Funkcje zespolone. 2 Elementarne funkcje zespolone zmiennej zespolonej

Wielkość: px
Rozpocząć pokaz od strony:

Download "Funkcje zespolone. 2 Elementarne funkcje zespolone zmiennej zespolonej"

Transkrypt

1 Wyiał Matematyki Stosowanej Zestaw adań nr 8 Akademia Górnico-Hutnica w Krakowie WFiIS, informatyka stosowana, II rok Elżbieta Adamus grudnia 206r. Funkcje espolone Ciągi i seregi licb espolonych Zadanie. Zbadaj bieżność ciągów ( n ) n N. Dla ciągów bieżnych wynac ich granice. a) n = n+2 n + i 3n 3 n + b) n = ein n c) n = ( i) n d) n = n 2ni n+ e) n = ( ) n 3ni n+ f) n = 2n+ 3n i g) n+ n = (+i) n h) n = ( ) n n i) n = [( i) n +i n ]n 2 j) n = n2 +2in in 2 k) n = 3n+2+ni n+4i l) n = (+ i n )2 (2 i n )2 m) n = ( i n 2 2i + n ) ( i)n Zadanie 2. Zbadaj bieżność i bieżność bewględną następujących seregów: a) + 3+2ni n= b) i3 n n 2 n= c) + 5 n n= g) + 3 n n=0 h) + (+i) n (e i) n n=0 n2 n 2 i) + n= l) + n= ( 4 )n (cos nπ 6 + i sin nπ 6 ) m) + n= d) + n+i n= ein e) + n= 2n+i j) + in 3 + n= 4 n n) + n 2 (π+i) n n= n f) + ( 3+i) n i n n= n 3 2 n e in n n k) + n!(e+ i 2 )n n= (cos nπ + i sin nπ) 3 3 n! o) + sin n+n cos n (ni) n n= n Elementarne funkcje espolone miennej espolonej Pryjmujemy onacenia: Log() - logarytm licby espolonej 0, cyli biór wsystkich w C, takich że e w = log() - logarytm główny licby espolonej. Zadanie 3. Udowodnij, że Log() = {ln + i arg () + 2kπi; k Z}. Zadanie 4. Oblic: a) e 2+2i b) e 2+ π 2 i c) e πi d) cos (i) e) sin ( + i) f) tg π i g) ctg( π + 2i) h) Log(2i) 4 i) log ( 2) j) Log ora log k) Log( i) ora log ( i) Zadanie 5. Uasadnij tożsamości, dla C: a) e + 2 = e e 2 b) sin 2 = 2 sin cos c) cos 2 = cos 2 sin 2 d) sin ( + π 2 ) = cos e) e = e f) sin 2 + cos 2 =

2 Zadanie 6. Wynac cęść recywistą i cęść urojoną funkcji espolonej miennej espolonej f(), jeśli: a) f() = i b) f() = (3 + i) c) f() = Re() f) f() = 2 g) f() = e i h) f() = cos Zadanie 7. Uasadnij, że: a) C : sin = 0 k Z : = kπ d) f() = i +i e) f() = i 2 + b) Log( ) = Log(), gie Log() = { w w Log()} c) Log( ) = Log(), gie Log() = { w w Log()} Zadanie 8. Dla jakich C achoi e R? Zadanie 9. Rowiąż równania (dla C): a) e 2 = 2i b) e = e i c) cos = 2i 3 Granica i ciągłość funkcji espolonej miennej espolonej Zadanie 0. Zbadaj, cy funkcja f() = ( ) ma granicę w punkcie = 0. 2 Zadanie. Oblic następujące granice: a) lim b) lim m, gie m N c) lim i d) lim 0 e) lim e 2 f) lim +i ( ) g) lim +i 2 2i Zadanie 2. Zbadaj ciągłość funkcji f() = a 0 n + a n a n, gie a C, dla i = 0,,..., n. Zadanie 3. Zbadaj cy funkcja f() = { (Re( 2 )) 2 2 dla 0 0 dla = 0 jest ciągła w punkcie = 0. 4 Pochodna funkcji espolonej miennej espolonej Zadanie 4. Sprawdź, że podanej funkcje spełniają równania Cauchy ego-riemanna: a) f() = 2 b) f() = sin Zadanie 5. Uasadnij, że podane funkcje nie mają pochodnej: a) f() = b) f() = Re() c) f() = Zadanie 6. Roważ funkcję f() = Re() Im() i w punkcie 0 = 0, aby prekonać się, że spełnienie równań Cauchy ego-riemanna nie gwarantuje istnienia pochodnej. 2

3 Zadanie 7. Zbadaj, w których punktach podane funkcje mają pochodne i oblic te pochodne w punktach, w których istnieją: a) f() = ( + ) b) f() = e c) f() = Re()Im() Zadanie 8. Zbadaj, w których punktach podane funkcje f() mają pochodne, a w których są holomorficne. Oblic pochodne w punktach, w których one istnieją. a) f() = Re( 2 ) b) f() = e i Zadanie 9. Wynac funkcję holomorficną f() = u(x, y) + iv(x, y) ( i wyraź f() worem ależnym od miennej ) wieąc, że: a) v(x, y) = 2xy + 3x, f(i) = 0 b) u(x, y) = e y cos x 2x, f( π ) = π + 2i 2 c) u(x, y) = xe x cos y e x y sin y ( dokładnością do stałej C) 5 Funkcja espolona miennej recywistej Zadanie 20. Jakie linie (biory punktów na płascyźnie espolonej) predstawiają podane równania? a) (t) = t + + 3it, < t < b) (t) = e t + ie 2t, t [0, ] c) (ϕ) = re iϕ, r > 0 d) (t) = 0 + re it, t ( π, π] gie r > 0, 0 = x 0 + iy 0 e) (t) = 0 + at, t R, gie 0 = x 0 + iy 0, a = α + iβ C, α 2 + β 2 0 f) (t) = t 3 + it 3, t [, ] g) (t) = t + it, t [, ] h) (t) = sin t + i sin t, t [0, 2π] i) (t) = t + i sin t, t R j) (t) = t + i, t R \ {0} k) (t) = cos t, t R t l) (t) = i + ( 2i)t, t R m) (t) = 2e it + e it, t R n) (t) = (3e it + e it ) 2, t (0, π] Zadanie 2. Cy prosta, którą predstawia równanie (t) = 3i+(+2i)t, prechoi pre punkty = + i, 2 = 2 3i? Zadanie 22. Napis w postaci espolonej równanie prostej prechoącej pre punkty = + 3i, 2 = 2 + 5i. Zadanie 23. Znajdź punkty precięcia krywych predstawionych równaniami: a) (t) = (+i)t i, 2 (t) = 3 2i+(i )t b) (t) = i+(+2i)t, 2 (t) = 3 2i (2+4i)t Zadanie 24. Napis równanie parametrycne postaci = (t), t I R następujących krywych: 3

