A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, (10 4 )! 2!(10 4 3)! 3!(104 3)!

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)!"

Transkrypt

1 Wstęp do rachunku prawdopodobieństwa i statystyki matematycnej MAP037 wykład dr hab. A. Jurlewic WPPT Fiyka, Fiyka Technicna, I rok, II semestr Prykłady - Lista nr : Prestreń probabilistycna. Prawdopodobieństwo klasycne. Prawdopodobieństwo geometrycne.. Hasło potrebne do uyskania połącenia w sieci komputerowej składa się jednej cyfry i następnie pięciu dużych liter alfabetu angielskiego. Znaleźć prawdopodobieństwo, że osoba postronna odgadnie hasło, jeśli wiadomo, że cyfra jest nieparysta, a wśród liter są dokładnie try litery E. Ω = {(c, l,..., l ), gdie c {, 3,, 7, 9}, l i to duże litery, dokładnie 3 wśród nich to E}, F = Ω, P - prawdopodobieństwo klasycne. #Ω = () 3 () = 30, bo jest możliwości wyboru cyfry, ( ) 3 możliwości wyboru miejsc na E, (6 ) możliwości wyboru liter innych niż E na każde dwóch poostałych miejsc darenie, że osoba postronna odgadnie hasło, A = {właściwe hasło}, #A = #Ω = 0, Użytkownik karty kredytowej używa cterocyfrowego hasła dostępu. Bankomat blokuje kartę, gdy po ra treci hasło ostanie nieprawidłowo podane. Jakie jest prawdopodobieństwo, że łodiej karty dostanie się na nase konto nie nając hasła? Ω = {{h, h, h 3 }, gdie h i to try różne hasła spośród 0 możliwych haseł}. F = Ω, P - prawdopodobieństwo klasycne. A = {dostęp do konta} = {{właściwe hasło,h, h 3 }} #Ω = ( ) ( ) 0 3, #A = 0. #Ω = (0 )!!(0 3)! 3!(0 3)! (0 )! = 0, Drewniany seścian, którego wsystkie boki są pomalowane na niebiesko, ropiłowano na 6 = 3 jednakowej wielkości mniejse seścianiki. Seścianiki te dokładnie wymiesano, następnie wylosowano 0 nich. Jakie jest prawdopodobieństwo, że dokładnie jeden wylosowanych seścianików będie miał 3 niebieskie ściany? Odpowiedź uasadnić. Ω = {{s,..., s 0 }, gdie s i to różne seścianiki spośród 6 możliwych} F = Ω, P - prawdopodobieństwo klasycne. A = {dokładnie jeden narożny} = {{narożny,s,..., s 0 }, gdie s i nie są narożne} #Ω = ( ( ) 6 0), #A = 8 6 )( 9 #Ω = ,. 679

2 . Niech Ω = {ω n, n =,,...}. Weźmy ciąg p n = c n, n =,,..., gdie > jest ustalone. Dobrać stałą c tak, aby ciąg (p n ) określał prawdopodobieństwo P na biore Ω tak, że p n = P ({ω n }). Oblicyć P ({ω,..., ω 0 }). p n 0 dla każdego n wtedy i tylko wtedy, gdy c 0 p n = c ( ) n = c n= n= = c = wtedy i tylko wtedy, gdy c = 0 Oba warunki na ciąg określający prawdopodobieństwo na Ω są spełnione dla c = P ({ω,..., ω 0 }) = 0 p n = 0 ( ) ( ) n = ( ) n= n= ( ) 0 ( ) 0 = Uwaga: Korystamy tu e woru na sumę ciągu geometrycnego: q n N = lim q n q N+ = lim = dla < q < n=0 N n=0 N q q (Tutaj 0 < q = < ). Rucamy monetą tak długo, aż upadnie dwa ray pod rąd na tę samą stronę. Określić Ω i P odpowiadające temu eksperymentowi dla monety symetrycnej. Oblicyć prawdopodobieństwo, że wykonamy mniej niż 7 i więcej niż ruty. Ω = {OO, ROO, OROO,...} {RR, ORR, RORR,...}, F = Ω, p n,o = P (n rutów+oo) = ( ) n+, pn,r = P (n rutów+rr) = ( dla monety symetrycnej. ) n+ Prestreń probabilistycna jest dobre określona, bo p n,o, p n,r 0 dla dowolnego n ora (p n,o + p n,r ) = ( ) n = n=0 n=0 =. P (mniej niż 7 i więcej niż ruty) = P ( 3,, lub 6 rutów) = (p n,o + p n,r ) = n= 3 (ilość rutów= n + ). 6. Oblicyć prawdopodobieństwo tego, że wybrany losowo punkt kwadratu x <, y < leży na ewnątr koła x + y <. Ω = {(x, y) : x <, y < } - kwadrat, F to borelowskie podbiory Ω, P - prawdopod. geometrycne. A = {(x, y) : x + y < } - koło. P (A c ) = P (A) = pole A pole Ω = π 6 0, A c A Ω

