Document: Exercise-03-manual /12/ :54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych"

Transkrypt

1 Document: Exercise-03-manual /12/ :54--- page 1 of 8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydiał Mechanicny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 3 1. CEL ĆWICZENIA Wybrane agadnienia optymaliacji elementów konstrukcji Optymaliacja wielowarstwowych płyt laminowanych Podstawowym celem ćwicenia jest wynacenie optymalnego ułożenia włókien wmacniających w ściskanej dwukierunkowo płycie prostokątnej wykonanej laminatu wielowarstwowego. W toku ćwicenia studenci aponają się także podstawowymi pojęciami klasycnej teorii kompoytów, a także metodami obliceniowymi mechaniki materiałów kompoytowych. 2. PODSTAWY TEORETYCZNE Jedną istotniejsych alet materiałów kompoytowych są ich bardo dobre wględne parametry wytrymałościowe tn. wytrymałość ora stywność odniesione do gęstości materiału. Dięki temu doskonale nadają się do budowy lekkich konstrukcji powłokowych np. premysłu lotnicego, motoryacyjnego itp. Są wykorystywane także w budowie smukłych, wirujących cęści masyn, co do których ocekiwana jest niewielka bewładność np. łopaty wirników turbin wiatrowych. Dodatkową aletą laminatów wielowarstwowych jest możliwość miany wynikowych własności mechanicnych materiału(moduł Younga, moduł Kirchhoffa i współcynnik Poissona) popre mianę kąta ułożenia włókien wmacniających wględem kierunków obciążeń. A atem orientacja włókien kompoytu, podobnie jak np. grubość elementu, może być parametrem projektowym w adaniach konstrukcyjnych. Można atem mówić o swego rodaju projektowaniu materiału. strona18

2 Document: Exercise-03-manual /12/ :54--- page 2 of 8 Roważmy cienką płytę wykonaną symetrycnego, równoważonego laminatu wielowarstwowego o wymiarach a b i grubości całkowitej h. Płyta jestściskanawkierunkuosioxoraoyodpowiedniosiłamiλn x iλn y,gdie λ jest skalą(mnożnikiem) obciążenia. Zakładamy, że laminat składa się N laminojednakowejgrubościt.pryjmujemyponadto,żekątyθ k ułożenia włókien wmacniających poscególnych warstw laminatu są ogranicone do cterechwartości tj.:0,90,+45 i 45,prycymkąttenmierony jest od osi Ox globalnego układu współrędnych patr Rysunek 1. b 2 y k warstwa k a N x N y 1 x y x N y k N x t=tk k 2 1 płascyna symetrii Rysunek 1. Prykład płyty wykonanej symetrycnego laminatu wielowarstwowego W wyniku diałania sił ściskających płyta ulega wyboceniu, jeśli wartość obciążeń określonych pre współcynnik amplitudy λ osiągnie wartość granicną: λ λ kr =π 2D 11(m/a) 4 +2(D 12 +2D 66 )(m/a) 2 (n/b) 2 +D 22 (n/b) 4, (1) (m/a) 2 N x +(n/b) 2 N y gdie m i n są licbami naturalnymi odpowiadającymi licbie pół-fal postaci wybocenia w kierunku odpowiednio osi x i y(patr Rysunek 2) minimaliującychλ kr. 1 1 Tonacyjesttotakombinacjaparlicbminspośródwsystkichmożliwych,dla którejwartośćλ kr jestnajmniejsa. strona28

3 Document: Exercise-03-manual /12/ :54--- page 3 of 8 Rysunek 2. Poglądowe postacie wybocenia płyty ściskanej dwukierunkowo:(a)m=1,n=1;(b)m=1,n=2;(c)m=2,n=2 Występującewewore(1)wielkościD ij sąnaywanestywnościami płytowymi: D 11 =U 1 V 0 +U 2 V 1 +U 3 V 3, D 12 =U 4 V 0 U 3 V 3, (2) D 22 =U 1 V 0 U 2 V 1 +U 3 V 3, D 66 =U 5 V 0 U 3 V 3 isąwyrażaneapomocątrechwyrażeńcałkowychv 0D,V 1D,iV 3D ora pięciuniemiennikówmateriałowychu i,i= ZmienneVawierająinformacjęoustawieniuwłókienθ k wposcególnych laminach wględem osi płyty. Oblicane są na podstawie ależności: V 0D = V 1D = V 3D = h 2 h 2 h 2 h 2 h 2 2 d= 1 N ( 3 3 k k 1) 3 2 ( ) = 3 3 k k 1 3, 2 cos2θd= 2 3 ( 3 k 3 k 1 ) cos2θk, h 2 2 cos4θd= 2 3 ( 3 k 3 k 1 ) cos4θk, gdieh=n tjestgrubościąlaminatu, k odległościąwarstwykodpłascyny symetrii płyty patr Rysunek 1. Występującewrównaniach(2)niemiennikiU i sąfunkcjamijedyniedanych wytrymałościowych materiału kompoytowego. Dane są ależnościa- (3) strona38

4 Document: Exercise-03-manual /12/ :54--- page 4 of 8 mi: U 1 = 1 8 (3Q 11+3Q 22 +2Q 12 +4Q 66 ), U 2 = 1 2 (Q 11 Q 22 ), U 3 = 1 8 (Q 11+Q 22 2Q 12 4Q 66 ), U 4 = 1 8 (Q 11+Q 22 +6Q 12 4Q 66 ), U 5 = 1 8 (Q 11+Q 22 2Q 12 +4Q 66 ), gdiewystępującewyrażeniaq ij sąredukowanymistywnościamipłaskiego stanu naprężeń w lokalnym układie współrędnych 102 (patr także Rysunek3): σ 1 Q 11 Q 12 0 ε 1 σ 2 = Q 12 Q 22 0 ε 2 (5) τ Q 66 γ 12 gdie występujący po lewej stronie wektor repreentuje tensor stanu naprężenia, aś wektor po prawej stronie repreentuje tensor stanu odkstałcenia. E 1 Q 11 =, Q 12 = ν 12E 2 = ν 21E 1, 1 ν 12 ν 21 1 ν 12 ν 21 1 ν 12 ν 21 E 2 Q 22 =, Q 66 =G 12 ν 21 =ν 12 E 2 /E 1. 1 ν 12 ν 21 WpowyżsychależnościachE 1,E 2,ν 12,ν 21 ig 12 onacająodpowiednio moduły Younga w kierunku ułożenia włókien wmacniających(1) i w kierunku poprecnym(2)(patr rysunek 1), moduły Poissona i moduł Kirchhoffa. Roważmy adanie optymaliacyjne polegające na naleieniu takiego ułożenia kolejnych N warstw laminatu, które odpowiada maksymalnej statecności analiowanej płyty tn. maksymalnej wartości współcynnika amplitudy λ. Z uwagi na fakt, że kąty ustawienia włókien w poscególnych warstwach są ogranicone jedynie do cterech wartości(patr str. 2) można wprowadić (4) (6) strona48