4 a) prostej prechoącej pre punkty = + 3i i 2 = 2 + i b) odcinka łącącego punkty = 2 i 2 = 4 3i c) okręgu o środku 0 = + 3i i promieniu r = 2 d) elipsy o środku 0 = + 2i i półosiach a = 3, b = 2 e) cęści krywej y = x 3 awartej mięy punktami i ora + i Zadanie 25. Oblic granice: a) lim t 0 e t + i cos t b) lim t 0 sin t t + (t 2 + 2t + 3)i c) lim t 5 sin t + ie t Zadanie 26. Cy funkcja (t) = + i + (2 i)te t jest ciągła w punkcie t = 2? Zadanie 27. Oblic pochodne funkcji: a) (t) = 5e it b) (t) = e w(t), gie w : R C różnickowalna c) (t) = t 2 e 4it d) (t) = ( + 2i)t + ( 2i) t e) (t) = 2e it + 3e it 6 Całki funkcji espolonych 6. Całka onacona funkcji espolonej miennej recywistej Zadanie 28. Korystając faktu, że b (t)dt = b u(t)dt + i b v(t)dt, dla (t) = u(t) + iv(t), a a a t [a, b] R, oblic podane całki. Zauważ, że wory do oblicania całek, są takie same jak w pryapdku recywistym. a) π 2 0 (t2 + i sin t)dt b) π 0 e it dt c) π sin (it)dt d) b ( + 0 a ti)2 dt e) (3 + 2it)dt 0 Zadanie 29. Korystając faktu, że b a (t)dt = F (t) b a, gie F (t) to pierwotna funkcji (t), oblic całki: a) π 0 sin tdt b) 2 0 e4it dt c) 0 ( 0 + it) n dt d) β 0 teit dt 6.2 Całka krywoliniowa funkcji espolonej miennej espolonej Zadanie 30. Oblic podane całki krywoliniowe amieniając je na całki onacone: a) C e Im() Re(), gie C jest odcinkiem o pocątku = i końcu 2 = 2 + i b) C Im(2 ), gie C jest leżącą w pierwsej ćwiartce układu współrędnych cęścią okręgu = R, prebieganą od punktu Ri do punktu R c) C, gie C jest fragmentem łuku paraboli y = + x2 o pocątku + i ora końcu e + ei 4

5 d) C e, gie C jest łamaną o wierchołkach kolejno w punktach π 2 i, ( + i) π 2, 0 e) C, gie C jest półokręgiem o równaniu (ϕ) = rei(π ϕ), 0 ϕ π, r > 0 orientowanym godnie ruchem wskaówek egara f) K, gie K jest okręgiem o środku a C i promieniu r > 0 orientowanym dodatnio a g) Re(), gie C jest odcinkiem o pocątku w punkcie 0 i końcu w punkcie + i C h) Re(), gie C jest łamaną o wierchołkach prebieganych w kolejności 0,, + i C i) C ( 0, gie C jest okręgiem ) n 0 = r orientowanym dodatnio, n N, 0 C to punkt ustalony Zadanie 3. Korystając e wiąku f() = u(x, y)dx v(x, y)dy + i v(x, y)dx + C C C u(x, y)dy oblic: a), gie C jest odcinkiem o pocątku w punkcie O i końcu w punkcie + i C b), gie K jest cęścią okręgu o promieniu R > 0 i środku w punkcie = 0, leżącą K 2 w pierwsej ćwiartce układu współrędnych i skierowaną preciwnie do ruchu wskaówek egara Zadanie 32. Wykorystując funkcję pierwotną danej funkcji podcałkowej oblic następujące całki krywoliniowe po krywej kawałkami gładkiej C: a) C sin (2i), gie C jest dowolną krywą o pocątku = 0 i końcu 2 = π 2 i b) C e, gie C jest dowolną krywą o pocątku = i końcu 2 = 2 + πi c*), gie C jest fragmentem okręgu = R w pierwsej ćwiartce układu współrędnych C łącącym punkty = R, 2 = Ri Zadanie 33. Niech C bęie krywą Jordana. a) Niech f() ma funkcję pierwotną F () w pewnym obsare D awierającym krywą C. Ile wynosi C f()? b) Cy C, gie a C, równa się ero? a Zadanie 34. Oblic całkę C 2 0 po okręgu C : (t) = re it, t [0, 2π], jeśli punkt 0 : a) leży na ewnątr C b) leży wewnątr C i jest środkiem tego okręgu Zadanie 35. Korystając uogólnienia twierenia całkowego Cauchy ego na obsar wielospójny oblic całkę, gie C jest elipsą o równaniu C 2 + 4x2 + y 2 4 = 0 orientowaną dodatnio. Zadanie 36. Korystając e woru całkowego Cauchy ego i jego uogólnienia oblic całki: 5