3 Prykłady - Lista nr : Prawdopodobieństwo warunkowe. Twierdenie o prawdopodobieństwie całkowitym. Wór Bayesa. Schemat Bernoulliego.. Pewna choroba jest obecna w 0,0% populacji. Opracowano test, który daje wynik dodatni u 90% chorych i u % drowych. Jakie jest prawdopodobieństwo tego, że pacjent wynikiem dodatnim jest drowy? Cy ma on powody do obaw? Wprowadamy onacenia: A - darenie, że test daje wynik dodatni; B - darenie, że pacjent jest chory. Sukamy P (B c A). Ze woru Bayesa P (B c A) = P (A Bc )P (B c ) P (A) Mamy P (B) = 0, 000 = P (B c ); P (A B) = 0, 9; P (A B c ) = 0, 0. Zatem P (A) = P (A B)P (B) + P (A B c )P (B c ) = 0, 0008 tw. o prawdop. całkowitym. ora P (B c 0, 0( 0, 000) A) = 0, 998 0, 0008 Wniosek: Test w istocie nie wykrywa choroby, bo pacjent wynikiem dodatnim jest drowy na ponad 99% i racej nie ma powodów do obaw.. Wykonujemy pomiary trema pryrądami, których jeden jest nieco roregulowany. Pry wykonywaniu pomiaru sprawnym pryrądem prawdopodobieństwo otrymania błędu pomiaru prewyżsającego tolerancję, wynosi 0,03; prawdopodobieństwo to dla pryrądu niesprawnego wynosi 0,3. Znaleźć prawdopodobieństwo tego, że wynik pomiaru losowo więtym pryrądem: (a) prewyżsa tolerancję; (b) jest wykonany nie w pełni sprawnym pryrądem, jeżeli wynik ten prewyżsa tolerancję. Wprowadamy onacenia: A - darenie, że błąd pomiaru prewyżsa tolerancję; B - darenie, że pryrąd jest sprawny. Mamy P (B) = 3 = P (Bc ), P (A B) = 0, 03; P (A B c ) = 0, 3. Ad. (a) Z tw. o prawd. całkowitym P (A) = P (A B)P (B) + P (A B c )P (B c ) = 0,. Ad. (b) Ze woru Bayesa P (B c A) = P (A Bc )P (B c ) P (A) = 6 0, 83. 3

4 3. W pewnym teleturnieju a jednymi trech amkniętych drwi najduje się samochód, a a poostałymi dwoma koy. Prowadący grę wie, które drwi kryją samochód. Grac wskauje na jedne drwi, prowadący otwiera jedne poostałych odkrywając koę i następnie pyta graca, które amkniętych drwi otworyć (tn. cy grac mienia wybór, cy nie). Jeżeli grac wskaże na odpowiednie drwi, wygrywa samochód. Powiedmy, że grac wskaał na pocątku na drwi nr, a prowadący grę otworył drwi nr 3 koą. Cy gracowi opłaca się mienić decyję i wskaać na drwi nr? Odpowiedź uasadnić. Wprowadamy onacenia: A i - darenie, że samochód jest a drwiami nr i, B i - darenie, że prowadący otworył drwi nr i, i =,, 3 Mamy P (A i ) = 3, P (B 3 A ) =, P (B 3 A ) =, P (B 3 A 3 ) = 0. Stąd P (B 3 ) = 3 P (B 3 A i )P (A i ) = tw. o prawdop. całkowitym, i= i e woru Bayesa P (A B 3 ) = P (B 3 A )P (A ) = P (B 3 ) 3 ora P (A B 3 ) = P (B 3 A )P (A ) = P (B 3 ) 3 Wniosek: Gracowi opłaca się mienić decyję, bo więksa swoją sansę na wygraną.. Wiadomo, że % skrynek pomarańcy psuje się w casie transportu. Z transportu w sposób losowy pobiera się 0 skrynek i transport ten jest odrucany, gdy więcej niż 0% badanych skrynek awiera popsute owoce. Jakie jest prawdopodobieństwo odrucenia transportu? Model: schemat Bernoulliego, sukces-wybranie skrynki popsutymi owocami, p = 0, 0 (%), n = 0. Niech X onaca ilość skrynek popsutymi owocami wśród 0 badanych. X pryjmuje wartości k = 0,,..., 0 prawdopodob. p k = P (X = k) = ( ) 0 k (0, 0) k ( 0, 0) 0 k. Transport jest odrucany, gdy X > 0% 0 =. Prawdop. odrucenia transportu wynosi atem P (X > ) = P (X = 0) P (X = ) = = ( ) 0 0 (0, 0) 0 ( 0, 0) 0 ( ) 0 (0, 0) ( 0, 0) 9 0, 003.

5 . Rucamy symetrycną kostką tak długo aż wypadnie 6. Niech X onaca licbę wykonanych rutów. Jakie są możliwe wartości X i jakim prawdopodobieństwem pryjmuje każdą nich? Wynacyć prawdopodobieństwo, że będie potrebna parysta licba rutów. Model: schemat Bernoulliego, sukces-wypadła sóstka, p = 6. X to cas ocekiwania na pierwsy sukces, który pryjmuje wartości k =,,... prawdopodobieństwami p k = P (X = k) = ( ) k 6 = ( ) k. 6 6 Prawdopodobieństwo, że będie potrebna parysta licba rutów, wynosi P (X paryste) = p k = ( ) l 6 = 0,. k paryste (Uwaga: jest ono różne od 0,). l= 6. Gra polega na arucaniu krążków na kołek. Grac otrymuje ich seść i ruca je aż do pierwsego celnego rutu. Oblicyć prawdopodobieństwo, że po aruceniu krążka ostanie gracowi jesce co najmniej jeden krążek, jeżeli prawdopodobieństwo trafienia na kołek pry każdym rucie wynosi 0,. Model: schemat Bernoulliego, sukces-trafienie na kołek, p = 0,. Wyobraźmy sobie, że mamy nieograniconą licbę krążków, i onacmy pre Y cas ocekiwania na pierwse trafienie. Y pryjmuje wartości k =,,... prawdop. p k = P (Y = k) = 0, ( 0, ) k. Gracowi ostanie co najmniej jeden krążek, gdy Y. Sukane prawdopod. wynosi atem P (Y ) = p k = 0, (0, 9) k = (0, 9) 0,. k= k=

W takim modelu prawdopodobieństwo konfiguracji OR wynosi. 0, 21 lub , 79. 6

W takim modelu prawdopodobieństwo konfiguracji OR wynosi. 0, 21 lub , 79. 6 achunek prawdopodobieństwa MP6 Wydiał Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab.. Jurlewic Prykłady do listy : Prestreń probabilistycna. Prawdopodobieństwo klasycne. Prawdopodobieństwo

Bardziej szczegółowo

W takim modelu prawdopodobieństwo konfiguracji OR wynosi. 0, 21 lub , 79. 6

W takim modelu prawdopodobieństwo konfiguracji OR wynosi. 0, 21 lub , 79. 6 Rachunek prawdopodobieństwa MAP5 Wydział Elektroniki, rok akad. /, sem. letni Wykładowca: dr hab. A. Jurlewicz Przykłady do listy : Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo

Bardziej szczegółowo

Rachunek prawdopodobieństwa MAP1064 Wydział Elektroniki, rok akad. 2008/09, sem. letni Wykładowca: dr hab. A. Jurlewicz

Rachunek prawdopodobieństwa MAP1064 Wydział Elektroniki, rok akad. 2008/09, sem. letni Wykładowca: dr hab. A. Jurlewicz Rachunek prawdopodobieństwa MAP064 Wydział Elektroniki, rok akad. 08/09, sem. letni Wykładowca: dr hab. A. Jurlewicz Przykłady do listy 7: Zmienne losowe dyskretne. Rozkłady Bernoulliego dwumianowy), Pascala,

Bardziej szczegółowo

2015-01-15. Edycja pierwsza 2014/1015. dla kierunku fizyka medyczna, I rok, studia magisterskie

2015-01-15. Edycja pierwsza 2014/1015. dla kierunku fizyka medyczna, I rok, studia magisterskie 05-0-5. Opis różnicę pomiędy błędem pierwsego rodaju a błędem drugiego rodaju Wyniki eksperymentu składamy w dwie hipotey statystycne: H0 versus H, tak, by H0 odrucić i pryjąć H. Jeśli decydujemy, że pryjmujemy

Bardziej szczegółowo

A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)!

A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)! Rachunek prawdopodobieństwa MAP34, WPPT/FT, wykład dr hab. A. Jurlewicz Przykłady - Lista nr : Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo geometryczne.. Hasło potrzebne

Bardziej szczegółowo

Rachunek Prawdopodobieństwa MAP1064, 2008/09

Rachunek Prawdopodobieństwa MAP1064, 2008/09 1 Rachunek Prawdopodobieństwa MAP1064, 2008/09 Wydział Elektroniki Wykładowca: dr hab. Agnieszka Jurlewicz Listy zadań nr 4-6 Opracowanie: dr hab. Agnieszka Jurlewicz Literatura: [1] A. Plucińska, E. Pluciński,

Bardziej szczegółowo

Lista 1. Prawdopodobieństwo klasyczne i geometryczne

Lista 1. Prawdopodobieństwo klasyczne i geometryczne Metody statystyczne. Lista 1. 1 Lista 1. Prawdopodobieństwo klasyczne i geometryczne 1. Jakie jest prawdopodobieństwo, że (a) z talii zawierającej 52 karty wybierzemy losowo asa? (b) z talii zawierającej

Bardziej szczegółowo

Metody dokładne w zastosowaniu do rozwiązywania łańcuchów Markowa

Metody dokładne w zastosowaniu do rozwiązywania łańcuchów Markowa Metody dokładne w astosowaniu do rowiąywania łańcuchów Markowa Beata Bylina, Paweł Górny Zakład Informatyki, Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej Plac Marii Curie-Skłodowskiej 5, 2-31

Bardziej szczegółowo

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego.

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego. Transformator Φ r Φ M Φ r i i u u Φ i strumień magnetycny prenikający pre i-ty wój pierwsego uwojenia; siła elektromotorycna indukowana w i-tym woju: dφ ei, licba wojów uwojenia pierwotnego i wtórnego.

Bardziej szczegółowo

Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona.

Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona. Wykład - LICZBY ZESPOLONE Algebra licb espolonych, repreentacja algebraicna i geometrycna, geometria licb espolonych. Moduł, argument, postać trygonometrycna, wór de Moivre a.' Zbiór Licb Zespolonych Niech

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Lista 1a 1. Statystyka. Lista 1. Prawdopodobieństwo klasyczne i geometryczne

Lista 1a 1. Statystyka. Lista 1. Prawdopodobieństwo klasyczne i geometryczne Lista 1a 1 Statystyka Lista 1. Prawdopodobieństwo klasyczne i geometryczne 1. Jakie jest prawdopodobieństwo, że (a) z talii zawierającej 52 karty wybierzemy losowo asa? (b) z talii zawierającej 52 karty

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. 3.1 Prawdopodobieństwo warunkowe Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2016/2017 Przykład 1 Alicja

Bardziej szczegółowo

Prawdopodobieństwo

Prawdopodobieństwo Prawdopodobieństwo http://www.matemaks.pl/ Wstęp do rachunku prawdopodobieństwa http://www.matemaks.pl/wstep-do-rachunku-prawdopodobienstwa.html Rachunek prawdopodobieństwa pomaga obliczyć szansę zaistnienia

Bardziej szczegółowo

Prawdopodobieństwo zadania na sprawdzian

Prawdopodobieństwo zadania na sprawdzian Prawdopodobieństwo zadania na sprawdzian Zad. 1. Zdarzenia A, B, C oznaczają, że wzięto co najmniej po jednej książce odpowiednio z pierwszych, drugich i trzecich dzieł zebranych. Każde z dzieł zebranych

Bardziej szczegółowo

Zdarzenia losowe i prawdopodobieństwo

Zdarzenia losowe i prawdopodobieństwo Rozdział 1 Zdarzenia losowe i prawdopodobieństwo 1.1 Klasyfikacja zdarzeń Zdarzenie elementarne pojęcie aprioryczne, które nie może być zdefiniowane. Odpowiednik pojęcia punkt w geometrii. Zdarzenie elementarne

Bardziej szczegółowo

Wykład 4: Fraktale deterministyczne i stochastyczne

Wykład 4: Fraktale deterministyczne i stochastyczne Wykład 4: Fraktale deterministycne i stochastycne Fiyka komputerowa 005 Kataryna Weron, kweron@ift.uni.wroc.pl Co to jest fraktal? Złożona budowa dowolnie mały jego fragment jest równie skomplikowany jak

Bardziej szczegółowo

c) ( 13 (1) (2) Zadanie 2. Losując bez zwracania kolejne litery ze zbioru AAAEKMMTTY, jakie jest prawdopodobieństwo Odp.

