah klasyfikaji Promotor prof. nzw.

Bardziej szczegółowo

WIELOMIANY I FUNKCJE WYMIERNE

WIELOMIANY I FUNKCJE WYMIERNE WIELOMIANY I FUNKCJE WYMIERNE. RozwiąŜ nierówność.. Dla jakiej wartości parametru a R wielomian W() = ++ a dzieli się bez reszty przez +?. Rozwiązać nierówność: a) 5 b) + 4. Wyznaczyć wartości parametru

Bardziej szczegółowo

System pomiaru parametrów środowiskowych Ze zdalnym raportowaniem i sterowaniem przez sieć komórkową NOTATNIK KONSTRUKTORA

System pomiaru parametrów środowiskowych Ze zdalnym raportowaniem i sterowaniem przez sieć komórkową NOTATNIK KONSTRUKTORA NOTATNIK KONSTRUKTORA System pomiaru parametrów środowiskowych Ze dalnym raportowaniem i sterowaniem pre sieć komórkową W artykule opisano aprojektowany i wykonany pre autora prototypowy system M2M. System

Bardziej szczegółowo

Funkcje zespolone. 2 Elementarne funkcje zespolone zmiennej zespolonej

Funkcje zespolone. 2 Elementarne funkcje zespolone zmiennej zespolonej Wyiał Matematyki Stosowanej Zestaw adań nr 8 Akademia Górnico-Hutnica w Krakowie WFiIS, informatyka stosowana, II rok Elżbieta Adamus grudnia 206r. Funkcje espolone Ciągi i seregi licb espolonych Zadanie.

Bardziej szczegółowo

Wybrane stany nieustalone transformatora:

Wybrane stany nieustalone transformatora: Wybrane stany nieustalone transformatora: Założenia: - amplituda napięcia na aciskach pierwotnych ma wartość stałą nieależnie od jawisk achodących w transformatore - warcie występuje równoceśnie na wsystkich

Bardziej szczegółowo

URZĄD MIEJSKI W SŁUPSKU Wydział Zdrowia i Spraw Społecznych. SPRAWOZDANIE (CZĘŚCIOWE*/KOŃCOWE*)1) z wykonania zadania publicznego...

URZĄD MIEJSKI W SŁUPSKU Wydział Zdrowia i Spraw Społecznych. SPRAWOZDANIE (CZĘŚCIOWE*/KOŃCOWE*)1) z wykonania zadania publicznego... SPRAWOZDANIE (CZĘŚCIOWE*/KOŃCOWE*)1) wykonania adania publicnego... (nawa adania) w okresie od... do..., określonego w umowie nr..., awartej w dniu..., pomiędy... a... (nawa organu lecającego) (nawa organiacji

Bardziej szczegółowo

Higiena, ochrona i pielęgnacja skóry ze szczególnym uwzględnieniem skóry rąk

Higiena, ochrona i pielęgnacja skóry ze szczególnym uwzględnieniem skóry rąk Higiena, ochrona i pielęgnacja skóry e scególnym uwględnieniem skóry rąk Łatwo wsyscy, gdy jesteśmy drowi, dajemy dobre rady chorym. (-) Terencjus Higiena i mycie rąk Aneta Klimberg, Jery T. Marcinkowski

Bardziej szczegółowo

1. Podstawowe pojęcia

1. Podstawowe pojęcia 1. Podstawowe pojęcia Sterowanie optymalne obiektu polega na znajdowaniu najkorzystniejszej decyzji dotyczącej zamierzonego wpływu na obiekt przy zadanych ograniczeniach. Niech dany jest obiekt opisany

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 13. PROBLEMY OPTYMALIZACYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska PROBLEMY OPTYMALIZACYJNE Optymalizacja poszukiwanie

Bardziej szczegółowo

czyli politropa jest w tym przypadku przemianą przy stałym ciśnieniu nazywaną izobarą. Równanie przemiany izobarycznej ma postać (2.

czyli politropa jest w tym przypadku przemianą przy stałym ciśnieniu nazywaną izobarą. Równanie przemiany izobarycznej ma postać (2. remiany_gau_dosk Charakterystyne remiany gau doskonałego. Premiana oitroowa Premianą oitroową naywamy remianę o równaniu idem (. ub V idem (. gdie V / m. W równaniah (. i (. jest wykładnikiem oitroy. Podstawowe

Bardziej szczegółowo

Ćw. 5. Określenie współczynnika strat mocy i sprawności przekładni ślimakowej.

