Metody dokładne w zastosowaniu do rozwiązywania łańcuchów Markowa

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metody dokładne w zastosowaniu do rozwiązywania łańcuchów Markowa"

Transkrypt

1 Metody dokładne w astosowaniu do rowiąywania łańcuchów Markowa Beata Bylina, Paweł Górny Zakład Informatyki, Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej Plac Marii Curie-Skłodowskiej 5, 2-31 Lublin W artykule predstawiono metody dokładne, a mianowicie rokład LU i rokład WZ stosowane do rowiąywania równań liniowych powstających podcas modelowania sieci komunikacyjnych łańcuchami Markowa wiąanymi modelowaniem kolejkowym 1 Wprowadenie Proces stochastycny X ( jest to rodina miennych losowych, określonych na tej samej prestreni probabilistycnej i uporądkowanych według parametru t Dla każdej dopuscalnej wartości t = t określona jest dystrybuanta i F X ( x; t ) = P[ X ( t ) x] i Wartości pryjmowane pre mienną tworą prestreń stanów procesu, która może być dyskretna (wtedy proces wiemy łańcuchem) lub ciągła Zależności statystycne pomiędy X ( dla różnych wartości t opisuje się a pomocą n-wymiarowej dystrybuanty i F X ( x; = FX ( x1, x2,, xn ; t1, t2, tn ) = P[ X ( t1) x1, X ( t2 ) x2,, X ( tn ) xn ] Procesy Markowa stanowią scególną klasę procesów stochastycnych mających tw własność Markowa (własność braku pamięci ), która to dla casu ciągłego definiowana jest a pomocą prawdopodobieństwa warunkowego: P X ( x X ( t ) = x, X ( t ) = x,, X ( t ) = x ] = P[ X ( x X ( t ) = [ n n n 1 n 1 n xn dla wsystkich t > tn > tn 1 > > t Prestreń stanów łańcucha Markowa jest awycaj podbiorem bioru licb naturalnych Parametr indeksujący t prybiera wartości ciągłe lub dyskretne mówi się odpowiednio o procesach ciągłym lub dyskretnym casem System modelowany a pomocą procesu Markowa pryjmuje w danej chwili casowej jeden i tylko jeden ]

2 spośród całego bioru stanów Ewolucja modelowanego systemu jest repreentowana prejściami procesu Markowa jednego stanu do drugiego W prypadku takiego modelu najcęściej posukiwaną informacją jest prawdopodobieństwo prebywania systemu w określonym stanie (lub biore stanów) w pewnym casie t Jeżeli cas ten jest na tyle długi, że anika wpływ wyboru stanu pocątkowego systemu, uyskane prawdopodobieństwa można traktować jako stacjonarne (ang stationary probabilities) W niniejsej pracy roważane są łańcuchy Markowa ciągłym casem i jednorodne, tn procesy, dla których P [ X ( x X ( t n ) = xn] ależy tylko t tn Niech łańcuch Markowa ciągłym casem pryjmuje wartości e bioru { x1, x2,, xn} Jeżeli X ( = xi, mówimy, że łańcuch jest w stanie i Onacmy pre π i ( prawdopodobieństwo, że łańcuch jest w stanie i w casie t ora p ij ( s, u) prawdopodobieństwo prejścia do stanu j w casie u pod warunkiem, że model najdował się w stanie i w casie s: Zdefiniowano: π i ( t ) = P[ X ( = xi ], pij ( s, u) = P[ X ( u) = x j X ( s) = xi ] pij ( t, t + lim, dla i j, t t qij ( = n (1) qik (, dla i = j, k = 1, k i gdie współcynnik q ij ( naywany jest współcynnikiem (lub intensywnością) prejścia (tranycji) e stanu i do stanu j Pry t otrymuje się układ, który ma następującą postać macierową: dπ( dt = π( Q, π(, π( e = 1, (2) gdie e = ( 1,,1), a Q = ( q ij ) jest macierą tranycji (macierą współcynników prejścia) Z tego układu treba wylicyć wektor π( = ( π 1(,, π n ( ) prawdopodobieństw stanów modelu Gdy prawdopodobieństwa nie ależą od casu (pry sukaniu prawdopodobieństw stacjonarnych) achodi równość πq =, π, πe = 1 (3)

3 Macier Q jest macierą osobliwą, jej rąd wynosi n 1 Dodatkowe własności maciery Q to fakt, że jest ona duża, kwadratowa o romiare n, dominującą główną prekątną, ora radka Wymienione cechy powodują, że do rowiąania równania (3) potrebne są specjalnie skonstruowane metody Stosuje się metody iteracyjne, projekcyjne i dekompoycyjne, ora metody dokładne predstawione w tym artykule 2 Metody dokładne Metody numerycne, które oblicają rowiąania problemów matematycnych w ustalonej licbie operacji naywane są ogólnie metodami bepośrednimi lub dokładnymi Dla prykładu eliminacja Gaussa niejednorodnego układu ( n n ) równań liniowych nieosobliwą macierą współcynników najduje rowiąanie w dokładnie n n 5n n n + mnożeniach i + dieleniach Cechy metod dokładnych: metody bepośrednie dają rowiąanie w skońconej licbie kroków wykorystując dekompoycję; w bepośrednich metodach rowiąywania równań eliminacja jednego nieerowego elementu maciery w faie redukcji cęsto pociąga a sobą stworenie kilku nieerowych elementów tam, gdie wceśniej były era Efekt ten (naywany wypełnianiem, ang fill-in) nie tylko sprawia, że organiacja prechowywania maciery staje się bardiej skomplikowana (bo treba prewidieć wstawianie i usuwanie elementów), ale także wielkość wypełnienia może być tak wielka, że dostępna pamięć sybko się skońcy Mająca prynieść sukces implementacja metody bepośredniej musi prewyciężyć te trudności metody dokładne umożliwiają określenie licby wymaganych operacji pred akońceniem obliceń; dla pewnych klas problemów metody bepośrednie dają dokładniejsą odpowiedź w krótsym casie Prykłady metod dokładnych to rokład WZ i LU opisane wra ich astosowaniem do łańcuchów Markowa w dalsej cęści pracy 3 Rokłady LU i WZ W tym rodiale krótko predstawione ostanie metodą rokładu WZ i LU rowiąywania układów równań linowych postaci: Ax = b, n n n, gdie A R, b x R (4) Niech A będie macierą nieosobliwą, która może być apisana jako ilocyn dwóch trójkątnych i nieredukowalnych maciery L i U, takich, że

4 l ik u kj,, i = 1,2,, n; j = 1,2,, n; k = 1,2, i k = 1,2,, j ora A = LU to wtedy wektor x, będący rowiąaniem układu równań Ax = b jest równy: x = U 1 1 L b i można oblicyć 1 = L b (rowiąując L = b ), a następnie 1 x = U Zasadnico, powinno się preprowadać sprawdanie wynacnika, aby badać stabilność dekompoycji Jednak w prypadku łancuchów Markowa nie jest to wcale potrebne [5] Rokład WZ jest opisany w [3, 6]: A = WZ, gdie maciere W i Z są następującej postaci: 1 w p W = wq w pn, wqn 1 Z = 11 n1 pp qp pq qq 1n nn, gdie ( n + 1) / 2, q = ( + 1) / 2 p = n Po całkowitym rokładie możemy rowiąać parę układów dodatkowym wektorem jak dla rokładu LU 4 Algorytmy erowy wynacnik Po podstawieniu równanie (3) pryjmuje postać x = π, (5) Q x =, x, e x = 1 (6)