c) ( 13 (1) (2) Zadanie 2. Losując bez zwracania kolejne litery ze zbioru AAAEKMMTTY, jakie jest prawdopodobieństwo Odp. Zadania na kolokwium nr Zadanie. Spośród kart w tali wylosowano. Jakie jest prawdopodobieństwo: pików, kierów, trefli i karo otrzymania wszystkich kolorów otrzymania dokładnie pików a ( b ( ( c ( ( ( (

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω)

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω) ZADANIA - ZESTAW 1 Zadanie 1.1 Rzucamy trzy razy monetą. A i - zdarzenie polegające na tym, że otrzymamy orła w i - tym rzucie. Określić zbiór zdarzeń elementarnych. Wypisać zdarzenia elementarne sprzyjające

Bardziej szczegółowo

Rachunek prawdopodobieństwa

Rachunek prawdopodobieństwa Rachunek prawdopodobieństwa W poniższym zadaniu wykorzystać następujące własności: P (A B = P (A + P (B P (A B, P (A \ B = P (A P (A B. 1. Przy podanych prawdopodobieństwach obliczyć prawdopodobieństwa

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 4 Prawdopodobieństwo całkowite i twierdzenie Bayesa. Drzewko stochastyczne. Schemat Bernoulliego. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 2 Klasyczna definicja prawdopodobieństwa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Według klasycznej

Bardziej szczegółowo

p k (1 p) n k. k c. dokładnie 10 razy została wylosowana kula amarantowa, ale nie za pierwszym ani drugim razem;

p k (1 p) n k. k c. dokładnie 10 razy została wylosowana kula amarantowa, ale nie za pierwszym ani drugim razem; 05DRAP - Niezależność zdarzeń, schemat Bernoulliego Definicja.. Zdarzenia A i B nazywamy niezależnymi, jeżeli zachodzi równość P(A B) = P(A) P(B). Definicja. 2. Zdarzenia A,..., A n nazywamy niezależnymi

Bardziej szczegółowo

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas: ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań

Bardziej szczegółowo

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE . Oblicyć: ZADANIA Z FUNKCJI ANALITYCZNYCH a) ( 7i) ( 9i); b) (5 i)( + i); c) 4+3i ; LICZBY ZESPOLONE d) 3i 3i ; e) pierwiastki kwadratowe 8 + i.. Narysować biór tych licb espolonych, które spełniają warunek:

Bardziej szczegółowo

Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w

Bardziej szczegółowo

{( ) ( ) ( ) ( )( ) ( )( ) ( RRR)

{( ) ( ) ( ) ( )( ) ( )( ) ( RRR) .. KLASYCZNA DEFINICJA PRAWDOPODOBIEŃSTWA Klasyczna definicja prawdopodobieństwa JeŜeli jest skończonym zbiorem zdarzeń elementarnych jednakowo prawdopodobnych i A, to liczbę A nazywamy prawdopodobieństwem

Bardziej szczegółowo

Zastosowanie funkcji inżynierskich w arkuszach kalkulacyjnych zadania z rozwiązaniami

Zastosowanie funkcji inżynierskich w arkuszach kalkulacyjnych zadania z rozwiązaniami Tadeus Wojnakowski Zastosowanie funkcji inżynierskich w arkusach kalkulacyjnych adania rowiąaniami Funkcje inżynierskie występują we wsystkich arkusach kalkulacyjnych jak Excel w MS Office Windows cy Gnumeric

Bardziej szczegółowo

DODATKOWA PULA ZADAŃ DO EGZAMINU. Rozważmy ciąg zdefiniowany tak: s 0 = a. s n+1 = 2s n +b (dla n=0,1,2 ) Pokaż, że s n = 2 n a +(2 n =1)b

DODATKOWA PULA ZADAŃ DO EGZAMINU. Rozważmy ciąg zdefiniowany tak: s 0 = a. s n+1 = 2s n +b (dla n=0,1,2 ) Pokaż, że s n = 2 n a +(2 n =1)b DODATKOWA PULA ZADAŃ DO EGZAMINU Rozważmy ciąg zdefiniowany tak: s 0 = a s n+1 = 2s n +b (dla n=0,1,2 ) Pokaż, że s n = 2 n a +(2 n =1)b Udowodnij, że liczba postaci 5 n+1 +2 3 n +1 jest podzielna przez

Bardziej szczegółowo

P (A B) P (B) = 1/4 1/2 = 1 2. Zakładamy, że wszystkie układy dwójki dzieci: cc, cd, dc, dd są jednakowo prawdopodobne.

P (A B) P (B) = 1/4 1/2 = 1 2. Zakładamy, że wszystkie układy dwójki dzieci: cc, cd, dc, dd są jednakowo prawdopodobne. Wykład Prawdopodobieństwo warunkowe Dwukrotny rzut symetryczną monetą Ω {OO, OR, RO, RR}. Zdarzenia: Awypadną dwa orły, Bw pierwszym rzucie orzeł. P (A) 1 4, 1. Jeżeli już wykonaliśmy pierwszy rzut i wiemy,

Bardziej szczegółowo

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A) Wykład 3 Niezależność zdarzeń, schemat Bernoulliego Kiedy dwa zdarzenia są niezależne? Gdy wiedza o tym, czy B zaszło, czy nie, NIE MA WPŁYWU na oszacowanie prawdopodobieństwa zdarzenia A: P (A B) = P

Bardziej szczegółowo

Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym

Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym Edward Stachowski Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym W podstawie programowej obowiązującej na egzaminie maturalnym od 05r pojawiły się nowe treści programowe Wśród

Bardziej szczegółowo

Wielokryteriowa optymalizacja liniowa (WPL)

Wielokryteriowa optymalizacja liniowa (WPL) arek isyński BO UŁ 007 - Wielokryteriowa optymaliaja liniowa (WPL) -. Wielokryteriowa optymaliaja liniowa (WPL) Zadaniem WPL naywamy następująe adanie optymaliaji liniowej: a a m L O L L O L L a a n n