5 Document: Exercise-03-manual /12/ :54--- page 5 of 8 l 0 σ 1 τ 12 σ 2 τ 21 2 l 0 σ 2 1 τ 21 τ 12 σ 1 Rysunek 3. Płaskistannaprężeń;odkstałceniaε 1 =(l 1 l 0 )/l 0, ε 2 =(l 2 l 0 )/l 0 ;naprężeniastycneτ 12 =τ 21 miennecałkowitolicbowex k pryjmującewartość0,1,2,lub3wależności odkątaustawieniawłókienθ k wdanejwarstwie.wdalsychroważaniach, ora w dołąconym oprogramowaniu komputerowym, pryjmuje się wartość miennejx k równa0odpowiadakątowiθ k =0,oraθ k =90 x k =1, θ k =45 x k =2iθ k = 45 x k =3.Zaletątakiegodefiniowania agadnienia jest istotne uproscenie charakteru adania optymaliacyjnego.zmiennev 0D,V 1D iv 3D równanie(3) mogąbyćbowiemwyrażone popre liniowe funkcje miennych opisujących kąty ułożenia włókien w poscególnych warstwach laminatu. Tym samym, w sposób liniowy od tychmiennychależąstywnościpłytowed ij patr(2)iposukiwana mienna stanu λ będąca miarą dopuscalnego obciążenia płyty. Ostatecnie atem predstawione adanie posukiwania ułożenia włókien w poscególnych warstwach laminatu maksymaliującego jej statecność jest adaniem programowania liniowego i może być wynacone jedną dostępnych metod rowiąań. Reasumując, sformułowane adanie optymaliacyjne można apisać następująco: γ 12 l 1 l 2 strona58

6 Document: Exercise-03-manual /12/ :54--- page 6 of 8 wynacyć wektor miennych decyyjnych taki,aby wobec x=θ={θ 1,θ 2,...,θ k } T k (1...) (7) maxλ(m, n, x) (8) x θ k (0,90,45, 45 ) where,...,, (9) (θ k =45 )= (θ k = 45 ) (10) Ogranicenie(9) naruca poscególnym miennym θ jedynie dowolone wartości kąta ułożenia włókien, aś ogranicenie(10) odpowiada warunkowi równoważenialaminatu(licbawarstw,wktórychkątwynosi45 musi odpowiadaćlicbiewarstw,wktórychkątwynosi 45 ). 2 Występującew(8) parametry(m, n) odpowiadają możliwym postaciom wybocenia płyty pred rowiąaniem adania postać deformacji nie jest bowiem nana. Z uwaginafakt,żewyżsepostacie(np.m,n=3,4itd.występująbardo radko, w praktyce wystarcy sprawdić statecność dla dowolnej kombinacji licba1i2. 3. PRZEBIEG ĆWICZENIA Prowadący ajęcia prydieli każdemu espołowi laboratoryjnemu parametry geometrycne płyty kompoytowej i stałe wytrymałościowe materiału kompoytowego. Na podstawie otrymanych danych studenci oblicają wartościniemiennikówmateriałowychu i (patr(4))oramiennychv i (patr (3)) dla dopuscalnych kątów θ. Otrymane wyniki obliceń skonsultować prowadącym. Następnie należy, korystając dowolnego edytora tekstu, utworyć plik ASCI dane.txt danymi do obliceń optymaliacyjnych; wydruk worcowego plik danymi amiescono na rysunku 4. Plik utworonymi danymi apisać w prydielonym foldere. Uruchomić program optymaliacyjny 2 Zrównoważenielaminatupowoduje,żediałanienaprężeńnormalnychniepowoduje deformacjipostaciowejγ 12 próbki;równieżodwrotnie diałanienaprężeństycnychnie powoduje miany wymiarów liniowych patr rysunek 3 strona68

7 Document: Exercise-03-manual /12/ :54--- page 7 of a - wymiar płyty [mm] 0.7 ba - stosunek b/a [-] 100 Nx - obciążenie wdłuż x (na jedn. długości [N/m]) 0.2 NyNx - stosunek obciążeń [-] 0.13 t - grubość jednej warstwy laminatu [mm] E1 - m. stwyności wdłuż osi OX [MPa] 900 E2 - m. stwyności wdłuż osi OY [MPa] 6000 G12 - m. stwyności postaciowej [MPa] 0.28 v12 - wsp. Poissona 2 m_max - max licba analiowanych postaci wybocenia 2 n_max - max licba analiowanych postaci wybocenia Rysunek 4. Wydruk prykładowego pliku danymi do obliceń kompoyt.exe. Wyniki obliceń(wartość współcynnika amplitudy obciążeń λ) odcytać pliku wyniki.txt, aś pliku konfiguracje.txt odcytać kolejność ułożenia warstw w rowiąaniu optymalnym. Powtóryć oblicenia optymaliacyjne dla różnych proporcji obciążeń ściskających(n y /N x )wakresiepodanympreprowadącego.wykonać kilkanaście symulacji. 4. OPRACOWANIE WYNIKÓW Dane geometrycne i stałe materiałowe otrymane od prowadącego estawić w Tabeli 1. W tabeli amieścić ponadto wyniki obliceń niemienników materiałowychu i. Wyniki obliceń optymaliacyjnych amieścić w Tabeli 2 5. SPRAWOZDANIE Sprawodanie realiacji ćwicenia powinno awierać: 1. Tabelkę identyfikacyjną. 2. Cel ćwicenia. 3. Sformułowanie adania optymaliacji wg.(7)-(10) 4. Zestawienie danych geometrycnych płyty i stałych materiałowych Tabela1 strona78

8 Document: Exercise-03-manual /12/ :54--- page 8 of 8 Tabela 1. Zestawienie danych do obliceń E 1 = E 2 = G 12 = ν 12 = a= b= t= N x = m max n max U 1 = U 2 = U 3 = U 4 = U 5 = Tabela 2. Zestawienie obliceń optymaliacji wielowarstwowej płyty kompoytowej Rowiąanie N y /N x λ N y N x Ułożeniewarstw Licbarowiąań OblicenianiemiennikówU 1...U 5 imiennychv 0,V 1,V 3 dlarowiąania optymalnego jednego analiowanych prypadków(dowolnie wybrany o różnym układie warstw). 6. Tabelę 2 w wynikami obliceń optymaliacyjnych. 7. Wnioski. strona88

TEMAT: Próba statyczna rozciągania metali. Obowiązująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1

TEMAT: Próba statyczna rozciągania metali. Obowiązująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1 ĆWICZENIE NR 1 TEMAT: Próba statycna rociągania metali. Obowiąująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1 Podać nacenie następujących symboli: d o -.....................................................................

