czyli politropa jest w tym przypadku przemianą przy stałym ciśnieniu nazywaną izobarą. Równanie przemiany izobarycznej ma postać (2.

Wielkość: px
Rozpocząć pokaz od strony:

Download "czyli politropa jest w tym przypadku przemianą przy stałym ciśnieniu nazywaną izobarą. Równanie przemiany izobarycznej ma postać (2."

Transkrypt

1 remiany_gau_dosk Charakterystyne remiany gau doskonałego. Premiana oitroowa Premianą oitroową naywamy remianę o równaniu idem (. ub V idem (. gdie V / m. W równaniah (. i (. jest wykładnikiem oitroy. Podstawowe remiany gau doskonałego można roatrywać jako segóe ryadki oitroy. W aeżnośi od wartośi oitroa może być remianą ry stałym iśnieniu, remianą ry stałej objętośi, remianą ry stałej temerature, y remianą ry stałej entroii.. Iobara Da wykładnika oitroy 0 jest 0 idem yi oitroa jest w tym ryadku remianą ry stałym iśnieniu naywaną iobarą. ównanie remiany iobarynej ma ostać idem (. Na rys. 4.4 i 4.5 redstawiono eksansję iobaryną. Podas eksansji iobarynej więksa się objętość gau ora wrasta temeratura. Cieło jest dorowadane do gau a raa wyrowadana. Na rys. 4.5 da orównania narysowano też remianę iohoryną, która jest inią bardiej stromą. Funkja (s da = idem ub :4:00

2 remiany_gau_dosk = idem jest funkją wykładnią. Premianę iobaryną można reaiować w yindre amkniętym resuwnym tłokiem, na który diała stała siła, dorowadają (eksansja ub odrowadają (komresja ieło. ermine równanie stanu da oątku remiany iobarynej - (. ermine równanie stanu da końa remiany iobarynej - (.3 Po odieeniu równania (.3 re równanie (. dostajemy (.4 ównanie (.4 można rekstałić do ostai (.5 Z równania (.5 wynika, że objętość gau odgrewanego iobarynie wrasta roorjonaie do temeratury. Jeżei temeratura gau wrośnie dwukrotnie, to również jego objętość wrośnie dwukrotnie. Jednostkową raę bewgędną remiany wynaymy ogóej aeżnośi ( d [J/kg] (.6 gdie da remiany iobarynej funkja ( ma ostać idem (.7 Po odstawieniu (.7 do równania (.6 i sałkowaniu otrymujemy ( (.8 ównanie (.8 jest słusne da dowoego ynnika termodynaminego, yi także da gaów reywistyh, iey i iał stałyh. Jednostkowa raa tehnina remiany t ( d ( d 0 [J/kg] (.9 Cieło właśiwe ry stałym iśnieniu,, ma da okreśonego gau doskonałego wartość stałą. Stąd jednostkowe ieło remiany iobarynej jest równe q ( [J/kg] (.0 Pryrost właśiwej energii wewnętrnej :4:00

3 remiany_gau_dosk u ( [J/kg] (. Zaeżność (. jest słusna da dowoej remiany gau doskonałego, onieważ energia wewnętrna jest arametrem stanu, yi jej ryrost nie aeży od rodaju remiany. Pryrost entaii właśiwej i ( [J/kg] (. Zaeżność (. jest słusna da dowoej remiany gau doskonałego, onieważ entaia jest arametrem stanu, yi jej ryrost nie aeży od rodaju remiany. Pierwsa ostać ierwsej asada termodynamiki (I Z q u (.3 Druga ostać ierwsej asada termodynamiki q i t i (.4 Pryrost entroii właśiwej można obiyć aeżnośi s [J/(kg K] (.5 ub s [J/(kg K] (.6 Zaeżnośi (.5 i (.6 są słusne da dowoej remiany gau doskonałego, onieważ entroia jest arametrem stanu, yi jej ryrost nie aeży od rodaju remiany. Da remiany iobarynej równanie (.6 urasa się do ostai s (.7 Ponieważ równanie (.7 wykorystuje aeżność, jego stosowaość ostała ograniona do remiany iobarynej gau doskonałego. Da ałkowitej iośi substanji w układie L J mkg J / kg n t t 3 3 kmo J / kmo V um J / um u (.8 L m (.9 Q mq (.0 U mu (. I mi (. S ms ( :4:00

4 remiany_gau_dosk 3. Iohora idem (3. idem Wykładnik oitroy (3. (3.3 ównanie remiany idem (3.4 Premiana redstawiona na rys. 4. ora 4.3 jest srężaniem iohorynym, onieważ odas remiany wrasta iśnienie. Premianę iohoryną można reaiować w biorniku o stałej objętośi dorowadają do ynnika (srężanie ub wyrowadają (rorężanie ieło. ermine równanie stanu da stanu oątkowego (3.5 ermine równanie stanu da stanu końowego (3.6 Po odieeniu stronami równania (3.6 re równanie (3.5 dostajemy ( :4:00

5 remiany_gau_dosk (3.8 Z równania (3.8 wynika, że iśnienie gau odgrewanego iohorynie wrasta roorjonaie do temeratury. Jeżei temeratura gau wrośnie dwukrotnie, to również jego iśnienie wrośnie dwukrotnie. Jednostkowa raa bewgędna remiany ( d ( d 0 [J/kg] (3.9 Jednostkowa raa tehnina remiany t ( d ( [J/kg] (3.0 Praa tehnina dana równaniem (3.0 nie ma sensu fiynego da ojedynej remiany. Praę taką naeżałoby dorowadić (w ryadku srężania do masyny reływowej, aby retłoyć ynnik e biornika, w którym anuje iśnienie, do biornika, w którym anuje iśnienie. W ryadku remiany iohorynej wrost iśnienia wynika nie e miany objętośi, e e miany temeratury (odgranie gau od temeratury do temeratury. Jednostkowe ieło remiany q ( [J/kg] (3. Pryrost właśiwej energii wewnętrnej u ( [J/kg] (3. Pryrost entaii właśiwej i ( [J/kg] (3.3 Pierwsa asada termodynamiki (I Z q u u (3.4 q i (3.5 t Pryrost entroii właśiwej s [J/(kg K] (3.6 s [J/(kg K] ( Ioterma idem (4. Nieh wykładnik oitroy będie równy ( :4:00

6 remiany_gau_dosk Wówas równanie remiany oitroowej (4. ma ostać idem (4.3 ermine równanie stanu da oątku i końa roważanej remiany (4.4 (4.5 Z równania (4.3 wynika, że ewe strony równań (4.4 i (4.5 są sobie równe (4.6 stąd również rawe strony tyh równań są sobie równe (4.7 yi remiana oitroowa wykładnikiem oitroy jest równy jednośi jest remianą, odas której nie mienia się temeratura gau. Premiana taka naywana jest iotermą. idem (4.8 Jednostkowa raa bewgędna remiany ( d (4.9 Z równania (4.6 wynaamy funkję ( :4:00

7 remiany_gau_dosk ( (4.0 Prawą stronę równania (4.0 odstawiamy do równania (4.9 i ałkujemy d (4. Jednostkowa raa tehnina remiany t ( d (4. Z (4.6 ( (4.3 (4.3 do (4. t d (4.4 Z (4.6 (4.5 (4.5 do (4.4 t (4.6 Z orównania (4.6 (4. wynika, że t (4.7 Cieło właśiwe remiany ioterminej q q (4.8 Pryrost właśiwej energii wewnętrnej u ( ( 0 (4.9 Pryrost entaii właśiwej i ( ( 0 (4.0 Pierwsa asada termodynamiki (I Z q u (4. q i t (4. t Pryrost entroii właśiwej :4:00

8 remiany_gau_dosk :4:00 s (4.3 s ( Adiaterma odwraaa - ientroa idem (5. Wykładnik oitroy (5. ównanie remiany idem (5.3 Z (5.3 da dwóh dowoyh stanów (5.4 ermine równanie stanu (5.5 (5.6 (5.6/(5.5 (5.7 (5.4 do (5.7 (5.8 (5.9 (5.9 do (5.7 (5.0 (5.0 // (5.