Bardziej szczegółowo

Laboratorium nr 1. Kombinatoryka

Laboratorium nr 1. Kombinatoryka Laboratorium nr 1. Kombinatoryka 1. Spośród n różnych elementów wybieramy k elementów. Na ile sposobów możemy to uczynić? Wypisać wszystkie możliwe wybory w przypadku gdy n=3 i k=2. Wykonać obliczenia

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA

RACHUNEK PRAWDOPODOBIEŃSTWA RACHUNEK PRAWDOPODOBIEŃSTWA Zadanie 1. W urnie jest 1000 kartoników będących losami loterii pieniężnej. Cztery z kartoników wygrywają po 100 zł i szesnaście po 10 zł. Reszta kartoników to losy puste. Pierwszy

Bardziej szczegółowo

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2 Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Prawdopodobieństwo geometryczne

Bardziej szczegółowo

Magdalena Nowikiewicz

Magdalena Nowikiewicz 1 Magdalena Nowikiewic ZAWARTOŚĆ WITAMINY C W MALINACH (Rubus idaeus L.) ODMIANY POLANA W ZALEŻNOŚCI OD SPOSOBU, CZASU I TEMPERATURY PRZECHOWYWANIA ORAZ W OGÓRKACH (Cucumis dativus L.) ODMIANY KRAK F 1

Bardziej szczegółowo

ORGANIZACJA I ZARZĄDZANIE

ORGANIZACJA I ZARZĄDZANIE P O L I T E C H N I K A W A R S Z A W S K A WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ ORGANIZACJA I ZARZĄDZANIE Optymaliacja transportu wewnętrnego w akładie mechanicnym

Bardziej szczegółowo

Statystyka Astronomiczna

Statystyka Astronomiczna Statystyka Astronomiczna czyli zastosowania statystyki w astronomii historycznie astronomowie mieli wkład w rozwój dyscypliny Rachunek prawdopodobieństwa - gałąź matematyki Statystyka - metoda oceny właściwości

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne 1. Prawdopodobieństwo klasyczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 03.10.2017 1 / 19 Rys historyczny Francja, XVII w.: gry hazardowe

Bardziej szczegółowo

dr Jarosław Kotowicz 29 października Zadania z wykładu 1

dr Jarosław Kotowicz 29 października Zadania z wykładu 1 Rachunek prawdopodobieństwa - ćwiczenia czwarte Schematy rachunku prawdopodobieństwa. Prawdopodobieństwo geometryczne. kierunek: informatyka i ekonometria I dr Jarosław Kotowicz 29 października 20 Spis

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

Wykład 11: Podstawowe pojęcia rachunku prawdopodobieństwa

Wykład 11: Podstawowe pojęcia rachunku prawdopodobieństwa Wykład : Podstawowe pojęcia rachunku prawdopodobieństwa dr Mariusz Grządziel 3 maja 203 Doświadczenie losowe Doświadczenie nazywamy losowym, jeśli: może być powtarzane (w zasadzie) w tych samych warunkach;

Bardziej szczegółowo

Wybrane treści z rachunku prawdopodobieństwa w kontekście medycznym. M.Zalewska

Wybrane treści z rachunku prawdopodobieństwa w kontekście medycznym. M.Zalewska Wybrane treści z rachunku prawdopodobieństwa w kontekście medycznym M.Zalewska Podstawowe pojęcia Doświadczenie losowe obserwacja zjawiska, którego przebiegu nie umiemy w pełni przewidzieć. Możemy oceniać

Bardziej szczegółowo

Moneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( )

Moneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( ) Nowa matura kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Doświadczenie losowe polega na rzucie dwiema symetrycznymi monetami i sześcienną kostką do gry. Prawdopodobieństwo

Bardziej szczegółowo

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne.

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne. Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Strukturalne element smetrii. Krstalograficne grup prestrenne. god. Cel ćwicenia: aponanie się diałaniem elementów smetrii

Bardziej szczegółowo

= A. A - liczba elementów zbioru A. Lucjan Kowalski

= A. A - liczba elementów zbioru A. Lucjan Kowalski Lucjan Kowalski ZADANIA, PROBLEMY I PARADOKSY W PROBABILISTYCE Przypomnienie. Ω - zbiór zdarzeń elementarnych. A zdarzenie (podzbiór Ω). A - liczba elementów zbioru A Jeśli zdarzeń elementarnych jest skończenie

Bardziej szczegółowo

Zmienna losowa (wygrana w pojedynczej grze): (1, 0.5), ( 1, 0.5)

Zmienna losowa (wygrana w pojedynczej grze): (1, 0.5), ( 1, 0.5) Przykład 0. Gra polega na jednokrotnym rzucie symetryczną monetą, przy czym wygrywamy 1 jeżeli wypadnie orzeł oraz przegrywamy 1 jeżeli wypadnie reszka. Nasz początkowy kapitał wynosi 5. Jakie jest prawdopodobieństwo,

Bardziej szczegółowo

i=7 X i. Zachodzi EX i = P(X i = 1) = 1 2, i {1, 2,..., 11} oraz EX ix j = P(X i = 1, X j = 1) = 1 7 VarS 2 2 = 14 3 ( 5 2 =

i=7 X i. Zachodzi EX i = P(X i = 1) = 1 2, i {1, 2,..., 11} oraz EX ix j = P(X i = 1, X j = 1) = 1 7 VarS 2 2 = 14 3 ( 5 2 = Kombinatoryka W tej serii zadań można znaleźć pojawiające się na egzaminach zadania dotyczące problemu wyznaczania prostych parametrów rozkładu w przypadku zgadnień kombinatorycznych. Zadania te wymagają

Bardziej szczegółowo

Rzucamy dwa razy sprawiedliwą, sześcienną kostką do gry. Oblicz prawdopodobieństwo otrzymania:

Rzucamy dwa razy sprawiedliwą, sześcienną kostką do gry. Oblicz prawdopodobieństwo otrzymania: Statystyka Ubezpieczeniowa Część 1. Rachunek prawdopodobieństwa: - prawdopodobieństwo klasyczne - zdarzenia niezależne - prawdopodobieństwo warunkowe - prawdopodobieństwo całkowite - wzór Bayesa Schemat