Bardziej szczegółowo

ANALIZA KONSTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY

ANALIZA KONSTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY Cw3_biornik.doc ANALIZA KONTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY 1. W P R O W A D Z E N I E Ciało utworone pre dwie akrwione powierchnie nawane jest powłoką, jeśli preciętna odlełość pomięd

Bardziej szczegółowo

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego.

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego. Transformator Φ r Φ M Φ r i i u u Φ i strumień magnetycny prenikający pre i-ty wój pierwsego uwojenia; siła elektromotorycna indukowana w i-tym woju: dφ ei, licba wojów uwojenia pierwotnego i wtórnego.

Bardziej szczegółowo

ORGANIZACJA I ZARZĄDZANIE

ORGANIZACJA I ZARZĄDZANIE P O L I T E C H N I K A W A R S Z A W S K A WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ ORGANIZACJA I ZARZĄDZANIE Optymaliacja transportu wewnętrnego w akładie mechanicnym

Bardziej szczegółowo

Przykład 6.3. Uogólnione prawo Hooke a

Przykład 6.3. Uogólnione prawo Hooke a Prkład 6 Uogónione prawo Hooke a Zwiąki międ odkstałceniami i naprężeniami w prpadku ciała iotropowego opisuje uogónione prawo Hooke a: ] ] ] a Rowiąując równania a wgędem naprężeń otrmujem wiąki: b W

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM. Rok szkolny 2015/16

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM. Rok szkolny 2015/16 WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM Rok skolny 2015/16 POZIOMY WYMAGAŃ EDUKACYJNYCH: (2) - ocena dopscająca (2); (3) - ocena dostatecna (3); (4) - ocena dobra (4);

Bardziej szczegółowo

Informacje uzupełniające: Wyboczenie z płaszczyzny układu w ramach portalowych. Spis treści

Informacje uzupełniające: Wyboczenie z płaszczyzny układu w ramach portalowych. Spis treści S032a-PL-EU Informacje uupełniające: Wybocenie płascyny układu w ramach portalowych Ten dokument wyjaśnia ogólną metodę (predstawioną w 6.3.4 E1993-1-1 sprawdania nośności na wybocenie płascyny układu

Bardziej szczegółowo

Języki interpretowane Interpreted languages PRZEWODNIK PO PRZEDMIOCIE

Języki interpretowane Interpreted languages PRZEWODNIK PO PRZEDMIOCIE Jęyki interpretowane Interpreted languages Informatyka Stacjonarne IO2_02 Obowiąkowy w ramach specjalności: Inżynieria oprogramowania II stopień Rok: I Semestr: II wykład, laboratorium 1W, 2L 3 ECTS I

Bardziej szczegółowo

ĆWICZENIE 5 BADANIE ZASILACZY UPS

ĆWICZENIE 5 BADANIE ZASILACZY UPS ĆWICZENIE 5 BADANIE ZASILACZY UPS Cel ćwicenia: aponanie budową i asadą diałania podstawowych typów asilacy UPS ora pomiar wybranych ich parametrów i charakterystyk. 5.1. Podstawy teoretycne 5.1.1. Wstęp

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 1

INSTRUKCJA DO ĆWICZENIA NR 1 L01 ---2014/10/17 ---10:52---page1---#1 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 1 PRZEDMIOT TEMAT Wybrane zagadnienia z optymalizacji elementów

Bardziej szczegółowo

Wielokryteriowa optymalizacja liniowa (WPL)

Wielokryteriowa optymalizacja liniowa (WPL) arek isyński BO UŁ 007 - Wielokryteriowa optymaliaja liniowa (WPL) -. Wielokryteriowa optymaliaja liniowa (WPL) Zadaniem WPL naywamy następująe adanie optymaliaji liniowej: a a m L O L L O L L a a n n

Bardziej szczegółowo

Zastosowanie funkcji inżynierskich w arkuszach kalkulacyjnych zadania z rozwiązaniami

Zastosowanie funkcji inżynierskich w arkuszach kalkulacyjnych zadania z rozwiązaniami Tadeus Wojnakowski Zastosowanie funkcji inżynierskich w arkusach kalkulacyjnych adania rowiąaniami Funkcje inżynierskie występują we wsystkich arkusach kalkulacyjnych jak Excel w MS Office Windows cy Gnumeric

Bardziej szczegółowo

Jakie nowe możliwości daje właścicielom i zarządcom budynków znowelizowana Ustawa termomodrnizacyjna

Jakie nowe możliwości daje właścicielom i zarządcom budynków znowelizowana Ustawa termomodrnizacyjna dr inż. Wiesław Sarosiek mgr inż. Beata Sadowska mgr inż. Adam Święcicki Katedra Podstaw Budownictwa i Fiyki Budowli Politechniki Białostockiej Narodowa Agencja Posanowania Energii S.A. Filia w Białymstoku

Bardziej szczegółowo

Metody dokładne w zastosowaniu do rozwiązywania łańcuchów Markowa

Metody dokładne w zastosowaniu do rozwiązywania łańcuchów Markowa Metody dokładne w astosowaniu do rowiąywania łańcuchów Markowa Beata Bylina, Paweł Górny Zakład Informatyki, Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej Plac Marii Curie-Skłodowskiej 5, 2-31

Bardziej szczegółowo

5.7. Przykład liczbowy

5.7. Przykład liczbowy 5.7. Prład licbow onać oblicenia nośności beli podsuwnicowej e sali S75 pręsłami o długościach l m swobodnie podparmi na słupach esaad obsługiwanej pre dwie suwnice naorowe o jednaowch paramerach usuowanej

Bardziej szczegółowo

UKŁADY TENSOMETRII REZYSTANCYJNEJ

UKŁADY TENSOMETRII REZYSTANCYJNEJ Ćwicenie 8 UKŁADY TESOMETII EZYSTACYJEJ Cel ćwicenia Celem ćwicenia jest ponanie: podstawowych właściwości metrologicnych tensometrów, asad konstrukcji pretworników siły, ora budowy stałoprądowych i miennoprądowych

