Document: Exercise-03-manual /12/ :54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych"

Transkrypt

1 Document: Exercise-03-manual /12/ :54--- page 1 of 8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydiał Mechanicny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 3 1. CEL ĆWICZENIA Wybrane agadnienia optymaliacji elementów konstrukcji Optymaliacja wielowarstwowych płyt laminowanych Podstawowym celem ćwicenia jest wynacenie optymalnego ułożenia włókien wmacniających w ściskanej dwukierunkowo płycie prostokątnej wykonanej laminatu wielowarstwowego. W toku ćwicenia studenci aponają się także podstawowymi pojęciami klasycnej teorii kompoytów, a także metodami obliceniowymi mechaniki materiałów kompoytowych. 2. PODSTAWY TEORETYCZNE Jedną istotniejsych alet materiałów kompoytowych są ich bardo dobre wględne parametry wytrymałościowe tn. wytrymałość ora stywność odniesione do gęstości materiału. Dięki temu doskonale nadają się do budowy lekkich konstrukcji powłokowych np. premysłu lotnicego, motoryacyjnego itp. Są wykorystywane także w budowie smukłych, wirujących cęści masyn, co do których ocekiwana jest niewielka bewładność np. łopaty wirników turbin wiatrowych. Dodatkową aletą laminatów wielowarstwowych jest możliwość miany wynikowych własności mechanicnych materiału(moduł Younga, moduł Kirchhoffa i współcynnik Poissona) popre mianę kąta ułożenia włókien wmacniających wględem kierunków obciążeń. A atem orientacja włókien kompoytu, podobnie jak np. grubość elementu, może być parametrem projektowym w adaniach konstrukcyjnych. Można atem mówić o swego rodaju projektowaniu materiału. strona18

2 Document: Exercise-03-manual /12/ :54--- page 2 of 8 Roważmy cienką płytę wykonaną symetrycnego, równoważonego laminatu wielowarstwowego o wymiarach a b i grubości całkowitej h. Płyta jestściskanawkierunkuosioxoraoyodpowiedniosiłamiλn x iλn y,gdie λ jest skalą(mnożnikiem) obciążenia. Zakładamy, że laminat składa się N laminojednakowejgrubościt.pryjmujemyponadto,żekątyθ k ułożenia włókien wmacniających poscególnych warstw laminatu są ogranicone do cterechwartości tj.:0,90,+45 i 45,prycymkąttenmierony jest od osi Ox globalnego układu współrędnych patr Rysunek 1. b 2 y k warstwa k a N x N y 1 x y x N y k N x t=tk k 2 1 płascyna symetrii Rysunek 1. Prykład płyty wykonanej symetrycnego laminatu wielowarstwowego W wyniku diałania sił ściskających płyta ulega wyboceniu, jeśli wartość obciążeń określonych pre współcynnik amplitudy λ osiągnie wartość granicną: λ λ kr =π 2D 11(m/a) 4 +2(D 12 +2D 66 )(m/a) 2 (n/b) 2 +D 22 (n/b) 4, (1) (m/a) 2 N x +(n/b) 2 N y gdie m i n są licbami naturalnymi odpowiadającymi licbie pół-fal postaci wybocenia w kierunku odpowiednio osi x i y(patr Rysunek 2) minimaliującychλ kr. 1 1 Tonacyjesttotakombinacjaparlicbminspośródwsystkichmożliwych,dla którejwartośćλ kr jestnajmniejsa. strona28

3 Document: Exercise-03-manual /12/ :54--- page 3 of 8 Rysunek 2. Poglądowe postacie wybocenia płyty ściskanej dwukierunkowo:(a)m=1,n=1;(b)m=1,n=2;(c)m=2,n=2 Występującewewore(1)wielkościD ij sąnaywanestywnościami płytowymi: D 11 =U 1 V 0 +U 2 V 1 +U 3 V 3, D 12 =U 4 V 0 U 3 V 3, (2) D 22 =U 1 V 0 U 2 V 1 +U 3 V 3, D 66 =U 5 V 0 U 3 V 3 isąwyrażaneapomocątrechwyrażeńcałkowychv 0D,V 1D,iV 3D ora pięciuniemiennikówmateriałowychu i,i= ZmienneVawierająinformacjęoustawieniuwłókienθ k wposcególnych laminach wględem osi płyty. Oblicane są na podstawie ależności: V 0D = V 1D = V 3D = h 2 h 2 h 2 h 2 h 2 2 d= 1 N ( 3 3 k k 1) 3 2 ( ) = 3 3 k k 1 3, 2 cos2θd= 2 3 ( 3 k 3 k 1 ) cos2θk, h 2 2 cos4θd= 2 3 ( 3 k 3 k 1 ) cos4θk, gdieh=n tjestgrubościąlaminatu, k odległościąwarstwykodpłascyny symetrii płyty patr Rysunek 1. Występującewrównaniach(2)niemiennikiU i sąfunkcjamijedyniedanych wytrymałościowych materiału kompoytowego. Dane są ależnościa- (3) strona38

4 Document: Exercise-03-manual /12/ :54--- page 4 of 8 mi: U 1 = 1 8 (3Q 11+3Q 22 +2Q 12 +4Q 66 ), U 2 = 1 2 (Q 11 Q 22 ), U 3 = 1 8 (Q 11+Q 22 2Q 12 4Q 66 ), U 4 = 1 8 (Q 11+Q 22 +6Q 12 4Q 66 ), U 5 = 1 8 (Q 11+Q 22 2Q 12 +4Q 66 ), gdiewystępującewyrażeniaq ij sąredukowanymistywnościamipłaskiego stanu naprężeń w lokalnym układie współrędnych 102 (patr także Rysunek3): σ 1 Q 11 Q 12 0 ε 1 σ 2 = Q 12 Q 22 0 ε 2 (5) τ Q 66 γ 12 gdie występujący po lewej stronie wektor repreentuje tensor stanu naprężenia, aś wektor po prawej stronie repreentuje tensor stanu odkstałcenia. E 1 Q 11 =, Q 12 = ν 12E 2 = ν 21E 1, 1 ν 12 ν 21 1 ν 12 ν 21 1 ν 12 ν 21 E 2 Q 22 =, Q 66 =G 12 ν 21 =ν 12 E 2 /E 1. 1 ν 12 ν 21 WpowyżsychależnościachE 1,E 2,ν 12,ν 21 ig 12 onacająodpowiednio moduły Younga w kierunku ułożenia włókien wmacniających(1) i w kierunku poprecnym(2)(patr rysunek 1), moduły Poissona i moduł Kirchhoffa. Roważmy adanie optymaliacyjne polegające na naleieniu takiego ułożenia kolejnych N warstw laminatu, które odpowiada maksymalnej statecności analiowanej płyty tn. maksymalnej wartości współcynnika amplitudy λ. Z uwagi na fakt, że kąty ustawienia włókien w poscególnych warstwach są ogranicone jedynie do cterech wartości(patr str. 2) można wprowadić (4) (6) strona48