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM. Rok szkolny 2015/16

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM. Rok szkolny 2015/16 WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM Rok skolny 2015/16 POZIOMY WYMAGAŃ EDUKACYJNYCH: (2) - ocena dopscająca (2); (3) - ocena dostatecna (3); (4) - ocena dobra (4);

Bardziej szczegółowo

+ r arcsin. M. Przybycień Rachunek prawdopodobieństwa i statystyka π r x

+ r arcsin. M. Przybycień Rachunek prawdopodobieństwa i statystyka π r x Prawdopodobieństwo geometryczne Przykład: Przestrzeń zdarzeń elementarnych określona jest przez zestaw punktów (x, y) na płaszczyźnie i wypełnia wnętrze kwadratu [0 x 1; 0 y 1]. Znajdź p-stwo, że dowolny

Bardziej szczegółowo

Temat: Statystyka i prawdopodobieństwo w naszym życiu.

Temat: Statystyka i prawdopodobieństwo w naszym życiu. Dla nauczyciela Spotkanie 9 Temat: Statystyka i prawdopodobieństwo w naszym życiu. Na zajęcia potrzebne będą pomoce tzn. kostki do gry, talia kart, monety lub inne. Przy omawianiu doświadczeń losowych

Bardziej szczegółowo

Po co nam statystyka matematyczna? Żeby na podstawie próby wnioskować o całej populacji

Po co nam statystyka matematyczna? Żeby na podstawie próby wnioskować o całej populacji ODSTWY STTYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. opulacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne 6.

Bardziej szczegółowo

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2011 KOD UCZNIA UZUPEŁNIA UCZEŃ PESEL miejsce na naklejkę z kodem E W KLASIE

Bardziej szczegółowo

PROWIZJA I AKORD1 1 2

PROWIZJA I AKORD1 1 2 PROWIZJA I AKORD 1 1 1. Pracodawca może ustalić wynagrodenie w formie prowiji lub akordu. 2. Prowija lub akord mogą stanowić wyłącną formę wynagradania lub występować jako jeden e składników wynagrodenia.

Bardziej szczegółowo

Test na koniec nauki w klasie trzeciej gimnazjum

Test na koniec nauki w klasie trzeciej gimnazjum 3 Przykładowe sprawdziany Test na koniec nauki w klasie trzeciej gimnazjum... imię i nazwisko ucznia...... data klasa Test Liczba x jest wynikiem dodawania liczb + +. Jaki warunek spełnia liczba x? 3 5

Bardziej szczegółowo

P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt.

P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. Lekcja 2 Temat: Podstawowe pojęcia związane z prawdopodobieństwem. Str. 10-21 1. Doświadczenie losowe jest to doświadczenie,

Bardziej szczegółowo

Przestrzeń probabilistyczna

Przestrzeń probabilistyczna Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty

Bardziej szczegółowo

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1 Wszelkie prawa zastrzeżone. Rozpowszechnianie, wypożyczanie i powielanie niniejszych testów w jakiejkolwiek formie surowo zabronione. W przypadku złamania zakazu mają zastosowanie przepisy dotyczące naruszenia

Bardziej szczegółowo

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

Wybrane stany nieustalone transformatora:

Wybrane stany nieustalone transformatora: Wybrane stany nieustalone transformatora: Założenia: - amplituda napięcia na aciskach pierwotnych ma wartość stałą nieależnie od jawisk achodących w transformatore - warcie występuje równoceśnie na wsystkich

Bardziej szczegółowo

ĆWICZENIE 5 BADANIE ZASILACZY UPS

ĆWICZENIE 5 BADANIE ZASILACZY UPS ĆWICZENIE 5 BADANIE ZASILACZY UPS Cel ćwicenia: aponanie budową i asadą diałania podstawowych typów asilacy UPS ora pomiar wybranych ich parametrów i charakterystyk. 5.1. Podstawy teoretycne 5.1.1. Wstęp

Bardziej szczegółowo

Zasady rekrutacji uczniów do I Liceum Ogólnokształcącego im. Tadeusza Kościuszki na rok szkolny 2015/2016

Zasady rekrutacji uczniów do I Liceum Ogólnokształcącego im. Tadeusza Kościuszki na rok szkolny 2015/2016 Zasady rekrutacji ucniów do I Liceum Ogólnokstałcącego im. Tadeusa Kościuski na rok skolny 201/2016 Podstawa prawna: Roporądenie Ministra Edukacji Narodowej i Sportu dnia 20 lutego 2004 roku w sprawie

Bardziej szczegółowo

Ćwiczenie 13. Wyznaczanie ruchliwości i koncentracji nośników prądu w półprzewodnikach metodą efektu Halla. Cel ćwiczenia

Ćwiczenie 13. Wyznaczanie ruchliwości i koncentracji nośników prądu w półprzewodnikach metodą efektu Halla. Cel ćwiczenia Ćwicenie 13 Wynacanie ruchliwości i koncentracji nośników prądu w półprewodnikach metodą efektu alla Cel ćwicenia Celem ćwicenia jest aponanie się e jawiskiem alla, stałoprądowa metoda badania efektu alla,

Bardziej szczegółowo

z czynności komornika za I półrocze 2015 r. przez wyegzekwowanie ogółem (kol.6 do12) z powodu bezskuteczności na żądanie wierzyciela świadczenia

z czynności komornika za I półrocze 2015 r. przez wyegzekwowanie ogółem (kol.6 do12) z powodu bezskuteczności na żądanie wierzyciela świadczenia Okręgowego Apelacja Scecińska Numer identyfikacyjny REGON Diał 1. Ewidencja spraw MINISTERSTWO SPRAWIEDLIWOŚCI, Al. Ujawskie 11, 00-950 Warsawa Komornik Sąwy pry Sądie Rejonowym SR Scecin- MS-Kom23 Centrum