Bardziej szczegółowo

Analiza obciążeń baneru reklamowego za pomocą oprogramowania ADINA-AUI 8.9 (900 węzłów)

Analiza obciążeń baneru reklamowego za pomocą oprogramowania ADINA-AUI 8.9 (900 węzłów) Politechnika Łódzka Wydział Technologii Materiałowych i Wzornictwa Tekstyliów Katedra Materiałoznawstwa Towaroznawstwa i Metrologii Włókienniczej Analiza obciążeń baneru reklamowego za pomocą oprogramowania

Bardziej szczegółowo

PODSTAWY KONSTRUKCJI MASZYN

PODSTAWY KONSTRUKCJI MASZYN POLITECHNIA LUBELSA J. Banasek, J. Jonak PODSTAW ONSTRUCJI MASN WPROWADENIE DO PROJETOWANIA PREŁADNI ĘBATCH I DOBORU SPRĘGIEŁ MECHANICNCH Wydawnictwa Ucelniane 008 Opiniodawca: dr hab. inŝ. Stanisław rawiec

Bardziej szczegółowo

Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona.

Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona. Algebra liniowa geometrią analitycną Wykład - LICZBY ZESPOLONE Algebra licb espolonych, repreentacja algebraicna i geometrycna, geometria licb espolonych. Moduł, argument, postać trygonometrycna, wór de

Bardziej szczegółowo

Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2

Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2 Document: Exercise*02*-*manual ---2014/11/12 ---8:31---page1of8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 Wybrane zagadnienia z

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Matematyka plusem dla gimnajum PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

Fale skrętne w pręcie

Fale skrętne w pręcie ae skrętne w ręcie + -(+) eement ręta r π ) ( 4 Lokane skręcenie o () moment skręcając moduł stwności r romień ręta r 4 ) ( π Pod włwem wadkowego momentu eement ręta uskuje rsiesenie kątowe i sełnion jest

Bardziej szczegółowo

Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona.

Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona. Wykład - LICZBY ZESPOLONE Algebra licb espolonych, repreentacja algebraicna i geometrycna, geometria licb espolonych. Moduł, argument, postać trygonometrycna, wór de Moivre a.' Zbiór Licb Zespolonych Niech

Bardziej szczegółowo

- 1 - OBLICZENIA WYTRZYMAŁOŚCIOWE - DREWNO

- 1 - OBLICZENIA WYTRZYMAŁOŚCIOWE - DREWNO Użtkownik: Biuro Inżnierskie SPECBUD Autor: mg inż. Jan Kowalski Ttuł: Konstrukcje drewniane wg PN-EN Belka - 1 - Kalkulator Konstrukcji Drewnianch EN v.1.0 OBLICZENIA WYTRZYMAŁOŚCIOWE - DREWNO 2013 SPECBUD

Bardziej szczegółowo

17. 17. Modele materiałów

17. 17. Modele materiałów 7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie

Bardziej szczegółowo

ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE

ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 6 nr Archiwum Technologii Masn i Automatacji 6 ROMAN STANIEK * ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE W artkule predstawiono ależności matematcne

Bardziej szczegółowo

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa Spis treści Rozdział I. Membrany izotropowe 1. Wyprowadzenie równania na ugięcie membrany... 13 2. Sformułowanie zagadnień brzegowych we współrzędnych kartezjańskich i biegunowych... 15 3. Wybrane zagadnienia

Bardziej szczegółowo

STATYCZNA PRÓBA ROZCIĄGANIA

STATYCZNA PRÓBA ROZCIĄGANIA Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: STATYCZNA PRÓBA ROZCIĄGANIA oprac. dr inż. Jarosław Filipiak Cel ćwiczenia 1. Zapoznanie się ze sposobem przeprowadzania statycznej

Bardziej szczegółowo

Animowana grafika 3D. Opracowanie: J. Kęsik.

Animowana grafika 3D. Opracowanie: J. Kęsik. Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollb.pl Transformacje 3D Podobnie jak w prestreni -wymiarowej, dla prestreni 3-wymiarowej definijemy transformacje RST: presnięcie miana skali obrót

Bardziej szczegółowo

Politechnika Poznańska. Metoda Elementów Skończonych

Politechnika Poznańska. Metoda Elementów Skończonych Politechnika Poznańska Metoda Elementów Skończonych Mechanika i Budowa Maszyn Gr. M-5 Prowadzący: dr hab. Tomasz Stręk, prof. nadzw. Wykonali: Damian Woźniak Michał Walerczyk 1 Spis treści 1.Analiza zjawiska

Bardziej szczegółowo

Tok postępowania przy projektowaniu fundamentu bezpośredniego obciążonego mimośrodowo wg wytycznych PN-EN 1997-1 Eurokod 7

Tok postępowania przy projektowaniu fundamentu bezpośredniego obciążonego mimośrodowo wg wytycznych PN-EN 1997-1 Eurokod 7 Tok postępowania przy projektowaniu fundamentu bezpośredniego obciążonego mimośrodowo wg wytycznych PN-EN 1997-1 Eurokod 7 I. Dane do projektowania - Obciążenia stałe charakterystyczne: V k = (pionowe)

Bardziej szczegółowo

Laboratorium Wytrzymałości Materiałów

Laboratorium Wytrzymałości Materiałów Katedra Wytrzymałości Materiałów Instytut Mechaniki Budowli Wydział Inżynierii Lądowej Politechnika Krakowska Laboratorium Wytrzymałości Materiałów Praca zbiorowa pod redakcją S. Piechnika Skrypt dla studentów

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE ZACHOWANIA SIĘ MATERIAŁÓW PODCZAS ŚCISKANIA Instrukcja przeznaczona jest dla studentów

Bardziej szczegółowo

Analiza MES pojedynczej śruby oraz całego układu stabilizującego do osteosyntezy

Analiza MES pojedynczej śruby oraz całego układu stabilizującego do osteosyntezy POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA INŻYNIERIA BIOMEDYCZNA M O D E L O W A N I E I S Y M U L A C J A Z A G A D N I E Ń B I O M E D Y C Z N Y C H PROJEKT Analiza MES pojedynczej śruby

Bardziej szczegółowo

Belki złożone i zespolone

Belki złożone i zespolone Belki łożone i espolone efinicja belki łożonej siła rowarswiająca projekowanie połąceń prkła obliceń efinicja belki espolonej ałożenia echnicnej eorii ginania rokła naprężeń normalnch prkła obliceń Belki