9 remiany_gau_dosk :4:00 Jednostkowa raa bewgędna remiany ( d (5. Z (5.4 ( (5.3 Prawą stronę równania (5.3 odstawiamy do rawej strony równania (5. a funkję ( d (5.4 Jednostkowa raa tehnina remiany ( t d (5.5 Z (5.4 ( (5.6 (5.6 do (5.5 d t (5.7 Porównanie (5.4 (5.7 rowadi do aeżnośi t (5.8 Da gaów doskonałyh jest (5.9 Po rowiąaniu układu (5.9 e wgędu na i otrymujemy (5.0 (5. Pryrost entroii właśiwej s (5.

10 remiany_gau_dosk (5.8 do (5. s Po uwgędnieniu (5.0 dostajemy (5.3 s 0 (5.4 yi s s s idem (5.5 Cieło remiany ientroowej s s s s q ( s ds ( s ds 0 (5.6 Cieło właśiwe remiany ientroowej q 0 s 0 (5.7 Pryrost właśiwej energii wewnętrnej u ( (5.8 Pryrost entaii właśiwej i ( (5.9 Pierwsa asada termodynamiki (I Z :4:00

11 remiany_gau_dosk :4:00 u q (5.30 t i q (5.3 Po uwgędnieniu (5.6 u u u (5.3 Z (5.3 ( (5.33 (5. do (5.33 ( Poitroa - ogóie idem (6. Z (6. da dwóh dowoyh stanów (6. ermine równanie stanu (6.3 (6.4 (6.4/(6.3 (6.5 (6. do (6.5 (6.6 (6.7 (6.7 do (6.5 (6.8 (6.8 //

12 remiany_gau_dosk :4:00 (6.9 Jednostkowa raa bewgędna remiany ( d (6.0 Z (6. ( (6. (6. do (6.0 d (6. (6.6 i (6.3 do (6. (6.3 Jednostkowa raa tehnina remiany ( t d (6.4 Z (6. ( (6.5 (6.5 do (6.4 t d (6.6 Porównanie (6. (6.6 ry uwgędnieniu (6. daje t (6.7 Pryrost właśiwej energii wewnętrnej ( u (6.8 Pryrost entaii właśiwej ( i (6.9 Cieło remiany

13 remiany_gau_dosk q (6.0 gdie jest iełem właśiwym remiany oitroowej. Pierwsa asada termodynamiki (I Z q u (6. q i (6. t (6.0 i rawa strona (6.3 do (6. ( ( ( (6.3 (6.3/ (6.4 Wniosek: ieło właśiwe oitroy jest wiekośią stałą. ( do (6.4 ( Cieło właśiwe oitroy gau doskonałego (7.. 0 ( = idem, iobara 0 0. ( = idem, iohora 3. ( = idem, ioterma (7. (7.3 ( (s = idem, ientroa :4:00

14 remiany_gau_dosk 0 (7.5 Na rys. 5.4 ora 5.5 wykładnik oitroy jest onaony jako m. Na rys. 4.9 wykładnik oitroy jest onaony jako n :4:00

u (1.2) T Pierwsza zasada termodynamiki w formie różniczkowej ma postać (1.3)

u (1.2) T Pierwsza zasada termodynamiki w formie różniczkowej ma postać (1.3) obl_en_wew_enal-2.do Oblizanie energii wewnęrznej i enalii 1. Energia wewnęrzna subsanji rosej Właśiwa energia wewnęrzna, u[j/kg] jes funkją sanu. Sąd dla subsanji rosej jes ona funkją dwóh niezależnyh

Bardziej szczegółowo

PLAN WYKŁADU. Ciepło właściwe Proces adiabatyczny Temperatura potencjalna II zasada termodynamiki. Procesy odwracalne i nieodwracalne 1 /35

PLAN WYKŁADU. Ciepło właściwe Proces adiabatyczny Temperatura potencjalna II zasada termodynamiki. Procesy odwracalne i nieodwracalne 1 /35 PLAN WYKŁADU Cieło właśiwe Proes adiabatyzny emeratura otenjalna II zasada termodynamiki Proesy odwraalne i nieodwraalne 1 /35 Podręzniki Salby, Chater 2, Chater 3 C&W, Chater 2 2 /35 CIEPŁO WŁAŚCIWE 3

Bardziej szczegółowo

Entropia i druga zasada termodynamiki

Entropia i druga zasada termodynamiki Entroia-drga zasada- Entroia i drga zasada termodynamiki.9.6 :5: Entroia-drga zasada- Przemiana realizowana w kładzie rzedstawionym na rys. 3.7 jest równowagową rzemianą beztariową. Jest ona wię odwraalna.

Bardziej szczegółowo

v! są zupełnie niezależne.

v! są zupełnie niezależne. Zasada ekwiartyji energii 7-7. Zasada ekwiartyji energii ównowaga termizna układów Zerowa zasada termodynamiki Jeżeli układy A i B oraz A i są arami w równowadze termiznej, to również układy B i są w równowadze

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwenia: WYZNACZANIE WYKŁADNIKA IZENTROPY κ DLA POWIETRZA Wyznazanie wykłnika

Bardziej szczegółowo

Fizykochemiczne podstawy inżynierii procesowej. Wykład IV Proste przemiany cd: Przemiana adiabatyczna Przemiana politropowa

Fizykochemiczne podstawy inżynierii procesowej. Wykład IV Proste przemiany cd: Przemiana adiabatyczna Przemiana politropowa Fizykoheizne odstawy inżynierii roesowej Wykład IV Proste rzeiany d: Przeiana adiabatyzna Przeiana olitroowa Przeiana adiabatyzna (izentroowa) Przeiana adiabatyzna odbywa się w układzie adiabatyzny tzn.