Bardziej szczegółowo

MS-Kom23. MINISTERSTWO SPRAWIEDLIWOŚCI, Al. Ujazdowskie 11, 00-950 Warszawa Komornik Sądowy Komornik Sądowy Agnieszka Bąk-Batowska przy Sądzie

MS-Kom23. MINISTERSTWO SPRAWIEDLIWOŚCI, Al. Ujazdowskie 11, 00-950 Warszawa Komornik Sądowy Komornik Sądowy Agnieszka Bąk-Batowska przy Sądzie sprawy, w których egekwowane kwoty prenacone są na pocet należności tytułu Apelacja Lubelska Numer identyfikacyjny REGON Diał 1. Ewidencja spraw MINISTERSTWO SPRAWIEDLIWOŚCI, Al. Ujawskie 11, 00-950 Warsawa

Bardziej szczegółowo

MS-Kom23 SPRAWOZDANIE Okręg Sądu

MS-Kom23 SPRAWOZDANIE Okręg Sądu Okręgowego Apelacja Białostocka Numer identyfikacyjny REGON Diał 1. Ewidencja spraw MINISTERSTWO SPRAWIEDLIWOŚCI, Al. Ujawskie 11, 00-950 Warsawa Komornik Sąwy pry Sądie Rejonowym SR w Pra- MS-Kom23 SPRAWOZDANIE

Bardziej szczegółowo

z czynności komornika za rok 2015 r. przez wyegzekwowanie ogółem (kol.6 do12) z powodu bezskuteczności na żądanie wierzyciela świadczenia egzekucji

z czynności komornika za rok 2015 r. przez wyegzekwowanie ogółem (kol.6 do12) z powodu bezskuteczności na żądanie wierzyciela świadczenia egzekucji sprawy, w których egekwowane kwoty prenacone są na pocet należności tytułu Okręgowego Apelacja Lubelska Numer identyfikacyjny REGON Diał 1. Ewidencja spraw MINISTERSTWO SPRAWIEDLIWOŚCI, Al. Ujawskie 11,

Bardziej szczegółowo

MS-Kom23 SPRAWOZDANIE Okręg Sądu

MS-Kom23 SPRAWOZDANIE Okręg Sądu Okręgowego Apelacja Białostocka Numer identyfikacyjny REGON Diał 1. Ewidencja spraw MINISTERSTWO SPRAWIEDLIWOŚCI, Al. Ujawskie 11, 00-950 Warsawa Komornik Sąwy pry Sądie Rejonowym SR w Suwałkach MS-Kom23

Bardziej szczegółowo

MS-Kom23 SPRAWOZDANIE Okręg Sądu

MS-Kom23 SPRAWOZDANIE Okręg Sądu Okręgowego Apelacja Resowska Numer identyfikacyjny REGON Diał 1. Ewidencja spraw MINISTERSTWO SPRAWIEDLIWOŚCI, Al. Ujawskie 11, 00-950 Warsawa Komornik Sąwy pry Sądie Rejonowym SR w Łańcucie MS-Kom23 SPRAWOZDANIE

Bardziej szczegółowo

15. Rachunek prawdopodobieństwa mgr A. Piłat, mgr M. Małycha, mgr M. Warda

15. Rachunek prawdopodobieństwa mgr A. Piłat, mgr M. Małycha, mgr M. Warda 1. Każdej karcie bankomatowej jest przypisany numer identyfikacyjny zwany kodem PIN. Kod ten składa się z czterech cyfr(cyfry mogą się powtarzać, ale kodem PIN nie może być 0000). Oblicz prawdopodobieństwo,

Bardziej szczegółowo

Wydział Zarządzania - Rachunek prawdopodobieństwa - Ćwiczenia

Wydział Zarządzania - Rachunek prawdopodobieństwa - Ćwiczenia Arkusz 7 - ZADANIA ELEMENTARNE Z RACHUNKU PRAWDOPODOBIEŃSTWA. SCHEMAT BERNOULLIEGO. PRAWDOPODOBIEŃSTWO WARUNKOWE Zadanie 1. W skład zarządu pewnej firmy wchodzi 17 osób, w tym 6 kobiet. Wśród kobiet dwie

Bardziej szczegółowo

Matematyka podstawowa X. Rachunek prawdopodobieństwa

Matematyka podstawowa X. Rachunek prawdopodobieństwa Matematyka podstawowa X Rachunek prawdopodobieństwa Zadania wprowadzające: 1. Rzucasz trzy razy monetą a) Napisz zbiór wszystkich wyników tego doświadczenia losowego. Ile ich jest? Wyrzuciłeś większą liczbę

Bardziej szczegółowo

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.

Bardziej szczegółowo

z 1 z 1 p 1 _ V 1 5 = z z 1 z 1 5 = Poniewa N t1 = N t2 z por wnania pierwszych cz ci wzor w (1) i (2) wynika: = p 1 36 = 6 bar.

z 1 z 1 p 1 _ V 1 5 = z z 1 z 1 5 = Poniewa N t1 = N t2 z por wnania pierwszych cz ci wzor w (1) i (2) wynika: = p 1 36 = 6 bar. XL OLIMPID WIEDZY TECHNICZNEJ Zawody III stopnia Rowi ania ada dla grupy mechanicno-budowlanej Rowi anie adania d.) Moc teoretycna nap du stopnia I N t _m R T @ p 5 p V _ @ p 5 () Moc teoretycna nap du

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematyczna Anna Janicka wykład IX, 25.04.2016 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Plan na dzisiaj 1. Hipoteza statystyczna 2. Test statystyczny 3. Błędy I-go i II-go rodzaju 4. Poziom istotności,

Bardziej szczegółowo

Wstęp. Kurs w skrócie

Wstęp. Kurs w skrócie Mariola Zalewska Zakład Metod Matematycznych i Statystycznych Zarządzania Wydział Zarządzania Uniwersystet Warszawski I rok DSM Rachunek Prawdopodobieństwa Wstęp Kombinatoryka Niezależność zdarzeń, Twierdzenie

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo

MODEL MUNDELLA-FLEMINGA

MODEL MUNDELLA-FLEMINGA Danuta Miłasewic Uniwersytet Sceciński MODEL MUNDELLA-FLEMINGA 1. OPIS MODELU MUNDELLA-FLEMINGA Model ten, stworony na pocątku lat seśćdiesiątych XX wieku pre Roberta A. Mundella i Markusa Fleminga, opisuje

Bardziej szczegółowo

c) Zaszły oba zdarzenia A i B; d) Zaszło zdarzenie A i nie zaszło zdarzenie B;

c) Zaszły oba zdarzenia A i B; d) Zaszło zdarzenie A i nie zaszło zdarzenie B; Rachunek prawdopodobieństwa rozwiązywanie zadań 1. Rzucamy dwa razy symetryczną sześcienną kostką do gry. Zapisujemy liczbę oczek, jakie wypadły w obu rzutach. Wypisz zdarzenia elementarne tego doświadczenia.