5 Document: Exercise-03-manual /12/ :54--- page 5 of 8 l 0 σ 1 τ 12 σ 2 τ 21 2 l 0 σ 2 1 τ 21 τ 12 σ 1 Rysunek 3. Płaskistannaprężeń;odkstałceniaε 1 =(l 1 l 0 )/l 0, ε 2 =(l 2 l 0 )/l 0 ;naprężeniastycneτ 12 =τ 21 miennecałkowitolicbowex k pryjmującewartość0,1,2,lub3wależności odkątaustawieniawłókienθ k wdanejwarstwie.wdalsychroważaniach, ora w dołąconym oprogramowaniu komputerowym, pryjmuje się wartość miennejx k równa0odpowiadakątowiθ k =0,oraθ k =90 x k =1, θ k =45 x k =2iθ k = 45 x k =3.Zaletątakiegodefiniowania agadnienia jest istotne uproscenie charakteru adania optymaliacyjnego.zmiennev 0D,V 1D iv 3D równanie(3) mogąbyćbowiemwyrażone popre liniowe funkcje miennych opisujących kąty ułożenia włókien w poscególnych warstwach laminatu. Tym samym, w sposób liniowy od tychmiennychależąstywnościpłytowed ij patr(2)iposukiwana mienna stanu λ będąca miarą dopuscalnego obciążenia płyty. Ostatecnie atem predstawione adanie posukiwania ułożenia włókien w poscególnych warstwach laminatu maksymaliującego jej statecność jest adaniem programowania liniowego i może być wynacone jedną dostępnych metod rowiąań. Reasumując, sformułowane adanie optymaliacyjne można apisać następująco: γ 12 l 1 l 2 strona58

6 Document: Exercise-03-manual /12/ :54--- page 6 of 8 wynacyć wektor miennych decyyjnych taki,aby wobec x=θ={θ 1,θ 2,...,θ k } T k (1...) (7) maxλ(m, n, x) (8) x θ k (0,90,45, 45 ) where,...,, (9) (θ k =45 )= (θ k = 45 ) (10) Ogranicenie(9) naruca poscególnym miennym θ jedynie dowolone wartości kąta ułożenia włókien, aś ogranicenie(10) odpowiada warunkowi równoważenialaminatu(licbawarstw,wktórychkątwynosi45 musi odpowiadaćlicbiewarstw,wktórychkątwynosi 45 ). 2 Występującew(8) parametry(m, n) odpowiadają możliwym postaciom wybocenia płyty pred rowiąaniem adania postać deformacji nie jest bowiem nana. Z uwaginafakt,żewyżsepostacie(np.m,n=3,4itd.występująbardo radko, w praktyce wystarcy sprawdić statecność dla dowolnej kombinacji licba1i2. 3. PRZEBIEG ĆWICZENIA Prowadący ajęcia prydieli każdemu espołowi laboratoryjnemu parametry geometrycne płyty kompoytowej i stałe wytrymałościowe materiału kompoytowego. Na podstawie otrymanych danych studenci oblicają wartościniemiennikówmateriałowychu i (patr(4))oramiennychv i (patr (3)) dla dopuscalnych kątów θ. Otrymane wyniki obliceń skonsultować prowadącym. Następnie należy, korystając dowolnego edytora tekstu, utworyć plik ASCI dane.txt danymi do obliceń optymaliacyjnych; wydruk worcowego plik danymi amiescono na rysunku 4. Plik utworonymi danymi apisać w prydielonym foldere. Uruchomić program optymaliacyjny 2 Zrównoważenielaminatupowoduje,żediałanienaprężeńnormalnychniepowoduje deformacjipostaciowejγ 12 próbki;równieżodwrotnie diałanienaprężeństycnychnie powoduje miany wymiarów liniowych patr rysunek 3 strona68

7 Document: Exercise-03-manual /12/ :54--- page 7 of a - wymiar płyty [mm] 0.7 ba - stosunek b/a [-] 100 Nx - obciążenie wdłuż x (na jedn. długości [N/m]) 0.2 NyNx - stosunek obciążeń [-] 0.13 t - grubość jednej warstwy laminatu [mm] E1 - m. stwyności wdłuż osi OX [MPa] 900 E2 - m. stwyności wdłuż osi OY [MPa] 6000 G12 - m. stwyności postaciowej [MPa] 0.28 v12 - wsp. Poissona 2 m_max - max licba analiowanych postaci wybocenia 2 n_max - max licba analiowanych postaci wybocenia Rysunek 4. Wydruk prykładowego pliku danymi do obliceń kompoyt.exe. Wyniki obliceń(wartość współcynnika amplitudy obciążeń λ) odcytać pliku wyniki.txt, aś pliku konfiguracje.txt odcytać kolejność ułożenia warstw w rowiąaniu optymalnym. Powtóryć oblicenia optymaliacyjne dla różnych proporcji obciążeń ściskających(n y /N x )wakresiepodanympreprowadącego.wykonać kilkanaście symulacji. 4. OPRACOWANIE WYNIKÓW Dane geometrycne i stałe materiałowe otrymane od prowadącego estawić w Tabeli 1. W tabeli amieścić ponadto wyniki obliceń niemienników materiałowychu i. Wyniki obliceń optymaliacyjnych amieścić w Tabeli 2 5. SPRAWOZDANIE Sprawodanie realiacji ćwicenia powinno awierać: 1. Tabelkę identyfikacyjną. 2. Cel ćwicenia. 3. Sformułowanie adania optymaliacji wg.(7)-(10) 4. Zestawienie danych geometrycnych płyty i stałych materiałowych Tabela1 strona78

8 Document: Exercise-03-manual /12/ :54--- page 8 of 8 Tabela 1. Zestawienie danych do obliceń E 1 = E 2 = G 12 = ν 12 = a= b= t= N x = m max n max U 1 = U 2 = U 3 = U 4 = U 5 = Tabela 2. Zestawienie obliceń optymaliacji wielowarstwowej płyty kompoytowej Rowiąanie N y /N x λ N y N x Ułożeniewarstw Licbarowiąań OblicenianiemiennikówU 1...U 5 imiennychv 0,V 1,V 3 dlarowiąania optymalnego jednego analiowanych prypadków(dowolnie wybrany o różnym układie warstw). 6. Tabelę 2 w wynikami obliceń optymaliacyjnych. 7. Wnioski. strona88

TEMAT: Próba statyczna rozciągania metali. Obowiązująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1

TEMAT: Próba statyczna rozciągania metali. Obowiązująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1 ĆWICZENIE NR 1 TEMAT: Próba statycna rociągania metali. Obowiąująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1 Podać nacenie następujących symboli: d o -.....................................................................

Bardziej szczegółowo

ANALIZA KONSTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY

ANALIZA KONSTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY Cw3_biornik.doc ANALIZA KONTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY 1. W P R O W A D Z E N I E Ciało utworone pre dwie akrwione powierchnie nawane jest powłoką, jeśli preciętna odlełość pomięd

Bardziej szczegółowo

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego.

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego. Transformator Φ r Φ M Φ r i i u u Φ i strumień magnetycny prenikający pre i-ty wój pierwsego uwojenia; siła elektromotorycna indukowana w i-tym woju: dφ ei, licba wojów uwojenia pierwotnego i wtórnego.