Bardziej szczegółowo

Uwagi do rozwiązań zadań domowych - archiwalne

Uwagi do rozwiązań zadań domowych - archiwalne Uwagi do rozwiązań zadań doowyh - arhiwalne ROK AKADEMICKI 07/08 Zad. nr 8 [08.0.8] Przeiana nie była izohorą. Wykładnik oliroy ożna było oblizyć z równania z z Zad. nr 6 [07..9] Końową eeraurę rzeiany

Bardziej szczegółowo

UZUPEŁNIENIA DO WYKŁADÓW D, E

UZUPEŁNIENIA DO WYKŁADÓW D, E . Hofman, Wykłady z Chemii fizyznej I - Uzuełnienia, Wydział Chemizny PW, kierunek: ehnologia hemizna, sem.3 2017/2018 D. II ZASADA ERMODYNAMIKI UZUPEŁNIENIA DO WYKŁADÓW D, E D.1. Warunki stabilnośi, określająe

Bardziej szczegółowo

Termodynamika 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Termodynamika 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego ermodynamika Projekt wsółfinansowany rzez Unię Euroejską w ramach Euroejskiego Funduszu Sołecznego Siik ciey siikach (maszynach) cieych cieło zamieniane jest na racę. Elementami siika są: źródło cieła

Bardziej szczegółowo

PLAN WYKŁADU. Opis powietrza zawierającego parę wodną w stanie nasyconym oraz wodę. Entalpia Energia wewnętrzna Entropia 1 /23

PLAN WYKŁADU. Opis powietrza zawierającego parę wodną w stanie nasyconym oraz wodę. Entalpia Energia wewnętrzna Entropia 1 /23 PAN WYKŁADU Ois owietza zawieająego aę woną w stanie nasyony oaz woę Entaia Enegia wewnętzna Entoia 1 /23 Poęzniki Saby, Cate 5 C&W, Cate 4 R&Y, Cate 2 2 /23 Paa wona w atosfeze Da teeatu i iśnień sotykany

Bardziej szczegółowo

Fizykochemiczne podstawy inżynierii procesowej

Fizykochemiczne podstawy inżynierii procesowej Fizykohemizne odtay inżynierii roeoej Wykład III Prote rzemiany termodynamizne Prote rzemiany termodynamizne Sośród bardzo ielu możliyh rzemian termodynamiznyh zzególną rolę odgryają rzemiany ełniająe

Bardziej szczegółowo

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI.

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI. 0. FALE, ELEMENY ERMODYNAMIKI I HYDRODY- NAMIKI. 0.9. Podstawy termodynamiki i raw gazowych. Podstawowe ojęcia Gaz doskonały: - cząsteczki są unktami materialnymi, - nie oddziałują ze sobą siłami międzycząsteczkowymi,

Bardziej szczegółowo

Podstawowe pojęcia analizy wektorowej - przypomnienie

Podstawowe pojęcia analizy wektorowej - przypomnienie Dnamia Gaów em.i Wład Slajd Podtawowe ojęia anali wetorowej - romnienie Gradient F alar nabla j i F F F gradf F F F gradf,, j i F Dnamia Gaów em.i Wład Slajd Dwergenja - wetor di Rotaja rot i j i - wetor

Bardziej szczegółowo

Ć W I C Z E N I E N R C-3

Ć W I C Z E N I E N R C-3 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA FIZYKI CZĄSTECZKOWEJ I CIEPŁA Ć W I C Z E N I E N R C-3 WYZNACZANIE STOSUNKU DLA POWIETRZA METODĄ

Bardziej szczegółowo

Jest to zasada zachowania energii w termodynamice - równoważność pracy i ciepła. Rozważmy proces adiabatyczny sprężania gazu od V 1 do V 2 :

Jest to zasada zachowania energii w termodynamice - równoważność pracy i ciepła. Rozważmy proces adiabatyczny sprężania gazu od V 1 do V 2 : I zasada termodynamiki. Jest to zasada zachowania energii w termodynamice - równoważność racy i cieła. ozważmy roces adiabatyczny srężania gazu od do : dw, ad - wykonanie racy owoduje rzyrost energii wewnętrznej

Bardziej szczegółowo

TERMODYNAMIKA PROCESOWA

TERMODYNAMIKA PROCESOWA ERMODYNAMIKA PROCESOWA Wykład IV Charakterystyka ośrodków termodynamiznyh Prof. Antoni Kozioł, Wydział Chemizny Politehniki Wroławskiej Charakterystyka ośrodków termodynamiznyh właśiwośi termodynamizne

Bardziej szczegółowo

Układ jednostek miar SI

Układ jednostek miar SI Układ jednostek iar SI Wiekośi i jednostki odstawowe Wiekość fizyzna Sybo Jednostka Długość [] etr Czas t [s] sekunda Masa,M [kg] kiogra eeratura terodynaizna (teeratura bezwzgędna) [K] kewin Natężenie

Bardziej szczegółowo

ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Kirchhoffa

ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Kirchhoffa ZADANIA Z HEII Efekty energetyzne reakji hemiznej - rawo Kirhhoffa. Prawo Kirhhoffa Różnizkują względem temeratury wyrażenie, ilustrująe rawo Hessa: Otrzymuje się: U= n r,i U tw,r,i n s,i U tw,s,i () d(

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Wykład Wroław University of ehnology 8-0-0 Podstawy termodynamiki 0 ermodynamika klasyzna Ois układu N ząstek na grunie mehaniki klasyznej wymaga rozwiązania N równań ruhu. d dt

Bardziej szczegółowo

I zasada termodynamiki

I zasada termodynamiki W3 30 Układ termodynamizny ównowaga termodynamizna Praa I zasada dla układu zamkniętego Entalia I zasada dla układu otwartego Cieło o właśiwew К Srawność jest zastosowaniem zasady zahowania energii do

Bardziej szczegółowo

Entalpia swobodna (potencjał termodynamiczny)

Entalpia swobodna (potencjał termodynamiczny) Entalia swobodna otencjał termodynamiczny. Związek omiędzy zmianą entalii swobodnej a zmianami entroii Całkowita zmiana entroii wywołana jakimś rocesem jest równa sumie zmiany entroii układu i otoczenia:

Bardziej szczegółowo

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23 Stany materii Masa i rozmiary cząstek Masą atomową ierwiastka chemicznego nazywamy stosunek masy atomu tego ierwiastka do masy / atomu węgla C ( C - izoto węgla o liczbie masowej ). Masą cząsteczkową nazywamy

Bardziej szczegółowo

Wielokryteriowa optymalizacja liniowa (WPL)

Wielokryteriowa optymalizacja liniowa (WPL) arek isyński BO UŁ 007 - Wielokryteriowa optymaliaja liniowa (WPL) -. Wielokryteriowa optymaliaja liniowa (WPL) Zadaniem WPL naywamy następująe adanie optymaliaji liniowej: a a m L O L L O L L a a n n

Bardziej szczegółowo

Fale skrętne w pręcie

Fale skrętne w pręcie ae skrętne w ręcie + -(+) eement ręta r π ) ( 4 Lokane skręcenie o () moment skręcając moduł stwności r romień ręta r 4 ) ( π Pod włwem wadkowego momentu eement ręta uskuje rsiesenie kątowe i sełnion jest

Bardziej szczegółowo

= T. = dt. Q = T (d - to nie jest różniczka, tylko wyrażenie różniczkowe); z I zasady termodynamiki: przy stałej objętości. = dt.