Ćw. 5. Określenie współczynnika strat mocy i sprawności przekładni ślimakowej. Laboratorium Podstaw Konstrukcji Masyn - - Ćw. 5. Określenie współcynnika strat mocy i sprawności prekładni ślimakowej.. Podstawowe wiadomości i pojęcia. Prekładnie ślimakowe są to prekładnie wichrowate,

Bardziej szczegółowo

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE . Oblicyć: ZADANIA Z FUNKCJI ANALITYCZNYCH a) ( 7i) ( 9i); b) (5 i)( + i); c) 4+3i ; LICZBY ZESPOLONE d) 3i 3i ; e) pierwiastki kwadratowe 8 + i.. Narysować biór tych licb espolonych, które spełniają warunek:

Bardziej szczegółowo

Szkolenia dla osób bezrobotnych w ramach środków dostępnych przez Powiatowy Urząd Pracy

Szkolenia dla osób bezrobotnych w ramach środków dostępnych przez Powiatowy Urząd Pracy pre pre Skolenia dla osób berobotnych w ramach środków dostępnych pr Skolenia dla osób berobotnych w ramach środków dostępnych pre Powiatowy Urąd Pracy 2015.02.12Aktualiacja: 2015.02.12, 08:01 PLAN SZKOLEŃ

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA

PRZEDMIOTOWY SYSTEM OCENIANIA PRZEDMIOTOWY SYSTEM OCENIANIA Predmiot: informatyka akres podstawowy Klasy: pierwse LO i TE Program naucania: Informatyka nie tylko dla ucniów. Podręcnik. Zakres podstawowy Realiowany w Zespole Skół Ekonomicnych

Bardziej szczegółowo

TEORIA GIER W EKONOMII WYKŁAD 6: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE DOWOLNEJ

TEORIA GIER W EKONOMII WYKŁAD 6: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE DOWOLNEJ TEORIA GIER W EKONOMII WYKŁAD 6: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE DOWOLNEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Gry dwuosobowe z kooperacją Przedstawimy

Bardziej szczegółowo

Projekt umowy U M O W A

Projekt umowy U M O W A Załącznik nr 6 do SIWZ Projekt umowy U M O W A o zamówienie publiczne udzielone w trybie przetargu nieograniczonego o wartości mniejszej niŝ kwoty określone w przepisach wydanych na podstawie art. 11 ust

Bardziej szczegółowo

Gry o sumie niezerowej

Gry o sumie niezerowej Gry o sumie niezerowej Równowagi Nasha 2011-12-06 Zdzisław Dzedzej 1 Pytanie Czy profile równowagi Nasha są dobrym rozwiązaniem gry o dowolnej sumie? Zaleta: zawsze istnieją (w grach dwumacierzowych, a

Bardziej szczegółowo

Katedra Geotechniki i Budownictwa Drogowego. WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Mazurski

Katedra Geotechniki i Budownictwa Drogowego. WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Mazurski Katedra Geotechniki i Budownictwa Drogowego WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Maurski Mechanika Gruntów dr inż. Ireneus Dyka http://pracownicy.uwm.edu.pl/i.dyka e-mail: i.dyka@uwm.edu.pl

Bardziej szczegółowo

Liniowe Zadanie Decyzyjne model matematyczny, w którym zarówno funkcja celu jak i warunki

Liniowe Zadanie Decyzyjne model matematyczny, w którym zarówno funkcja celu jak i warunki Liniowe Zadanie Decyzyjne model matematyczny, w którym zarówno funkcja celu jak i warunki ograniczające są funkcjami liniowymi ekonomiczne wykorzystanie Programowania Liniowego do opisu sytuacji decyzyjnej

Bardziej szczegółowo

Co to jest SUR-FBD? 3

Co to jest SUR-FBD? 3 1 Utrzymanie Ruchu Często firmy funkcjonują w swoistym błędnym kole, polegającym na skupieniu uwagi na naprawach tego co się psuje, tym samym powielają wzorce biernego utrzymania ruchu Z powodu braku danych,

Bardziej szczegółowo

Niniejsze zapytanie nie stanowi zapytania ofertowego w rozumieniu przepisów Prawa o Zamówieniach Publicznych.