5 Za [5] prytocono tu metodę waną erowy wynacnik do rowiąywania równania (6) W podejściu erowy wynacnik wymagane jest, by istniał rokład LU maciery A = Q (istnieje dla maciery nieredukowalnych, gdyby Q była redukowalna, problem sprowadiłby się do kilku mniejsych maciery [5]) Podstawiając Ux = i rowiąując L =, otrymuje się (co wynika nieosobliwości maciery L) = W równaniu Ux = = ostatni wiers maciery U jest równy Można prypisać dowolną nieerową wartość (np m) do x n, jako że będie awse mnożony pre ero ostatniego wiersa U W kolejnych krokach można wynacyć następne składowe wektora x w oparciu o m Wydawać by się mogło, e wynik ależy od obranego m jednakże wektor prawdopodobieństw musi spełniać jesce jeden warunek suma jego składowych powinna wynosić 1 Po normaliowaniu otrymanego wyniku, uyskuje się sukany wektor prawdopodobieństw Dla rokładu WZ równanie (6) pryjmuje postać WZx = [1, 2], skąd: Wy = Zx = y y = Zx = y Zx = Równanie Zx = ma nieskońconą prestreń rowiąań Wprowadono parametr ξ będący dowolną recywistą licbą nieerową i pryjęto x = ξ (1) p Poostałe rowiąania otrymano uależniając je od parametru ξ, na końcu normaliowano wektor x (tak, by x ora e x = 1) 5 Eksperyment numerycny Obydwie metody (rokład LU i WZ) astosowano do najdowania charakterystyk licbowych analitycnego modelu formowania pakietu optycnego pakietów elektronicnych W celu analitycnego amodelowania formowania bloków pakietów optycnych [4] stosuje sie awycaj model kolejkowy oparty na kolejce FIFO i pewnej ilości źródeł Poissonowskich (rysunek 1) W prykładie ogranicono się do 25 bloków i 2 źródeł Odpowiada to długości pakietu równej 25 i 2 źródłom Ponieważ pakiety mogą mieć różną długość, od 1 do 2 bloków, w modelu ałożono pewien biór źródeł, w którym każde źródło generuje pakiety o określonej długości; np: źródło 1 pakiety składające się jednego bloku, źródło 2 pakiety składające się 2 bloków itd

6 Rysunek 1 Model kolejkowy formowania pakietu optycnego Proces tworenia kolejki jest następujący: Pakiet optycny jest gotowy do wysłania kiedy 25 bloków prybyło, lub mniej niż 25 bloków jest w kolejce ale pakiet który właśnie prybył spowodowałby wydłużenie kolejki ponad 25 bloków Ponadto akłada się, że proces ten nie może prekrocyć pewnego ałożonego casu (ang timeou Powyżse ałożenie definiują określony łańcuch Markowa (jak na rysunku 2) Węły grafu są Markowowskimi stanami systemu Poiomo, krawędie międy węłami onacają prybycie kolejnych pakietów Ponieważ prybywające pakiety mogą mieć różną długość, może istnieć kilka krawędi tego samego węła prejść jednego stanu do kolejnych w ależności od długości prybyłego pakietu Dla stanów ilością bloków w kolejce bliską 25 prejścia mogą spowodować powrót do stanów małą ilością bloków próba wstawienia prychodącego pakietu może powodować prepełnienie kolejki; wtedy tworenie kolejki pakietów jest końcone, pakiet jest wysyłany i acyna się tworenie nowej kolejki Pionowe rędy węłów onacają okresy gdy żaden pakiet nie prybył i bloki cekają określony cas (który nie może być prekrocony) na akońcenie formowania kolejki Ponieważ model ma charakter łańcucha Markowa ciągłym casem, jest prybliżone rokładem Erlanga 1-tego rędu, tn jest 1 fa o rokładie wykładnicym (średni cas trwania każdej fay to w prykładie µ r = 1 ) Kiedy ostaje osiągnięty limit casu, system wraca do stanu pocątkowego pakiet optycny utworony do tej pory ostaje wysłany i acyna się tworenie nowej kolejki

7 Rysunek 2 Diagram prejść międy stanami w modelu formowania pakietu optycnego

8 Macier prejścia dla modelu formowania węła ma 2491 elementów (jest wględnie mała) dlatego prechowywano ją w dwuwymiarowej tablicy be kompresji Algorytmy aimplementowano w jęyku C dla licb recywistych o pojedyncej precyji Program skompilowano pry użyciu kompilatora gcc opcją -O3 Programy testowano na komputere procesorem Pentium IV, 733 MH Na rysunku 3 predstawiono casy wykonania metody erowy wynacnik wykorystaniem rokładu LU i WZ dla maciery prejścia powstałej podcas formowania prełącnika optycnego ora błąd obliceń Rokład Cas [s] Błąd obliceń Q x 2 LU 98,89 3,6961e-3 WZ 228,65 2,94519e-7 Rysunek 3 Casy i błąd obliceń wykonania metody erowy wynacnik wykorystaniem rokładu WZ i LU 6 Podsumowanie Z eksperymentu numerycnego można wywnioskować, że astosowana metoda erowy wynacnik rokład LU wymaga mniej casu do wynacenia wektora prawdopodobieństw stanów, ale dokładność obliceń jest dużo mniejsa Odwrotnie jest w prypadku rokładu WZ, który daje bardo dużą dokładność (jest ona istotna pry oblicaniu np prawdopodobieństwa strat pakietu) Porównanie to wymaga dokładnej analiy ilości operacji Literatura 1 Bylina B: Wykorystanie biblioteki Blas do numerycnego rowiąywania modeli sieci optycnych Algorytmy, metody i programy naukowy Polskie owarystwo Informatycne, Lublin 24, s Bylina B, Bylina J: Solving Markov Chains with the WZ Factoriation for Modelling Networks, Proceadings of Aplimat 24, Bratislava 24, s Chandra Sekhara Rao S: Existence and uniqueness of WZ factoriation Parallel Computig, 1997 (23), s Domańska J, Cachórski : Model formowania pakietów w węźle bregowym sieci optycnej Studia Informatica 23, vol 24, nr 2A (53) 5 Stewart W: Introduction to the Numerical Solution of Markov Chains, Princeton University Press, Chichester, West Sussex Yalamov P, Evans D J: he WZ matrix factoriation method Parallel Computing, 1995 (21), s

A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)!

A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)! Wstęp do rachunku prawdopodobieństwa i statystyki matematycnej MAP037 wykład dr hab. A. Jurlewic WPPT Fiyka, Fiyka Technicna, I rok, II semestr Prykłady - Lista nr : Prestreń probabilistycna. Prawdopodobieństwo

Bardziej szczegółowo

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego.