= T. = dt. Q = T (d - to nie jest różniczka, tylko wyrażenie różniczkowe); z I zasady termodynamiki: przy stałej objętości. = dt. ieło właściwe gazów definicja emiryczna: Q = (na jednostkę masy) T ojemność cielna = m ieło właściwe zależy od rocesu: Q rzy stałym ciśnieniu = T dq = dt rzy stałej objętości Q = T (d - to nie jest różniczka,

Bardziej szczegółowo

Fizykochemiczne podstawy inżynierii procesowej. Wykład V Charakterystyka ośrodków termodynamicznych

Fizykochemiczne podstawy inżynierii procesowej. Wykład V Charakterystyka ośrodków termodynamicznych Fizykohemizne odstawy inżynierii roesowej Wykład V Charakterystyka ośrodków termodynamiznyh Charakterystyka ośrodków termodynamiznyh Z inżynierskiego unktu widzenia bardzo ważny jest ois ośrodka który

Bardziej szczegółowo

Instalacje pompowe. Zadania do samodzielnego rozwiązania v ,1. dr inż. Michał Strzeszewski,

Instalacje pompowe. Zadania do samodzielnego rozwiązania v ,1. dr inż. Michał Strzeszewski, dr inż. Michał Stresewski, 00-008 Instalacje omowe Zadania do samodielnego rowiąania v. 1.5 Zadanie 1 Obli wymaganą wydajność omy obiegowej ry nastęujących ałożeniach: oblieniowa moc cielna instalacji

Bardziej szczegółowo

TERMODYNAMIKA. Termodynamika jest to dział nauk przyrodniczych zajmujący się własnościami

TERMODYNAMIKA. Termodynamika jest to dział nauk przyrodniczych zajmujący się własnościami TERMODYNAMIKA Termodynamika jest to dział nauk rzyrodniczych zajmujący się własnościami energetycznymi ciał. Przy badaniu i objaśnianiu własności układów fizycznych termodynamika osługuje się ojęciami

Bardziej szczegółowo

nieciągłość parametrów przepływu przyjmuje postać płaszczyzny prostopadłej do kierunku przepływu

nieciągłość parametrów przepływu przyjmuje postać płaszczyzny prostopadłej do kierunku przepływu CZĘŚĆ II DYNAMIKA GAZÓW 4 Rozdział 6 Prostoadła fala 6. Prostoadła fala Podstawowe własności: nieciągłość arametrów rzeływu rzyjmuje ostać łaszczyzny rostoadłej do kierunku rzeływu w zbieżno - rozbieżnym

Bardziej szczegółowo

1. Cykl odwrotny Carnota reprezentują poniższe diagramy w zmiennych p-v ( ) i T-S

1. Cykl odwrotny Carnota reprezentują poniższe diagramy w zmiennych p-v ( ) i T-S Zad. domowe nr 5: druga zasada termodynamiki, elementy termodynamiki statystyznej, rawo Gaussa. Grua 1 II zasada termodynamiki 1. Cykl odwrotny Carnota rerezentują oniższe diagramy w zmiennyh -V (3 2 1

Bardziej szczegółowo

Definicja szybkości reakcji. Szybkości reakcji. Równanie kinetyczne reakcji ...

Definicja szybkości reakcji. Szybkości reakcji. Równanie kinetyczne reakcji ... Definija szybkośi reakji Szybkość reakji definiuje się jako stosunek zmiany stężenia substratów lub produktów reakji do zasu potrzebnego do zajśia tej zmiany v zmiana stężenia zas potrzebny do zajśia dx

Bardziej szczegółowo

GAZY DOSKONAŁE I PÓŁDOSKONAŁE

GAZY DOSKONAŁE I PÓŁDOSKONAŁE TERMODYNAMIKA GAZY DOSKONAŁE I PÓŁDOSKONAŁE Prawo Boyle a Marotte a p V = const gdy T = const Prawo Gay-Lussaca V = const gdy p = const T Równane stanu gau dosonałego półdosonałego p v = R T gde: p cśnene

Bardziej szczegółowo

Materiały pomocnicze do ćwiczeń z przedmiotu: Termodynamika techniczna

Materiały pomocnicze do ćwiczeń z przedmiotu: Termodynamika techniczna Materiały omocnicze do ćwiczeń z rzedmiotu: Termodynamika techniczna Materiały omocnicze do rzedmiotu Termodynamika techniczna. Sis treści Sis treści... 3 Gaz jako czynnik termodynamiczny... 5. Prawa

Bardziej szczegółowo

Definicja szybkości reakcji

Definicja szybkości reakcji Definija szybkośi reakji Szybkość reakji definiuje się jako stosunek zmiany stężenia substratów lub produktów reakji do zasu potrzebnego do zajśia tej zmiany. v zas zmiana stężenia potrzebny do zajśia

Bardziej szczegółowo

Definicja szybkości reakcji

Definicja szybkości reakcji Definija szybkośi reakji Szybkość reakji definiuje się jako stosunek zmiany stężenia substratów lub produktów reakji do zasu potrzebnego do zajśia tej zmiany. v zas zmiana stężenia potrzebny do zajśia

Bardziej szczegółowo

Podstawowe przemiany cieplne

Podstawowe przemiany cieplne Podstawowe rzemiay iele Przemiaa izohoryza zahodzi, gdy objętość układu ozostaje stała ( ost), zyli 0. ówaie izohory () ost rzemiaie tej ie jest wykoywaa raa, bo 0, wię zgodie z ierwszą zasadą termodyamiki,

Bardziej szczegółowo

THERMODYNAMICS OF PISTON COMBUSTION ENGINE WORK CYCLE

THERMODYNAMICS OF PISTON COMBUSTION ENGINE WORK CYCLE Journal of KONES Internal Combustion Engines 2005, ol. 12, 3-4 HERMODYNAMICS OF PISON COMBUSION ENGINE WORK CYCLE Anrej Ambroik ehnial Uniersity of Kiele Al. ysiąleia Państa Polskiego 7, 25-314 Kiele,

Bardziej szczegółowo

Temat:Termodynamika fotonów.

Temat:Termodynamika fotonów. Temat:Termodynamika fotonów. I Wstę Jak już sam temat sugeruje ostaram się rzedstawić 'termodynamikę' fotonów. Skąd taki omysł? Przez ewien zas hodziłem śieżki termodynamiki gazu doskonałego, lizyłem srawnośi

Bardziej szczegółowo

Gaz doskonały model idealnego układu bardzo wielu cząsteczek, które: i. mają masę w najprostszym przypadku wszystkie taką samą

Gaz doskonały model idealnego układu bardzo wielu cząsteczek, które: i. mają masę w najprostszym przypadku wszystkie taką samą Terodynaika 16-1 16 Terodynaika Założenia teorii kinetycno oekuarnej Ga doskonały ode ideanego układu bardo wieu cąstecek, które: i ają asę w najprostsy prypadku wsystkie taką saą, ii nie ają objętości

Bardziej szczegółowo

Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia.

Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia. PARA WODNA 1. PRZEMIANY FAZOWE SUBSTANCJI JEDNORODNYCH Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia. Przy niezmiennym ciśnieniu zmiana wody o stanie początkowym odpowiadającym

Bardziej szczegółowo

A - przepływ laminarny, B - przepływ burzliwy.