Bardziej szczegółowo

ORGANIZACJA I ZARZĄDZANIE

ORGANIZACJA I ZARZĄDZANIE P O L I T E C H N I K A W A R S Z A W S K A WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ ORGANIZACJA I ZARZĄDZANIE Optymaliacja transportu wewnętrnego w akładie mechanicnym

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM. Rok szkolny 2015/16

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM. Rok szkolny 2015/16 WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM Rok skolny 2015/16 POZIOMY WYMAGAŃ EDUKACYJNYCH: (2) - ocena dopscająca (2); (3) - ocena dostatecna (3); (4) - ocena dobra (4);

Bardziej szczegółowo

ĆWICZENIE 5 BADANIE ZASILACZY UPS

ĆWICZENIE 5 BADANIE ZASILACZY UPS ĆWICZENIE 5 BADANIE ZASILACZY UPS Cel ćwicenia: aponanie budową i asadą diałania podstawowych typów asilacy UPS ora pomiar wybranych ich parametrów i charakterystyk. 5.1. Podstawy teoretycne 5.1.1. Wstęp

Bardziej szczegółowo

Informacje uzupełniające: Wyboczenie z płaszczyzny układu w ramach portalowych. Spis treści

Informacje uzupełniające: Wyboczenie z płaszczyzny układu w ramach portalowych. Spis treści S032a-PL-EU Informacje uupełniające: Wybocenie płascyny układu w ramach portalowych Ten dokument wyjaśnia ogólną metodę (predstawioną w 6.3.4 E1993-1-1 sprawdania nośności na wybocenie płascyny układu

Bardziej szczegółowo

Języki interpretowane Interpreted languages PRZEWODNIK PO PRZEDMIOCIE

Języki interpretowane Interpreted languages PRZEWODNIK PO PRZEDMIOCIE Jęyki interpretowane Interpreted languages Informatyka Stacjonarne IO2_02 Obowiąkowy w ramach specjalności: Inżynieria oprogramowania II stopień Rok: I Semestr: II wykład, laboratorium 1W, 2L 3 ECTS I

Bardziej szczegółowo

Zastosowanie funkcji inżynierskich w arkuszach kalkulacyjnych zadania z rozwiązaniami

Zastosowanie funkcji inżynierskich w arkuszach kalkulacyjnych zadania z rozwiązaniami Tadeus Wojnakowski Zastosowanie funkcji inżynierskich w arkusach kalkulacyjnych adania rowiąaniami Funkcje inżynierskie występują we wsystkich arkusach kalkulacyjnych jak Excel w MS Office Windows cy Gnumeric

Bardziej szczegółowo

Wielokryteriowa optymalizacja liniowa (WPL)

Wielokryteriowa optymalizacja liniowa (WPL) arek isyński BO UŁ 007 - Wielokryteriowa optymaliaja liniowa (WPL) -. Wielokryteriowa optymaliaja liniowa (WPL) Zadaniem WPL naywamy następująe adanie optymaliaji liniowej: a a m L O L L O L L a a n n

Bardziej szczegółowo

Jakie nowe możliwości daje właścicielom i zarządcom budynków znowelizowana Ustawa termomodrnizacyjna

Jakie nowe możliwości daje właścicielom i zarządcom budynków znowelizowana Ustawa termomodrnizacyjna dr inż. Wiesław Sarosiek mgr inż. Beata Sadowska mgr inż. Adam Święcicki Katedra Podstaw Budownictwa i Fiyki Budowli Politechniki Białostockiej Narodowa Agencja Posanowania Energii S.A. Filia w Białymstoku

Bardziej szczegółowo

Metody dokładne w zastosowaniu do rozwiązywania łańcuchów Markowa

Metody dokładne w zastosowaniu do rozwiązywania łańcuchów Markowa Metody dokładne w astosowaniu do rowiąywania łańcuchów Markowa Beata Bylina, Paweł Górny Zakład Informatyki, Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej Plac Marii Curie-Skłodowskiej 5, 2-31

Bardziej szczegółowo

5.7. Przykład liczbowy

5.7. Przykład liczbowy 5.7. Prład licbow onać oblicenia nośności beli podsuwnicowej e sali S75 pręsłami o długościach l m swobodnie podparmi na słupach esaad obsługiwanej pre dwie suwnice naorowe o jednaowch paramerach usuowanej

Bardziej szczegółowo

PODSTAWY KONSTRUKCJI MASZYN

PODSTAWY KONSTRUKCJI MASZYN POLITECHNIA LUBELSA J. Banasek, J. Jonak PODSTAW ONSTRUCJI MASN WPROWADENIE DO PROJETOWANIA PREŁADNI ĘBATCH I DOBORU SPRĘGIEŁ MECHANICNCH Wydawnictwa Ucelniane 008 Opiniodawca: dr hab. inŝ. Stanisław rawiec

Bardziej szczegółowo

- 1 - OBLICZENIA WYTRZYMAŁOŚCIOWE - DREWNO

- 1 - OBLICZENIA WYTRZYMAŁOŚCIOWE - DREWNO Użtkownik: Biuro Inżnierskie SPECBUD Autor: mg inż. Jan Kowalski Ttuł: Konstrukcje drewniane wg PN-EN Belka - 1 - Kalkulator Konstrukcji Drewnianch EN v.1.0 OBLICZENIA WYTRZYMAŁOŚCIOWE - DREWNO 2013 SPECBUD

Bardziej szczegółowo

Analiza obciążeń baneru reklamowego za pomocą oprogramowania ADINA-AUI 8.9 (900 węzłów)

Analiza obciążeń baneru reklamowego za pomocą oprogramowania ADINA-AUI 8.9 (900 węzłów) Politechnika Łódzka Wydział Technologii Materiałowych i Wzornictwa Tekstyliów Katedra Materiałoznawstwa Towaroznawstwa i Metrologii Włókienniczej Analiza obciążeń baneru reklamowego za pomocą oprogramowania

Bardziej szczegółowo

Fale skrętne w pręcie

Fale skrętne w pręcie ae skrętne w ręcie + -(+) eement ręta r π ) ( 4 Lokane skręcenie o () moment skręcając moduł stwności r romień ręta r 4 ) ( π Pod włwem wadkowego momentu eement ręta uskuje rsiesenie kątowe i sełnion jest

Bardziej szczegółowo

Belki złożone i zespolone

Belki złożone i zespolone Belki łożone i espolone efinicja belki łożonej siła rowarswiająca projekowanie połąceń prkła obliceń efinicja belki espolonej ałożenia echnicnej eorii ginania rokła naprężeń normalnch prkła obliceń Belki

Bardziej szczegółowo

Analiza MES pojedynczej śruby oraz całego układu stabilizującego do osteosyntezy

Analiza MES pojedynczej śruby oraz całego układu stabilizującego do osteosyntezy POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA INŻYNIERIA BIOMEDYCZNA M O D E L O W A N I E I S Y M U L A C J A Z A G A D N I E Ń B I O M E D Y C Z N Y C H PROJEKT Analiza MES pojedynczej śruby

Bardziej szczegółowo

PROJEKT BUDOWLANO-WYKONAWCZY

PROJEKT BUDOWLANO-WYKONAWCZY PROJEKT BUDOWLANO-WYKONAWCZY Remontu więźby dachowej w budynku mieszkalnym w Warszawie przy ul. Długiej 24, segment A i B Część: Konstrukcje Budowlane Spis zawartości : 1. Dane ogólne 1.1. Podstawa opracowania

Bardziej szczegółowo

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa Spis treści Rozdział I. Membrany izotropowe 1. Wyprowadzenie równania na ugięcie membrany... 13 2. Sformułowanie zagadnień brzegowych we współrzędnych kartezjańskich i biegunowych... 15 3. Wybrane zagadnienia