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego. Transformator Φ r Φ M Φ r i i u u Φ i strumień magnetycny prenikający pre i-ty wój pierwsego uwojenia; siła elektromotorycna indukowana w i-tym woju: dφ ei, licba wojów uwojenia pierwotnego i wtórnego.

Bardziej szczegółowo

2015-01-15. Edycja pierwsza 2014/1015. dla kierunku fizyka medyczna, I rok, studia magisterskie

2015-01-15. Edycja pierwsza 2014/1015. dla kierunku fizyka medyczna, I rok, studia magisterskie 05-0-5. Opis różnicę pomiędy błędem pierwsego rodaju a błędem drugiego rodaju Wyniki eksperymentu składamy w dwie hipotey statystycne: H0 versus H, tak, by H0 odrucić i pryjąć H. Jeśli decydujemy, że pryjmujemy

Bardziej szczegółowo

ORGANIZACJA I ZARZĄDZANIE

ORGANIZACJA I ZARZĄDZANIE P O L I T E C H N I K A W A R S Z A W S K A WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ ORGANIZACJA I ZARZĄDZANIE Optymaliacja transportu wewnętrnego w akładie mechanicnym

Bardziej szczegółowo

Wielokryteriowa optymalizacja liniowa (WPL)

Wielokryteriowa optymalizacja liniowa (WPL) arek isyński BO UŁ 007 - Wielokryteriowa optymaliaja liniowa (WPL) -. Wielokryteriowa optymaliaja liniowa (WPL) Zadaniem WPL naywamy następująe adanie optymaliaji liniowej: a a m L O L L O L L a a n n

Bardziej szczegółowo

Zastosowanie funkcji inżynierskich w arkuszach kalkulacyjnych zadania z rozwiązaniami

Zastosowanie funkcji inżynierskich w arkuszach kalkulacyjnych zadania z rozwiązaniami Tadeus Wojnakowski Zastosowanie funkcji inżynierskich w arkusach kalkulacyjnych adania rowiąaniami Funkcje inżynierskie występują we wsystkich arkusach kalkulacyjnych jak Excel w MS Office Windows cy Gnumeric

Bardziej szczegółowo

Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych

Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydiał Mechanicny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 3 1. CEL ĆWICZENIA Wybrane

Bardziej szczegółowo

Ochrona_pporaz_ISiW J.P. Spis treści:

Ochrona_pporaz_ISiW J.P. Spis treści: Spis treści: 1. Napięcia normaliowane IEC...2 1.1 Podstawy prawne 2 1.2 Pojęcia podstawowe 2 2. Zasilanie odbiorców niepremysłowych...3 2.1 kłady sieciowe 4 3. Zasady bepiecnej obsługi urądeń elektrycnych...8

Bardziej szczegółowo

SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ KATEDRA TECHNIKI POŻARNICZEJ

SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ KATEDRA TECHNIKI POŻARNICZEJ SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ KATEDRA TECHNIKI POŻARNICZEJ ZAKŁAD ELEKTROENERGETYKI Ćwicenie: URZĄDZENIA PRZECIWWYBUCHOWE BADANIE TRANSFORMATORA JEDNOFAZOWEGO Opracował: kpt.dr inż. R.Chybowski Warsawa

Bardziej szczegółowo

PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE. WALCOWE (równoległe) STOŻKOWE (kątowe) ŚLIMAKOWE HIPERBOIDALNE. o zebach prostych. walcowe. o zębach.

PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE. WALCOWE (równoległe) STOŻKOWE (kątowe) ŚLIMAKOWE HIPERBOIDALNE. o zebach prostych. walcowe. o zębach. CZOŁOWE OWE PRZEKŁADNIE STOŻKOWE PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE WALCOWE (równoległe) STOŻKOWE (kątowe) HIPERBOIDALNE ŚLIMAKOWE o ebach prostych o ębach prostych walcowe walcowe o ębach śrubowych o

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI PRACA DYPLOMOWA MAGISTERSKA

POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI PRACA DYPLOMOWA MAGISTERSKA POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI KIERUNEK: Automatyka i Robotyka (AiR) SPECJALNOŚĆ: Robotyka (ARR) PRACA DYPLOMOWA MAGISTERSKA Wyposażenie robota dwukołowego w cujniki ewnętrne Equipping a two

Bardziej szczegółowo

ĆWICZENIE 5 BADANIE ZASILACZY UPS

ĆWICZENIE 5 BADANIE ZASILACZY UPS ĆWICZENIE 5 BADANIE ZASILACZY UPS Cel ćwicenia: aponanie budową i asadą diałania podstawowych typów asilacy UPS ora pomiar wybranych ich parametrów i charakterystyk. 5.1. Podstawy teoretycne 5.1.1. Wstęp

Bardziej szczegółowo

Wykład 4: Fraktale deterministyczne i stochastyczne

Wykład 4: Fraktale deterministyczne i stochastyczne Wykład 4: Fraktale deterministycne i stochastycne Fiyka komputerowa 005 Kataryna Weron, kweron@ift.uni.wroc.pl Co to jest fraktal? Złożona budowa dowolnie mały jego fragment jest równie skomplikowany jak

Bardziej szczegółowo

UZĘBIENIA CZOŁOWE O ŁUKOWO KOŁOWEJ LINII ZĘBÓW KSZTAŁTOWANE NARZĘDZIEM JEDNOOSTRZOWYM

UZĘBIENIA CZOŁOWE O ŁUKOWO KOŁOWEJ LINII ZĘBÓW KSZTAŁTOWANE NARZĘDZIEM JEDNOOSTRZOWYM MODELOWANIE INŻYNIESKIE ISSN 896-77X 40, s. 7-78, Gliwice 00 UZĘBIENIA CZOŁOWE O ŁUKOWO KOŁOWEJ LINII ZĘBÓW KSZTAŁTOWANE NAZĘDZIEM JEDNOOSTZOWYM PIOT FĄCKOWIAK Instytut Technologii Mechanicnej, Politechnika

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

PROWIZJA I AKORD1 1 2

PROWIZJA I AKORD1 1 2 PROWIZJA I AKORD 1 1 1. Pracodawca może ustalić wynagrodenie w formie prowiji lub akordu. 2. Prowija lub akord mogą stanowić wyłącną formę wynagradania lub występować jako jeden e składników wynagrodenia.

Bardziej szczegółowo

Wybrane stany nieustalone transformatora:

Wybrane stany nieustalone transformatora: Wybrane stany nieustalone transformatora: Założenia: - amplituda napięcia na aciskach pierwotnych ma wartość stałą nieależnie od jawisk achodących w transformatore - warcie występuje równoceśnie na wsystkich

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM. Rok szkolny 2015/16

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM. Rok szkolny 2015/16 WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM Rok skolny 2015/16 POZIOMY WYMAGAŃ EDUKACYJNYCH: (2) - ocena dopscająca (2); (3) - ocena dostatecna (3); (4) - ocena dobra (4);

Bardziej szczegółowo

VIII Skalmierzycki Konkurs Interdyscyplinarny Z matematyka w XXI wieku

VIII Skalmierzycki Konkurs Interdyscyplinarny Z matematyka w XXI wieku Zadanie 3 Zad. 1 Skreśli licby, które są jednoceśnie podielne pre 2 i 3. Odcytaj litery, które najdją się pod skreślonymi licbami, tworą one bardo ważne słowa, o których wsyscy powinni pamiętać na co dień.