A - przepływ laminarny, B - przepływ burzliwy. PRZEPŁYW CZYNNIK ŚCIŚLIWEGO. Definicje odstaoe Rys... Profile rędkości rurze. - rzeły laminarny, B - rzeły burzliy. Liczba Reynoldsa Re D [m/s] średnia rędkość kanale D [m] średnica enętrzna kanału ν [m

Bardziej szczegółowo

Ćwiczenia do wykładu Fizyka Statystyczna i Termodynamika

Ćwiczenia do wykładu Fizyka Statystyczna i Termodynamika Ćwiczenia do wykładu Fizyka tatystyczna i ermodynamika Prowadzący dr gata Fronczak Zestaw 5. ermodynamika rzejść fazowych: równanie lausiusa-laeyrona, własności gazu Van der Waalsa 3.1 Rozważ tyowy diagram

Bardziej szczegółowo

Stan równowagi chemicznej

Stan równowagi chemicznej Stan równowagi hemiznej Równowaga hemizna to taki stan układu złożonego z roduktów i substratów dowolnej reakji odwraalnej, w którym szybkość owstawania roduktów jest równa szybkośi ih rozadu Odwraalność

Bardziej szczegółowo

TERMODYNAMIKA PROCESOWA I TECHNICZNA

TERMODYNAMIKA PROCESOWA I TECHNICZNA ERMODYNAMIKA PROCESOWA I ECHNICZNA Wykład II Podstawowe definicje cd. Podstawowe idealizacje termodynamiczne I i II Zasada termodynamiki Proste rzemiany termodynamiczne Prof. Antoni Kozioł, Wydział Chemiczny

Bardziej szczegółowo

Rozkład Maxwell a prędkości cząsteczek gazu Prędkości poszczególnych cząsteczek mogą być w danej chwili dowolne

Rozkład Maxwell a prędkości cząsteczek gazu Prędkości poszczególnych cząsteczek mogą być w danej chwili dowolne Rozkład Maxwll a rędkośi ząstzk gazu 9-9. Rozkład Maxwll a rędkośi ząstzk gazu Prędkośi oszzgólnyh ząstzk ogą być w danj hwili dowoln 3 a tylko rędkość śrdnia kwadratowa wynosi sk. Można się jdnak sodziwać,

Bardziej szczegółowo

13) Na wykresie pokazano zależność temperatury od objętości gazu A) Przemianę izotermiczną opisują krzywe: B) Przemianę izobaryczną opisują krzywe:

13) Na wykresie pokazano zależność temperatury od objętości gazu A) Przemianę izotermiczną opisują krzywe: B) Przemianę izobaryczną opisują krzywe: ) Ołowiana kula o masie kilograma sada swobodnie z wysokości metrów. Który wzór służy do obliczenia jej energii na wysokości metrów? ) E=m g h B) E=m / C) E=G M m/r D) Q=c w m Δ ) Oblicz energię kulki

Bardziej szczegółowo

Odkształcalność podłoża gruntowego Compressibility & settlement. Marek Cała Katedra Geomechaniki, Budownictwa i Geotechniki

Odkształcalność podłoża gruntowego Compressibility & settlement. Marek Cała Katedra Geomechaniki, Budownictwa i Geotechniki Odkstałalność podłoża gruntowego opressibility & settleent Odkstałalność ośrodków iągłyh i rodrobnionyh Każdy ośrodek odkstała się po ianie układu i wartośi diałająyh nań sił. Ośrodki o budowie iągłej

Bardziej szczegółowo

Przeanalizujmy układ termodynamiczny przedstawiony na rysunku 1. - początkowa, przejściowa i końcowa objętość kontrolnej ilości gazu w naczyniu.

Przeanalizujmy układ termodynamiczny przedstawiony na rysunku 1. - początkowa, przejściowa i końcowa objętość kontrolnej ilości gazu w naczyniu. M. Chorowski Podstawy Kriogeniki, wykład 5. 3. Metody zyskiwania niskih temperatr - iąg dalszy 3.3. Wypływ swobodny ze stałej objętośi Rozważmy adiabatyzną ekspansję gaz wypływająego z nazynia o stałej

Bardziej szczegółowo

Doświadczenie Joule a i jego konsekwencje Ciepło, pojemność cieplna sens i obliczanie Praca sens i obliczanie

Doświadczenie Joule a i jego konsekwencje Ciepło, pojemność cieplna sens i obliczanie Praca sens i obliczanie Pierwsza zasada termodynamiki 2.2.1. Doświadczenie Joule a i jego konsekwencje 2.2.2. ieło, ojemność cielna sens i obliczanie 2.2.3. Praca sens i obliczanie 2.2.4. Energia wewnętrzna oraz entalia 2.2.5.

Bardziej szczegółowo

WYKŁAD 2_2. 1.Entropia definicja termodynamiczna. przemiana nieodwracalna. Sumaryczny zapis obu tych relacji

WYKŁAD 2_2. 1.Entropia definicja termodynamiczna. przemiana nieodwracalna. Sumaryczny zapis obu tych relacji .Entroia definicja termodynamiczna. d d rzemiana odwracaa rzemiana nieodwracaa umaryczny zais obu tych relacji Q d el WYKŁAD _ rzykład a Obliczyć zmianę entroii, gdy 5 moli wodoru rozręŝa się odwracaie

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Procesów i Konstrukcji Inżynierskich Teoria kinetyczna Kierunek Wyróżniony rzez PKA 1 Termodynamika klasyczna Pierwsza zasada termodynamiki to rosta zasada zachowania energii, czyli ogólna reguła

Bardziej szczegółowo

WARUNKI RÓWNOWAGI UKŁADU TERMODYNAMICZNEGO

WARUNKI RÓWNOWAGI UKŁADU TERMODYNAMICZNEGO WARUNKI RÓWNOWAGI UKŁADU ERMODYNAMICZNEGO Proces termodynamiczny zachodzi doóty, doóki układ nie osiągnie stanu równowagi. W stanie równowagi odowiedni otencjał termodynamiczny układu osiąga minimum, odczas

Bardziej szczegółowo

Temperatura i ciepło E=E K +E P +U. Q=c m T=c m(t K -T P ) Q=c przem m. Fizyka 1 Wróbel Wojciech

Temperatura i ciepło E=E K +E P +U. Q=c m T=c m(t K -T P ) Q=c przem m. Fizyka 1 Wróbel Wojciech emeratura i cieło E=E K +E P +U Energia wewnętrzna [J] - ieło jest energią rzekazywaną między układem a jego otoczeniem na skutek istniejącej między nimi różnicy temeratur na sosób cielny rzez chaotyczne

Bardziej szczegółowo

prawa gazowe Model gazu doskonałego Temperatura bezwzględna tościowa i entalpia owy Standardowe entalpie tworzenia i spalania 4. Stechiometria 1 tość

prawa gazowe Model gazu doskonałego Temperatura bezwzględna tościowa i entalpia owy Standardowe entalpie tworzenia i spalania 4. Stechiometria 1 tość 5. Gazy, termochemia Doświadczalne rawa gazowe Model gazu doskonałego emeratura bezwzględna Układ i otoczenie Energia wewnętrzna, raca objęto tościowa i entalia Prawo Hessa i cykl kołowy owy Standardowe