Niniejsze zapytanie nie stanowi zapytania ofertowego w rozumieniu przepisów Prawa o Zamówieniach Publicznych. Zapytanie o informację na ofertę monitoringu mediów Narodowego WSTĘP Na podstawie Umowy dierżawy i powierenia arądania Stadionem m w Warsawie awartej pre sp. siedibą w Warsawie (dalej również jako lub

Bardziej szczegółowo

Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż

Bardziej szczegółowo

Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż

Bardziej szczegółowo

Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń

Bardziej szczegółowo

Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć

Bardziej szczegółowo

HAMOWANIE REKUPERACYJNE W MIEJSKIM POJEŹDZIE HYBRYDOWYM Z NAPĘDEM NA KOŁA TYLNE

HAMOWANIE REKUPERACYJNE W MIEJSKIM POJEŹDZIE HYBRYDOWYM Z NAPĘDEM NA KOŁA TYLNE ELEKTRYKA 213 Zesyt 1 (225) Rok LIX Marcin FICE Politechnika Śląska w Gliwicach HAMOWANIE REKUPERACYJNE W MIEJSKIM POJEŹDZIE HYBRYDOWYM Z NAPĘDEM NA KOŁA TYLNE Strescenie. W artykule predstawiono wyniki

Bardziej szczegółowo

ROZDZIAŁ 12 PRZYKŁAD ZASTOSOWANIA METOD WAP DO ANALIZY PROCESÓW GOSPODAROWANIA ZASOBAMI LUDZKIMI W PRZEDSIĘBIORSTWIE

ROZDZIAŁ 12 PRZYKŁAD ZASTOSOWANIA METOD WAP DO ANALIZY PROCESÓW GOSPODAROWANIA ZASOBAMI LUDZKIMI W PRZEDSIĘBIORSTWIE Marek Kunas ROZDZIAŁ 2 PRZYKŁAD ZASTOSOWANIA METOD WAP DO ANALIZY PROCESÓW GOSPODAROWANIA ZASOBAMI LUDZKIMI W PRZEDSIĘBIORSTWIE. Wprowaenie Celem głównym niniejsego opracowania jest prestawienie wybranych

Bardziej szczegółowo

Nazwa przedmiotu: Techniki symulacji. Kod przedmiotu: EZ1C Numer ćwiczenia: Ocena wrażliwości i tolerancji układu

Nazwa przedmiotu: Techniki symulacji. Kod przedmiotu: EZ1C Numer ćwiczenia: Ocena wrażliwości i tolerancji układu P o l i t e c h n i k a B i a ł o s t o c k a W y d i a ł E l e k t r y c n y Nawa predmiotu: Techniki symulacji Kierunek: elektrotechnika Kod predmiotu: EZ1C400 053 Numer ćwicenia: Temat ćwicenia: E47

Bardziej szczegółowo

WNIOSEK O PRZYJĘCIE BENEFICJENTA W POCZET PODOPIECZNYCH FUNDACJI TEL:... ADRES MAILOWY:...

WNIOSEK O PRZYJĘCIE BENEFICJENTA W POCZET PODOPIECZNYCH FUNDACJI TEL:... ADRES MAILOWY:... ..., dn.... WNIOSEK O PRZYJĘCIE BENEFICJENTA W POCZET PODOPIECZNYCH FUNDACJI 1. JA,... IMIĘ, NA)WISKO, )MIES)KAŁY/A..., MIEJSCOWOŚĆ, UL.... (ULICA, NR BUDYNKU, NR MIESZKANIA), TEL:... ADRES MAILOWY:...

Bardziej szczegółowo

Gmina - Miasto Płock

Gmina - Miasto Płock Projekt Potencjał Diałanie - Rowój: nowy wymiar współpracy Miasta Płocka i płockich organiacji poarądowych Procedura Zasady tworenia i funkcjonowania fundusu pożyckowego i gwarancyjnego dla organiacji

Bardziej szczegółowo

PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE. WALCOWE (równoległe) STOŻKOWE (kątowe) ŚLIMAKOWE HIPERBOIDALNE. o zebach prostych. walcowe. o zębach.

PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE. WALCOWE (równoległe) STOŻKOWE (kątowe) ŚLIMAKOWE HIPERBOIDALNE. o zebach prostych. walcowe. o zębach. CZOŁOWE OWE PRZEKŁADNIE STOŻKOWE PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE WALCOWE (równoległe) STOŻKOWE (kątowe) HIPERBOIDALNE ŚLIMAKOWE o ebach prostych o ębach prostych walcowe walcowe o ębach śrubowych o

Bardziej szczegółowo

Od pomysłu do przemysłu

Od pomysłu do przemysłu Od pomysłu do przemysłu czyli jak stworzyć logiczny projekt. Dariusz Kurcman Regionalny Ośrodek EFS w Kielcach Kielce, 10.09.2010 Szkolenie współfinansowane ze środków Unii Europejskiej w ramach Europejskiego

Bardziej szczegółowo

Szkolenia dla osób bezrobotnych w ramach środków dostępnych przez Powiatowy Urząd Pracy

Szkolenia dla osób bezrobotnych w ramach środków dostępnych przez Powiatowy Urząd Pracy pre pre Skolenia dla osób berobotnych w ramach środków dostępnych pre Powiatowy Urąd Pracy 2015.02.12Aktualiacja: 2015.02.12, 09:01 PLAN SZKOLEŃ DLA OSÓB BEZROBOTNYCH I INNYCH UPRAWNIONYCH OSÓB NA 2015

Bardziej szczegółowo

KARTA PRZEDMIOTU. Zarządzanie i marketing R.C17

KARTA PRZEDMIOTU. Zarządzanie i marketing R.C17 KARTA PRZEDMIOTU 1. Informacje ogólne Nawa predmiotu i kod (wg planu studiów): Kierunek studiów: Poiom kstałcenia: Profil kstałcenia: Forma studiów: Obsar kstałcenia: Koordynator predmiotu: Prowadący predmiot:

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI PRACA DYPLOMOWA MAGISTERSKA

POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI PRACA DYPLOMOWA MAGISTERSKA POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI KIERUNEK: Automatyka i Robotyka (AiR) SPECJALNOŚĆ: Robotyka (ARR) PRACA DYPLOMOWA MAGISTERSKA Wyposażenie robota dwukołowego w cujniki ewnętrne Equipping a two

Bardziej szczegółowo

Wybrane algorytmy automatycznego

Wybrane algorytmy automatycznego Wyrane algorytmy automatycnego Wyrane algorytmy automatycnego naprowadania preciwpancernego pocisku naprowadania rakietowego preciwpancernego atakującego cel pocisku górnego pułapu rakietowego atakującego

Bardziej szczegółowo

Krzywe stożkowe. 1 Powinowactwo prostokątne. 2 Elipsa. Niech l będzie ustaloną prostą i k ustaloną liczbą dodatnią.

Krzywe stożkowe. 1 Powinowactwo prostokątne. 2 Elipsa. Niech l będzie ustaloną prostą i k ustaloną liczbą dodatnią. Krzywe stożkowe 1 Powinowatwo prostokątne Nieh l będzie ustaloną prostą i k ustaloną lizbą dodatnią. Definija 1.1. Powinowatwem prostokątnym o osi l i stosunku k nazywamy przekształenie płaszzyzny, które

Bardziej szczegółowo

Optymalizacja wielokryterialna

Optymalizacja wielokryterialna Optymalizacja wielokryterialna Optymalizacja wielokryterialna Dział badań operacyjnych zajmujący się wyznaczaniem optymalnej decyzji w przypadku, gdy występuje więcej niż jedno kryterium Problem wielokryterialny

Bardziej szczegółowo

14. Grupy, pierścienie i ciała.

14. Grupy, pierścienie i ciała. 4. Grup, pierścienie i ciała. Definicja : Zbiór A nazwam grupą jeśli jest wposaŝon w działanie wewnętrzne łączne, jeśli to działanie posiada element neutraln i kaŝd element zbioru A posiada element odwrotn.

Bardziej szczegółowo

SPRAWOZDANIE (CZĘŚCIOWE*/KOŃCOWE*) 1) w okresie od... do..., określonego w umowie nr..., zawartej w dniu..., pomiędzy... a...

SPRAWOZDANIE (CZĘŚCIOWE*/KOŃCOWE*) 1) w okresie od... do..., określonego w umowie nr..., zawartej w dniu..., pomiędzy... a... SPRAWOZDANIE (CZĘŚCIOWE*/KOŃCOWE*) 1) wykonania adania publicnego... (nawa adania) w okresie od... do..., określonego w umowie nr..., awartej w dniu..., pomiędy... a.. (nawa organu lecającego) (nawa organiacji

Bardziej szczegółowo

Pochylmy się nad pewnym rozporządzeniem

Pochylmy się nad pewnym rozporządzeniem Henryk Skowron RozwaŜania sceptyczniejącego optymisty Pochylmy się nad pewnym rozporządzeniem Znana juŝ, jakby się mogło wydawać, powszechnie Dyrektywa 2000/76/UE reguluje grupę problemów, tworzących pewną