6 a) C, gie C jest okręgiem + 2i = orientowanym dodatnio 2 (+2i) b) C sin, po krywej C : x2 + y2 9 4 = orientowanej dodatnio c) C sin ( π 2 ), gie C jest okręgiem = orientowanym dodatnio 2 d) C e) C e π ( 2 +4) 2, gie C jest okręgiem + 2i = 2 orientowanym dodatnio cos, gie C jest okręgiem 3 = orientowanym dodatnio ( π) 3 Zadanie 37. Oblic całkę C a) o promieniu r < 2 i środku w punkcie i a) o promieniu r < 2 i środku w punkcie i, gie C jest dodatnio orientowanym okręgiem: ( 2 +) 2 a) o promieniu r > 2 i środku w punkcie i (skorystaj podpunktów a ora b) Zadanie 38. Oblic całki po podanych krywych amkniętych orientowanych dodatnio: a) C, gie C to okrąg = 4 b) C 2 +2, gie C to okrąg = 4 ( 2 )(+2) Zadanie 39. a) Jaką krywą C opisuje równanie = 0? b) Korystając twierenia Cauchy ego oblic całkę sin. C c) Korystając wrou całkowego Cauchy ego oblic całkę C e (+) 2. 7 Seregi espolone funkcyjne i potęgowe, sereg Taylora Zadanie 40. Korystając kryterium Weierstrassa badaj jednostajną bieżność seregu + (sin ) n n= 5 n w pasie 0 Im(). Zadanie 4. Wynac promienie bieżności podanych seregów potęgowych: a) + n=0 n b) + e in (+i) n (2+i) n n= c) + ( 2+i) n n 2 n= d) + ( ) n 2n n 2 +in n=0 (3 e) + 7i) n n=0 f) + (+i) n n=0 2n g) + n n=0 (2+3i) n e ( π 2 i+)n n Zadanie 42. Zbadaj bieżność następujących seregów na bregu koła bieżności: a) + n=0 n b) + n n= c) + n 2 n= nn Zadanie 43. Oblic dla < sumy następujacych seregów: a) + n= n b) + n= nn c) + n n= n Zadanie 44. Rowiń w sereg Maclaurina funkcję: a) f() = cosh() = e +e 2 b) f() = 0 eζ2 dζ 6 (+i) n 2n n

7 Zadanie 45. Rowiń funkcję f() w sereg Taylora w otoceniu punktu 0 i najdź koło bieżności otrymanego seregu: a) f() = cos ( 2 ), 0 = 0 b) f() = 2+, 0 = i c) f() = e i, 0 = π 2 d) f() = 2 +2, 0 = 2 e) f() = 0 eζ2 dζ, 0 = 0 f) f() = 2 4+3, 0 = 0 g) f() = ln ( + ), 0 = 0 8 Miejsca erowe funkcji Zadanie 46. Znjadź wsystkie era funkcji f() i badaj ich krotność: a) f() = ( 3 ) 2 ( ) b) f() = 2 (cos ) c) f() = (e ) e e 2 d) f() = + 2 e) f() = Seregi Laurenta Zadanie 47. Znajdź rowinięcie funkcji f() w sereg Laurenta w pierścieniu P, jeśli: a) f() =, P = { C : 0 < < 3} b) f() =, P = { C : 3 < 3 < } ( 3) ( 3) c) f() =, P = { C : 2 < + < } 2 d) f() = 2, P = { C : < < 2} (+)( 2) e) f() = ( + ) sin ( i ), P = { C : 0 < < } f) f() = e, P = { C : 0 < < } Zadanie 48. Dana jest funkcja f() = 2. Rowiń ja w sereg Laurenta w pierścieniu: 2 a) P = { : 0 < + < 2} b) P = { : 0 < < 2} c) P = { : < 2 < 3} Zadanie 49. Znajdź wsystkie seregi Laurenta o środku w punkcie 0 bieżne do funkcji f() w pewnych pierscieniach wokół tego punktu, jeśli: a) f() = , 0 = b) f() = i ( )( i), 0 = + i Zadanie 50. Rowiń w sereg Laurenta o środku w punkcie 0 funkcję: a) f() = cos ( 2 ), 0 = 2 b) f() = 22 2i ( 2 +2)( i), w otoceniu pierścieniowym 0 = i c) f() = e πi, 0 = πi d) f() = 2, 0 = 0 7

8 9. Punkty osobliwe i residua funkcji Zadanie 5. Podaj prykłady funkcji f(), dla których punkt 0 = 0 jest: a) punktem poornie osobliwym b) biegunem dwukrotnym c) punktem istotnie osobliwym Zadanie 52. Określ roaj punktów osobliwych odosobnionych funkcji f(). W prypadku biegunów określ ich krotność. Zbadaj achowanie funkcji f() w nieskońconości. a) f() = 2 ( 2 +2) 2 b) f() = c) f() = sin d) f() = sin 4 e) f() = e i f) f() = e g) f() = e h) f() = i) f() = j) f() = e ( ) 3 k) f() = cos cos Zadanie 53. Uasadnij, że jeśli f() = g() h() ora g(), h() są analitycne w otoceniu punktu 0 i ponadto g( 0 ) 0, h( 0 ) = 0, h ( 0 ) 0, to wówcas res 0 f() = g( 0) h ( 0 ). Zadanie 54. Oblic residua podanych funkcji w ich punktach osobliwych (nie bieremy tu pod uwagę = ): a) f() = 2 +π 2 b) f() = e c) f() = e ( 5) 3 d) f() = ctg e) f() = 2 e i f) f() = sin π 2 Zadanie 55. Korystając twierenia całkowego o resiuach oblic podane całki po wskaanych krywych orientowanych dodatnio: a) C b) C c) C, gie C jest okręgiem = π orientowanym dodatnio 2 i+2, gie C jest trójkątem o wierchołkach prebieganych w kolejności i, i, 2i 3 ( 2 +2) 2, gie C : πi = 4 orientowany dodatnio e d) cos, gie C jest okręgiem = orientowanym dodatnio C Zadanie 56. Oblic podane całki niewłaściwe: a) + x 2 dx b) + (x 2 +4) 2 dx c) + x 4 +5x 2 +6 cos x dx (x 2 +) 2 WSKAZÓWKA do prykładu c): Zauważ, że + sin x dx = 0 (bo funkcja podcałkowa jest (x 2 +) 2 nieparysta, a całka bieżna bewględnie), a następnie skorystaj ależności e ix = cos x +i sin x. 8

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE . Oblicyć: ZADANIA Z FUNKCJI ANALITYCZNYCH a) ( 7i) ( 9i); b) (5 i)( + i); c) 4+3i ; LICZBY ZESPOLONE d) 3i 3i ; e) pierwiastki kwadratowe 8 + i.. Narysować biór tych licb espolonych, które spełniają warunek:

Bardziej szczegółowo

FUNKCJE ZESPOLONE Lista zadań 2005/2006

FUNKCJE ZESPOLONE Lista zadań 2005/2006 FUNKJE ZESPOLONE Lista zadań 25/26 Opracowanie: dr Jolanta Długosz Liczby zespolone. Obliczyć wartości podanych wyrażeń: (2 + ) ( ) 2 4 i (5 + i); b) (3 i)( 4 + 2i); c) 4 + i ; d) ( + i) 4 ; e) ( 2 + 3i)

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

MATERIA LY DO ĆWICZEŃ Z ANALIZY ZESPOLONEJ Literatura: [Ch] J. Cha

MATERIA LY DO ĆWICZEŃ Z ANALIZY ZESPOLONEJ Literatura: [Ch] J. Cha MATERIA LY DO ĆWICZEŃ Z ANALIZY ZESPOLONEJ Literatura: [Ch] J Cha dyński Wste p do analiy espolonej wyd VII Wyd U L Lódź 993 [Kr]J Kryż Zbiór adań funkcji analitycnych PWN Warsawa 975 [Ku] K Kuratowski

Bardziej szczegółowo

Ekoenergetyka Matematyka 1. Wykład 1.