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych Numeryczne metody analizy konstrukcji

Instrukcja do ćwiczeń laboratoryjnych Numeryczne metody analizy konstrukcji POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Ćwiczenie nr 7 Instrukcja do ćwiczeń laboratoryjnych Numeryczne metody analizy konstrukcji Analiza statyczna obciążonego kątownika

Bardziej szczegółowo

PROJEKT BUDOWLANO-WYKONAWCZY

PROJEKT BUDOWLANO-WYKONAWCZY PROJEKT BUDOWLANO-WYKONAWCZY Remontu więźby dachowej w budynku mieszkalnym w Warszawie przy ul. Długiej 24, segment A i B Część: Konstrukcje Budowlane Spis zawartości : 1. Dane ogólne 1.1. Podstawa opracowania

Bardziej szczegółowo

ANALIA STATYCZNA UP ZA POMOCĄ MES Przykłady

ANALIA STATYCZNA UP ZA POMOCĄ MES Przykłady ANALIZA STATYCZNA UP ZA POMOCĄ MES Przykłady PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki 2013/2014 Instytut

Bardziej szczegółowo

J. Szantyr - Wykład 7 Ruch ogólny elementu płynu

J. Szantyr - Wykład 7 Ruch ogólny elementu płynu J. Santr - Wkład 7 Rch ogóln element płn Rch ogóln ciała stwnego można predstawić jako smę premiescenia liniowego i obrot. Ponieważ płn nie mają stwności postaciowej, w rch płn dochodi dodatkowo do odkstałcenia

Bardziej szczegółowo

ZASTOSOWANIE GRANICZNYCH ZAGADNIEŃ ODWROTNYCH DO OKREŚLANIA DOPUSZCZALNYCH STĘŻEŃ SUBSTANCJI CHEMICZNYCH NA POWIERZCHNI TERENU

ZASTOSOWANIE GRANICZNYCH ZAGADNIEŃ ODWROTNYCH DO OKREŚLANIA DOPUSZCZALNYCH STĘŻEŃ SUBSTANCJI CHEMICZNYCH NA POWIERZCHNI TERENU Zastosowanie granicnych agadnień INFRASTRUKTURA I EKOLOGIA TERENÓW WIEJSKICH INFRASTRUCTURE AND ECOLOGY OF RURAL AREAS Nr 9/2008, POLSKA AKADEMIA NAUK, Oddiał w Krakowie, s. 217 226 Komisja Technicnej

Bardziej szczegółowo

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki

Bardziej szczegółowo

Metoda Elementów Skończonych

Metoda Elementów Skończonych Projekt Metoda Elementów Skończonych w programie COMSOL Multiphysics 3.4 Wykonali: Dziamski Dawid Krajcarz Jan BMiZ, MiBM, TPM, VII, 2012-2013 Prowadzący: dr hab. inż. Tomasz Stręk Spis treści 1. Analiza

Bardziej szczegółowo

Badanie transformatora jednofazowego. (Instrukcja do ćwiczenia)

Badanie transformatora jednofazowego. (Instrukcja do ćwiczenia) 1 Badanie transformatora jednofaowego (Instrukcja do ćwicenia) Badanie transformatora jednofaowego. CEL ĆICZENI: Ponanie asady diałania, budowy i właściwości.transformatora jednofaowego. 1 IDOMOŚCI TEORETYCZNE

Bardziej szczegółowo

PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE. WALCOWE (równoległe) STOŻKOWE (kątowe) ŚLIMAKOWE HIPERBOIDALNE. o zebach prostych. walcowe. o zębach.

PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE. WALCOWE (równoległe) STOŻKOWE (kątowe) ŚLIMAKOWE HIPERBOIDALNE. o zebach prostych. walcowe. o zębach. CZOŁOWE OWE PRZEKŁADNIE STOŻKOWE PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE WALCOWE (równoległe) STOŻKOWE (kątowe) HIPERBOIDALNE ŚLIMAKOWE o ebach prostych o ębach prostych walcowe walcowe o ębach śrubowych o

Bardziej szczegółowo

Dobór materiałów konstrukcyjnych cz. 10

Dobór materiałów konstrukcyjnych cz. 10 Dobór materiałów konstrukcyjnych cz. 10 dr inż. Hanna Smoleńska Katedra Inżynierii Materiałowej i Spajania Wydział Mechaniczny, Politechnika Gdańska DO UŻYTKU WEWNĘTRZNEGO Zniszczenie materiału w wyniku

Bardziej szczegółowo

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w

Bardziej szczegółowo

Przykłady obliczeń jednolitych elementów drewnianych wg PN-B-03150

Przykłady obliczeń jednolitych elementów drewnianych wg PN-B-03150 Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Przykłady obliczeń jednolitych elementów drewnianych wg PN-B-0350 Jerzy Bobiński Gdańsk, wersja 0.32 (204) Drewno parametry (wspólne) Dane wejściowe

Bardziej szczegółowo

6. ZWIĄZKI FIZYCZNE Wstęp

6. ZWIĄZKI FIZYCZNE Wstęp 6. ZWIĄZKI FIZYCZN 1 6. 6. ZWIĄZKI FIZYCZN 6.1. Wstęp Aby rozwiązać jakiekolwiek zadanie mechaniki ośrodka ciągłego musimy dysponować 15 niezależnymi równaniami, gdyż tyle mamy niewiadomych: trzy składowe

Bardziej szczegółowo

OBLICZENIA STATYCZNO WYTRZYMAŁOŚCIOWE. 1. Założenia obliczeniowe. materiały:

OBLICZENIA STATYCZNO WYTRZYMAŁOŚCIOWE. 1. Założenia obliczeniowe. materiały: II. OBLICZENIA STATYCZNO WYTRZYMAŁOŚCIOWE 1. Założenia obliczeniowe. materiały: elementy żelbetowe: beton C25/30, stal A-IIIN mury konstrukcyjne: bloczki Silka gr. 24 cm kl. 20 mury osłonowe: bloczki Ytong

Bardziej szczegółowo

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne.