Bardziej szczegółowo

ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE

ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 6 nr Archiwum Technologii Masn i Automatacji 6 ROMAN STANIEK * ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE W artkule predstawiono ależności matematcne

Bardziej szczegółowo

J. Szantyr - Wykład 7 Ruch ogólny elementu płynu

J. Szantyr - Wykład 7 Ruch ogólny elementu płynu J. Santr - Wkład 7 Rch ogóln element płn Rch ogóln ciała stwnego można predstawić jako smę premiescenia liniowego i obrot. Ponieważ płn nie mają stwności postaciowej, w rch płn dochodi dodatkowo do odkstałcenia

Bardziej szczegółowo

17. 17. Modele materiałów

17. 17. Modele materiałów 7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie

Bardziej szczegółowo

Przykłady obliczeń jednolitych elementów drewnianych wg PN-B-03150

Przykłady obliczeń jednolitych elementów drewnianych wg PN-B-03150 Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Przykłady obliczeń jednolitych elementów drewnianych wg PN-B-0350 Jerzy Bobiński Gdańsk, wersja 0.32 (204) Drewno parametry (wspólne) Dane wejściowe

Bardziej szczegółowo

Tok postępowania przy projektowaniu fundamentu bezpośredniego obciążonego mimośrodowo wg wytycznych PN-EN 1997-1 Eurokod 7

Tok postępowania przy projektowaniu fundamentu bezpośredniego obciążonego mimośrodowo wg wytycznych PN-EN 1997-1 Eurokod 7 Tok postępowania przy projektowaniu fundamentu bezpośredniego obciążonego mimośrodowo wg wytycznych PN-EN 1997-1 Eurokod 7 I. Dane do projektowania - Obciążenia stałe charakterystyczne: V k = (pionowe)

Bardziej szczegółowo

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w

Bardziej szczegółowo

Laboratorium Wytrzymałości Materiałów

Laboratorium Wytrzymałości Materiałów Katedra Wytrzymałości Materiałów Instytut Mechaniki Budowli Wydział Inżynierii Lądowej Politechnika Krakowska Laboratorium Wytrzymałości Materiałów Praca zbiorowa pod redakcją S. Piechnika Skrypt dla studentów

Bardziej szczegółowo

ANALIA STATYCZNA UP ZA POMOCĄ MES Przykłady

ANALIA STATYCZNA UP ZA POMOCĄ MES Przykłady ANALIZA STATYCZNA UP ZA POMOCĄ MES Przykłady PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki 2013/2014 Instytut

Bardziej szczegółowo

PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE. WALCOWE (równoległe) STOŻKOWE (kątowe) ŚLIMAKOWE HIPERBOIDALNE. o zebach prostych. walcowe. o zębach.

PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE. WALCOWE (równoległe) STOŻKOWE (kątowe) ŚLIMAKOWE HIPERBOIDALNE. o zebach prostych. walcowe. o zębach. CZOŁOWE OWE PRZEKŁADNIE STOŻKOWE PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE WALCOWE (równoległe) STOŻKOWE (kątowe) HIPERBOIDALNE ŚLIMAKOWE o ebach prostych o ębach prostych walcowe walcowe o ębach śrubowych o

Bardziej szczegółowo

Zbigniew Mikulski - zginanie belek z uwzględnieniem ściskania

Zbigniew Mikulski - zginanie belek z uwzględnieniem ściskania Przykład. Wyznaczyć linię ugięcia osi belki z uwzględnieniem wpływu ściskania. Przedstawić wykresy sił przekrojowych, wyznaczyć reakcje podpór oraz ekstremalne naprężenia normalne w belce. Obliczenia wykonać

Bardziej szczegółowo

ANALIZA ROZDZIAŁU SIŁ HAMOWANIA POJAZDU HYBRYDOWEGO Z NAPĘDEM NA KOŁA TYLNE W ASPEKCIE REKUPERACJI ENERGII

ANALIZA ROZDZIAŁU SIŁ HAMOWANIA POJAZDU HYBRYDOWEGO Z NAPĘDEM NA KOŁA TYLNE W ASPEKCIE REKUPERACJI ENERGII Zesyty Problemowe Masyny Elektrycne Nr 9/211 15 Marcin Fice, Rafał Setlak Politechnika Śląska, Gliwice ANALIZA ROZDZIAŁU SIŁ HAMOWANIA POJAZDU HYBRYDOWEGO Z NAPĘDEM NA KOŁA TYLNE W ASPEKCIE REKUPERACJI

Bardziej szczegółowo

HAMOWANIE REKUPERACYJNE W MIEJSKIM POJEŹDZIE HYBRYDOWYM Z NAPĘDEM NA KOŁA TYLNE

HAMOWANIE REKUPERACYJNE W MIEJSKIM POJEŹDZIE HYBRYDOWYM Z NAPĘDEM NA KOŁA TYLNE ELEKTRYKA 213 Zesyt 1 (225) Rok LIX Marcin FICE Politechnika Śląska w Gliwicach HAMOWANIE REKUPERACYJNE W MIEJSKIM POJEŹDZIE HYBRYDOWYM Z NAPĘDEM NA KOŁA TYLNE Strescenie. W artykule predstawiono wyniki

Bardziej szczegółowo

SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ KATEDRA TECHNIKI POŻARNICZEJ

SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ KATEDRA TECHNIKI POŻARNICZEJ SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ KATEDRA TECHNIKI POŻARNICZEJ ZAKŁAD ELEKTROENERGETYKI Ćwicenie: URZĄDZENIA PRZECIWWYBUCHOWE BADANIE TRANSFORMATORA JEDNOFAZOWEGO Opracował: kpt.dr inż. R.Chybowski Warsawa

Bardziej szczegółowo

Badania właściwości zmęczeniowych bimetalu stal S355J2- tytan Grade 1

Badania właściwości zmęczeniowych bimetalu stal S355J2- tytan Grade 1 Badania właściwości zmęczeniowych bimetalu stal S355J2- tytan Grade 1 ALEKSANDER KAROLCZUK a) MATEUSZ KOWALSKI a) a) Wydział Mechaniczny Politechniki Opolskiej, Opole 1 I. Wprowadzenie 1. Technologia zgrzewania

Bardziej szczegółowo

Pręt nr 3 - Element drewniany wg EN 1995:2010

Pręt nr 3 - Element drewniany wg EN 1995:2010 Pręt nr 3 - Element drewniany wg EN 1995:2010 Informacje o elemencie Nazwa/Opis: element nr 3 (belka) - Brak opisu elementu. Węzły: 3 (x4.000m, y2.000m); 4 (x2.000m, y1.000m) Profil: Pr 50x170 (C 30) Wyniki

Bardziej szczegółowo

Automatyczna kompensacja mocy biernej z systemem monitorowania kopalnianej sieci 6 kv

Automatyczna kompensacja mocy biernej z systemem monitorowania kopalnianej sieci 6 kv dr inż MARIAN HYLA Politechnika Śląska w Gliwicach Automatycna kompensacja mocy biernej systemem monitorowania kopalnianej sieci 6 kv W artykule predstawiono koncepcję, realiację ora efekty diałania centralnego

Bardziej szczegółowo

Ćw. 5. Określenie współczynnika strat mocy i sprawności przekładni ślimakowej.