Bardziej szczegółowo

Analiza transformatora

Analiza transformatora ĆWICZENIE 4 Analia transformatora. CEL ĆWICZENIA Celem ćwicenia jest ponanie bodowy, schematu astępcego ora ocena pracy transformatora.. PODSTAWY TEORETYCZNE. Budowa Podstawowym adaniem transformatora

Bardziej szczegółowo

Higiena, ochrona i pielęgnacja skóry ze szczególnym uwzględnieniem skóry rąk

Higiena, ochrona i pielęgnacja skóry ze szczególnym uwzględnieniem skóry rąk Higiena, ochrona i pielęgnacja skóry e scególnym uwględnieniem skóry rąk Łatwo wsyscy, gdy jesteśmy drowi, dajemy dobre rady chorym. (-) Terencjus Higiena i mycie rąk Aneta Klimberg, Jery T. Marcinkowski

Bardziej szczegółowo

Jakie nowe możliwości daje właścicielom i zarządcom budynków znowelizowana Ustawa termomodrnizacyjna

Jakie nowe możliwości daje właścicielom i zarządcom budynków znowelizowana Ustawa termomodrnizacyjna dr inż. Wiesław Sarosiek mgr inż. Beata Sadowska mgr inż. Adam Święcicki Katedra Podstaw Budownictwa i Fiyki Budowli Politechniki Białostockiej Narodowa Agencja Posanowania Energii S.A. Filia w Białymstoku

Bardziej szczegółowo

Przestrzeń liniowa R n.

Przestrzeń liniowa R n. MATEMATYKA IIb - Lcjan Kowalski Prestreń liniowa R n. Element (wektor) prestreni R n będiem onacać [,,, ] Element erow [,, L, ]. Diałania. a) ilocn element pre licbę: b) sma elementów [ c, c, ] c L, c

Bardziej szczegółowo

TEMAT: Próba statyczna rozciągania metali. Obowiązująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1

TEMAT: Próba statyczna rozciągania metali. Obowiązująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1 ĆWICZENIE NR 1 TEMAT: Próba statycna rociągania metali. Obowiąująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1 Podać nacenie następujących symboli: d o -.....................................................................

Bardziej szczegółowo

Informacje uzupełniające: Wyboczenie z płaszczyzny układu w ramach portalowych. Spis treści

Informacje uzupełniające: Wyboczenie z płaszczyzny układu w ramach portalowych. Spis treści S032a-PL-EU Informacje uupełniające: Wybocenie płascyny układu w ramach portalowych Ten dokument wyjaśnia ogólną metodę (predstawioną w 6.3.4 E1993-1-1 sprawdania nośności na wybocenie płascyny układu

Bardziej szczegółowo

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi

Bardziej szczegółowo

Animowana grafika 3D. Opracowanie: J. Kęsik.

Animowana grafika 3D. Opracowanie: J. Kęsik. Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollb.pl Transformacje 3D Podobnie jak w prestreni -wymiarowej, dla prestreni 3-wymiarowej definijemy transformacje RST: presnięcie miana skali obrót

Bardziej szczegółowo

HAMOWANIE REKUPERACYJNE W MIEJSKIM POJEŹDZIE HYBRYDOWYM Z NAPĘDEM NA KOŁA TYLNE

HAMOWANIE REKUPERACYJNE W MIEJSKIM POJEŹDZIE HYBRYDOWYM Z NAPĘDEM NA KOŁA TYLNE ELEKTRYKA 213 Zesyt 1 (225) Rok LIX Marcin FICE Politechnika Śląska w Gliwicach HAMOWANIE REKUPERACYJNE W MIEJSKIM POJEŹDZIE HYBRYDOWYM Z NAPĘDEM NA KOŁA TYLNE Strescenie. W artykule predstawiono wyniki

Bardziej szczegółowo

Automatyczna kompensacja mocy biernej z systemem monitorowania kopalnianej sieci 6 kv

Automatyczna kompensacja mocy biernej z systemem monitorowania kopalnianej sieci 6 kv dr inż MARIAN HYLA Politechnika Śląska w Gliwicach Automatycna kompensacja mocy biernej systemem monitorowania kopalnianej sieci 6 kv W artykule predstawiono koncepcję, realiację ora efekty diałania centralnego

Bardziej szczegółowo

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.

Bardziej szczegółowo

Języki interpretowane Interpreted languages PRZEWODNIK PO PRZEDMIOCIE

Języki interpretowane Interpreted languages PRZEWODNIK PO PRZEDMIOCIE Jęyki interpretowane Interpreted languages Informatyka Stacjonarne IO2_02 Obowiąkowy w ramach specjalności: Inżynieria oprogramowania II stopień Rok: I Semestr: II wykład, laboratorium 1W, 2L 3 ECTS I

Bardziej szczegółowo

ROZKŁAD BŁĘDÓW PRZY PROJEKTOWANIU POŚREDNIEGO OŚWIETLENIA ELEKTRYCZNEGO ZA POMOCĄ OPRAW KWADRATOWYCH

ROZKŁAD BŁĘDÓW PRZY PROJEKTOWANIU POŚREDNIEGO OŚWIETLENIA ELEKTRYCZNEGO ZA POMOCĄ OPRAW KWADRATOWYCH Andrej PAWLAK Krystof ZAREMBA ROZKŁAD BŁĘDÓW PRZY PROJEKTOWANIU POŚREDNIEGO OŚWIETLENIA ELEKTRYCZNEGO ZA POMOCĄ OPRAW KWADRATOWYCH STRESZCZENIE W wielkoowierchniowych instalacjach oświetlenia ośredniego

Bardziej szczegółowo

Wpływ macierzy przejścia systemu bonus-malus ubezpieczeń komunikacyjnych OC na jego efektywność taryfikacyjną

Wpływ macierzy przejścia systemu bonus-malus ubezpieczeń komunikacyjnych OC na jego efektywność taryfikacyjną Wpływ macierzy przejścia systemu bonus-malus ubezpieczeń komunikacyjnych OC na jego efektywność taryfikacyjną Anna Szymańska Katedra Metod Statystycznych Uniwersytet Łódzki Taryfikacja w ubezpieczeniach

Bardziej szczegółowo

J. Szantyr - Wykład 7 Ruch ogólny elementu płynu

J. Szantyr - Wykład 7 Ruch ogólny elementu płynu J. Santr - Wkład 7 Rch ogóln element płn Rch ogóln ciała stwnego można predstawić jako smę premiescenia liniowego i obrot. Ponieważ płn nie mają stwności postaciowej, w rch płn dochodi dodatkowo do odkstałcenia

Bardziej szczegółowo

Z Wikipedii, wolnej encyklopedii.