Ekoenergetyka Matematyka 1. Wykład 1. Ekoenergetyka Matematyka 1. Wykład 1. Literatura do wykładu M. Gewert, Z. Skocylas, Analia matematycna 1; T. Jurlewic, Z. Skocylas, Algebra liniowa 1; Stankiewic, Zadania matematyki wyżsej dla wyżsych

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn.

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn. WRAiT 2 #1 1. Dla jakich a C ciągi o wyrazach na n, a n 1 + a n, an /n, są zbieżne? 2. Wykaż zbieżność i znajdź granice ciągów n a k, a n 1 + a 2n ( a < 1), a n 1 + a 2n ( a > 1), 1 n 3. Dla danego ϕ R

Bardziej szczegółowo

Zadania z funkcji zespolonych. III semestr

Zadania z funkcji zespolonych. III semestr Zadania funkcji espolonych III semestr Spis treści 1. Licby espolone - dia lania i w lasności Zad. 1-11 2. Pochodna funkcji miennej espolonej holomorficność Zad. 12-2 3. Funkcje elementarne Zad. 21-34

Bardziej szczegółowo

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5)

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5) . Liczby zespolone Zadanie.. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone () i +i, () 3i, (3) ( + i 3) 6, (4) (5) ( +i ( i) 5, +i 3 i ) 4. Zadanie.. Znaleźć moduł i argument główny

Bardziej szczegółowo

k i j=1 f(ζ) dζ = f(z). (ζ z) f n (ζ) 1 dζ f(z) = 1

k i j=1 f(ζ) dζ = f(z). (ζ z) f n (ζ) 1 dζ f(z) = 1 + Analia Zespolona I, uupełnienie. Zasada argumentu. We wore na licbę er i biegunów mamy calkę formy f d. Zauważmy, e forma ta jest f różnicką d log f. Wprawdie funkcja log f jest niejednonacna, to jej

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

Rachunek różniczkowy i całkowy 2016/17

Rachunek różniczkowy i całkowy 2016/17 Rachunek różniczkowy i całkowy 26/7 Zadania domowe w pakietach tygodniowych Tydzień 3-7..26 Zadanie O. Czy dla wszelkich zbiorów A, B i C zachodzą następujące równości: (A B)\C = (A\C) (B\C), A\(B\C) =

Bardziej szczegółowo

Funkcje Analityczne, ćwiczenia i prace domowe

Funkcje Analityczne, ćwiczenia i prace domowe Funkcje Analityczne, ćwiczenia i prace domowe P. Wojtaszczyk 29 maja 22 Ten plik będzie progresywnie modyfikowany. Będzie on zawierał. Zadanie omówione na ćwiczeniach 2. Zadania ćwiczebne do samodzielnego

Bardziej szczegółowo

22. CAŁKA KRZYWOLINIOWA SKIEROWANA

22. CAŁKA KRZYWOLINIOWA SKIEROWANA CAŁA RZYWOLINIOWA SIEROWANA Niech łuk o równaniach parametrycznych: x x(t), y y(t), a < t < b, będzie łukiem regularnym skierowanym, tzn łukiem w którym przyjęto punkt A(x(a), y(a)) za początek łuku, zaś

Bardziej szczegółowo

6. Punkty osobliwe, residua i obliczanie całek

6. Punkty osobliwe, residua i obliczanie całek 6. Punkty osobliwe, residua i obliczanie całek Mówimy, że funkcja holomorficzna f ma w punkcie a zero krotności k, jeśli f(a) = f (a) = = f (k ) (a) = 0, f (k) (a) 0. Rozwijając f w szereg Taylora w otoczeniu

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia

Analiza Matematyczna Ćwiczenia Analiza Matematyczna Ćwiczenia Spis treści Ciągi i ich własności Granica ciągu Granica funkcji 4 4 Ciągłość funkcji 6 Szeregi 8 6 Pochodna funkcji 7 Zastosowania pochodnej funkcji 8 Badanie przebiegu zmienności

Bardziej szczegółowo

1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009.

1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009. Szeregi potęgowe Definicja.. Szeregiem potęgowym o środku w punkcie R nazywamy szereg postaci: gdzie x R oraz c n R dla n = 0,, 2,... c n (x ) n, Przyjmujemy, że 0 0 def =. Liczby c n nazywamy współczynnikami

Bardziej szczegółowo

Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona.

Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona. Wykład - LICZBY ZESPOLONE Algebra licb espolonych, repreentacja algebraicna i geometrycna, geometria licb espolonych. Moduł, argument, postać trygonometrycna, wór de Moivre a.' Zbiór Licb Zespolonych Niech

Bardziej szczegółowo

Funkcje Analityczne Grupa 3, jesień 2008

Funkcje Analityczne Grupa 3, jesień 2008 Funkcje Analityczne Grupa 3, jesień 2008 Czternasta porcja zadań. Uwaga: i) W każdym zadaniu można korzystać z poprzednich jego części i innych zadań, nawet, jeśli się ich nie rozwiązało. ii) Wcześniejsze

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw 1 1. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y 1+x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3

Bardziej szczegółowo

Lista 1 - Funkcje elementarne

Lista 1 - Funkcje elementarne Lista - Funkcje elementarne Naszkicuj wykresy funkcji: a) y = sgn, y = sgn ; b) y = ; c) y = 2 Przedstaw w jednym układzie współrzędnych wykresy funkcji potęgowej y = α dla: a) α =, 2, 3, 4; b) α =,, 2;

Bardziej szczegółowo

Funkcje analityczne. Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017)

Funkcje analityczne. Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017) Funkcje analityczne Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017) Paweł Mleczko Uniwersytet im. Adama Mickiewicza w Poznaniu 1. Sprawy organizacyjne

Bardziej szczegółowo

Rachunek różniczkowy funkcji wielu zmiennych

Rachunek różniczkowy funkcji wielu zmiennych Wydział Matematyki Stosowanej Zestaw zadań nr 7 Akademia Górniczo-Hutnicza w Krakowie WFiIS, informatyka stosowana, I rok Elżbieta Adamus 13 grudnia 2018r. Rachunek różniczkowy funkcji wielu zmiennych

Bardziej szczegółowo

Funkcje analityczne LISTA

Funkcje analityczne LISTA Funkcje analitycne LISTA 0.0.006. Kiedy prekstałcenie R - liniowe na R jest C - liniowe?. Dla f : C C pokaać, że warunkiem koniecnym C - różnickowalności (cyli holomorficności) jest R - różnickowalność.