Ćw. 5. Określenie współczynnika strat mocy i sprawności przekładni ślimakowej. Laboratorium Podstaw Konstrukcji Masyn - - Ćw. 5. Określenie współcynnika strat mocy i sprawności prekładni ślimakowej.. Podstawowe wiadomości i pojęcia. Prekładnie ślimakowe są to prekładnie wichrowate,

Bardziej szczegółowo

PROWIZJA I AKORD1 1 2

PROWIZJA I AKORD1 1 2 PROWIZJA I AKORD 1 1 1. Pracodawca może ustalić wynagrodenie w formie prowiji lub akordu. 2. Prowija lub akord mogą stanowić wyłącną formę wynagradania lub występować jako jeden e składników wynagrodenia.

Bardziej szczegółowo

napór cieczy - wypadkowy ( hydrostatyczny )

napór cieczy - wypadkowy ( hydrostatyczny ) 5. apór hdrostatcn i równowaga ciał płwającch Płn najdując się w stanie równowagi oddiałwuje na ścian ogranicające ropatrwaną jego objętość i sił te nawane są naporami hdrostatcnmi. Omawiana problematka

Bardziej szczegółowo

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne.

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne. Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Strukturalne element smetrii. Krstalograficne grup prestrenne. god. Cel ćwicenia: aponanie się diałaniem elementów smetrii

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI PRACA DYPLOMOWA MAGISTERSKA

POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI PRACA DYPLOMOWA MAGISTERSKA POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI KIERUNEK: Automatyka i Robotyka (AiR) SPECJALNOŚĆ: Robotyka (ARR) PRACA DYPLOMOWA MAGISTERSKA Wyposażenie robota dwukołowego w cujniki ewnętrne Equipping a two

Bardziej szczegółowo

BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ

BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ LABORATORIU WYTRZYAŁOŚCI ATERIAŁÓW Ćiceie 0 BADANIE ODKSZTAŁCEŃ SRĘŻYNY ŚRUBOWEJ 0.. Wproadeie Sprężyy, elemety sprężyste mają bardo różorode astosoaie ielu kostrukcjach mechaicych. Wykorystuje się je

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA

PRZEDMIOTOWY SYSTEM OCENIANIA PRZEDMIOTOWY SYSTEM OCENIANIA Predmiot: informatyka akres podstawowy Klasy: pierwse LO i TE Program naucania: Informatyka nie tylko dla ucniów. Podręcnik. Zakres podstawowy Realiowany w Zespole Skół Ekonomicnych

Bardziej szczegółowo

Zigma inżynieria przemysłowa ul. Lewkoniowa 2 60-175 Poznań

Zigma inżynieria przemysłowa ul. Lewkoniowa 2 60-175 Poznań Oferujemy usługi wydruku modeli 3D przy użyciu niezawodnych drukarek amerykańskiej firmy 3D Systems!!! Drukowane modele są w pełni zgodne z przesłanym projektem 3D. Drukujemy modele o skomplikowanych kształtach

Bardziej szczegółowo

Płyty PolTherma SOFT PIR mogą być produkowane w wersji z bokami płaskimi lub zakładkowymi umożliwiającymi układanie na tzw. zakładkę.

Płyty PolTherma SOFT PIR mogą być produkowane w wersji z bokami płaskimi lub zakładkowymi umożliwiającymi układanie na tzw. zakładkę. I. CHARAKTERYSTYKA OGÓLNA a. Przeznaczenie Płyty izolacyjne to nowoczesne wyroby budowlane przeznaczone do izolacji termicznej budynków, tj. ścian zewnętrznych, sufitów, ścianek działowych. Płyty izolacyjne

Bardziej szczegółowo

Przykłady obliczeń jednolitych elementów drewnianych wg PN-EN-1995

Przykłady obliczeń jednolitych elementów drewnianych wg PN-EN-1995 Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Przykłady obliczeń jednolitych elementów drewnianych wg PN-EN-995 Jerzy Bobiński Gdańsk, wersja 0.32 (204) Drewno parametry (wspólne) Dane wejściowe

Bardziej szczegółowo

Przestrzeń liniowa R n.

Przestrzeń liniowa R n. MATEMATYKA IIb - Lcjan Kowalski Prestreń liniowa R n. Element (wektor) prestreni R n będiem onacać [,,, ] Element erow [,, L, ]. Diałania. a) ilocn element pre licbę: b) sma elementów [ c, c, ] c L, c

Bardziej szczegółowo

A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)!

A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)! Wstęp do rachunku prawdopodobieństwa i statystyki matematycnej MAP037 wykład dr hab. A. Jurlewic WPPT Fiyka, Fiyka Technicna, I rok, II semestr Prykłady - Lista nr : Prestreń probabilistycna. Prawdopodobieństwo

Bardziej szczegółowo

Rys. 1. Elementy zginane. KONSTRUKCJE BUDOWLANE PROJEKTOWANIE BELEK DREWNIANYCH 2013 2BA-DI s.1 WIADOMOŚCI OGÓLNE

Rys. 1. Elementy zginane. KONSTRUKCJE BUDOWLANE PROJEKTOWANIE BELEK DREWNIANYCH 2013 2BA-DI s.1 WIADOMOŚCI OGÓLNE WIADOMOŚCI OGÓLNE O zginaniu mówimy wówczas, gdy prosta początkowo oś pręta ulega pod wpływem obciążenia zakrzywieniu, przy czym włókna pręta od strony wypukłej ulegają wydłużeniu, a od strony wklęsłej

Bardziej szczegółowo

Wymiarowanie jednolitych elementów drewnianych wg PN-B-03150

Wymiarowanie jednolitych elementów drewnianych wg PN-B-03150 Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Wymiarowanie jednolitych elementów drewnianych wg PN-B-03150 Jerzy Bobiński Gdańsk, wersja 0.32 (2014) Wstęp Normy konstrukcji drewnianych PN-B-03150-0?:1981.

Bardziej szczegółowo

Podstawy technik wytwarzania PTWII - projektowanie. Ćwiczenie 4. Instrukcja laboratoryjna

Podstawy technik wytwarzania PTWII - projektowanie. Ćwiczenie 4. Instrukcja laboratoryjna PTWII - projektowanie Ćwiczenie 4 Instrukcja laboratoryjna Człowiek - najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Warszawa 2011 2 Ćwiczenie

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W KONINIE. WYDZIAŁ Kultury Fizycznej i Ochrony Zdrowia

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W KONINIE. WYDZIAŁ Kultury Fizycznej i Ochrony Zdrowia PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W KONINIE WYDZIAŁ Kultury Fiycnej i Ochrony Zdrowia Katedra Morfologicnych i Cynnościowych Podstaw Kultury Fiycnej Kierunek: Wychowanie Fiycne SYLABUS Nawa predmiotu Rytmika

Bardziej szczegółowo

Sprzęgło cierne wielopłytkowe, Autor: Henryk Sanecki, 2010 Data: 1. OBLICZENIA WSTĘPNE, Rys. 1 i 2.