Bardziej szczegółowo

Parametry pracy adiabatycznego modelu łożyska krótkiego z panewką pływającą

Parametry pracy adiabatycznego modelu łożyska krótkiego z panewką pływającą Parametry racy adiabatycnego modelu łożyska krótkiego anewką ływającą 5 ZGDNIENI EKSPOCJI MSZYN Zesyt (5) 7 EKSNDE MZUKOW Parametry racy adiabatycnego modelu łożyska krótkiego anewką ływającą Słowa klucowe

Bardziej szczegółowo

M10. Własności funkcji liniowej

M10. Własności funkcji liniowej M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji

Bardziej szczegółowo

Zadania domowe z termodynamiki I dla wszystkich kierunków A R C H I W A L N E

Zadania domowe z termodynamiki I dla wszystkich kierunków A R C H I W A L N E Zadania domowe z termodynamiki I dla wszystkich kierunków A R C H I W A L N E ROK AKADEMICKI 2015/2016 Zad. nr 4 za 3% [2015.10.29 16:00] Ciepło właściwe przy stałym ciśnieniu gazu zależy liniowo od temperatury.

Bardziej szczegółowo

Turbinowy silnik odrzutowy obieg rzeczywisty. opracował Dr inż. Robert Jakubowski

Turbinowy silnik odrzutowy obieg rzeczywisty. opracował Dr inż. Robert Jakubowski urbinowy ilni odrzutowy obieg rzezywity oraował Dr inż. Robert Jaubowi Obieg turbinowego ilnia jednorzeływowego -orównanie ilnia idealnego i ilnia rzezywitego (z uwzględnieniem trat) i 3 3 q do 4 S 4 4

Bardziej szczegółowo

II zasada termodynamiki

II zasada termodynamiki TERMODYNAMIKA: DRUGA ZAADA TERMODYNAMIKI ą rocesy zgodne z zasadą zachowania energii, tóre nigdy nie wystęują w rzyrodzie. Przyład: długois leżący na stole Druga zasada termodynamii odowiada na ytanie,

Bardziej szczegółowo

TERMODYNAMIKA TECHNICZNA I CHEMICZNA

TERMODYNAMIKA TECHNICZNA I CHEMICZNA TERMODYNAMIKA TECHNICZNA I CHEMICZNA WYKŁAD IX RÓWNOWAGA FAZOWA W UKŁADZIE CIAŁO STAŁE-CIECZ (krystalizacja) ADSORPCJA KRYSTALIZACJA, ADSORPCJA 1 RÓWNOWAGA FAZOWA W UKŁADZIE CIAŁO STAŁE-CIECZ (krystalizacja)

Bardziej szczegółowo

II zasada termodynamiki.

II zasada termodynamiki. II zasada termodynamiki. Według I zasady termodynamiki nie jest do omyślenia roces, w którym energia wewnętrzna układu doznałaby zmiany innej, niż wynosi suma algebraiczna energii wymienionych z otoczeniem.

Bardziej szczegółowo

Rozdział 2. Krzywe stożkowe. 2.1 Elipsa. Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie

Rozdział 2. Krzywe stożkowe. 2.1 Elipsa. Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie Rozdział Krzywe stożkowe Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie x + By + Cxy + Dx + Ey + F = 0. (.) W zależności od relacji pomiędzy współczynnikami otrzymujemy elipsę,

Bardziej szczegółowo

DWUCZĘŚCIOWE ŁOŻYSKO POROWATE

DWUCZĘŚCIOWE ŁOŻYSKO POROWATE PROBLEMY NIEKONWENCJONALNYCH UKŁADÓW ŁOŻYSKOWYCH Łódź, 1 14 maja 1999 r. Karol Kremiński Politechnika Warsawska DWUCZĘŚCIOWE ŁOŻYSKO POROWATE SŁOWA KLUCZOWE: łożysko śligowe, tuleja porowata, prepuscalność

Bardziej szczegółowo

Opis ruchu płynu rzeczywistego

Opis ruchu płynu rzeczywistego Pedmio wykładu 7 Hipoea Newona płyny newonowskie płyny nienewonowskie Równanie uhu płynu lepkiego Naviea Sokesa - meody owiąywania układu [RNS]-[RC] 1 n dn = d dn 3 d ds 1 N N s m N s kg ; n s m m m m

Bardziej szczegółowo

Ø Cząstka powietrza poruszająca się pionowo w płynie jest poddawana sprężaniu lub rozprężaniu adiabatycznemu; zatem jej temperatura ulega zmianie

Ø Cząstka powietrza poruszająca się pionowo w płynie jest poddawana sprężaniu lub rozprężaniu adiabatycznemu; zatem jej temperatura ulega zmianie 1 Ø Roatrujemy ionowe resunięcia łynu, który jest w równowae hyrostatycnej Ø Cąstka owietra orusająca się ionowo w łynie jest oawana srężaniu lub rorężaniu aiabatycnemu; atem jej temeratura ulea mianie

Bardziej szczegółowo

Pochodna kierunkowa i gradient Równania parametryczne prostej przechodzącej przez punkt i skierowanej wzdłuż jednostkowego wektora mają postać:

Pochodna kierunkowa i gradient Równania parametryczne prostej przechodzącej przez punkt i skierowanej wzdłuż jednostkowego wektora mają postać: ochodna kierunkowa i gradient Równania parametrcne prostej prechodącej pre punkt i skierowanej wdłuż jednostkowego wektora mają postać: Oblicam pochodną kierunkową u ( u, u ) 1 + su + su 1 (, ) d d d ˆ

Bardziej szczegółowo

[1] CEL ĆWICZENIA: Identyfikacja rzeczywistej przemiany termodynamicznej poprzez wyznaczenie wykładnika politropy.

[1] CEL ĆWICZENIA: Identyfikacja rzeczywistej przemiany termodynamicznej poprzez wyznaczenie wykładnika politropy. [1] CEL ĆWICZENIA: Identyfikacja rzeczywistej przemiany termodynamicznej poprzez wyznaczenie wykładnika politropy. [2] ZAKRES TEMATYCZNY: I. Rejestracja zmienności ciśnienia w cylindrze sprężarki (wykres

Bardziej szczegółowo

MODELOWANIE POŻARÓW. Ćwiczenia laboratoryjne. Ćwiczenie nr 1. Obliczenia analityczne parametrów pożaru

MODELOWANIE POŻARÓW. Ćwiczenia laboratoryjne. Ćwiczenie nr 1. Obliczenia analityczne parametrów pożaru MODELOWANIE POŻARÓW Ćwiczenia laboratoryjne Ćwiczenie nr Obliczenia analityczne arametrów ożaru Oracowali: rof. nadzw. dr hab. Marek Konecki st. kt. dr inż. Norbert uśnio Warszawa Sis zadań Nr zadania

Bardziej szczegółowo

Wykład 7. Energia wewnętrzna jednoatomowego gazu doskonałego wynosi: 3 R . 2. Ciepło molowe przy stałym ciśnieniu obliczymy dzięki zależności: nrt

Wykład 7. Energia wewnętrzna jednoatomowego gazu doskonałego wynosi: 3 R . 2. Ciepło molowe przy stałym ciśnieniu obliczymy dzięki zależności: nrt W. Dominik Wydział Fizyki UW ermodynamika 08/09 /7 Wykład 7 Zasada ekwiartycji energii Stonie swobody ruchu cząsteczek ieło właściwe ciał stałych ównanie adiabaty w modelu kinetyczno-molekularnym g.d.