Bardziej szczegółowo

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne Szeregi potęgowe i trygonometryczne Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne str. 1/36 Szereg potęgowy Szeregiem potęgowym o

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j),

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j), ELEKTROTECHNIKA Semestr Rok akad. / 5 ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na płaszczyźnie: +j

Bardziej szczegółowo

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12 Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12 Egzamin Termin: 28.01, godz. 10.15-11.45, sala 309 3 pytania teoretyczne 2 zadania wybór pytań i wybór zadań

Bardziej szczegółowo

1 Funkcja wykładnicza i logarytm

1 Funkcja wykładnicza i logarytm 1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres

Bardziej szczegółowo

Kurs Start plus poziom zaawansowany, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1.

Kurs Start plus poziom zaawansowany, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1. Projekt Fizyka Plus nr POKL.04.0.0-00-034/ współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki Kurs Start plus poziom zaawansowany,

Bardziej szczegółowo

Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji

Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji . Własności funkcji () Wyznaczyć dziedzinę funkcji danej wzorem: y = 2 2 + 5 y = +4 y = 2 + (2) Podać zbiór wartości funkcji: y = 2 3, [2, 5) y = 2 +, [, 4] y =, [3, 6] (3) Stwierdzić, czy dana funkcja

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

Rachunek różniczkowy funkcji jednej zmiennej. 1 Obliczanie pochodnej i jej interpretacja geometryczna

Rachunek różniczkowy funkcji jednej zmiennej. 1 Obliczanie pochodnej i jej interpretacja geometryczna Wydział Matematyki Stosowanej Zestaw zadań nr 4 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 4 grudnia 08r. Rachunek różniczkowy funkcji jednej zmiennej Obliczanie pochodnej

Bardziej szczegółowo

Funkcje trygonometryczne. XX LO (wrzesień 2016) Matematyka elementarna Temat #5 1 / 14

Funkcje trygonometryczne. XX LO (wrzesień 2016) Matematyka elementarna Temat #5 1 / 14 XX LO (wrzesień 2016) Matematyka elementarna Temat #5 1 / 14 Miara kąta Miara kąta kąt mierzymy od ramienia początkowego do końcowego w kierunku przeciwnym do ruchu wskazówek zegara (α > 0) kąt zgodny

Bardziej szczegółowo

y(t) = y 0 + R sin t, t R. z(t) = h 2π t

y(t) = y 0 + R sin t, t R. z(t) = h 2π t SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

Całki krzywoliniowe skierowane

Całki krzywoliniowe skierowane Całki krzywoliniowe skierowane Zamiana całki krzywoliniowej skierowanej na całkę pojedyńcza. Twierdzenie Greena. Zastosowania całki krzywoliniowej skierowanej. Małgorzata Wyrwas Katedra Matematyki Wydział

Bardziej szczegółowo

Funkcje analityczne. Wykład 13. Zastosowanie rachunku residuów do rozwiązywania problemów analizy rzeczywistej. Paweł Mleczko

Funkcje analityczne. Wykład 13. Zastosowanie rachunku residuów do rozwiązywania problemów analizy rzeczywistej. Paweł Mleczko Funkcje analitycne Wykład 3. Zastosowanie achunku esiduów do owiąywania poblemów analiy ecywistej Paweł Mlecko Funkcje analitycne ok akademicki 8/9 Plan wykładu W casie wykładu omawiać będiemy astosowanie

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Funkcje zespolone Complex functions Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia Liczba

Bardziej szczegółowo

Analiza Matematyczna MAEW101

Analiza Matematyczna MAEW101 Analiza Matematyczna MAEW Wydział Elektroniki Listy zadań nr 8-4 (część II) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 5 M.Gewert, Z Skoczylas,

Bardziej szczegółowo

x 2 5x + 6 x 2 x 6 = 1 3, x 0sin 2x = 2, 9 + 2x 5 lim = 24 5, = e 4, (i) lim x 1 x 1 ( ), (f) lim (nie), (c) h(x) =

x 2 5x + 6 x 2 x 6 = 1 3, x 0sin 2x = 2, 9 + 2x 5 lim = 24 5, = e 4, (i) lim x 1 x 1 ( ), (f) lim (nie), (c) h(x) = Zadanie.. Obliczyć granice 2 + 2 (a) lim (d) lim 0 2 + 2 + 25 5 = 5,. Granica i ciągłość funkcji odpowiedzi = 4, (b) lim 2 5 + 6 2 6 =, 4 (e) lim 0sin 2 = 2, cos (g) lim 0 2 =, (h) lim 2 8 Zadanie.2. Obliczyć

Bardziej szczegółowo

MATEMATYKA 2. OKNO - Ośrodek Kształcenia na Odległość Politechnika Warszawska. Krystyna Lipińska Dominik Jagiełło Rafał Maj

MATEMATYKA 2. OKNO - Ośrodek Kształcenia na Odległość Politechnika Warszawska. Krystyna Lipińska Dominik Jagiełło Rafał Maj MATEMATYKA 2 OKNO - Ośrodek Kształcenia na Odległość Politechnika Warszawska Krystyna Lipińska Dominik Jagiełło Rafał Maj 2010 Spis treści 1 Całka krzywoliniowa nieskierowana 9 1.1 Całka krzywoliniowa

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

x y = 2z. + 2y f(x, y) = ln(x3y ) y x

x y = 2z. + 2y f(x, y) = ln(x3y ) y x . Funkcje wielu zmiennych i funkcje uwikłane Zad.. Obliczyć przybliżoną wartość wyrażenia (, 4) (,). Zad.. Wykazać, że każda funkcja z(x, y) = x f ( ) y x, gdzie f jest funkcją różniczkowalną jednej zmiennej,