Z Wikipedii, wolnej encyklopedii. Rozkład normalny Rozkład normalny jest niezwykle ważnym rozkładem prawdopodobieństwa w wielu dziedzinach. Nazywa się go także rozkładem Gaussa, w szczególności w fizyce i inżynierii. W zasadzie jest to

Bardziej szczegółowo

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne.

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne. Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Strukturalne element smetrii. Krstalograficne grup prestrenne. god. Cel ćwicenia: aponanie się diałaniem elementów smetrii

Bardziej szczegółowo

Ćw. 5. Określenie współczynnika strat mocy i sprawności przekładni ślimakowej.

Ćw. 5. Określenie współczynnika strat mocy i sprawności przekładni ślimakowej. Laboratorium Podstaw Konstrukcji Masyn - - Ćw. 5. Określenie współcynnika strat mocy i sprawności prekładni ślimakowej.. Podstawowe wiadomości i pojęcia. Prekładnie ślimakowe są to prekładnie wichrowate,

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem

Bardziej szczegółowo

PODSTAWY KONSTRUKCJI MASZYN

PODSTAWY KONSTRUKCJI MASZYN POLITECHNIA LUBELSA J. Banasek, J. Jonak PODSTAW ONSTRUCJI MASN WPROWADENIE DO PROJETOWANIA PREŁADNI ĘBATCH I DOBORU SPRĘGIEŁ MECHANICNCH Wydawnictwa Ucelniane 008 Opiniodawca: dr hab. inŝ. Stanisław rawiec

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, 20.09.2006 Biomatematyka

EGZAMIN DYPLOMOWY, część II, 20.09.2006 Biomatematyka Biomatematyka Załóżmy, że częstości genotypów AA, Aa i aa w całej populacji wynoszą p 2, 2pq i q 2. Wiadomo, że czynnik selekcyjny sprawia, że osobniki o genotypie aa nie rozmnażają się. 1. Wyznacz częstości

Bardziej szczegółowo

ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE

ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 6 nr Archiwum Technologii Masn i Automatacji 6 ROMAN STANIEK * ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE W artkule predstawiono ależności matematcne

Bardziej szczegółowo

ANALIZA ROZDZIAŁU SIŁ HAMOWANIA POJAZDU HYBRYDOWEGO Z NAPĘDEM NA KOŁA TYLNE W ASPEKCIE REKUPERACJI ENERGII

ANALIZA ROZDZIAŁU SIŁ HAMOWANIA POJAZDU HYBRYDOWEGO Z NAPĘDEM NA KOŁA TYLNE W ASPEKCIE REKUPERACJI ENERGII Zesyty Problemowe Masyny Elektrycne Nr 9/211 15 Marcin Fice, Rafał Setlak Politechnika Śląska, Gliwice ANALIZA ROZDZIAŁU SIŁ HAMOWANIA POJAZDU HYBRYDOWEGO Z NAPĘDEM NA KOŁA TYLNE W ASPEKCIE REKUPERACJI

Bardziej szczegółowo

Wybrane algorytmy automatycznego

Wybrane algorytmy automatycznego Wyrane algorytmy automatycnego Wyrane algorytmy automatycnego naprowadania preciwpancernego pocisku naprowadania rakietowego preciwpancernego atakującego cel pocisku górnego pułapu rakietowego atakującego

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

Zastosowanie metod grupowania sekwencji czasowych w rozpoznawaniu mowy na podstawie ukrytych modeli Markowa

Zastosowanie metod grupowania sekwencji czasowych w rozpoznawaniu mowy na podstawie ukrytych modeli Markowa BIULETYN INSTYTUTU AUTOMATYKI I ROBOTYKI NR 23, 2006 Zastosowane metod grupowana sekwencj casowych w roponawanu mowy na podstawe ukrytych model Markowa Tomas PAŁYS Zakład Automatyk, Instytut Telenformatyk

Bardziej szczegółowo

Regulamin Promocji kredytu gotówkowego Oprocentowanie niższe niż najniższe - edycja świąteczna. Obowiązuje od 13.11.2014 r. do 30.04.2015 r.

Regulamin Promocji kredytu gotówkowego Oprocentowanie niższe niż najniższe - edycja świąteczna. Obowiązuje od 13.11.2014 r. do 30.04.2015 r. Regulamin Promocji kredytu gotówkowego Oprocentowanie niżse niż najniżse - edycja świątecna Obowiąuje od 13.11.2014 r. do 30.04.2015 r. 1. Organiator Promocji 1. Promocja Oprocentowanie niżse niż najniżse

Bardziej szczegółowo

z czynności komornika za I półrocze 2015 r. przez wyegzekwowanie ogółem (kol.6 do12) z powodu bezskuteczności na żądanie wierzyciela świadczenia

z czynności komornika za I półrocze 2015 r. przez wyegzekwowanie ogółem (kol.6 do12) z powodu bezskuteczności na żądanie wierzyciela świadczenia Okręgowego Apelacja Scecińska Numer identyfikacyjny REGON Diał 1. Ewidencja spraw MINISTERSTWO SPRAWIEDLIWOŚCI, Al. Ujawskie 11, 00-950 Warsawa Komornik Sąwy pry Sądie Rejonowym SR Scecin- MS-Kom23 Centrum

Bardziej szczegółowo

MS-Kom23. MINISTERSTWO SPRAWIEDLIWOŚCI, Al. Ujazdowskie 11, 00-950 Warszawa Komornik Sądowy Komornik Sądowy Agnieszka Bąk-Batowska przy Sądzie

MS-Kom23. MINISTERSTWO SPRAWIEDLIWOŚCI, Al. Ujazdowskie 11, 00-950 Warszawa Komornik Sądowy Komornik Sądowy Agnieszka Bąk-Batowska przy Sądzie sprawy, w których egekwowane kwoty prenacone są na pocet należności tytułu Apelacja Lubelska Numer identyfikacyjny REGON Diał 1. Ewidencja spraw MINISTERSTWO SPRAWIEDLIWOŚCI, Al. Ujawskie 11, 00-950 Warsawa

Bardziej szczegółowo

MS-Kom23 SPRAWOZDANIE Okręg Sądu

MS-Kom23 SPRAWOZDANIE Okręg Sądu Okręgowego Apelacja Białostocka Numer identyfikacyjny REGON Diał 1. Ewidencja spraw MINISTERSTWO SPRAWIEDLIWOŚCI, Al. Ujawskie 11, 00-950 Warsawa Komornik Sąwy pry Sądie Rejonowym SR w Pra- MS-Kom23 SPRAWOZDANIE

Bardziej szczegółowo

z czynności komornika za rok 2015 r. przez wyegzekwowanie ogółem (kol.6 do12) z powodu bezskuteczności na żądanie wierzyciela świadczenia egzekucji

z czynności komornika za rok 2015 r. przez wyegzekwowanie ogółem (kol.6 do12) z powodu bezskuteczności na żądanie wierzyciela świadczenia egzekucji sprawy, w których egekwowane kwoty prenacone są na pocet należności tytułu Okręgowego Apelacja Lubelska Numer identyfikacyjny REGON Diał 1. Ewidencja spraw MINISTERSTWO SPRAWIEDLIWOŚCI, Al. Ujawskie 11,