Sprzęgło cierne wielopłytkowe, Autor: Henryk Sanecki, 2010 Data: 1. OBLICZENIA WSTĘPNE, Rys. 1 i 2. L.p. Obliczenia wykonał: Sprzęgło cierne wielopłytkowe, Autor: Henryk Sanecki, 2010 Grupa: Data: 1 N = 5.0 kw Moc przenoszona przez sprzęgło 2 n = 1000 1/min Prędkość obrotowa DANE 3 w h = 120 1/h Liczba

Bardziej szczegółowo

Ciśnienie i nośność w płaskim łożysku ślizgowym przy niestacjonarnym laminarnym smarowaniu

Ciśnienie i nośność w płaskim łożysku ślizgowym przy niestacjonarnym laminarnym smarowaniu TRIBOOGIA ZAGADNIENIA EKSPOATACJI MASZYN Zesyt (5) 7 PAWEŁ KRASOWSKI Ciśnienie i nośność w łasim łożysu śligowym ry niestacjonarnym laminarnym smarowaniu Słowa lucowe Płasie łożyso śligowe, laminarne niestacjonarne

Bardziej szczegółowo

Metoda Elementów Skończonych

Metoda Elementów Skończonych Metoda Elementów Skończonych Projekt opracowany za pomocą programu COMSOL Multiphysics 3.4. Wykonali: Michał Mach Piotr Mańczak Prowadzący: dr hab. Tomasz Stręk Wydział: Budowa Maszyn i Zarządzanie Kierunek:

Bardziej szczegółowo

Poziom I-II Bieg schodowy 6 SZKIC SCHODÓW GEOMETRIA SCHODÓW

Poziom I-II Bieg schodowy 6 SZKIC SCHODÓW GEOMETRIA SCHODÓW Poziom I-II ieg schodowy SZKIC SCHODÓW 23 0 175 1,5 175 32 29,2 17,5 10x 17,5/29,2 1,5 GEOMETRI SCHODÓW 30 130 413 24 Wymiary schodów : Długość dolnego spocznika l s,d = 1,50 m Grubość płyty spocznika

Bardziej szczegółowo

mr1 Klasa betonu Klasa stali Otulina [cm] 4.00 Średnica prętów zbrojeniowych ściany φ 1 [mm] 12.0 Średnica prętów zbrojeniowych podstawy φ 2

mr1 Klasa betonu Klasa stali Otulina [cm] 4.00 Średnica prętów zbrojeniowych ściany φ 1 [mm] 12.0 Średnica prętów zbrojeniowych podstawy φ 2 4. mur oporowy Geometria mr1 Wysokość ściany H [m] 2.50 Szerokość ściany B [m] 2.00 Długość ściany L [m] 10.00 Grubość górna ściany B 5 [m] 0.20 Grubość dolna ściany B 2 [m] 0.24 Minimalna głębokość posadowienia

Bardziej szczegółowo

WYBRANE ZAGADNIENIA ODKSZTAŁCEŃ NAPĘDOWEGO KOŁA PNEUMATYCZNEGO CIĄGNIKA ROLNICZEGO. Bronisław Kolator

WYBRANE ZAGADNIENIA ODKSZTAŁCEŃ NAPĘDOWEGO KOŁA PNEUMATYCZNEGO CIĄGNIKA ROLNICZEGO. Bronisław Kolator MOTROL, 26, 8, 118 124 WBRANE ZAGADNIENIA ODKSZTAŁCEŃ NAPĘDOWEGO KOŁA PNEUMATCZNEGO CIĄGNIKA ROLNICZEGO Bonisław Kolato Kateda Eksploatacji Pojadów i Masyn, Uniwesytet Wamińsko-Mauski w Olstynie Stescenie.

Bardziej szczegółowo

Krajowe Ramy Kwalifikacji Informatyka. Data aktualizacji: 3 lutego 2014

Krajowe Ramy Kwalifikacji Informatyka. Data aktualizacji: 3 lutego 2014 Krajowe Ramy Kwalifikacji Informatyka Data aktualiacji: lutego 01 Spis treści Efekty kstałcenia... Plany studiów... 8 Karty predmiotów... Efekty kstałcenia Symbol K_W01 K_W0 K_W0 K_W0 K_W0 K_W06 K_W07

Bardziej szczegółowo

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ).

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ). Materiał ddaktcne Geodeja geometrcna Marcin Ligas, Katedra Geomatki, Wdiał Geodeji Górnicej i Inżnierii Środowiska UKŁADY WSPÓŁZĘDNYCH NA KULI Pierwsm prbliżeniem kstałtu Ziemi (ocwiście po latach płaskich

Bardziej szczegółowo

AKADEMIA GÓRNICZO-HUTNICZA im. Stanisława Staszica w Krakowie. Wydział Inżynierii Mechanicznej i Robotyki Katedra Automatyzacji Procesów

AKADEMIA GÓRNICZO-HUTNICZA im. Stanisława Staszica w Krakowie. Wydział Inżynierii Mechanicznej i Robotyki Katedra Automatyzacji Procesów AKADEMIA GÓRNICZO-HUTNICZA im. Stanisława Stasica w Krakowie Wydiał Inżynierii Mechanicnej i Robotyki Katedra Automatyacji Procesów ROZPRAWA DOKTORSKA Układy redukcji drgań tłumikami magnetoreologicnymi

Bardziej szczegółowo

Analiza transformatora

Analiza transformatora ĆWICZENIE 4 Analia transformatora. CEL ĆWICZENIA Celem ćwicenia jest ponanie bodowy, schematu astępcego ora ocena pracy transformatora.. PODSTAWY TEORETYCZNE. Budowa Podstawowym adaniem transformatora

Bardziej szczegółowo

Wybrane algorytmy automatycznego

Wybrane algorytmy automatycznego Wyrane algorytmy automatycnego Wyrane algorytmy automatycnego naprowadania preciwpancernego pocisku naprowadania rakietowego preciwpancernego atakującego cel pocisku górnego pułapu rakietowego atakującego

Bardziej szczegółowo

Nowa instrukcja badania sczepności międzywarstwowej w nawierzchniach asfaltowych. dr inż. Piotr JASKUŁA

Nowa instrukcja badania sczepności międzywarstwowej w nawierzchniach asfaltowych. dr inż. Piotr JASKUŁA Nowa instrukcja badania sczepności międzywarstwowej w nawierzchniach asfaltowych dr inż. Piotr JASKUŁA 2 Plan prezentacji Wprowadzenie Materiał i aparatura Badania i analizy wyników Laboratoryjne Terenowe

Bardziej szczegółowo

UZĘBIENIA CZOŁOWE O ŁUKOWO KOŁOWEJ LINII ZĘBÓW KSZTAŁTOWANE NARZĘDZIEM JEDNOOSTRZOWYM

UZĘBIENIA CZOŁOWE O ŁUKOWO KOŁOWEJ LINII ZĘBÓW KSZTAŁTOWANE NARZĘDZIEM JEDNOOSTRZOWYM MODELOWANIE INŻYNIESKIE ISSN 896-77X 40, s. 7-78, Gliwice 00 UZĘBIENIA CZOŁOWE O ŁUKOWO KOŁOWEJ LINII ZĘBÓW KSZTAŁTOWANE NAZĘDZIEM JEDNOOSTZOWYM PIOT FĄCKOWIAK Instytut Technologii Mechanicnej, Politechnika

Bardziej szczegółowo

Ochrona_pporaz_ISiW J.P. Spis treści:

Ochrona_pporaz_ISiW J.P. Spis treści: Spis treści: 1. Napięcia normaliowane IEC...2 1.1 Podstawy prawne 2 1.2 Pojęcia podstawowe 2 2. Zasilanie odbiorców niepremysłowych...3 2.1 kłady sieciowe 4 3. Zasady bepiecnej obsługi urądeń elektrycnych...8