Bardziej szczegółowo

x y = 2z, + 2y f(x, y) = ln(x3y ) y x

x y = 2z, + 2y f(x, y) = ln(x3y ) y x . Funkcje wielu zmiennych i funkcje uwikłane Zad.. Obliczyć przybliżoną wartość wyrażenia (, 4) (,), Zad.. Obliczyć przybliżoną wartość wyrażenia, 8, 5, Zad. 3. Wykazać, że każda funkcja z(x, y) = x f

Bardziej szczegółowo

Funkcje zespolone. Agata Pilitowska. dkowana (x, y) liczb rzeczywistych x, y R. Definicja 1.1. Liczba zespolona jest to para uporza

Funkcje zespolone. Agata Pilitowska. dkowana (x, y) liczb rzeczywistych x, y R. Definicja 1.1. Liczba zespolona jest to para uporza Funkcje zespolone. Agata Pilitowska 2007 1 Liczby zespolone Definicja 1.1. Liczba zespolona jest to para uporza dkowana (x, y) liczb rzeczywistych x, y R. Dwie liczby zespolone z = (x, y) i w = (u, v)

Bardziej szczegółowo

Pochodna funkcji jednej zmiennej

Pochodna funkcji jednej zmiennej Pochodna funkcji jednej zmiennej Def:(pochodnej funkcji w punkcie) Jeśli funkcja f : D R, D R określona jest w pewnym otoczeniu punktu 0 D i istnieje skończona granica ilorazu różniczkowego: f f( ( 0 )

Bardziej szczegółowo

Analiza matematyczna 2 zadania z odpowiedziami

Analiza matematyczna 2 zadania z odpowiedziami Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści I Całki niewłaściwe pierwszego rodzaju II Całki niewłaściwe drugiego rodzaju 5 III Szeregi liczbowe 6 IV Szeregi potęgowe

Bardziej szczegółowo

Matematyczne Metody Fizyki II

Matematyczne Metody Fizyki II Matematyczne Metody Fizyki II Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 1 M. Przybycień (WFiIS AGH) Matematyczne Metody Fizyki II Wykład 1 1 / 16 Literatura

Bardziej szczegółowo

opracował Maciej Grzesiak Całki krzywoliniowe

opracował Maciej Grzesiak Całki krzywoliniowe opracował Maciej Grzesiak Całki krzywoliniowe 1. Definicja całki krzywoliniowej nieskierowanej Rozważmy następujący problem. Dany jest przewód elektryczny na którym rozmieszczone są ładunki. Przypuśćmy,

Bardziej szczegółowo

1 Funkcja wykładnicza i logarytm

1 Funkcja wykładnicza i logarytm 1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres

Bardziej szczegółowo

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach

Bardziej szczegółowo

WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA1, lista zadań 1

WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA1, lista zadań 1 WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA, lista zadań. Dla podanych ciągów napisać wzory określające wskazane wyrazy tych ciągów: a) a n = n 3n +, a n+, b) b n = 3

Bardziej szczegółowo

Funkcje analityczne. Wykład 12

Funkcje analityczne. Wykład 12 Funkcje analityczne. Wykład 2 Szeregi Laurenta. Osobliwości funkcji zespolonych. Twierdzenie o residuach Paweł Mleczko Funkcje analityczne (rok akademicki 206/207) Plan wykładu W czasie wykładu omawiać

Bardziej szczegółowo

5. wykładu.) x 2 +2x+5dx. (Wskazówka: wykorzystać to, że sin = Im(exp) na osi rzeczywistej; użyć lematu Jordana.) 3. Obliczyć

5. wykładu.) x 2 +2x+5dx. (Wskazówka: wykorzystać to, że sin = Im(exp) na osi rzeczywistej; użyć lematu Jordana.) 3. Obliczyć FAN: wybór zadań przygotowawczych do egzaminu. styczeń 2014r. Egzamin będzie z całości materiału również i tej jego części, która objęta była poprzednimi zadaniami przygotowawczymi i samym kolokwium. Poniższy

Bardziej szczegółowo

3. Zapas stabilności układów regulacji 3.1. Wprowadzenie

3. Zapas stabilności układów regulacji 3.1. Wprowadzenie 3. Zapas stabilności układów regulacji 3.. Wprowadenie Dla scharakteryowania apasu stabilności roważymy stabilny układ regulacji o nanym schemacie blokowym: Ws () Gs () Ys () Hs () Rys. 3.. Schemat blokowy

Bardziej szczegółowo

Zginanie Proste Równomierne Belki

Zginanie Proste Równomierne Belki Zginanie Proste Równomierne Belki Prebieg wykładu : 1. Rokład naprężeń w prekroju belki. Warunki równowagi. Warunki geometrycne 4. Zwiąek fiycny 5. Wskaźnik wytrymałości prekroju na ginanie 6. Podsumowanie

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami ANALIZA MATEMATYCZNA zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Całki niewłaściwe pierwszego rodzaju Całki niewłaściwe drugiego rodzaju Szeregi liczbowe 4 4 Szeregi potęgowe 5 5

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

CAŁKI NIEOZNACZONE C R}.

CAŁKI NIEOZNACZONE C R}. CAŁKI NIEOZNACZONE Definicja 1 Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) = f(x) dla każdego x I. Np. funkcjami pierwotnymi funkcji f(x) = sin x na R są cos x, cos x+1, cos

Bardziej szczegółowo

Funkcje hiperboliczne

Funkcje hiperboliczne Funkcje hiperboliczne Mateusz Goślinowski grudnia 06 Geometria hiperboli Zastanówmy się nad następującym faktem. Zauważmy, jak podobne są równania okręgu jednostkowego i hiperboli jednostkowej: x + y x

Bardziej szczegółowo

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1 SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

Równania różniczkowe zwyczajne. 1 Rozwiązywanie równań różniczkowych pierwszego rzędu

Równania różniczkowe zwyczajne. 1 Rozwiązywanie równań różniczkowych pierwszego rzędu Wydział Matematyki Stosowanej Zestaw zadań nr 13 Akademia Górniczo-Hutnicza w Krakowie WFiIS, informatyka stosowana, I rok Elżbieta Adamus 17 maja 2018r. Równania różniczkowe zwyczajne 1 Rozwiązywanie

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

1 Równania różniczkowe drugiego rzędu

1 Równania różniczkowe drugiego rzędu Równania różniczkowe drugiego rzędu Najpierw zajmiemy się równaniami różniczkowymi rzędu drugiego, w których y nie występuje w sposób jawny, tzn. F (x, y, y ) = 0 (.) Równanie takie rozwiązujemy poprzez

Bardziej szczegółowo

Całka podwójna po prostokącie

Całka podwójna po prostokącie Całka podwójna po prostokącie Rozważmy prostokąt = {(x, y) R : a x b, c y d}, gdzie a, b, c, d R, oraz funkcję dwóch zmiennych f : R ograniczoną w tym prostokącie. rostokąt dzielimy na n prostokątów i

Bardziej szczegółowo

Definicja punktu wewnętrznego zbioru Punkt p jest punktem wewnętrznym zbioru, gdy należy do niego wraz z pewnym swoim otoczeniem

Definicja punktu wewnętrznego zbioru Punkt p jest punktem wewnętrznym zbioru, gdy należy do niego wraz z pewnym swoim otoczeniem Definicja kuli w R n ulą o promieniu r>0 r R i o środku w punkcie p R n nazywamy zbiór {x R n : ρ(xp)

Bardziej szczegółowo

Analiza Matematyczna. Zastosowania Całek

Analiza Matematyczna. Zastosowania Całek Analiza Matematyczna. Zastosowania Całek Aleksander Denisiuk denisiuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 8-45 Gdańsk 9 maja 217

Bardziej szczegółowo

Analiza Matematyczna I

Analiza Matematyczna I Analiza Matematyczna I Informatyka, WPPT, Politechnika Wrocławska Wprowadzenie (2 godziny ćwiczeń) Pokaż, że dla dowolnych liczb rzeczywistych a i b zachodzą nierówności:. a b = a b, 2. a + b a + b, 3.

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne

1 Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe Równaniem

Bardziej szczegółowo

Analiza Matematyczna MAEW101

Analiza Matematyczna MAEW101 Analiza Matematyczna MAEW0 Wydział Elektroniki Listy zadań nr -7 (część I) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 005 M.Gewert, Z Skoczylas,

Bardziej szczegółowo

Zadania do samodzielnego rozwiązania zestaw 11

Zadania do samodzielnego rozwiązania zestaw 11 Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4

Bardziej szczegółowo

Funkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A

Funkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A Funkcje analityczne Wykład 3. Funkcje holomorficzne Paweł Mleczko Funkcje analityczne (rok akademicki 206/207) Funkcje zespolone zmiennej zespolonej Funkcje zespolone zmiennej zespolonej Niech A C. Funkcja

Bardziej szczegółowo

Wykład 4: Fraktale deterministyczne i stochastyczne

Wykład 4: Fraktale deterministyczne i stochastyczne Wykład 4: Fraktale deterministycne i stochastycne Fiyka komputerowa 005 Kataryna Weron, kweron@ift.uni.wroc.pl Co to jest fraktal? Złożona budowa dowolnie mały jego fragment jest równie skomplikowany jak

Bardziej szczegółowo

PRZESTRZEŃ WEKTOROWA (LINIOWA)

PRZESTRZEŃ WEKTOROWA (LINIOWA) PRZESTRZEŃ WEKTOROWA (LINIOWA) Def. 1 (X, K,, ) X, K - ciało : X X X ( to diałanie wewnętrne w biore X) : K X X ( to diałanie ewnętrne w biore X) Strukturę (X, K,, ) naywamy prestrenią wektorową : 1) Struktura

Bardziej szczegółowo

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r Wykład 5. Zagadnienia omawiane na wykładzie w dniu 14.11.2018r Definicja (iloraz różnicowy) Niech x 0 R oraz niech funkcja f będzie określona przynajmnniej na otoczeniu O(x 0 ). Ilorazem różnicowym funkcji

Bardziej szczegółowo

ANALIZA MATEMATYCZNA I

ANALIZA MATEMATYCZNA I ANALIZA MATEMATYCZNA I Lista zadań dla kursów mających ćwiczenia co dwa tygodnie. Zadania po symbolu potrójne karo omawiane są na ćwiczeniach rzadko, ale warto też poświęcić im nieco uwagi. Lista nie zawiera

Bardziej szczegółowo

FUNKCJE WIELU ZMIENNYCH

FUNKCJE WIELU ZMIENNYCH FUNKCJE WIELU ZMIENNYCH 1. Wyznaczyć i narysować dziedziny naturalne podanych funkcji: 4 x 2 y 2 ; (b) g(x, y) = e y x 2 1 ; (c) u(x, y) = arc sin xy; (d) v(x, y) = sin(x 2 + y 2 ); (e) w(x, y) = x sin

Bardziej szczegółowo

Zastosowanie funkcji inżynierskich w arkuszach kalkulacyjnych zadania z rozwiązaniami

Zastosowanie funkcji inżynierskich w arkuszach kalkulacyjnych zadania z rozwiązaniami Tadeus Wojnakowski Zastosowanie funkcji inżynierskich w arkusach kalkulacyjnych adania rowiąaniami Funkcje inżynierskie występują we wsystkich arkusach kalkulacyjnych jak Excel w MS Office Windows cy Gnumeric

Bardziej szczegółowo

Uniwersytet Warmińsko-Mazurski w Olsztynie

Uniwersytet Warmińsko-Mazurski w Olsztynie Uniwersytet Warmińsko-Mazurski w Olsztynie ZETAW II Całka podwójna.. Obliczyć całki iterowane (a 4 4 2 ( (x + y ( 2 4 ( y x y dy dx y 3 x 2 + y 2 dx dy. 2. Zmienić kolejność całkowania (a (d 2 e ( 2x x

Bardziej szczegółowo

Ćwiczenia 4 / 5 rachunek różniczkowy

Ćwiczenia 4 / 5 rachunek różniczkowy Matematyka dla Ciekawych Świata, 2012/2013 13 listopada 2012 Ćwiczenia 4 / 5 rachunek różniczkowy 0. Kangur powraca Przypomnij sobie, że nasz kangur porusza się z prędkością 4 km/h. Zamodeluj ruch kangura

Bardziej szczegółowo

WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład IV Twierdzenia całkowe

WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład IV Twierdzenia całkowe 4. Twierdenie Greena. Wykład IV Twierdenia całkowe Płascyną orientowaną będiemy określać płascynę wyróżnionym na nie obrotem, wanym obrotem dodatnim. Orientację płascyny preciwną wględem danej orientacji

Bardziej szczegółowo

Spis treści 1. Macierze, wyznaczniki, równania liniowe 2 2. Geometria analityczna 7 3. Granice, pochodne funkcji i ich zastosowania 10 4.

Spis treści 1. Macierze, wyznaczniki, równania liniowe 2 2. Geometria analityczna 7 3. Granice, pochodne funkcji i ich zastosowania 10 4. Spis treści Macierze wyznaczniki równania liniowe Geometria analityczna 7 Granice pochodne funkcji i ich zastosowania 0 4 Liczby zespolone 6 5 Całki nieoznaczone 8 6 Zastosowania geometryczne całek 0 7

Bardziej szczegółowo

W takim modelu prawdopodobieństwo konfiguracji OR wynosi. 0, 21 lub , 79. 6

W takim modelu prawdopodobieństwo konfiguracji OR wynosi. 0, 21 lub , 79. 6 achunek prawdopodobieństwa MP6 Wydiał Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab.. Jurlewic Prykłady do listy : Prestreń probabilistycna. Prawdopodobieństwo klasycne. Prawdopodobieństwo

Bardziej szczegółowo

Całki krzywoliniowe wiadomości wstępne

Całki krzywoliniowe wiadomości wstępne Całki krzywoliniowe wiadomości wstępne Łuk na płaszczyźnie to zbiór punktów (x, y o współrzędnych x = x(t, y = y(t, gdzie (x(t, y(t są funkcjami ciągłymi określonymi na przedziale bez punktów wielokrotnych.

Bardziej szczegółowo

Liczby zespolone. P. F. Góra (w zastępstwie prof. K. Rościszewskiego) 27 lutego 2007

Liczby zespolone. P. F. Góra (w zastępstwie prof. K. Rościszewskiego)  27 lutego 2007 Liczby zespolone P. F. Góra (w zastępstwie prof. K. Rościszewskiego) http://th-www.if.uj.edu.pl/zfs/gora/ 27 lutego 2007 Definicja C zbiór par liczb rzeczywistych w którym określono następujace działania:

Bardziej szczegółowo

Wykład 15. Matematyka 3, semestr zimowy 2011/ listopada 2011

Wykład 15. Matematyka 3, semestr zimowy 2011/ listopada 2011 Wykład 5 Matematyka 3, semestr zimowy / 9 listopada W trakcie tego i następnych kilku wykładów zajmować się będziemy analizą zespoloną, czyli różniczkowaniem i całkowaniem funkcji argumentu zespolonego

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 1

RÓWNANIA RÓŻNICZKOWE WYKŁAD 1 RÓWNANIA RÓŻNICZKOWE WYKŁAD 1 Przedmiot realizowany w układzie wykład 2 godz. tygodniowo ćwiczenia 2 godz. tygodniowo Regulamin zaliczeń www.mini.pw.edu.pl/~figurny 2 Program zajęć Równania różniczkowe

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2

ANALIZA MATEMATYCZNA 2 ANALIZA MATEMATYCZNA Lista zadań 3/4 Opracowanie: dr Marian Gewert, dr Zbigniew Skoczylas Lista pierwsza Zadanie. Korzystając z definicji zbadać zbieżność podanych całek niewłaściwych pierwszego rodzaju:

Bardziej szczegółowo

III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE 1. Pojęcia wstępne Przykład 1.1. (Rozpad substancji promieniotwórczej ) Z doświadczeń wiadomo, że prędkość rozpa pierwiastka promieniotwórczego jest ujemna i proporcjonalna

Bardziej szczegółowo

PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE. WALCOWE (równoległe) STOŻKOWE (kątowe) ŚLIMAKOWE HIPERBOIDALNE. o zebach prostych. walcowe. o zębach.

PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE. WALCOWE (równoległe) STOŻKOWE (kątowe) ŚLIMAKOWE HIPERBOIDALNE. o zebach prostych. walcowe. o zębach. CZOŁOWE OWE PRZEKŁADNIE STOŻKOWE PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE WALCOWE (równoległe) STOŻKOWE (kątowe) HIPERBOIDALNE ŚLIMAKOWE o ebach prostych o ębach prostych walcowe walcowe o ębach śrubowych o

Bardziej szczegółowo

Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n

Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n V. Napisz 4 początkowe wyrazy ciągu: Blok V: Ciągi. Różniczkowanie i całkowanie a) a n = n b) a n = n + 3 n! c) a n = n! n(n + ) V. Oblicz (lub zapisz) c, c 3, c k, c n k dla: a) c n = 3 n b) c n = 3n

Bardziej szczegółowo

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU Agata Boratyńska Zadania z matematyki Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU. Korzystając z definicji granicy ciągu udowodnić: a) n + n+ = 0 b) n + n n+ = c) n + n a =, gdzie a

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 1

ANALIZA MATEMATYCZNA 1 ANALIZA MATEMATYCZNA Maciej Burnecki strona główna Spis treści I Zadania Elementy logiki, zbiory, funkcje Funkcje trygonometryczne 3 3 Ciągi 3 4 Granice funkcji, ciągłość 4 5 Rachunek różniczkowy 5 6 Całki

Bardziej szczegółowo

Funkcje pola we współrzędnych krzywoliniowych cd.

Funkcje pola we współrzędnych krzywoliniowych cd. Funkcje pola we współrędnych krywoliniowych cd. Marius Adamski 1. spółrędne walcowe. Definicja. Jeżeli M jest rutem punktu P na płascynę xy, a r i ϕ są współrędnymi biegunowymi M, to mienne u = r, v =

Bardziej szczegółowo

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

Analiza matematyczna I. Pula jawnych zadań na kolokwia.

Analiza matematyczna I. Pula jawnych zadań na kolokwia. Analiza matematyczna I. Pula jawnych zadań na kolokwia. Wydział MIiM UW, 2/ 24 października 22 ostatnie poprawki: 9 czerwca 23 Szanowni Państwo, zgodnie z zapowiedzią, na każdym kolokwium w pierwszym semestrze

Bardziej szczegółowo

Wykłady 11 i 12: Całka oznaczona

Wykłady 11 i 12: Całka oznaczona Wykłady 11 i 12: Całka oznaczona dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy; rok akademicki 2016/2017 Pole trójkata parabolicznego Problem. Chcemy obliczyć

Bardziej szczegółowo