Bardziej szczegółowo

Dział 1. Osądzeni wg rodzajów przestępstw i kar

Dział 1. Osądzeni wg rodzajów przestępstw i kar MINISTERSTWO SPRAWIEDLIWOŚCI, Al. Ujadowskie 11, 00-950 Warsawa SO w Opolu [WYDZIAL] Okręg Sadu Apelacyjnego w Apelacja Wrocławska Numer identyfikacyjny REGON Diał 1. Osądeni wg rodajów prestępstw i kar

Bardziej szczegółowo

PROGNOZA OSIADANIA BUDYNKU W ZWIĄZKU ZE ZMIANĄ SPOSOBU POSADOWIENIA THE PROGNOSIS OF BUILDING SETTLEMENT DUE TO CHANGES OF FOUNDATION

PROGNOZA OSIADANIA BUDYNKU W ZWIĄZKU ZE ZMIANĄ SPOSOBU POSADOWIENIA THE PROGNOSIS OF BUILDING SETTLEMENT DUE TO CHANGES OF FOUNDATION XXVI Konferencja awarie budowlane 213 Naukowo-Technicna ZYGMUNT MEYER, meyer@ut.edu.pl Zachodniopomorski Uniwersytet Technologicny w cecinie, Katedra Geotechniki MARIUZ KOWALÓW, m.kowalow@gco-consult.com

Bardziej szczegółowo

Ruch Demonstracje z kinematyki i dynamiki przeprowadzane przy wykorzystanie ultradźwiękowego czujnika połoŝenia i linii powietrznej.

Ruch Demonstracje z kinematyki i dynamiki przeprowadzane przy wykorzystanie ultradźwiękowego czujnika połoŝenia i linii powietrznej. COACH 08 Ruch Demonstracje z kinematyki i dynamiki przeprowadzane przy wykorzystanie ultradźwiękowego czujnika połoŝenia i linii powietrznej. Program: Coach 6 Projekt: PTSN Coach6\PTSN - Ruch Ćwiczenia:

Bardziej szczegółowo

Języki interpretowane Interpreted languages PRZEWODNIK PO PRZEDMIOCIE

Języki interpretowane Interpreted languages PRZEWODNIK PO PRZEDMIOCIE Jęyki interpretowane Interpreted languages Informatyka Stacjonarne IO2_02 Obowiąkowy w ramach specjalności: Inżynieria oprogramowania II stopień Rok: I Semestr: II wykład, laboratorium 1W, 2L 3 ECTS I

Bardziej szczegółowo

Biologia. Biuletyn maturalny. Ewa Jastrzębska Ewa Pyłka-Gutowska. Centralna Komisja Egzaminacyjna

Biologia. Biuletyn maturalny. Ewa Jastrzębska Ewa Pyłka-Gutowska. Centralna Komisja Egzaminacyjna Biuletyn maturalny Ewa Jastrębska Ewa Pyłka-Gutowska Biologia Centralna Komisja Egaminacyjna publikacja współfinansowana pre Europejski Fundus Społecny Autory biuletynu: Ewa Jastrębska, Ewa Pyłka-Gutowska

Bardziej szczegółowo

REGUŁY POLITYKI PIENIĘŻNEJ A PROGNOZOWANIE WSKAŹNIKA INFLACJI

REGUŁY POLITYKI PIENIĘŻNEJ A PROGNOZOWANIE WSKAŹNIKA INFLACJI gnieska Prybylska-Maur Uniwersye Ekonomicny w aowicach REGUŁY POLIYI PIENIĘŻNEJ PROGNOZOWNIE WSŹNI INFLCJI Wprowadenie Jednym rodaów poliyki pieniężne es poliyka opara na regułach poliyki pieniężne. en

Bardziej szczegółowo

DS-WPZN-MJ-420/208/2010 Warszawa,xpaździernika 2010 r.

DS-WPZN-MJ-420/208/2010 Warszawa,xpaździernika 2010 r. DS-WPZN-MJ-420/208/2010 Warsaa,xpaźdiernika 2010 r. Pan Rysard Proksa Preodnicący Sekcji Krajoej Ośiaty i Wychoania NSZZ Solidarność" ul. Wały Piastoskie 24 80-855 Gdańsk Sanony Panie Preodnicący, Odpoiadając

Bardziej szczegółowo