Bardziej szczegółowo

H+H Bloczki i płytki. H+H Bloczki i płytki

H+H Bloczki i płytki. H+H Bloczki i płytki H+H Bloczki i płytki H+H Bloczki i płytki 3 H+H Bloczki i płytki 3.0 H+H Bloczki i płytki Opis i zastosowanie 3.1 Dane techniczne do projektowania 3.2 3.1 Opis i zastosowanie strona 1 Opis i zastosowanie

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 4

INSTRUKCJA DO ĆWICZENIA NR 4 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 4 PRZEDMIOT TEMAT Wybrane zagadnienia z optymalizacji elementów konstrukcji Zastosowanie optymalizacji

Bardziej szczegółowo

Budownictwo I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny) Stacjonarne (stacjonarne / niestacjonarne)

Budownictwo I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny) Stacjonarne (stacjonarne / niestacjonarne) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Konstrukcje metalowe 2 Nazwa modułu w języku angielskim Steel structures 2

Bardziej szczegółowo

Twierdzenia o wzajemności

Twierdzenia o wzajemności Twierdzenia o wzajemności Praca - definicja Praca iloczyn skalarny wektora siły i wektora drogi jaką pokonuje punkt materialny pod wpływem działania tej siły. L S r r F( s) o ds r F( s) cos ( α ) ds F

Bardziej szczegółowo

Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki. ĆWICZENIE Nr 1 (3h) Wprowadzenie do systemu Quartus II

Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki. ĆWICZENIE Nr 1 (3h) Wprowadzenie do systemu Quartus II Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE Nr 1 (3h) Wprowadzenie do systemu Quartus II Instrukcja pomocnicza do laboratorium z przedmiotu Synteza układów cyfrowych

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Mechanika i Budowa Maszyn Grupa M3 Metoda Elementów Skończonych Prowadzący: dr hab. Tomasz Stręk, prof. nadzw. Wykonał: Miłek Mateusz 1 2 Spis

Bardziej szczegółowo

Indywidualne projektowanie konstrukcji nawierzchni dzięki metodzie mechanistyczno - empirycznej Dawid Siemieński Pracownia InŜynierska KLOTOIDA

Indywidualne projektowanie konstrukcji nawierzchni dzięki metodzie mechanistyczno - empirycznej Dawid Siemieński Pracownia InŜynierska KLOTOIDA Indywidualne projektowanie konstrukcji nawierzchni dzięki metodzie mechanistyczno - empirycznej Dawid Siemieński Pracownia InŜynierska KLOTOIDA Zakopane 4-6 lutego 2009r. 1 Projektowanie konstrukcji nawierzchni

Bardziej szczegółowo

MECHANIKA OGÓLNA. Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014

MECHANIKA OGÓLNA. Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 MECHANIKA OGÓLNA Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 Licba godin: sem. II *) - wkład 30 god., ćwicenia 30 god. sem. III *) - wkład 30 god., ćwicenia 30 god., ale dla kier.

Bardziej szczegółowo

Q r POZ.9. ŁAWY FUNDAMENTOWE

Q r POZ.9. ŁAWY FUNDAMENTOWE - str. 28 - POZ.9. ŁAWY FUNDAMENTOWE Na podstawie dokumentacji geotechnicznej, opracowanej przez Przedsiębiorstwo Opoka Usługi Geologiczne, opracowanie marzec 2012r, stwierdzono następującą budowę podłoża

Bardziej szczegółowo

BADANIA GRUNTU W APARACIE RC/TS.

BADANIA GRUNTU W APARACIE RC/TS. Str.1 SZCZEGÓŁOWE WYPROWADZENIA WZORÓW DO PUBLIKACJI BADANIA GRUNTU W APARACIE RC/TS. Dyka I., Srokosz P.E., InŜynieria Morska i Geotechnika 6/2012, s.700-707 III. Wymuszone, cykliczne skręcanie Rozpatrujemy

Bardziej szczegółowo

PROJEKT METODA ELEMENTÓW SKOŃCZONYCH

PROJEKT METODA ELEMENTÓW SKOŃCZONYCH Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Mechanika i Budowa Maszyn Informatyzacja i Robotyzacja Wytwarzania Semestr 7 PROJEKT METODA ELEMENTÓW SKOŃCZONYCH Prowadzący: dr hab. Tomasz Stręk

Bardziej szczegółowo

Metody modelowania w inżynierii produkcji

Metody modelowania w inżynierii produkcji POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcje do zajęć pracowni specjalistycznej z przedmiotu: Metody modelowania w inżynierii produkcji Kod przedmiotu: KSU02700 O p r a c o w a ł :

Bardziej szczegółowo

M O D E L R U C H U W Y R Z U T N I O K RĘTOWEJ O P I S A N Y P R Z E Z T R A N S F O R M A C J E U K Ł A D Ó W W S P Ó Ł R ZĘ D N Y C H

M O D E L R U C H U W Y R Z U T N I O K RĘTOWEJ O P I S A N Y P R Z E Z T R A N S F O R M A C J E U K Ł A D Ó W W S P Ó Ł R ZĘ D N Y C H ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK LIV NR 3 (194) 213 DO I: 1.564/86889X/186925 Zbigniew Dioa Politechnika Świętokryska Wydiał Mechatroniki i Budowy Masyn, Katedra Technik Komuterowych i Ubrojenia

Bardziej szczegółowo

STALOWE BUDOWNICTWO PRZEMYSŁOWE

STALOWE BUDOWNICTWO PRZEMYSŁOWE WYKŁADY: 1. Wprowadzenie do konstrukcji powłokowych; Zbiorniki stalowe na ciecze i na gazy; rodzaje i podział zbiorników, materiały, obciążenia, metody obliczania i konstruowania. Zbiorniki pionowe na

Bardziej szczegółowo

MODEL MUNDELLA-FLEMINGA

MODEL MUNDELLA-FLEMINGA Danuta Miłasewic Uniwersytet Sceciński MODEL MUNDELLA-FLEMINGA 1. OPIS MODELU MUNDELLA-FLEMINGA Model ten, stworony na pocątku lat seśćdiesiątych XX wieku pre Roberta A. Mundella i Markusa Fleminga, opisuje

Bardziej szczegółowo

Joanna Dulińska Radosław Szczerba Wpływ parametrów fizykomechanicznych betonu i elastomeru na charakterystyki dynamiczne wieloprzęsłowego mostu żelbetowego z łożyskami elastomerowymi Impact of mechanical

Bardziej szczegółowo

16. 16. Badania materiałów budowlanych

16. 16. Badania materiałów budowlanych 16. BADANIA MATERIAŁÓW BUDOWLANYCH 1 16. 16. Badania materiałów budowlanych 16.1 Statyczna próba ściskania metali W punkcie 13.2 opisano statyczną próbę rozciągania metali plastycznych i kruchych. Dla

Bardziej szczegółowo

Rodzaje obciążeń, odkształceń i naprężeń

Rodzaje obciążeń, odkształceń i naprężeń Rodzaje obciążeń, odkształceń i naprężeń 1. Podział obciążeń i odkształceń Oddziaływania na konstrukcję, w zależności od sposobu działania sił, mogą być statyczne lun dynamiczne. Obciążenia statyczne występują

Bardziej szczegółowo

Symulacja komputerowa redukcji naprężeń w układzie mechanicznym SPIS TREŚCI. 2.2. Prawo Hooke a...5. 2.4. Podstawowe równania ruchu..

Symulacja komputerowa redukcji naprężeń w układzie mechanicznym SPIS TREŚCI. 2.2. Prawo Hooke a...5. 2.4. Podstawowe równania ruchu.. SPIS TREŚCI 1. Wstęp.....2 2. Równania naprężeń i odkształceń..4 2.1. Analiza stanu naprężeń i odkształceń. 4 2.2. Prawo Hooke a...5 2.3. Uogólnione prawo Hooke a dla trójosiowego stanu naprężeń....5 2.4.

Bardziej szczegółowo

ĆWICZENIE Nr 1. Laboratorium CAD/MES. Przedmiot: Modelowanie właściwości materiałów. Opracował: dr inż. Hubert Dębski

ĆWICZENIE Nr 1. Laboratorium CAD/MES. Przedmiot: Modelowanie właściwości materiałów. Opracował: dr inż. Hubert Dębski POLITECHNIKA LUBELSKA WYDZIAŁ MECHANICZNY KATEDRA PODSTAW KON- STRUKCJI MASZYN Przedmiot: Modelowanie właściwości materiałów Laboratorium CAD/MES ĆWICZENIE Nr 1 Opracował: dr inż. Hubert Dębski I. Temat

Bardziej szczegółowo

ROZKŁAD BŁĘDÓW PRZY PROJEKTOWANIU POŚREDNIEGO OŚWIETLENIA ELEKTRYCZNEGO ZA POMOCĄ OPRAW KWADRATOWYCH

ROZKŁAD BŁĘDÓW PRZY PROJEKTOWANIU POŚREDNIEGO OŚWIETLENIA ELEKTRYCZNEGO ZA POMOCĄ OPRAW KWADRATOWYCH Andrej PAWLAK Krystof ZAREMBA ROZKŁAD BŁĘDÓW PRZY PROJEKTOWANIU POŚREDNIEGO OŚWIETLENIA ELEKTRYCZNEGO ZA POMOCĄ OPRAW KWADRATOWYCH STRESZCZENIE W wielkoowierchniowych instalacjach oświetlenia ośredniego

Bardziej szczegółowo

DryLin T System prowadnic liniowych

DryLin T System prowadnic liniowych DrLin T Sstem prowadnic liniowch Prowadnice liniowe DrLin T ostał opracowane do astosowań wiąanch automatką i transportem materiałów. Chodiło o stworenie wdajnej, beobsługowej prowadnic liniowej do astosowania

Bardziej szczegółowo

Z-ZIP2-303z Zagadnienia optymalizacji Problems of optimization

Z-ZIP2-303z Zagadnienia optymalizacji Problems of optimization KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 0/03 Z-ZIP-303z Zagadnienia optymalizacji Problems of optimization A. USYTUOWANIE

Bardziej szczegółowo

Autor Tomasz Daniek, promotor Cyprian T. Lachowicz

Autor Tomasz Daniek, promotor Cyprian T. Lachowicz Autor Tomasz Daniek, promotor Cyprian T. Lachowicz 5. NUMERYCZNA ANALIZA PŁYTY SITOWEJ 5.1 Wprowadzenie. Model geometryczny oraz obliczenia wykonane zostały za pomocą interaktywnego i darmowego programu

Bardziej szczegółowo

PRZEZNACZENIE I OPIS PROGRAMU

PRZEZNACZENIE I OPIS PROGRAMU PROGRAM ZESP1 (12.91) Autor programu: Zbigniew Marek Michniowski Program do analizy wytrzymałościowej belek stalowych współpracujących z płytą żelbetową. PRZEZNACZENIE I OPIS PROGRAMU Program służy do

Bardziej szczegółowo

1. Płyta: Płyta Pł1.1

1. Płyta: Płyta Pł1.1 Plik: Płyta Pł1.1.rtd Projekt: Płyta Pł1.1 1. Płyta: Płyta Pł1.1 1.1. Zbrojenie: Typ : Przedszk Kierunek zbrojenia głównego : 0 Klasa zbrojenia głównego : A-III (34GS); wytrzymałość charakterystyczna =

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Mechanika i Budowa Maszyn Grupa M2 Semestr V Metoda Elementów Skończonych prowadzący: dr hab. T. Stręk, prof. nadzw. wykonawcy: Grzegorz Geisler

Bardziej szczegółowo

gruntów Ściśliwość Wytrzymałość na ścinanie

gruntów Ściśliwość Wytrzymałość na ścinanie Właściwości mechaniczne gruntów Ściśliwość Wytrzymałość na ścinanie Ściśliwość gruntów definicja, podstawowe informacje o zjawisku, podstawowe informacje z teorii sprężystości, parametry ściśliwości, laboratoryjne

Bardziej szczegółowo

Wycena europejskiej opcji kupna model ciągły

Wycena europejskiej opcji kupna model ciągły Henyk Kogie Uniesytet ceciński Wycena euopejskiej opcji kupna model ciągły tescenie elem tego atykułu jest ukaanie paktycnego ykoystania metody matyngałoej dla pocesó ciągłych do yceny euopejskiej opcji

Bardziej szczegółowo

Rys. 29. Schemat obliczeniowy płyty biegowej i spoczników

Rys. 29. Schemat obliczeniowy płyty biegowej i spoczników Przykład obliczeniowy schodów wg EC-2 a) Zebranie obciąŝeń Szczegóły geometryczne i konstrukcyjne przedstawiono poniŝej: Rys. 28. Wymiary klatki schodowej w rzucie poziomym 100 224 20 14 9x 17,4/28,0 157

Bardziej szczegółowo

EPSTAL stal zbrojeniowa o wysokiej ciągliwości. Badanie ustroju płytowosłupowego w sytuacji wystąpienia katastrofy postępującej.

EPSTAL stal zbrojeniowa o wysokiej ciągliwości. Badanie ustroju płytowosłupowego w sytuacji wystąpienia katastrofy postępującej. EPSTAL stal zbrojeniowa o wysokiej ciągliwości. Badanie ustroju płytowosłupowego w sytuacji wystąpienia katastrofy postępującej. mgr inż. Hanna Popko Centrum Promocji Jakości Stali Certyfikat EPSTAL EPSTALto

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA WYDZIAŁ ELEKTRYCZNY KATEDRA MECHATRONIKI

POLITECHNIKA ŚLĄSKA WYDZIAŁ ELEKTRYCZNY KATEDRA MECHATRONIKI - POLITECHNIKA ŚLĄSKA WYDZIAŁ ELEKTRYCZNY KATEDRA MECHATRONIKI Instrukcja do ćwiczenia laboratoryjnego Przedmiot: KONSTRUOWANIE I PROJEKTOWANIE URZĄDZEŃ Symbol ćwiczenia: Ćwiczenie 8 PRZYKŁADOWY PROJEKT

Bardziej szczegółowo

KARTA PRZEDMIOTU. Zarządzanie i marketing R.C17

KARTA PRZEDMIOTU. Zarządzanie i marketing R.C17 KARTA PRZEDMIOTU 1. Informacje ogólne Nawa predmiotu i kod (wg planu studiów): Kierunek studiów: Poiom kstałcenia: Profil kstałcenia: Forma studiów: Obsar kstałcenia: Koordynator predmiotu: Prowadący predmiot:

Bardziej szczegółowo