Bardziej szczegółowo

TERMODYNAMIKA. Przedstaw cykl przemian na wykresie poniższym w układach współrzędnych przedstawionych poniżej III

TERMODYNAMIKA. Przedstaw cykl przemian na wykresie poniższym w układach współrzędnych przedstawionych poniżej III Włodzimierz Wolczyński 44 POWÓRKA 6 ERMODYNAMKA Zadanie 1 Przedstaw cykl rzemian na wykresie oniższym w układach wsółrzędnych rzedstawionych oniżej Uzuełnij tabelkę wisując nazwę rzemian i symbole: >0,

Bardziej szczegółowo

LICEALIŚCI LICZĄ ph różnych roztworów < materiały pomocnicze do sprawdzianu nr 2 > Przykładowe zadania:

LICEALIŚCI LICZĄ ph różnych roztworów < materiały pomocnicze do sprawdzianu nr 2 > Przykładowe zadania: LICEALIŚCI LICZĄ ph różnyh rotoró < materiały pomonie do spradianu nr > Spradian będie obejmoał 5 typó adań:. Oblianie artośi ph rotoró monyh kasó i asad uględnieniem spółynnika aktynośi jonó H + /OH -

Bardziej szczegółowo

FUNKCJA LINIOWA. A) B) C) D) Wskaż, dla którego funkcja liniowa określona wzorem jest stała. A) B) C) D)

FUNKCJA LINIOWA. A) B) C) D) Wskaż, dla którego funkcja liniowa określona wzorem jest stała. A) B) C) D) FUNKCJA LINIOWA 1. Funkcja jest rosnąca, gdy 2. Wskaż, dla którego funkcja liniowa jest rosnąca Wskaż, dla którego funkcja liniowa określona wzorem jest stała. 3. Funkcja liniowa A) jest malejąca i jej

Bardziej szczegółowo

Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI. Wyznaczanie ciepła właściwego c p dla powietrza

Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI. Wyznaczanie ciepła właściwego c p dla powietrza Katedra Silików Saliowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Wyzaczaie cieła właściweo c dla owietrza Wrowadzeie teoretycze Cieło ochłoięte rzez ciało o jedostkowej masie rzy ieskończeie małym rzyroście

Bardziej szczegółowo

>> ω z, (4.122) Przybliżona teoria żyroskopu

>> ω z, (4.122) Przybliżona teoria żyroskopu Prybliżona teoria żyroskopu Żyroskopem naywamy ciało materialne o postaci bryły obrotowej (wirnika), osadone na osi pokrywającej się osią geometrycną tego ciała wanej osią żyroskopową. ζ K θ ω η ω ζ y

Bardziej szczegółowo

DZIAŁ: HYDRODYNAMIKA ĆWICZENIE B: Wyznaczanie oporów przy przepływie płynów [OMÓWIENIE NAJWAŻNIEJSZYCH ZAGADNIEŃ] opracowanie: A.W.

DZIAŁ: HYDRODYNAMIKA ĆWICZENIE B: Wyznaczanie oporów przy przepływie płynów [OMÓWIENIE NAJWAŻNIEJSZYCH ZAGADNIEŃ] opracowanie: A.W. DZIAŁ: HYDRODYNAMIKA ĆWICZENIE B: Wynacanie ooró ry rełyie łynó [OMÓWIENIE NAJWAŻNIEJSZYCH ZAGADNIEŃ] oracoanie: A.W. rys.. Rokład rędkości rekroju rury dla rełyu laminarnego i turbulentnego LICZBY KRYTERIALNE:

Bardziej szczegółowo

Wykład 3. Prawo Pascala

Wykład 3. Prawo Pascala 018-10-18 Wykład 3 Prawo Pascala Pływanie ciał Ściśliwość gazów, cieczy i ciał stałych Przemiany gazowe Równanie stanu gazu doskonałego Równanie stanu gazu van der Waalsa Przejścia fazowe materii W. Dominik

Bardziej szczegółowo

Termodynamika 1. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Termodynamika 1. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Termodynamika Projekt wsółfinansowany rzez Unię Euroejską w ramach Euroejskiego Funduszu Sołecznego Układ termodynamiczny Układ termodynamiczny to ciało lub zbiór rozważanych ciał, w którym obok innych

Bardziej szczegółowo

11. Termodynamika. Wybór i opracowanie zadań od 11.1 do Bogusław Kusz.

11. Termodynamika. Wybór i opracowanie zadań od 11.1 do Bogusław Kusz. ermodynamia Wybór i oracowanie zadań od do 5 - Bogusław Kusz W zamniętej butelce o objętości 5cm znajduje się owietrze o temeraturze t 7 C i ciśnieniu hpa Po ewnym czasie słońce ogrzało butelę do temeratury

Bardziej szczegółowo

Wykład 13 Druga zasada termodynamiki

Wykład 13 Druga zasada termodynamiki Wyład 3 Druga zasada termodynamii Entroia W rzyadu silnia Carnota z gazem dosonałym otrzymaliśmy Q =. (3.) Q Z tego wzoru wynia, że wielość Q Q = (3.) dla silnia Carnota jest wielością inwariantną (niezmienniczą).

Bardziej szczegółowo

Krzywa izobarycznego ogrzewania substancji rzeczywistej. p=const. S wrz. S top. Ttop. Twrz. T dt. top. top. Równanie Clausiusa-Clapeyrona (1)

Krzywa izobarycznego ogrzewania substancji rzeczywistej. p=const. S wrz. S top. Ttop. Twrz. T dt. top. top. Równanie Clausiusa-Clapeyrona (1) ykła Entroia.. Równanie Clausiusa-Claeyrona rania równowai faz Iealna maszyna ielna Cykl Carnot. Dominik yział Fizyki U ermoynamika 8/9 /9 Entroia - rzyomnienie Entroia S jest miarą stanu uorząkowania

Bardziej szczegółowo

Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona.

Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona. Wykład - LICZBY ZESPOLONE Algebra licb espolonych, repreentacja algebraicna i geometrycna, geometria licb espolonych. Moduł, argument, postać trygonometrycna, wór de Moivre a.' Zbiór Licb Zespolonych Niech

Bardziej szczegółowo

Gaz rzeczywisty zachowuje się jak modelowy gaz doskonały, gdy ma małą gęstość i umiarkowaną

Gaz rzeczywisty zachowuje się jak modelowy gaz doskonały, gdy ma małą gęstość i umiarkowaną F-Gaz doskonaly/ GAZY DOSKONAŁE i PÓŁDOSKONAŁE Gaz doskonały cząsteczki są bardzo małe w porównaniu z objętością naczynia, które wypełnia gaz cząsteczki poruszają się chaotycznie ruchem postępowym i zderzają

Bardziej szczegółowo

STANY SKUPIENIA MATERII

STANY SKUPIENIA MATERII STANY SKUPIENIA MATERII GAZOWY CIEK Y STA Y GAZ biór c¹stecek (lub atomów), bêd¹cych w ci¹g³ym chaotycnym ruchu ga wype³nia ca³kowicie ka de nacynie, w którym siê najduje (nie ma swojego ksta³tu) energia

Bardziej szczegółowo

Budowa materii Opis statystyczny - NAv= 6.022*1023 at.(cz)/mol Opis termodynamiczny temperatury -

Budowa materii Opis statystyczny - NAv= 6.022*1023 at.(cz)/mol Opis termodynamiczny temperatury - ermoynamika Pojęcia i zaganienia ostawowe: Buowa materii stany skuienia: gazy, ciecze, ciała stale Ois statystyczny wielka liczba cząstek - N A 6.0*0 at.(cz)/mol Ois termoynamiczny Pojęcie temeratury -

Bardziej szczegółowo

ZADANIE 9.5. p p T. Dla dwuatomowego gazu doskonałego wykładnik izentropy = 1,4 (patrz tablica 1). Temperaturę spiętrzenia obliczymy następująco

ZADANIE 9.5. p p T. Dla dwuatomowego gazu doskonałego wykładnik izentropy = 1,4 (patrz tablica 1). Temperaturę spiętrzenia obliczymy następująco ZADANIE 9.5. Do dyszy Bendemanna o rzekroju wylotowym A = mm doływa owetrze o cśnenu =,85 MPa temeraturze t = C, z rędkoścą w = 5 m/s. Cśnene owetrza w rzestrzen, do której wyływa owetrze z dyszy wynos

Bardziej szczegółowo

1. Definicje podstawowe. Rys Profile prędkości w rurze. A przepływ laminarny, B - przepływ burzliwy. Liczba Reynoldsa

1. Definicje podstawowe. Rys Profile prędkości w rurze. A przepływ laminarny, B - przepływ burzliwy. Liczba Reynoldsa . Defncje odstaoe Rys... Profle rędkośc rurze. rzeły lamnarny, B - rzeły burzly. Lczba Reynoldsa D Re [m /s] - sółczynnk lekośc knematycznej Re 3 - rzeły lamnarny Re - rzeły burzly Średna rędkość masoa

Bardziej szczegółowo

POLITECHNIKA KRAKOWSKA Instytut Inżynierii Cieplnej i Procesowej Zakład Termodynamiki i Pomiarów Maszyn Cieplnych

POLITECHNIKA KRAKOWSKA Instytut Inżynierii Cieplnej i Procesowej Zakład Termodynamiki i Pomiarów Maszyn Cieplnych POLITECHNIKA KRAKOWSKA Instytut Inżynierii Cieplnej i Proesowej Zakład Termodynamiki i Pomiarów Maszyn Cieplnyh LABORATORIUM TERMODYNAMIKI I POMIARÓW MASZYN CIEPLNYCH Podstawy teoretyzne do ćwizeń laboratoryjnyh

Bardziej szczegółowo

Przykład 6.3. Uogólnione prawo Hooke a

Przykład 6.3. Uogólnione prawo Hooke a Prkład 6 Uogónione prawo Hooke a Zwiąki międ odkstałceniami i naprężeniami w prpadku ciała iotropowego opisuje uogónione prawo Hooke a: ] ] ] a Rowiąując równania a wgędem naprężeń otrmujem wiąki: b W

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY

MATEMATYKA POZIOM ROZSZERZONY EGZAMIN MATURALNY W ROKU SZKOLNYM 06/07 FORMUŁA OD 05 ( NOWA MATURA ) MATEMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 07 Kluz punktowania zadań zamkniętyh Numer zadania

Bardziej szczegółowo

Fale rzeczywiste. dudnienia i prędkość grupowa

Fale rzeczywiste. dudnienia i prędkość grupowa Fale rzezywiste dudnienia i rędkość gruowa Czysta fala harmonizna nie istnieje. Rzezywisty imuls falowy jest skońzony w zasie i w rzestrzeni: Rzezywisty imuls falowy (iąg falowy) można rzedstawić jako

Bardziej szczegółowo

Funkcje pola we współrzędnych krzywoliniowych cd.

Funkcje pola we współrzędnych krzywoliniowych cd. Funkcje pola we współrędnych krywoliniowych cd. Marius Adamski 1. spółrędne walcowe. Definicja. Jeżeli M jest rutem punktu P na płascynę xy, a r i ϕ są współrędnymi biegunowymi M, to mienne u = r, v =

Bardziej szczegółowo

2... Pˆ - teoretyczna wielkość produkcji (wynikająca z modelu). X X,..., b b,...,

2... Pˆ - teoretyczna wielkość produkcji (wynikająca z modelu). X X,..., b b,..., Główne zynniki produkji w teorii ekonoii: praa żywa (oznazenia: L, ), praa uprzediotowiona (kapitał) (oznazenia: K, ), zieia (zwłaszza w rolnitwie). Funkja produkji Cobba-Douglasa: b b b P ˆ b... k 0 k

Bardziej szczegółowo

3. Zapas stabilności układów regulacji 3.1. Wprowadzenie

3. Zapas stabilności układów regulacji 3.1. Wprowadzenie 3. Zapas stabilności układów regulacji 3.. Wprowadenie Dla scharakteryowania apasu stabilności roważymy stabilny układ regulacji o nanym schemacie blokowym: Ws () Gs () Ys () Hs () Rys. 3.. Schemat blokowy

Bardziej szczegółowo

10 zadań związanych z granicą i pochodną funkcji.

10 zadań związanych z granicą i pochodną funkcji. 0 zadań związanych z granicą i pochodną funkcji Znajdź przedziały monotoniczności funkcji f() 4, określonej dla (0,) W przedziale ( 0,) wyrażenie 4 przyjmuje wartości ujemne, dlatego dla (0,) funkcja f()

Bardziej szczegółowo

3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach?

3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach? 1. Która z podanych niżej par wielkości fizycznych ma takie same jednostki? a) energia i entropia b) ciśnienie i entalpia c) praca i entalpia d) ciepło i temperatura 2. 1 kj nie jest jednostką a) entropii

Bardziej szczegółowo

5. PRZEMIANY GAZU DOSKONAŁEGO

5. PRZEMIANY GAZU DOSKONAŁEGO Przeiany gazu doskonałego /5 5. PZEMIANY GAZU DOSKONAŁEGO Przeianą gazu zawartego w układzie nazywa się ciągłą zianę jego stanu terodynaicznego (określanego rzez araetry stanu gazu, któryi są: ciśnienie,

Bardziej szczegółowo

Dwuprzepływowe silniki odrzutowe. dr inż. Robert JAKUBOWSKI

Dwuprzepływowe silniki odrzutowe. dr inż. Robert JAKUBOWSKI Dwurzeływowe silniki odrzutowe dr inż. Robert JAKUBOWSK Silnik z oddzielnymi dyszami wylotowymi kanałów V 2500 (Airbus A320, D90) Ciąg 98 147 kn Stoień dwurzeływowości 4,5 5,4 Pierwsze konstrukcje dwurzeływowe

Bardziej szczegółowo