Bardziej szczegółowo

MS-Kom23 SPRAWOZDANIE Okręg Sądu

MS-Kom23 SPRAWOZDANIE Okręg Sądu Okręgowego Apelacja Białostocka Numer identyfikacyjny REGON Diał 1. Ewidencja spraw MINISTERSTWO SPRAWIEDLIWOŚCI, Al. Ujawskie 11, 00-950 Warsawa Komornik Sąwy pry Sądie Rejonowym SR w Suwałkach MS-Kom23

Bardziej szczegółowo

MS-Kom23 SPRAWOZDANIE Okręg Sądu

MS-Kom23 SPRAWOZDANIE Okręg Sądu Okręgowego Apelacja Resowska Numer identyfikacyjny REGON Diał 1. Ewidencja spraw MINISTERSTWO SPRAWIEDLIWOŚCI, Al. Ujawskie 11, 00-950 Warsawa Komornik Sąwy pry Sądie Rejonowym SR w Łańcucie MS-Kom23 SPRAWOZDANIE

Bardziej szczegółowo

Rachunek prawdopodobieństwa dla informatyków

Rachunek prawdopodobieństwa dla informatyków Rachunek prawdopodobieństwa dla informatyków Adam Roman Instytut Informatyki UJ Wykład 7 teoria kolejek prawo Little a systemy jedno- i wielokolejkowe 1/75 System kolejkowy System kolejkowy to układ złożony

Bardziej szczegółowo

Charakterystyka frezarki uniwersalnej oraz zastosowanie podzielnicy uniwersalnej

Charakterystyka frezarki uniwersalnej oraz zastosowanie podzielnicy uniwersalnej POLITECHNIA POZNAŃSA Instytut Technologii Mechanicnej Masyny i urądenia technologicne laboratorium Charakterystyka frearki uniwersalnej ora astosowanie podielnicy uniwersalnej Opracował: dr inż. rystof

Bardziej szczegółowo

21. Zasady znieczulenia w stanach nagłych

21. Zasady znieczulenia w stanach nagłych 21. Zasady nieculenia w stanach nagłych 21. Zasady nieculenia w stanach nagłych Pred planowanym abiegiem chirurgicnym pacjent najcęściej ostaje dokładnie badany, ostają postawione prawidłowe diagnoy, wsystkie

Bardziej szczegółowo

Rozwiązywanie algebraicznych układów równań liniowych metodami iteracyjnymi. Plan wykładu:

Rozwiązywanie algebraicznych układów równań liniowych metodami iteracyjnymi. Plan wykładu: Rozwiązywanie algebraicznych układów równań liniowych metodami iteracynymi Plan wykładu: 1. Przykłady macierzy rzadkich i formaty ich zapisu 2. Metody: Jacobiego, Gaussa-Seidla, nadrelaksaci 3. Zbieżność

Bardziej szczegółowo

ROS3D Z1.ALG Algorytmy analizy i przetwarzania obrazu stereoskopowego

ROS3D Z1.ALG Algorytmy analizy i przetwarzania obrazu stereoskopowego ROS3D Z1.ALG Algorytmy analiy i pretwarania obrau stereoskopowego 2015 FINN Sp. o.o. Wselkie prawa astreżone Historia mian dokumentu: Data Wersja Osoba Opis 2014.06.24 1.0 Premysław Stoch Utworenie struktury

Bardziej szczegółowo

Choroby układu naczyniowego

Choroby układu naczyniowego R O ZDZIA Ł 17 Choroby układu nacyniowego ARTUR KWIATKOWSKI, RAFAŁ NOSEK 17.1. Choroby tętnic 17.1.1. Wprowadenie Zmiany patologicne więksości chorób tętnic polegają na wężeniu lub całkowitym amknięciu

Bardziej szczegółowo

Przedmiot przedsięwzięcia i jego lokalizacja

Przedmiot przedsięwzięcia i jego lokalizacja Predmiot predsięwięcia i jego lokaliacja Predmiotem opisanego predsięwięcia jest opracowanie koncepcji programowo-prestrennej Trasy Mostu Północnego od węła ulicą Marymoncką do węła ulicą Modlińską wra

Bardziej szczegółowo

Wprowadzenie do metod numerycznych Wykład 9 Różniczkowanie numeryczne

Wprowadzenie do metod numerycznych Wykład 9 Różniczkowanie numeryczne Wprowadzenie do metod numerycznych Wykład 9 Różniczkowanie numeryczne Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści 1 Na czym polega różniczkowanie numeryczne

Bardziej szczegółowo

Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze

Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści Spis treści 1 Wektory

Bardziej szczegółowo

Modelowanie komputerowe

Modelowanie komputerowe Modelowanie komputerowe wykład 5- Klasyczne systemy kolejkowe i ich analiza dr Marcin Ziółkowski Instytut Matematyki i Informatyki Akademia im. Jana Długosza w Częstochowie 16,23listopada2015r. Analiza

Bardziej szczegółowo

Biologia. Biuletyn maturalny. Ewa Jastrzębska Ewa Pyłka-Gutowska. Centralna Komisja Egzaminacyjna

Biologia. Biuletyn maturalny. Ewa Jastrzębska Ewa Pyłka-Gutowska. Centralna Komisja Egzaminacyjna Biuletyn maturalny Ewa Jastrębska Ewa Pyłka-Gutowska Biologia Centralna Komisja Egaminacyjna publikacja współfinansowana pre Europejski Fundus Społecny Autory biuletynu: Ewa Jastrębska, Ewa Pyłka-Gutowska

Bardziej szczegółowo

REKONSTRUKCJA OSTATNIEJ FAZY LOTU SAMOLOTU TU-154M. Opracował: prof. dr hab. inż. Grzegorz Kowaleczko

REKONSTRUKCJA OSTATNIEJ FAZY LOTU SAMOLOTU TU-154M. Opracował: prof. dr hab. inż. Grzegorz Kowaleczko REKONSTRUKCJA OSTATNIEJ AZY LOTU SAMOLOTU TU-154M Opracował: prof. dr hab. inż. Greor Kowalecko 31 rdnia 013 SPIS TREŚCI WSTĘP 5 CZĘŚĆ I MODEL MATEMATYCZNY.. 7 1. UKŁADY WSPÓŁRZĘDNYCH... 7 1.1. Układ wiąany

Bardziej szczegółowo

INCYDENCYJNE SIECI NEURONOWE JAKO

INCYDENCYJNE SIECI NEURONOWE JAKO INSTYTUT BADAŃ SYSTEMOWYCH POLSKA AKADEMIA NAUK INCYDENCYJNE SIECI NEURONOWE JAKO GENERATOR NOMOGRAMÓW STRESCENIE ROPRAWY DOKTORSKIEJ BOGUMIŁ FIKSAK PROMOTOR: DR HAB INŻ MACIEJ KRAWCAK, PROF PAN WARSAWA

Bardziej szczegółowo

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Statystyka i opracowanie danych W4 Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Rozkład normalny wykres funkcji gęstości

Bardziej szczegółowo

GAZOWA AUTARKIA. Józef Tallat-Kiełpsz

GAZOWA AUTARKIA. Józef Tallat-Kiełpsz SZKIC HISTORII Ogrewanie węgla be dostępu powietra do temperatury rędu 600-1200 C nosi nawę odgaowanie bądź pirolia. W trakcie tego procesu reaktora (retorta, komora) wydielają się pary, których, po ochłodeniu

Bardziej szczegółowo

BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ

BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ LABORATORIU WYTRZYAŁOŚCI ATERIAŁÓW Ćiceie 0 BADANIE ODKSZTAŁCEŃ SRĘŻYNY ŚRUBOWEJ 0.. Wproadeie Sprężyy, elemety sprężyste mają bardo różorode astosoaie ielu kostrukcjach mechaicych. Wykorystuje się je

Bardziej szczegółowo

WNIOSEK O PRZYJĘCIE BENEFICJENTA W POCZET PODOPIECZNYCH FUNDACJI TEL:... ADRES MAILOWY:...

WNIOSEK O PRZYJĘCIE BENEFICJENTA W POCZET PODOPIECZNYCH FUNDACJI TEL:... ADRES MAILOWY:... ..., dn.... WNIOSEK O PRZYJĘCIE BENEFICJENTA W POCZET PODOPIECZNYCH FUNDACJI 1. JA,... IMIĘ, NA)WISKO, )MIES)KAŁY/A..., MIEJSCOWOŚĆ, UL.... (ULICA, NR BUDYNKU, NR MIESZKANIA), TEL:... ADRES MAILOWY:...

Bardziej szczegółowo

Zapisywanie algorytmów w języku programowania

Zapisywanie algorytmów w języku programowania Temat C5 Zapisywanie algorytmów w języku programowania Cele edukacyjne Zrozumienie, na czym polega programowanie. Poznanie sposobu zapisu algorytmu w postaci programu komputerowego. Zrozumienie, na czym

Bardziej szczegółowo

OKRES ZWROTU JAKO JEDNA Z METOD OCENY OPŁACALNOŚCI PRZEDSIĘWZIĘĆ INWESTYCYJNYCH

OKRES ZWROTU JAKO JEDNA Z METOD OCENY OPŁACALNOŚCI PRZEDSIĘWZIĘĆ INWESTYCYJNYCH Magdalena Dynus Katedra Fnansów Bankowośc Wyżsa Skoła Bankowa w Torunu OKRES ZWROTU JAKO JEDNA Z METOD OCENY OPŁACALNOŚCI PRZEDSIĘWZIĘĆ INWESTYCYJNYCH Wprowadene Okres wrotu należy do podstawowych metod

Bardziej szczegółowo

Dział 1. Osądzeni wg rodzajów przestępstw i kar

Dział 1. Osądzeni wg rodzajów przestępstw i kar MINISTERSTWO SPRAWIEDLIWOŚCI, Al. Ujadowskie 11, 00-950 Warsawa SO w Opolu [WYDZIAL] Okręg Sadu Apelacyjnego w Apelacja Wrocławska Numer identyfikacyjny REGON Diał 1. Osądeni wg rodajów prestępstw i kar

Bardziej szczegółowo

Symulacja obliczeń kwantowych

Symulacja obliczeń kwantowych Model kwantowych bramek logicznych w NumPy Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka Sekcja Informatyki Kwantowej, 10 października 2007 Plan prezentacji 1 Python

Bardziej szczegółowo

System bonus-malus z mechanizmem korekty składki

System bonus-malus z mechanizmem korekty składki System bonus-malus z mechanizmem korekty składki mgr Kamil Gala Ubezpieczeniowy Fundusz Gwarancyjny dr hab. Wojciech Bijak, prof. SGH Ubezpieczeniowy Fundusz Gwarancyjny, Szkoła Główna Handlowa Zagadnienia

Bardziej szczegółowo

MATURA POPRAWKOWA Z MATEMATYKI 23 SIERPIEŃ 2011 R. PRZYKŁADOWE ODPOWIEDZI

MATURA POPRAWKOWA Z MATEMATYKI 23 SIERPIEŃ 2011 R. PRZYKŁADOWE ODPOWIEDZI MATURA POPRAWKOWA Z MATEMATYKI 23 SIERPIEŃ 2011 R. PRZYKŁADOWE ODPOWIEDZI OPRACOWANIE AKADEMIA MATEMATYKI 26 SIERPNIA 2011 mgr Marek Dębczyński CENTRUM NOWCZESNEJ EDUKACJI W KALISZU MAREK DEBCZYŃSKI Zadanie

Bardziej szczegółowo

Wokół wyszukiwarek internetowych

Wokół wyszukiwarek internetowych Wokół wyszukiwarek internetowych Bartosz Makuracki 23 stycznia 2014 Przypomnienie Wzór x 1 = 1 d N x 2 = 1 d N + d N i=1 p 1,i x i + d N i=1 p 2,i x i. x N = 1 d N + d N i=1 p N,i x i Oznaczenia Gdzie:

Bardziej szczegółowo

DryLin T System prowadnic liniowych

DryLin T System prowadnic liniowych DrLin T Sstem prowadnic liniowch Prowadnice liniowe DrLin T ostał opracowane do astosowań wiąanch automatką i transportem materiałów. Chodiło o stworenie wdajnej, beobsługowej prowadnic liniowej do astosowania

Bardziej szczegółowo

Laboratorium grafiki komputerowej i animacji. Ćwiczenie III - Biblioteka OpenGL - wprowadzenie, obiekty trójwymiarowe: punkty, linie, wielokąty

Laboratorium grafiki komputerowej i animacji. Ćwiczenie III - Biblioteka OpenGL - wprowadzenie, obiekty trójwymiarowe: punkty, linie, wielokąty Laboratorium grafiki komputerowej i animacji Ćwicenie III - Biblioteka OpenGL - wprowadenie, obiekty trójwymiarowe: punkty, linie, wielokąty Prygotowanie do ćwicenia: 1. Zaponać się ogólną charakterystyką

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

dr inż. Jarosław Forenc

dr inż. Jarosław Forenc Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia stacjonarne I stopnia Rok akademicki 2009/2010 Wykład nr 8 (29.01.2009) dr inż. Jarosław Forenc Rok akademicki

Bardziej szczegółowo

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Rachunek prawdopodobieństwa MAP1181 Wydział PPT, MS, rok akad. 213/14, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Bardziej szczegółowo

Lista 1. Procesy o przyrostach niezależnych.

Lista 1. Procesy o przyrostach niezależnych. Lista. Procesy o przyrostach niezależnych.. Niech N t bedzie procesem Poissona o intensywnoci λ = 2. Obliczyć a) P (N 2 < 3, b) P (N =, N 3 = 6), c) P (N 2 = N 5 = 2), d) P (N =, N 2 = 3, N 4 < 5), e)

Bardziej szczegółowo

Wycena europejskiej opcji kupna model ciągły

Wycena europejskiej opcji kupna model ciągły Henyk Kogie Uniesytet ceciński Wycena euopejskiej opcji kupna model ciągły tescenie elem tego atykułu jest ukaanie paktycnego ykoystania metody matyngałoej dla pocesó ciągłych do yceny euopejskiej opcji

Bardziej szczegółowo

DZIAŁ: HYDRODYNAMIKA ĆWICZENIE B: Wyznaczanie oporów przy przepływie płynów [OMÓWIENIE NAJWAŻNIEJSZYCH ZAGADNIEŃ] opracowanie: A.W.

DZIAŁ: HYDRODYNAMIKA ĆWICZENIE B: Wyznaczanie oporów przy przepływie płynów [OMÓWIENIE NAJWAŻNIEJSZYCH ZAGADNIEŃ] opracowanie: A.W. DZIAŁ: HYDRODYNAMIKA ĆWICZENIE B: Wynacanie ooró ry rełyie łynó [OMÓWIENIE NAJWAŻNIEJSZYCH ZAGADNIEŃ] oracoanie: A.W. rys.. Rokład rędkości rekroju rury dla rełyu laminarnego i turbulentnego LICZBY KRYTERIALNE:

Bardziej szczegółowo

ZRÓŻNICOWANA EFEKTYWNOŚĆ EKSPLOATACYJNYCH DODATKÓW PRZECIWCIERNYCH DO OLEJÓW SMARNYCH

ZRÓŻNICOWANA EFEKTYWNOŚĆ EKSPLOATACYJNYCH DODATKÓW PRZECIWCIERNYCH DO OLEJÓW SMARNYCH PROBLEMY NIEKONWENCJONALNYCH UKŁADÓW ŁOŻYSKOWYCH Łódź, 15-16 maja 1997 r. Zbigniew Zalis Politechnika Opolska w Opolu ZRÓŻNICOWANA EFEKTYWNOŚĆ EKSPLOATACYJNYCH DODATKÓW PRZECIWCIERNYCH DO OLEJÓW SMARNYCH

Bardziej szczegółowo

Rozdział 4. Algorytmy sortowania 73 Rozdział 5. Typy i struktury danych 89 Rozdział 6. Derekursywacja i optymalizacja algorytmów 147

Rozdział 4. Algorytmy sortowania 73 Rozdział 5. Typy i struktury danych 89 Rozdział 6. Derekursywacja i optymalizacja algorytmów 147 Spis treści Przedmowa 9 Rozdział 1. Zanim wystartujemy 17 Jak to wcześniej bywało, czyli wyjątki z historii maszyn algorytmicznych 18 Jak to się niedawno odbyło, czyli o tym, kto wymyślił" metodologię

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Matematyka plusem dla gimnajum PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM

Bardziej szczegółowo

CZĄSTECZKA (VB) Dogodną i użyteczną metodę przewidywania kształtu cząsteczki stanowi koncepcja hybrydyzacji.

CZĄSTECZKA (VB) Dogodną i użyteczną metodę przewidywania kształtu cząsteczki stanowi koncepcja hybrydyzacji. ZĄSTEZKA (VB) Dogodną i użtecną metodę prewidwania kstałtu cąstecki stanowi koncepcja hbrdacji YBRYDYZAJA - wmiesanie funkcji falowch, tworenie orbitali miesanch orbitali atomowch mającch najcęściej tę

Bardziej szczegółowo

Format wymiany danych pomiędzy systemami informatycznymi świadczeniodawców i system informatycznym Oddziału Wojewódzkiego NFZ KS-SIKCH - 2004

Format wymiany danych pomiędzy systemami informatycznymi świadczeniodawców i system informatycznym Oddziału Wojewódzkiego NFZ KS-SIKCH - 2004 Format wymiany danych pomiędy systemami informatycnymi świadceniodawców i system informatycnym Oddiału Wojewódkiego NFZ KS-SIKCH - 2004 Nr modyfikacji: 2004/04 1. Elementy wydruku umowy wykorystywane w

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA

PRZEDMIOTOWY SYSTEM OCENIANIA PRZEDMIOTOWY SYSTEM OCENIANIA Predmiot: informatyka akres podstawowy Klasy: pierwse LO i TE Program naucania: Informatyka nie tylko dla ucniów. Podręcnik. Zakres podstawowy Realiowany w Zespole Skół Ekonomicnych

Bardziej szczegółowo

Gmina jako miejsce identyfikacji raport z badań w podwarszawskiej gminie Piaseczno

Gmina jako miejsce identyfikacji raport z badań w podwarszawskiej gminie Piaseczno Gmina jako miejsce identyfikacji raport badań w podwarsawskiej gminie Piasecno STRESZCZENIE Niniejsy artykuł jest głosem w dyskusji o tym, cy gmina podmiejska jest miejscem identyfikacji dla jej mieskańców.

Bardziej szczegółowo

5. Badanie transformatora jednofazowego

5. Badanie transformatora jednofazowego 5. Badanie transformatora jednofaowego Celem ćwicenia jest ponanie budowy i asady diałania transformatora jednofaowego, jego metod badania i podstawowych charakterystyk. 5.. Wiadomości ogólne 5... Budowa

Bardziej szczegółowo

Graficzne modelowanie scen 3D. Wykład 4

Graficzne modelowanie scen 3D. Wykład 4 Wkład 4 Podstawowe pojęcia i definicje . Modelowanie. Definicja Model awiera wsstkie dane i obiekt ora wiąki pomięd nimi, które są niebędne do prawidłowego wświetlenia i realiowania interakcji aplikacją,

Bardziej szczegółowo

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2011

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2011 Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 14. wykład z algebry liniowej Warszawa, styczeń 2011 Mirosław Sobolewski (UW) Warszawa, 2011 1 / 16 Definicja Niech V,

Bardziej szczegółowo

Modelowanie w pakiecie Matlab/Simulink

Modelowanie w pakiecie Matlab/Simulink Modelowanie w paiecie Matlab/Siulin I. Siłowni pneuatycny ebranowy I.1. Model ateatycny siłownia pneuatycnego ebranowego apisany a poocą równań różnicowych Sygnałe wejściowy siłownia jest ciśnienie P podawane

Bardziej szczegółowo

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów

Bardziej szczegółowo

ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia

ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia ZP/ITS/11/2012 Załącznik nr 1a do SIWZ ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia Przedmiotem zamówienia jest: Przygotowanie zajęć dydaktycznych w postaci kursów e-learningowych przeznaczonych

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Obliczenia symboliczne Symbolic computations Kierunek: Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Informatyka Rodzaj zajęć: wykład,

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów

Metody numeryczne. materiały do wykładu dla studentów Metody numeryczne materiały do wykładu dla studentów 4. Wartości własne i wektory własne 4.1. Podstawowe definicje, własności i twierdzenia 4.2. Lokalizacja wartości własnych 4.3. Metoda potęgowa znajdowania

Bardziej szczegółowo