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne. Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Strukturalne element smetrii. Krstalograficne grup prestrenne. god. Cel ćwicenia: aponanie się diałaniem elementów smetrii

Bardziej szczegółowo

ANALIZA ROZDZIAŁU SIŁ HAMOWANIA POJAZDU HYBRYDOWEGO Z NAPĘDEM NA KOŁA TYLNE W ASPEKCIE REKUPERACJI ENERGII

ANALIZA ROZDZIAŁU SIŁ HAMOWANIA POJAZDU HYBRYDOWEGO Z NAPĘDEM NA KOŁA TYLNE W ASPEKCIE REKUPERACJI ENERGII Zesyty Problemowe Masyny Elektrycne Nr 9/211 15 Marcin Fice, Rafał Setlak Politechnika Śląska, Gliwice ANALIZA ROZDZIAŁU SIŁ HAMOWANIA POJAZDU HYBRYDOWEGO Z NAPĘDEM NA KOŁA TYLNE W ASPEKCIE REKUPERACJI

Bardziej szczegółowo

Badania właściwości zmęczeniowych bimetalu stal S355J2- tytan Grade 1

Badania właściwości zmęczeniowych bimetalu stal S355J2- tytan Grade 1 Badania właściwości zmęczeniowych bimetalu stal S355J2- tytan Grade 1 ALEKSANDER KAROLCZUK a) MATEUSZ KOWALSKI a) a) Wydział Mechaniczny Politechniki Opolskiej, Opole 1 I. Wprowadzenie 1. Technologia zgrzewania

Bardziej szczegółowo

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika

Bardziej szczegółowo

Metoda Elementów Skończonych - Laboratorium

Metoda Elementów Skończonych - Laboratorium Metoda Elementów Skończonych - Laboratorium Laboratorium 5 Podstawy ABAQUS/CAE Analiza koncentracji naprężenia na przykładzie rozciąganej płaskiej płyty z otworem. Główne cele ćwiczenia: 1. wykorzystanie

Bardziej szczegółowo

Funkcje pola we współrzędnych krzywoliniowych cd.

Funkcje pola we współrzędnych krzywoliniowych cd. Funkcje pola we współrędnych krywoliniowych cd. Marius Adamski 1. spółrędne walcowe. Definicja. Jeżeli M jest rutem punktu P na płascynę xy, a r i ϕ są współrędnymi biegunowymi M, to mienne u = r, v =

Bardziej szczegółowo

Katedra Geotechniki i Budownictwa Drogowego. WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Mazurski

Katedra Geotechniki i Budownictwa Drogowego. WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Mazurski Katedra Geotechniki i Budownictwa Drogowego WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Maurski Mechanika Gruntów dr inż. Ireneus Dyka http://pracownicy.uwm.edu.pl/i.dyka e-mail: i.dyka@uwm.edu.pl

Bardziej szczegółowo

Stan odkształcenia i jego parametry (1)

Stan odkształcenia i jego parametry (1) Wprowadzenie nr * do ćwiczeń z przedmiotu Wytrzymałość materiałów przeznaczone dla studentów II roku studiów dziennych I stopnia w kierunku nergetyka na wydz. nergetyki i Paliw, w semestrze zimowym /.

Bardziej szczegółowo

Zbigniew Mikulski - zginanie belek z uwzględnieniem ściskania

Zbigniew Mikulski - zginanie belek z uwzględnieniem ściskania Przykład. Wyznaczyć linię ugięcia osi belki z uwzględnieniem wpływu ściskania. Przedstawić wykresy sił przekrojowych, wyznaczyć reakcje podpór oraz ekstremalne naprężenia normalne w belce. Obliczenia wykonać

Bardziej szczegółowo

HAMOWANIE REKUPERACYJNE W MIEJSKIM POJEŹDZIE HYBRYDOWYM Z NAPĘDEM NA KOŁA TYLNE

HAMOWANIE REKUPERACYJNE W MIEJSKIM POJEŹDZIE HYBRYDOWYM Z NAPĘDEM NA KOŁA TYLNE ELEKTRYKA 213 Zesyt 1 (225) Rok LIX Marcin FICE Politechnika Śląska w Gliwicach HAMOWANIE REKUPERACYJNE W MIEJSKIM POJEŹDZIE HYBRYDOWYM Z NAPĘDEM NA KOŁA TYLNE Strescenie. W artykule predstawiono wyniki

Bardziej szczegółowo

SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ KATEDRA TECHNIKI POŻARNICZEJ

SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ KATEDRA TECHNIKI POŻARNICZEJ SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ KATEDRA TECHNIKI POŻARNICZEJ ZAKŁAD ELEKTROENERGETYKI Ćwicenie: URZĄDZENIA PRZECIWWYBUCHOWE BADANIE TRANSFORMATORA JEDNOFAZOWEGO Opracował: kpt.dr inż. R.Chybowski Warsawa

Bardziej szczegółowo

Specyfikacja przedmiotu zamawianego

Specyfikacja przedmiotu zamawianego Szczegółowy Opis Przedmiotu Zamówienia 14/D/ApBad/2016 Przedmiotem zapytania jest dostawa materiałów (próbek) do badań. Zamówienie obejmuje: 7 sztuk laminatów kompozytowych W laminatach zostaną wprowadzone

Bardziej szczegółowo

I. Cel ćwiczenia: Poznanie własności oraz metody badania diod półprzewodnikowych.

I. Cel ćwiczenia: Poznanie własności oraz metody badania diod półprzewodnikowych. Zespół Skół Technicnych w Skarżysku-Kamiennej Sprawodanie PACOWNA ELEKTYCZNA ELEKTONCZNA imię i nawisko ćwicenia nr Temat ćwicenia: BADANE DOD PÓŁPZEWODNKOWYCH rok skolny klasa grupa data wykonania. Cel

Bardziej szczegółowo

Metoda Elementów Skończonych

Metoda Elementów Skończonych Projekt Metoda Elementów Skończonych w programie COMSOL Multiphysics 3.4 Wykonali: Helak Bartłomiej Kruszewski Jacek Wydział, kierunek, specjalizacja, semestr, rok: BMiZ, MiBM, KMU, VII, 2011-2012 Prowadzący:

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Zwykła statyczna próba ściskania metali Numer ćwiczenia: 3 Laboratorium z przedmiotu:

Bardziej szczegółowo

Przestrzeń liniowa R n.

Przestrzeń liniowa R n. MATEMATYKA IIb - Lcjan Kowalski Prestreń liniowa R n. Element (wektor) prestreni R n będiem onacać [,,, ] Element erow [,, L, ]. Diałania. a) ilocn element pre licbę: b) sma elementów [ c, c, ] c L, c

Bardziej szczegółowo

Automatyczna kompensacja mocy biernej z systemem monitorowania kopalnianej sieci 6 kv

Automatyczna kompensacja mocy biernej z systemem monitorowania kopalnianej sieci 6 kv dr inż MARIAN HYLA Politechnika Śląska w Gliwicach Automatycna kompensacja mocy biernej systemem monitorowania kopalnianej sieci 6 kv W artykule predstawiono koncepcję, realiację ora efekty diałania centralnego

Bardziej szczegółowo

Pręt nr 3 - Element drewniany wg EN 1995:2010

Pręt nr 3 - Element drewniany wg EN 1995:2010 Pręt nr 3 - Element drewniany wg EN 1995:2010 Informacje o elemencie Nazwa/Opis: element nr 3 (belka) - Brak opisu elementu. Węzły: 3 (x4.000m, y2.000m); 4 (x2.000m, y1.000m) Profil: Pr 50x170 (C 30) Wyniki

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Próba skręcania pręta o przekroju okrągłym Numer ćwiczenia: 4 Laboratorium z

Bardziej szczegółowo

Ćw. 5. Określenie współczynnika strat mocy i sprawności przekładni ślimakowej.

Ćw. 5. Określenie współczynnika strat mocy i sprawności przekładni ślimakowej. Laboratorium Podstaw Konstrukcji Masyn - - Ćw. 5. Określenie współcynnika strat mocy i sprawności prekładni ślimakowej.. Podstawowe wiadomości i pojęcia. Prekładnie ślimakowe są to prekładnie wichrowate,

Bardziej szczegółowo

Zestaw pytań z konstrukcji i mechaniki

Zestaw pytań z konstrukcji i mechaniki Zestaw pytań z konstrukcji i mechaniki 1. Układ sił na przedstawionym rysunku a) jest w równowadze b) jest w równowadze jeśli jest to układ dowolny c) nie jest w równowadze d) na podstawie tego rysunku

Bardziej szczegółowo

Wyboczenie ściskanego pręta

Wyboczenie ściskanego pręta Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia

Bardziej szczegółowo

700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%:

700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%: Producent: Ryterna modul Typ: Moduł kontenerowy PB1 (długość: 6058 mm, szerokość: 2438 mm, wysokość: 2800 mm) Autor opracowania: inż. Radosław Noga (na podstawie opracowań producenta) 1. Stan graniczny

Bardziej szczegółowo

BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ

BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ LABORATORIU WYTRZYAŁOŚCI ATERIAŁÓW Ćiceie 0 BADANIE ODKSZTAŁCEŃ SRĘŻYNY ŚRUBOWEJ 0.. Wproadeie Sprężyy, elemety sprężyste mają bardo różorode astosoaie ielu kostrukcjach mechaicych. Wykorystuje się je

Bardziej szczegółowo

PROGNOZA OSIADANIA BUDYNKU W ZWIĄZKU ZE ZMIANĄ SPOSOBU POSADOWIENIA THE PROGNOSIS OF BUILDING SETTLEMENT DUE TO CHANGES OF FOUNDATION

PROGNOZA OSIADANIA BUDYNKU W ZWIĄZKU ZE ZMIANĄ SPOSOBU POSADOWIENIA THE PROGNOSIS OF BUILDING SETTLEMENT DUE TO CHANGES OF FOUNDATION XXVI Konferencja awarie budowlane 213 Naukowo-Technicna ZYGMUNT MEYER, meyer@ut.edu.pl Zachodniopomorski Uniwersytet Technologicny w cecinie, Katedra Geotechniki MARIUZ KOWALÓW, m.kowalow@gco-consult.com

Bardziej szczegółowo

napór cieczy - wypadkowy ( hydrostatyczny )

napór cieczy - wypadkowy ( hydrostatyczny ) 5. apór hdrostatcn i równowaga ciał płwającch Płn najdując się w stanie równowagi oddiałwuje na ścian ogranicające ropatrwaną jego objętość i sił te nawane są naporami hdrostatcnmi. Omawiana problematka

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI PRACA DYPLOMOWA MAGISTERSKA

POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI PRACA DYPLOMOWA MAGISTERSKA POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI KIERUNEK: Automatyka i Robotyka (AiR) SPECJALNOŚĆ: Robotyka (ARR) PRACA DYPLOMOWA MAGISTERSKA Wyposażenie robota dwukołowego w cujniki ewnętrne Equipping a two

Bardziej szczegółowo

PROWIZJA I AKORD1 1 2

PROWIZJA I AKORD1 1 2 PROWIZJA I AKORD 1 1 1. Pracodawca może ustalić wynagrodenie w formie prowiji lub akordu. 2. Prowija lub akord mogą stanowić wyłącną formę wynagradania lub występować jako jeden e składników wynagrodenia.

Bardziej szczegółowo

PROJEKT WZMOCNIENIA NAWIERZCHNI W TECHNOLOGII BITUFOR

PROJEKT WZMOCNIENIA NAWIERZCHNI W TECHNOLOGII BITUFOR Bekaert GmbH Otto-Hahn-Straße 20 D-61381 Friedrichsdorf Deutschland T +49 6175 7970-137 F +49 6175 7970-108 peter.straubinger@bekaert.com www.bekaert.com Sp. z o.o. PRZEDSTAWICIEL NA POLSKĘ PROJEKT WZMOCNIENIA

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA

PRZEDMIOTOWY SYSTEM OCENIANIA PRZEDMIOTOWY SYSTEM OCENIANIA Predmiot: informatyka akres podstawowy Klasy: pierwse LO i TE Program naucania: Informatyka nie tylko dla ucniów. Podręcnik. Zakres podstawowy Realiowany w Zespole Skół Ekonomicnych

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 4

INSTRUKCJA DO ĆWICZENIA NR 4 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 4 PRZEDMIOT TEMAT Wybrane zagadnienia z optymalizacji elementów konstrukcji Zastosowanie optymalizacji

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W KONINIE. WYDZIAŁ Kultury Fizycznej i Ochrony Zdrowia

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W KONINIE. WYDZIAŁ Kultury Fizycznej i Ochrony Zdrowia PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W KONINIE WYDZIAŁ Kultury Fiycnej i Ochrony Zdrowia Katedra Morfologicnych i Cynnościowych Podstaw Kultury Fiycnej Kierunek: Wychowanie Fiycne SYLABUS Nawa predmiotu Rytmika

Bardziej szczegółowo

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania Charakterystyczne wielkości i równania PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny Instytut L-5, Wydział Inżynierii Lądowej,

Bardziej szczegółowo

BADANIE CYFROWYCH UKŁADÓW ELEKTRONICZNYCH TTL strona 1/7

BADANIE CYFROWYCH UKŁADÓW ELEKTRONICZNYCH TTL strona 1/7 BADANIE CYFROWYCH UKŁADÓW ELEKTRONICZNYCH TTL strona 1/7 BADANIE CYFROWYCH UKŁADÓW ELEKTRONICZNYCH TTL 1. Wiadomości wstępne Monolitcne układ scalone TTL ( ang. Trasistor Transistor Logic) stanowią obecnie

Bardziej szczegółowo

A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)!

A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)! Wstęp do rachunku prawdopodobieństwa i statystyki matematycnej MAP037 wykład dr hab. A. Jurlewic WPPT Fiyka, Fiyka Technicna, I rok, II semestr Prykłady - Lista nr : Prestreń probabilistycna. Prawdopodobieństwo

Bardziej szczegółowo

Załącznik Nr:.. KROKWIE POŁACI STROMEJ-poz.1 ;

Załącznik Nr:.. KROKWIE POŁACI STROMEJ-poz.1 ; Załącnik Nr:.. KROKWIE POŁACI STROMEJ-po.1 ; I. Element 1-krokiew frontowa-połaci stromej krycie blachą na deskowaniu: Krokiew _prekrój nominalny-14/15 cm KROKIEW UKOSNA -prekrój nie skorodowany Serokość

Bardziej szczegółowo

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko

Bardziej szczegółowo

Modelowanie Wspomagające Projektowanie Maszyn

Modelowanie Wspomagające Projektowanie Maszyn Modelowanie Wspomagające Projektowanie Maszyn TEMATY ĆWICZEŃ: 1. Metoda elementów skończonych współczynnik kształtu płaskownika z karbem a. Współczynnik kształtu b. MES i. Preprocesor ii. Procesor iii.

Bardziej szczegółowo

Wymiarowanie jednolitych elementów drewnianych wg PN-B-03150

Wymiarowanie jednolitych elementów drewnianych wg PN-B-03150 Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Wymiarowanie jednolitych elementów drewnianych wg PN-B-03150 Jerzy Bobiński Gdańsk, wersja 0.32 (2014) Wstęp Normy konstrukcji drewnianych PN-B-03150-0?:1981.

Bardziej szczegółowo

Laboratorium grafiki komputerowej i animacji. Ćwiczenie III - Biblioteka OpenGL - wprowadzenie, obiekty trójwymiarowe: punkty, linie, wielokąty

Laboratorium grafiki komputerowej i animacji. Ćwiczenie III - Biblioteka OpenGL - wprowadzenie, obiekty trójwymiarowe: punkty, linie, wielokąty Laboratorium grafiki komputerowej i animacji Ćwicenie III - Biblioteka OpenGL - wprowadenie, obiekty trójwymiarowe: punkty, linie, wielokąty Prygotowanie do ćwicenia: 1. Zaponać się ogólną charakterystyką

Bardziej szczegółowo

INSTRUKCJA DO CWICZENIA NR 5

INSTRUKCJA DO CWICZENIA NR 5 INTRUKCJA DO CWICZENIA NR 5 Temat ćwiczenia: tatyczna próba ściskania materiałów kruchych Celem ćwiczenia jest wykonanie próby statycznego ściskania materiałów kruchych, na podstawie której można określić

Bardziej szczegółowo

Naprężenia w ośrodku gruntowym

Naprężenia w ośrodku gruntowym Naprężenia w ośrodku gruntowym Naprężenia geostatycne (pierwotne, bytowe) Wpływ wody gruntowej na naprężenia pierwotne Naprężenia wywołane siłą skupioną rowiąanie oussinesq a Naprężenia pochodące od obciążenia

Bardziej szczegółowo

Dobór materiałów konstrukcyjnych cz. 4

Dobór materiałów konstrukcyjnych cz. 4 Dobór materiałów konstrukcyjnych cz. 4 dr inż. Hanna Smoleńska Katedra Inżynierii Materiałowej i Spajania Wydział Mechaniczny, Politechnika Gdańska Materiały edukacyjne Wskaźniki materiałowe Przykład Potrzebny

Bardziej szczegółowo

Przykłady obliczeń jednolitych elementów drewnianych wg PN-EN-1995

Przykłady obliczeń jednolitych elementów drewnianych wg PN-EN-1995 Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Przykłady obliczeń jednolitych elementów drewnianych wg PN-EN-995 Jerzy Bobiński Gdańsk, wersja 0.32 (204) Drewno parametry (wspólne) Dane wejściowe

Bardziej szczegółowo

Metoda Elementów Skończonych

Metoda Elementów Skończonych Metoda Elementów Skończonych Projekt opracowany za pomocą programu COMSOL Multiphysics 3.4. Wykonali: Michał Mach Piotr Mańczak Prowadzący: dr hab. Tomasz Stręk Wydział: Budowa Maszyn i Zarządzanie Kierunek:

Bardziej szczegółowo

PODSTAWY ELEKTOTECHNIKI LABORATORIUM

PODSTAWY ELEKTOTECHNIKI LABORATORIUM PODSTAWY ELEKTOTECHNIKI LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 8 OBWODY PRĄDU STAŁEGO -PODSTAWOWE PRAWA 1. Cel ćwiczenia Doświadczalne zbadanie podstawowych praw teorii

Bardziej szczegółowo

Budownictwo I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny) Stacjonarne (stacjonarne / niestacjonarne)

Budownictwo I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny) Stacjonarne (stacjonarne / niestacjonarne) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Konstrukcje metalowe 2 Nazwa modułu w języku angielskim Steel structures 2

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki. ĆWICZENIE Nr 1 (3h) Wprowadzenie do systemu Quartus II

Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki. ĆWICZENIE Nr 1 (3h) Wprowadzenie do systemu Quartus II Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE Nr 1 (3h) Wprowadzenie do systemu Quartus II Instrukcja pomocnicza do laboratorium z przedmiotu Synteza układów cyfrowych

Bardziej szczegółowo

Płyty PolTherma SOFT PIR mogą być produkowane w wersji z bokami płaskimi lub zakładkowymi umożliwiającymi układanie na tzw. zakładkę.

Płyty PolTherma SOFT PIR mogą być produkowane w wersji z bokami płaskimi lub zakładkowymi umożliwiającymi układanie na tzw. zakładkę. I. CHARAKTERYSTYKA OGÓLNA a. Przeznaczenie Płyty izolacyjne to nowoczesne wyroby budowlane przeznaczone do izolacji termicznej budynków, tj. ścian zewnętrznych, sufitów, ścianek działowych. Płyty izolacyjne

Bardziej szczegółowo