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.1. Zmienne losowe dyskretne. Katarzyna Rybarczyk-Krzywdzińska Definicja/Rozkład Zmienne losowe dyskretne Definicja Zmienną losową, która skupiona

Bardziej szczegółowo

Doświadczenie i zdarzenie losowe

Doświadczenie i zdarzenie losowe Doświadczenie i zdarzenie losowe Doświadczenie losowe jest to takie doświadczenie, które jest powtarzalne w takich samych warunkach lub zbliżonych, a którego wyniku nie można przewidzieć jednoznacznie.

Bardziej szczegółowo

Języki interpretowane Interpreted languages PRZEWODNIK PO PRZEDMIOCIE

Języki interpretowane Interpreted languages PRZEWODNIK PO PRZEDMIOCIE Jęyki interpretowane Interpreted languages Informatyka Stacjonarne IO2_02 Obowiąkowy w ramach specjalności: Inżynieria oprogramowania II stopień Rok: I Semestr: II wykład, laboratorium 1W, 2L 3 ECTS I

Bardziej szczegółowo

,..., u x n. , 2 u x 2 1

,..., u x n. , 2 u x 2 1 . Równania różnickowe cąstkowe Definicja. Równaniem różnickowm cąstkowm (rrc) nawam równanie różnickowe, w którm wstępuje funkcja niewiadoma dwóch lub więcej miennch i jej pochodne cąstkowe. Ogólna postać

Bardziej szczegółowo

Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych

Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydiał Mechanicny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 3 1. CEL ĆWICZENIA Wybrane

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 3 Definicja prawdopodobieństwa Kołmogorowa. Prawdopodobieństwa warunkowe i niezależne. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko

Bardziej szczegółowo

Probabilistyka przykłady

Probabilistyka przykłady Probabilistyka przykłady Przestrzeń zdarzeń Zapisać przestrzeń zdarzeń dla: 1.liczby wygranych gier w serii liczącej trzy gry 2.liczby wizyt u lekarza w ciągu roku 3.ilości czasu (w minutach) od wezwania

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub

RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub 1. W grupie jest 15 kobiet i 18 mężczyzn. Losujemy jedną osobę

Bardziej szczegółowo

Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska)

Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Twierdzenie (o mnożeniu) Podstawowe pojęcia i wzory kombinatoryczne. Niech,, będą zbiorami mającymi odpowiednio,,

Bardziej szczegółowo

Rachunek Prawdopodobieństwa i Statystyka

Rachunek Prawdopodobieństwa i Statystyka Rachunek Prawdopodobieństwa i Statystyka W 2. Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 1 MAJA 2010 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Rozwiazaniem nierówności

Bardziej szczegółowo

Zadania zestaw 1: Zadania zestaw 2

Zadania zestaw 1: Zadania zestaw 2 Zadania zestaw 1: Zadania zestaw 2 Zadania zestaw 3. 1 Rozkład zmiennej losowej skokowej X przedstawia tabela. x i m 0 n p i 0,4 0,3 0,3 a) Wyznacz m i n jeśli: są całkowite, m

Bardziej szczegółowo

3. Podstawowe pojęcia statystyki matematycznej i rachunku prawdopodobieństwa wykład z Populacja i próba

3. Podstawowe pojęcia statystyki matematycznej i rachunku prawdopodobieństwa wykład z Populacja i próba 3. Podstawowe pojęcia statystyki matematycznej i rachunku prawdopodobieństwa wykład z 12.03.2007 Populacja i próba Populacja- zbiorowość skończona lub nieskończona, w stosunku do której mają być formułowane

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. 3.2. Niezależność zdarzeń Katarzyna Rybarczyk-Krzywdzińska Niezależność dwóch zdarzeń Intuicja Zdarzenia losowe

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI Instrukcja

Bardziej szczegółowo

NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI ZADANIE 1 oczka. ZADANIE 2 iloczynu oczek równego 12.

NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI ZADANIE 1 oczka. ZADANIE 2 iloczynu oczek równego 12. IMIE I NAZWISKO ZADANIE 1 Rzucamy sześcienna kostka do gry. Jakie jest prawdopodobieństwo, że wypadna co najmniej dwa oczka. ZADANIE 2 Rzucamy trzy razy symetryczna sześcienna kostka do gry. Oblicz prawdopodobieństwo

Bardziej szczegółowo

Regulamin Promocji kredytu gotówkowego Oprocentowanie niższe niż najniższe - edycja świąteczna. Obowiązuje od 13.11.2014 r. do 30.04.2015 r.

Regulamin Promocji kredytu gotówkowego Oprocentowanie niższe niż najniższe - edycja świąteczna. Obowiązuje od 13.11.2014 r. do 30.04.2015 r. Regulamin Promocji kredytu gotówkowego Oprocentowanie niżse niż najniżse - edycja świątecna Obowiąuje od 13.11.2014 r. do 30.04.2015 r. 1. Organiator Promocji 1. Promocja Oprocentowanie niżse niż najniżse

Bardziej szczegółowo

Biostatystyka, # 2 /Weterynaria I/

Biostatystyka, # 2 /Weterynaria I/ Biostatystyka, # 2 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a bud. Agro II, e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo