Zestaw zadań 12: Przekształcenia liniowe. Macierze przekształceń liniowych. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zestaw zadań 12: Przekształcenia liniowe. Macierze przekształceń liniowych. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t"

Transkrypt

1 Zesaw adań : Preksałcenia liniowe. Maciere preksałceń liniowch () Kóre podanch niżej preksałceń ϕ : K n K m są preksałceniami liniowmi: a) n = m = 3, ϕ( + ) = +, b) n = m = 3, ϕ( ) = +, , d) n = m = 3, ϕ( ) = +, c) n = m = 3, ϕ( ) = e) n = 4, m = 3, ϕ( f) n = 4, m = 3, ϕ( g) n = m = 4, ϕ( h) n = m = 4, ϕ( ) = ) = ) = ) = i) n = m = 3, ϕ( ) = 3 + W prpadku, gd preksałcenie ϕ jes preksałceniem liniowm, badać c jes o monomorfim, epimorfim. () Niech a, a, a,..., a n K, n N. Wkaać, że ψ : KX m K n+ określone worem:,, ψ(w(x)) = w(a ), w(a ),..., w(a n ) dla w(x) KX m, jes preksałceniem liniowm. Sprawdić, że gd a, a, a,..., a n są parami różne, o: a) ψ jes na m n, b) ψ jes różnowarościowe m n. (3) Wkaać, że jeżeli ϕ : K K jes preksałceniem liniowm, o isnieje a K akie, że ϕ(v) = av dla każdego v K. Dla jakich a preksałcenie dane akim worem jes monomorfimem, epimorfimem? (4) Ciało C licb espolonch można roparwać jako presreń wekorową nad ciałem C (on. C ) ora jako presreń wekorową nad ciałem R licb recwisch (on. C R ). Wkaać, że f : C C, f() =, jes endomorfimem presreni C R, ale nie jes endomorfimem presreni C.

2 (5) Sprawdić, c odworowanie ślad macier r : Kn n K określone worem a a a n a r a a n n = a ii i= a n a n a nn jes preksałceniem liniowm. (6) a) W presreni R niech U będie podbiorem, łożonm ciągów spełniającch warunek Cauch ego: (a n ) U ε> N N p>n q>n a p a q < ε. Wkaać, że U jes podpresrenią i odworowanie ϕ : U R określone worem ϕ((a n )) = lim (a n) jes preksałceniem liniowm. n b) Niech ψ : R R będie odworowaniem określonm pre warunek: n (b n ) = ψ((a n )) n N b n = a k (cli ψ((a n )) = (a, a +a, a +a +a 3,...)). Sprawdić, że ψ jes preksałceniem liniowm. C ψ jes monomorfimem? epimorfimem? C preksałcenie odwrone do ψ jes preksałceniem liniowm? c) Niech W = ψ (U). Sprawdić, że wór σ((a n )) = określa odworowanie σ : W R i że σ jes preksałceniem liniowm. Sprawdić, że σ = ϕ ψ. (7) Sprawdić, że dla dowolnch licb recwisch a, b, a < b odworowanie C (a, b) R presreni funkcji ciągłch określone worem f n= b a a n k= f()d jes preksałceniem liniowm. (8) Smbolem C n (a, b) onacam presreń funkcji recwisch określonch na prediale (a, b) i mającch pochodne ciągłe do rędu n włącnie. Sprawdić, że dla każdego n > odworowanie C n (a, b) C n (a, b) określone worem f f jes preksałceniem liniowm. C jes ono epimorfimem? monomorfimem? (9) Niech V ora W będą presreniami liniowmi nad ciałem K, a ϕ : V W odworowaniem. Wkresem odworowania ϕ nawam biór Γ ϕ = {(v, ϕ(v)) V W : v V }. Wkaać, że ϕ jes preksałceniem liniowm wed i lko, gd Γ ϕ jes podpresrenią presreni liniowej V W. () Niech V ora W będą presreniami liniowmi nad ciałem K, i niech ϕ : V W będie preksałceniem liniowm. Niech ϕ : V V W będie określone worem ϕ(v) = (v, ϕ(v)), a π : V W W worem π(v, w) = w. Sprawdić, że ϕ i π są preksałceniami liniowmi, ϕ jes monomorfimem, π jes epimorfimem i że π ϕ = ϕ. () Wkaać, że dla dowolnego preksałcenia liniowego ϕ : V W isnieje presreń liniowa Z ora epimorfim κ : V Z i monomorfim ϕ : Z W akie, że ϕ = ϕ κ. Dla jakiego preksałcenia liniowego ϕ można amienić miejscami słowa epimorfim ora monomorfim?

3 3 () Prpuśćm, że V, W, W są presreniami liniowmi nad ciałem K. Funkcję f : V W W można apisać pr pomoc par funkcji f : V W ora f : V W worem f(v) = (f (v), f (v)). Wkaać, że f jes preksałceniem liniowm wed i lko wed, gd f i f są preksałceniami liniowmi. (3) Załóżm, że A, B, C są biorami, B, C A ora V jes presrenią liniową. a) Pokaać, że odworowanie Φ B : V A V B, f f B dla f V A, jes preksałceniem liniowm. Kied jes o epimorfim, a kied monomorfim? b) Z punku (a) ora popredniego adania wnika, że Φ : V A V B V C dane worem Φ(f) = (Φ B (f), Φ C (f)) dla f V, jes preksałceniem liniowm. Kied Φ jes monomorfimem, a kied epimorfimem? (4) Niech V, V, V, W będą presreniami liniowmi ora niech V = V V. Pokaać, że dla dowolnch preksałceń liniowch ϕ i : V i W, i =,, isnieje dokładnie jedno preksałcenie liniowe ϕ : V W akie, że ϕ Vi = ϕ i. Jeżeli V = W ora ϕ = Id V, ϕ = Id V o ϕ nawam smerią wględem V wdłuż (albo równolegle do) V. Jeżeli naomias ϕ = Id V, a ϕ jes endomorfimem erowm, o ϕ nawam ruem presreni V na V wdłuż (albo równolegle do) V. (5) Wkaać, że: a) jeśli V = V V, o V = V V, b) jeśli V = V V n, o V = V V n. (6) Znaleźć jądra i obra preksałceń liniowch adań, 3, 7 ora. (7) Znaleźć jądro i obra smerii (ruu) wlędem V (na V ) wdłuż V. (8) Preksałcenie liniowe ϕ : K K 3 dane jes worem ϕ( ), lin( ), lin( a) obra podpresreni: K, lin( { K : + 3 = }; ) = ), Wnacć: b) preciwobra podpresreni: K 3, { }, lin( ), lin( ), 3 lin( 3 ), { K 3 : + + = }. 3 (9) Prpuśćm, że ϕ : V W jes preksałceniem liniowm, X jes podpresrenią presreni V, a Y jes podpresrenią presreni W. a) Wkaać, że (i) ϕ (ϕ(x)) = X+Kerϕ, (ii) ϕ(ϕ (Y )) = Y Imϕ. b) Sformułować warunek koniecn i wsarcając na o, ab (i) ϕ (ϕ(x)) = X, (ii) ϕ(ϕ (Y )) = Y. c) Jaki warunek musi spełniać ϕ, ab dla każdej podpresreni X presreni V achodiła równość ϕ (ϕ(x)) = X? d) Jaki warunek musi spełniać ϕ, ab dla każdej podpresreni Y presreni W achodiła równość ϕ(ϕ (Y )) = Y?

4 4 () Wiadomo, że preksałcenie liniowe ϕ : V W spełnia warunki: ϕ(α ) = β + β + 3β 3, ϕ(α ) = 4β + 5β + 6β 3, ϕ(α 3 ) = 7β + 8β + 9β 3 ora że (α, α, α 3 ) jes baą V, a (β, β, β 3 ) jes baą W. Oblicć wmiar obrau i wmiar jądra preksałcenia ϕ. () Niech ϕ i ψ będą odworowaniami K K akimi, że: ϕ((a, a, a 3,...)) = (, a, a, a 3,...), ψ((a, a, a 3,...)) = (a, a 3, a 4,...). a) Sprawdić, że ϕ i ψ są endomorfimami presreni K. b) Oblicć ϕ ψ i ψ ϕ. c) Sprawdić, c ϕ lub ψ jes monomorfimem, epimorfimem, iomorfimem. () C isnieje preksałcenie liniowe ϕ : R 3 R 3 spełniające warunki: a) ϕ( ) =, ϕ( ) =, ϕ( ) =, ϕ( ) = ; b) ϕ( ) =, ϕ( ) = 3, ϕ( ) = 4 4 ; 3 4 c) ϕ( ) =, ϕ( ) = 3, ϕ( ) = 4 4 ; 3 4 d) ϕ( ) =, ϕ( ) = 3? W prpadku pownej odpowiedi preanaliować licbę rowiąań i naleźć wór prnajmniej jednego akiego preksałcenia liniowego. (3) Skonsruować preksałcenie liniowe τ : R 3 R 3 spełniające warunki: τ( ) = τ( ) = τ τ = id R 3. Wnacć wór analicn preksałcenia τ. (4) Znaleźć wór analicn: a) smerii presreni R wględem lin( ) i wdłuż lin( ); b) smerii presreni R 3 wględem lin( ) i wdłuż lin( c) ruu presreni R na lin( ) wdłuż lin( ); 3 );

5 d) ruu presreni R 3 na lin( ) wdłuż lin( ). (5) Podać wór analicn preksałcenia liniowego ψ : R 3 R 3, o kórm wiadomo, że Kerψ = lin( ) ora Imψ = lin( ). C rowiąanie jes jedne? (6) Prpuśćm, że V jes presrenią liniową nad ciałem K, w kórm +. Załóżm, że ϕ ora ψ są endomorfimami presreni V. a) Wkaać, że ϕ ϕ =Id V wed i lko wed, gd isnieją podpresrenie U ora U presreni V akie, że ϕ jes smerią wględem U i wdłuż U. b) Wkaać, że ψ ψ = ψ wed i lko wed, gd isnieją podpresrenie U ora U presreni V akie, że ψ jes ruem V na U wdłuż U. (7) Załóżm, że ciało K ma q elemenów ora n N. Oblicć, ile jes a) różnch preksałceń liniowch K n K n ; b) różnch iomorfimów liniowch K n K n, gd: (i) n =, (ii) n =, (iii) n = 3, (iv) n jes dowolne. (8) Niech V będie presrenią liniową nad K, a odworowanie f : V V niech spełnia warunek: f(u + v) = f(u) + f(v) dla dowolnch u, v V. a) Wkaać, że jeśli K = Q lub K = Z p, o f jes preksałceniem liniowm. b) Podać prkład ciała K i presreni liniowej nad nim, gdie analogicn reula nie achodi. (9) Niech V ora W będą presreniami liniowmi nad ciałem K. Preksałcenie f : V W nawam jednorodnm sopnia, gd f(av) = af(v) dla każdch a K ora v V. a) Wkaać, że f jes liniowe, gd dim V. b) Wskaać presrenie V i W ora preksałcenie f : V W jednorodne sopnia akie, że dim V = ora f nie jes preksałceniem liniowm. (3) Ciało C jes presrenią liniową nad Q (on. C Q ) ora ciało R jes presrenią liniową nad Q (on. R Q ). Wkaać, że presrenie C Q ora R Q są iomorficne. (3) Wkaać, że jeżeli U ora U są podpresreniami presreni V, o 5 (U + U )/(U U ) = U /(U U ) U /(U U ). (3) Niech v,..., v m będą wekorami presreni V, naomias U niech będie podpresrenią presreni V. Pokaać, że (v + U,..., v m + U) jes liniowo nieależnm układem wekorów presreni V/U wed i lko wed, gd lin(v,..., v m ) U = {θ} i (v,..., v m ) jes układem liniowo nieależnm. (33) W presreni K 3 wbrano ba A 3 = ( naomias w presreni K 4 wbrano ba A 4 = ( ) ora B 3 = ( ), ) ora B 4 =

6 6 ( ). Znaleźć macier preksałcenia liniowego ϕ : Kn K m w baach A n ora B m (A n ora A m ; B n ora B m ; B n ora A m ), jeżeli: a) n = m = 3, ϕ( + ) = +, b) n = m = 3, ϕ( ) = +, 3 + c) n = 4, m = 3, ϕ( + ) = , d) n = 4, m = 3, ϕ( ) = + e) n = 3, m = 4, ϕ( + 3 ) = + + f) n = 3, m = 4, ϕ( + 3 ) = (34) Niech a, a,..., a m K, n, m N. Znaleźć macier preksałcenia liniowego ψ : KX n K m+ określonego worem: , ψ(w(x)) = (w(a ), w(a ),..., w(a m )) dla w(x) KX n w baach: (, X, X,..., X n ) presreni KX n wielomianów sopnia n ora baie sandardowej presreni K m+. Jak się a macier nawa, gd n = m? (35) Niech V = RX n, naomias preksałcenie δ : V V niech prporądkowuje wielomianowi jego pochodną. Pokaać, że δ jes endomorfimem presreni V ora naleźć macier δ w baie: a) (, X, X,..., X n ), b) (, X c, (X c),..., (X c)n ), gdie c jes usaloną licbą recwisą.! n! (36) Niech V będie podpresrenią presreni C (R) wsskich funkcji recwisch ciągłch ropięą pre cos ora sin, a preksałcenie δ niech będie preksałceniem, prpisującm funkcji jej pochodną. Sprawdić, że δ jes endomorfimem presreni V ora naleźć jego macier wględem ba (cos, sin ). a b (37) Wbierm A = K c d i określm odworowanie : K K worem ψ(b) = BA dla B K. Wkaać, że ψ jes endomorfimem presreni K i naleźć macier ego endomorfimu wględem ba (E, E, E, E ). (38) Niech ϕ : K 3 V będie ruem, a ψ : K 3 K 3 smerią wględem V i wdłuż V, gdie: a) V = lin(ε, ε ), V = lin(ε + ε 3 ), b) V = lin(ε, ε ), V = lin(ε + ε 3 ), c) V = lin(ε + ε, ε ), V = lin(ε + ε 3 ). W każdm prpadku naleźć macier ϕ w baach (ε, ε, ε 3 ) presreni K 3 ora (ε, ε ) presreni V. Znaleźć macier ψ w baach (ε, ε, ε 3 ) ora (ε, ε, ε + ε 3 ) presreni K 3. Zwrócić uwagę, że ψ jes endomorfimem presreni K 3 i naleźć macier ego endomorfimu w baie (ε, ε, ε 3 ). (39) Niech f : V W W, f(v) = (f (v), f (v)) będie preksałceniem liniowm adania, Zesaw??, sr. 3. Niech A i będie macierą f i w baach A presreni V ora B i presreni

7 W i. Znaleźć macier preksałcenia f w baach A presreni V ora (B {θ}) ({θ} B ) presreni W W. (4) Niech ϕ : V V W, ϕ(v + v ) = ϕ (v ) + ϕ (v ), będie preksałceniem liniowm adania 4, Zesaw??, sr. 3. Niech A i będie macierą ϕ i w baach A i presreni V i ora B presreni W. Znaleźć macier ϕ wlędem ba A A presreni V V ora B presreni W. (4) Preksałcenie liniowe ϕ : K K 3 wględem ba ( ma macier.znaleźć wór (analicn) na ϕ( 3, (4) Endomorfim ψ presreni K ma w baie (ε, ε, ε + ε 3 ) macier analicn opisując ψ. (43) Endomorfim ψ presreni R 3 ma w baie (ε ε, ε, ε + ε 3 ) macier ). ) ora ( Znaleźć wór. Znaleźć ) baę jądra i baę obrau preksałcenia ψ. C wekor należ do jądra ψ? Jaki jes obra wekora? (44) Niech A będie macierą preksałcenia liniowego γ : V W wględem ba A presreni V ora ba B presreni W. Jak się mieni macier A, gd: a) w baie A amienim i- wekor j-m? b) w baie A asąpim i- wekor jego ilocnem pre skalar a? c) w baie A dodam do j-ego wekora wekor i- pomnożon pre skalar a? d) w baie B amienim k- wekor l-m? e) w baie B asąpim k- wekor jego ilocnem pre skalar a? f) w baie B dodam do l-ego wekora wekor k- pomnożon pre skalar a? (45) Niech A będie macierą endomorfimu γ presreni V wględem ba A presreni V. Jak się mieni macier A, gd: a) w baie A amienim i- wekor j-m? b) w baie A asąpim i- wekor jego ilocnem pre skalar a? c) w baie A dodam do j-ego wekora wekor i- pomnożon pre skalar a? (46) Endomorfim γ presreni R 4 ma wględem ba sandardowej macier Znaleźć możliwie sbko macier γ wględem ba: 3 a) (ε, ε 3, ε, ε 4 ), b) (ε, ε + ε, ε + ε + ε 3, ε + ε + ε 3 + ε 4 ).

8 8 (47) Endomorfim λ presreni V nawam homoeią, jeżeli isnieje skalar a aki, że λ(v) = av dla każdego v V. Wkaać, że a) λ jes homoeią λ ϕ = ϕ λ dla każdego ϕ End(V ), b) λ jes homoeią λ ma aką samą macier wględem każdej ba V. (48) Macier preksałcenia ϕ : K 3 K 3 w baie (ε, ε, ε 3 ) ma posać a), b), c) Jakie własności preksałcenia ϕ można sąd odcać? (49) Udowodnić, że macier preksałcenia ϕ : K n K n w baie (ε, ε,..., ε n ) A C a) ma posać dla pewnej macier A sopnia k ϕ(lin(ε B, ε,..., ε k )) lin(ε, ε,..., ε k ); A b) ma posać dla pewnej macier A sopnia k i pewnej macier B sopnia n k B ϕ(lin(ε, ε,..., ε k )) lin(ε, ε,..., ε k ) i ϕ(lin(ε k+,..., ε n )) lin(ε k+,..., ε n ). (5) W presreni R n dane są ba A ora B. Onacm pre E baę sandardową (ε, ε,..., ε n ). Znaleźć maciere prejścia od E do A, od E do B, od A do E ora od A do B, gd: 3 a) n =, A = (, ), B = (, ); b) n = 3, A = ( ), B = ( 3 ); c) n = 4, A = ( ), B = ( W każdm powżsch prpadków apisać wekor ε + + n ε n jako kombinację liniową wekorów ba A. (5) Niech A = (α, α, α 3 ), B = (β, β, β 3 ) będą baami presreni C 3. Znaleźć macier smerii wględem V = lin(α, α ) i wdłuż V = lin(α 3 ) w baie B, gd α =. Podobnie dla ruu na V wdłuż V ( porako-, β = β = β 3 = wanego jako odworowanie C 3 C 3 ). (5) Oblicć współrędne wekora w baie ( jeśli charakerska ciała K jes różna od i od 3.. α = ). 3 α 3 = 4 ) presreni K4

9 9 (53) Napisać wor na mianę współrędnch wekorów pr prejściu od ba ( ) do ba ( ) presreni K4 jeśli charakerska ciała K jes różna od. (54) Korsając woru na mianę macier endomorfimu pr mianie ba naleźć macier preksałcenia ϕ : K 3 K 3 w baie (ε, ε + ε 3, ε + ε ) wiedąc, że macierą preksałcenia ϕ w baie a) (ε, ε, ε 3 ), b) (ε + ε, ε, ε 3 ) jes macier 3.

Zestaw zadań 12: Przekształcenia liniowe. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t. x y + 2t 2x 3y + 5z t x z t

Zestaw zadań 12: Przekształcenia liniowe. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t. x y + 2t 2x 3y + 5z t x z t Zesaw adań : Preksałcenia liniowe () Kóre podanch niżej preksałceń ϕ : K n K m są preksałceniami liniowmi: a) n = m = 3, ϕ( + +, b) n = m = 3, ϕ( +, 3 + + + +, d) n = m = 3, ϕ( +, c) n = m = 3, ϕ( e) n

Bardziej szczegółowo

Zestaw zadań 15: Funkcjonały dwuliniowe i formy kwadratowe (1) Sprawdzić, czy następujące odwzorowania ξ : R 3 R 3 R: x y. x y z. f(x)g(x)dx.

Zestaw zadań 15: Funkcjonały dwuliniowe i formy kwadratowe (1) Sprawdzić, czy następujące odwzorowania ξ : R 3 R 3 R: x y. x y z. f(x)g(x)dx. Zestaw adań 5: Funkcjonał dwuliniowe i form kwadratowe () Sprawdić, c następujące odworowania ξ : R 3 R 3 R: x x a) ξ( x, c) ξ( x, x ) = xx + + ; b) ξ(, x ) = xx + 2 + ; d) ξ( x, x x ) = x + x + 2; ) =

Bardziej szczegółowo

Algebra liniowa. Zadania przygotowujące do egzaminu: .Wskazówka: Zastosować wzór de Moivre'a;

Algebra liniowa. Zadania przygotowujące do egzaminu: .Wskazówka: Zastosować wzór de Moivre'a; emer leni 5/6 lgebra liniowa Znaleźć i nakicować biór 8 C j ; a) ( ) b) { C j j } c) { C Im( ) } ; Zadania rgoowjące do egamin Wkaówka Zaoować wór de Moire'a; d) C Im Wnacć licb dla kórch macier je odwracalna

Bardziej szczegółowo

Rozdział 9. Baza Jordana

Rozdział 9. Baza Jordana Rodiał 9 Baa Jordana Niech X będie n wmiarową prestrenią wektorową nad ciałem F = R lub F = C Roważm dowoln endomorfim f : X X Wiem, że postać macier endomorfimu ależ od wboru ba w prestreni X Wiem również,

Bardziej szczegółowo

Powierzchnie stopnia drugiego

Powierzchnie stopnia drugiego Algebra WYKŁAD 3 Powierchnie sopnia drugiego Deinicja Powierchnią sopnia drugiego kwadrką nawam biór punków presreni rójwmiarowej, spełniającch równanie A B C D E F G H I K gdie A, B,, K są sałmi i prnajmniej

Bardziej szczegółowo

,..., u x n. , 2 u x 2 1

,..., u x n. , 2 u x 2 1 . Równania różnickowe cąstkowe Definicja. Równaniem różnickowm cąstkowm (rrc) nawam równanie różnickowe, w którm wstępuje funkcja niewiadoma dwóch lub więcej miennch i jej pochodne cąstkowe. Ogólna postać

Bardziej szczegółowo

Przestrzeń liniowa R n.

Przestrzeń liniowa R n. MATEMATYKA IIb - Lcjan Kowalski Prestreń liniowa R n. Element (wektor) prestreni R n będiem onacać [,,, ] Element erow [,, L, ]. Diałania. a) ilocn element pre licbę: b) sma elementów [ c, c, ] c L, c

Bardziej szczegółowo

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE . Oblicyć: ZADANIA Z FUNKCJI ANALITYCZNYCH a) ( 7i) ( 9i); b) (5 i)( + i); c) 4+3i ; LICZBY ZESPOLONE d) 3i 3i ; e) pierwiastki kwadratowe 8 + i.. Narysować biór tych licb espolonych, które spełniają warunek:

Bardziej szczegółowo

Zestaw zadań 14: Wektory i wartości własne. ) =

Zestaw zadań 14: Wektory i wartości własne. ) = Zestaw zadań 4: Wektory i wartości własne () Niech V = V V 2 będzie przestrzenią liniową nad ciałem K, w którym + 0 Znaleźć wszystkie podprzestrzenie niezmiennicze rzutu V na V wzdłuż V 2 oraz symetrii

Bardziej szczegółowo

Postać Jordana macierzy

Postać Jordana macierzy Rodiał 8 Postać Jordana macier 8.1. Macier Jordana Niech F = R lub F = C. Macier J r () F r r postaci 1. 1... J r () =..........,.... 1 gdie F, nawam klatką Jordana stopnia r. Ocwiście J 1 () = [. Definicja

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem

Bardziej szczegółowo

Praca domowa - seria 6

Praca domowa - seria 6 Praca domowa - seria 6 28 grudnia 2012 Zadanie 1. Znajdź bazę jądra i obrazu przekształcenia liniowego φ : R 4 wzorem: R 3 danego φ(x 1, x 2, x 3, x 4 ) = (x 1 +2x 2 x 3 +3x 4, x 1 +x 2 +2x 3 +x 4, 2x

Bardziej szczegółowo

Przykład 6.3. Uogólnione prawo Hooke a

Przykład 6.3. Uogólnione prawo Hooke a Prkład 6 Uogónione prawo Hooke a Zwiąki międ odkstałceniami i naprężeniami w prpadku ciała iotropowego opisuje uogónione prawo Hooke a: ] ] ] a Rowiąując równania a wgędem naprężeń otrmujem wiąki: b W

Bardziej szczegółowo

Wykład 12 i 13 Macierz w postaci kanonicznej Jordana , 0 A 2

Wykład 12 i 13 Macierz w postaci kanonicznej Jordana , 0 A 2 Wykład 12 i 13 Macierz w postaci kanonicznej Jordana Niech A - macierz kwadratowa stopnia n Jak obliczyć np A 100? a 11 0 0 0 a 22 0 Jeśli A jest macierzą diagonalną tzn A =, to Ak = 0 0 a nn Niech B =

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu miennch wkład MATEMATYKI Automatka i Robotka sem I, rok ak 2008/2009 Katedra Matematki Wdiał Informatki Politechnika Białostocka Niech R n def = {( 1, 2,, n ): 1 R 2 R n R } Funkcją n miennch

Bardziej szczegółowo

9 Przekształcenia liniowe

9 Przekształcenia liniowe 9 Przekształcenia liniowe Definicja 9.1. Niech V oraz W będą przestrzeniami liniowymi nad tym samym ciałem F. Przekształceniem liniowym nazywamy funkcję ϕ : V W spełniającą warunek (LM) v1,v 2 V a1,a 2

Bardziej szczegółowo

Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona.

Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona. Wykład - LICZBY ZESPOLONE Algebra licb espolonych, repreentacja algebraicna i geometrycna, geometria licb espolonych. Moduł, argument, postać trygonometrycna, wór de Moivre a.' Zbiór Licb Zespolonych Niech

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 1. Ciała Definicja 1. Układ { ; 0, 1; +, } złożony ze zbioru, dwóch wyróżnionych elementów 0, 1 oraz dwóch działań +:, : nazywamy ciałem

Bardziej szczegółowo

Wyznaczanie reakcji dynamicznych oraz wyważanie ciała w ruchu obrotowym wokół stałej osi 8

Wyznaczanie reakcji dynamicznych oraz wyważanie ciała w ruchu obrotowym wokół stałej osi 8 Wnacanie reakcji dnaicnch ora wważanie ciała w ruchu oroow wokół sałej osi 8 Wprowadenie Jeśli dowolne ciało swne o asie jes w ruchu oroow wokół osi, o na podporach powsają reakcje A i B. Składowe ch reakcji

Bardziej szczegółowo

Rozwiazania zadań. Zadanie 1A. Zadanie 1B. Zadanie 2A

Rozwiazania zadań. Zadanie 1A. Zadanie 1B. Zadanie 2A Rowiaania adań Zadanie A = ( i) = 4 8i 4 = 8i Badam licbȩ espolon a 8i Jej moduł 8i jest równ 8 Jej postać espolona jest równa 8(cosα + isinα) α = /π St ad cosα = i sinα = Mam pierwiastki które oblicam

Bardziej szczegółowo

x od położenia równowagi

x od położenia równowagi RUCH HARMONICZNY Ruch powtarając się w regularnch odstępach casu nawa ruche okresow. Jeżeli w taki ruchu seroko rouiane odchlenie od stanu równowagi ( np. odchlenie as podcepionej do sprężn, wartość wektora

Bardziej szczegółowo

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) =

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) = Uk lady równań różniczkowych Pojȩcia wsȩpne Uk ladem równań różniczkowych nazywamy uk lad posaci y = f (, y, y 2,, y n ) y 2 = f 2 (, y, y 2,, y n ) y n = f n (, y, y 2,, y n ) () funkcje f j, j =, 2,,

Bardziej szczegółowo

W siła działająca na bryłę zredukowana do środka masy ( = 0

W siła działająca na bryłę zredukowana do środka masy ( = 0 Popęd i popęd bryły Bryła w ruchu posępowym. Zasada pędu i popędu ma posać: p p S gdie: p m v pęd bryły w ruchu posępowym S c W d popęd siły diałającej na bryłę w ruchu posępowym aś: v c prędkość środka

Bardziej szczegółowo

Opis ruchu we współrzędnych prostokątnych (kartezjańskich)

Opis ruchu we współrzędnych prostokątnych (kartezjańskich) Opis ruchu we współrędch prosokąch (karejańskich) Opis ruchu we współrędch prosokąch jes podob do opisu a pomocą wekora wodącego, kórego pocąek leż w pocąku układu odiesieia. Położeie. Położeie puku A

Bardziej szczegółowo

Diagonalizacja macierzy i jej zastosowania

Diagonalizacja macierzy i jej zastosowania Diagonalizacja macierzy i jej zastosowania Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 9. wykład z algebry liniowej Warszawa, grudzień 2011 Mirosław Sobolewski (UW) Warszawa, grudzień

Bardziej szczegółowo

Wartości i wektory własne

Wartości i wektory własne Rozdział 7 Wartości i wektor własne Niech X będzie skończenie wmiarową przestrzenią liniową nad ciałem F = R lub F = C. Niech f : X X będzie endomorfizmem, tj. odwzorowaniem liniowm przekształającm przestrzeń

Bardziej szczegółowo

Rozwiązania, seria 5.

Rozwiązania, seria 5. Rozwiązania, seria 5. 26 listopada 2012 Zadanie 1. Zbadaj, dla jakich wartości parametru r R wektor (r, r, 1) lin{(2, r, r), (1, 2, 2)} R 3? Rozwiązanie. Załóżmy, że (r, r, 1) lin{(2, r, r), (1, 2, 2)}.

Bardziej szczegółowo

Diagonalizacja macierzy i jej zastosowania

Diagonalizacja macierzy i jej zastosowania Diagonalizacja macierzy i jej zastosowania Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 9. wykład z algebry liniowej Warszawa, listopad 29 Mirosław Sobolewski (UW) Warszawa, wrzesień

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

Cechy szeregów czasowych

Cechy szeregów czasowych energecznch Cech szeregów czasowch Rozdział Modelowanie szeregów czasowch 7 proces deerminisczn proces kórego warość może bć preczjnie określona w dowolnm czasie =T+τ = a +b T T+τ czas = sin(ω) T T+τ czas

Bardziej szczegółowo

Elementy symetrii makroskopowej w ujęciu macierzowym.

Elementy symetrii makroskopowej w ujęciu macierzowym. Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Element smetrii makroskopowej w ujęciu macierowm. 2 god. Cel ćwicenia: tworenie macier smetrii elementów smetrii makroskopowej

Bardziej szczegółowo

4.2.1. Środek ciężkości bryły jednorodnej

4.2.1. Środek ciężkości bryły jednorodnej 4..1. Środek ciężkości rł jednorodnej Brłą jednorodną nawam ciało materialne, w którm masa jest romiescona równomiernie w całej jego ojętości. Dla takic ciał arówno gęstość, jak i ciężar właściw są wielkościami

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu miennch wkład MATEMATYKI Automatka i robotka studia niestacjonarne sem II, rok ak 2009/2010 Katedra Matematki Wdiał Informatki Politechnika Białostocka Niech R ndef ={( 1, 2,, n ): 1 R 2

Bardziej szczegółowo

23. CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA

23. CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA . CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA Płat powiechniow o ównaniach paametcnch: ( ) ( ) ( ) () gdie oba jet obaem eglanm nawam płatem gładkim (płatem eglanm) gd w każdm pnkcie tego płata itnieje płacna

Bardziej szczegółowo

Zadania przygotowawcze, 3 kolokwium

Zadania przygotowawcze, 3 kolokwium Zadania przygotowawcze, 3 kolokwium Mirosław Sobolewski 8 grudnia. Niech φ t : R 3 R 3 bedzie endomorfizmem określonym wzorem φ t ((x, x, )) (x +, tx + x, x + ), gdzie parametr t R. a) Zbadać dla jakiej

Bardziej szczegółowo

Adam Bodnar: Wytrzymałość Materiałów. Proste zginanie

Adam Bodnar: Wytrzymałość Materiałów. Proste zginanie dam Bodnar: trmałość ateriałów. Proste ginanie. PROSTE GINNIE.. Naprężenia i odkstałcenia Proste ginanie pręta prmatcnego wstępuje wówcas gd układ sił ewnętrnch po jednej stronie jego prekroju poprecnego

Bardziej szczegółowo

Endomorfizmy liniowe

Endomorfizmy liniowe Endomorfizmy liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 8. wykład z algebry liniowej Warszawa, listopad 2011 Mirosław Sobolewski (UW) Warszawa, listopad 2011 1 / 16 Endomorfizmy

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

Wniosek Niech R będzie pierścieniem, niech I R. WówczasI R wtedy i tylko wtedy, gdy I jest jądrem pewnego homomorfizmu.

Wniosek Niech R będzie pierścieniem, niech I R. WówczasI R wtedy i tylko wtedy, gdy I jest jądrem pewnego homomorfizmu. 11. Wykład 11: Pierścień ilorazowy, twierdzenie o homomorfizmie. Ideały pierwsze i maksymalne. 11.1. Pierścień ilorazowy, twierdzenie o homomorfizmie. Definicja i Uwaga 11.1. Niech R będzie pierścieniem,

Bardziej szczegółowo

GAL II. zestawy do prac domowych z rozwiązaniami semestr letni 2011/2012. Wydział MIM UW

GAL II. zestawy do prac domowych z rozwiązaniami semestr letni 2011/2012. Wydział MIM UW GAL II zestawy do prac domowych z rozwiązaniami semestr letni 0/0 Wydział MIM UW luty 05 0 Spis treści Wartości i wektory własne Podobieństwo macierzy, postać Jordana 5 3 Postać Jordana II 4 Struktura

Bardziej szczegółowo

= b i M i [x], gdy charf = p, to a i jest pierwiastkiem wielomianu x n i

= b i M i [x], gdy charf = p, to a i jest pierwiastkiem wielomianu x n i 15. Wykład 15: Rozszerzenia pierwiastnikowe. Elementy wyrażające się przez pierwiastniki. Rozwiązalność równań przez pierwiastniki. Równania o dowolnych współczynnikach. 15.1. Rozszerzenia pierwiastnikowe.

Bardziej szczegółowo

Przestrzeń liniowa i przekształcenie liniowe

Przestrzeń liniowa i przekształcenie liniowe opracował Maciej Grzesiak Przestrzeń liniowa i przekształcenie liniowe W algebrze rozpatruje się zbiory abstrakcyjne Natura elementów zbioru się nie liczy Na elementach rozpatruje się działania spełniające

Bardziej szczegółowo

1. REDUKCJA DOWOLNYCH UKŁADÓW SIŁ. Redukcja płaskiego układu sił

1. REDUKCJA DOWOLNYCH UKŁADÓW SIŁ. Redukcja płaskiego układu sił . REDUKCJA DOWOLNYCH UKŁADÓW IŁ Redukcja płaskiego układu sił Zadanie. Znaleźć wartość licbową i równanie linii diałania wpadkowej cterech sił predstawionch na rsunku. Wartości licbowe sił są następujące:

Bardziej szczegółowo

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx 5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.

Bardziej szczegółowo

GAL. zestawy do prac domowych z rozwiązaniami semestr zimowy 2011/2012. Wydział MIM UW

GAL. zestawy do prac domowych z rozwiązaniami semestr zimowy 2011/2012. Wydział MIM UW GAL zestawy do prac domowych z rozwiązaniami semestr zimowy / Wydział MIM UW wersja z października Spis treści Układy równań Liczby zespolone 7 Przestrzenie liniowe, kombinacje liniowe Podprzestrzenie

Bardziej szczegółowo

5. Równania różniczkowe zwyczajne pierwszego rzędu

5. Równania różniczkowe zwyczajne pierwszego rzędu 5. Równania różniczkowe zwyczajne pierwszego rzędu 5.1. Wstęp. Definicja 5.1. Niech V R 3 będzie obszarem oraz F : V R. Równaniem różniczkowym zwyczajnym rzędu pierwszego nazywamy równanie postaci Równanie

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań.

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań. Zestaw zadań : Sumy i sumy proste podprzestrzeni Baza i wymiar Rzędy macierzy Struktura zbioru rozwiązań układu równań () Pokazać, że jeśli U = lin(α, α,, α k ), U = lin(β, β,, β l ), to U + U = lin(α,

Bardziej szczegółowo

1. Liczby zespolone i

1. Liczby zespolone i Zadania podstawowe Liczby zespolone Zadanie Podać część rzeczywistą i urojoną następujących liczb zespolonych: z = ( + 7i)( + i) + ( 5 i)( + 7i), z = + i, z = + i i, z 4 = i + i + i i Zadanie Dla jakich

Bardziej szczegółowo

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami: 9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym

Bardziej szczegółowo

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ).

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ). Materiał ddaktcne Geodeja geometrcna Marcin Ligas, Katedra Geomatki, Wdiał Geodeji Górnicej i Inżnierii Środowiska UKŁADY WSPÓŁZĘDNYCH NA KULI Pierwsm prbliżeniem kstałtu Ziemi (ocwiście po latach płaskich

Bardziej szczegółowo

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com

Bardziej szczegółowo

Matematyka A, kolokwium, 15 maja 2013 rozwia. ciem rozwia

Matematyka A, kolokwium, 15 maja 2013 rozwia. ciem rozwia Maemayka A kolokwium maja rozwia zania Należy przeczyać CA LE zadanie PRZED rozpocze ciem rozwia zywania go!. Niech M. p. Dowieść że dla każdej pary liczb ca lkowiych a b isnieje aka para liczb wymiernych

Bardziej szczegółowo

Zadania z Algebry liniowej 3 semestr zimowy 2008/2009

Zadania z Algebry liniowej 3 semestr zimowy 2008/2009 Zadania z Algebry liniowej 3 semestr zimowy 2008/2009 1. Niech V będzie przestrzenią wektorową nad ciałem K i niech 0 K oraz θ V będą elementem zerowym ciała K i wektorem zerowym przestrzeni V. Posługując

Bardziej szczegółowo

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof. Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (II)

Równanie przewodnictwa cieplnego (II) Wykład 5 Równanie przewodnictwa cieplnego (II) 5.1 Metoda Fouriera dla pręta ograniczonego 5.1.1 Pierwsze zagadnienie brzegowe dla pręta ograniczonego Poszukujemy rozwiązania równania przewodnictwa spełniającego

Bardziej szczegółowo

MECHANIKA RELATYWISTYCZNA TRANFORMACJA LORENTZA

MECHANIKA RELATYWISTYCZNA TRANFORMACJA LORENTZA Wdiał EAIiE Kierunek: ELEKTRONIKA I TELEKOMUNIKACJA Predmio: Fika II MECHANIKA RELATYWISTYCZNA TRANFORMACJA LORENTZA 0/0, lao SZCZEGÓLNA TEORIA WZGLĘDNOŚCI Fika relawisna jes wiąana pomiarem miejsa i asu

Bardziej szczegółowo

Grupa obrotów. - grupa symetrii kuli, R - wszystkie możliwe obroty o dowolne kąty wokół osi przechodzących przez środek kuli

Grupa obrotów. - grupa symetrii kuli, R - wszystkie możliwe obroty o dowolne kąty wokół osi przechodzących przez środek kuli Grupa obrotów - grupa smetr kul R - wsstke możlwe obrot o dowolne kąt wokół os prechodącch pre środek kul nacej O 3 grupa obrotów właścwch - grupa cągła - każd obrót określa sę pre podane os l kąta obrotu

Bardziej szczegółowo

Mechanika Robotów. Wojciech Lisowski. 2 Opis położenia i orientacji efektora Model geometryczny zadanie proste

Mechanika Robotów. Wojciech Lisowski. 2 Opis położenia i orientacji efektora Model geometryczny zadanie proste Katedra Robotki i Mechatroniki Akademia Górnico-Hutnica w Krakowie Mechanika Robotów Wojciech Lisowski Opis położenia i orientacji efektora Model geometrcn adanie proste Mechanika Robotów KRIM, AGH w Krakowie

Bardziej szczegółowo

GRUPY SYMETRII Symetria kryształu

GRUPY SYMETRII Symetria kryształu GRUPY SYMETRII Smetria krstału Zamknięte (punktowe) operacje smetrii (minimum jeden punkt prestreni nie porusa się wskutek astosowania amkniętej operacji smetrii): Obrot i obrot inwersjne; Inwersja (smetria

Bardziej szczegółowo

Seria zadań z Algebry IIR nr kwietnia 2017 r. i V 2 = B 2, B 4 R, gdzie

Seria zadań z Algebry IIR nr kwietnia 2017 r. i V 2 = B 2, B 4 R, gdzie Seria zadań z Algebry IIR nr 29 kwietnia 207 r Notacja: We wszystkich poniższych zadaniach K jest ciałem, V wektorow a nad K zaś jest przestrzeni a Zadanie Niechaj V = K 4 [t] Określmy podprzestrzenie

Bardziej szczegółowo

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne.

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne. Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Strukturalne element smetrii. Krstalograficne grup prestrenne. god. Cel ćwicenia: aponanie się diałaniem elementów smetrii

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

KONWENCJA ZNAKOWANIA MOMENTÓW I WZÓR NA NAPRĘŻENIA

KONWENCJA ZNAKOWANIA MOMENTÓW I WZÓR NA NAPRĘŻENIA ĆWICZENIE 5 KONWENCA ZNAKOWANIA OENTÓW I WZÓR NA NAPRĘŻENIA Wektor momentu pr ginaniu ukośnm można rutować na osie,, będące głównmi centralnmi osiami bewładności prekroju. Prjmujem konwencję nakowania

Bardziej szczegółowo

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem Zestaw zadań 9: Przestrzenie wektorowe. Podprzestrzenie () Wykazać, że V = C ze zwykłym dodawaniem jako dodawaniem wektorów i operacją mnożenia przez skalar : C C C, (z, v) z v := z v jest przestrzenią

Bardziej szczegółowo

14. Wykład 14: Grupa Galois wielomianu. Zasadnicze twierdzenia teorii Galois. Rozszerzenia rozwiązalne, cykliczne i abelowe

14. Wykład 14: Grupa Galois wielomianu. Zasadnicze twierdzenia teorii Galois. Rozszerzenia rozwiązalne, cykliczne i abelowe 14. Wykład 14: Grupa Galois wielomianu. Zasadnicze twierdzenia teorii Galois. Rozszerzenia rozwiązalne, cykliczne i abelowe. 14.1. Grupa Galois wielomianu. Definicja 14.1. Niech F będzie ciałem, niech

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Meody Lagrange a i Hamilona w Mechanice Mariusz Przybycień Wydział Fizyki i Informayki Sosowanej Akademia Górniczo-Hunicza Wykład 7 M. Przybycień (WFiIS AGH) Meody Lagrange a i Hamilona... Wykład 7 1 /

Bardziej szczegółowo

Wyk lad 7 Baza i wymiar przestrzeni liniowej

Wyk lad 7 Baza i wymiar przestrzeni liniowej Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.

Bardziej szczegółowo

J. Szantyr - Wykład 7 Ruch ogólny elementu płynu

J. Szantyr - Wykład 7 Ruch ogólny elementu płynu J. Santr - Wkład 7 Rch ogóln element płn Rch ogóln ciała stwnego można predstawić jako smę premiescenia liniowego i obrot. Ponieważ płn nie mają stwności postaciowej, w rch płn dochodi dodatkowo do odkstałcenia

Bardziej szczegółowo

1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler

1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler GAL (Informatyka) Wykład - formy hermitowskie Wersja z dnia 23 stycznia 2014 Paweł Bechler 1 Formy hermitowskie Niech X oznacza przestrzeń liniową nad ciałem K. Definicja 1. Funkcję φ : X X K nazywamy

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (I)

Równanie przewodnictwa cieplnego (I) Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca

Bardziej szczegółowo

Algebra liniowa z geometrią 2

Algebra liniowa z geometrią 2 Algebra liniowa z geometrią 2 Maciej Czarnecki 23 maja 2013 Spis treści 5 Geometria płaszczyzny zespolonej 2 6 Macierze 3 6.1 Działania na macierzach....................... 3 6.2 Wyznacznik..............................

Bardziej szczegółowo

PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa:

PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa: PRW ZCHOWNI Pawa achowania nabadie fundamentalne pawa: o ewnętne : pawo achowania pędu, pawo achowania momentu pędu, pawo achowania enegii; o wewnętne : pawa achowania np. całkowite licb nukleonów w eakci

Bardziej szczegółowo

Rozdzia l 10. Formy dwuliniowe i kwadratowe Formy dwuliniowe Definicja i przyk lady

Rozdzia l 10. Formy dwuliniowe i kwadratowe Formy dwuliniowe Definicja i przyk lady Rozdzia l 10 Formy dwuliniowe i kwadratowe 10.1 Formy dwuliniowe 10.1.1 Definicja i przyk lady Niech X K b edzie przestrzenia liniowa nad cia lem K, dim(x K ) = n. Definicja 10.1 Przekszta lcenie ϕ : X

Bardziej szczegółowo

, to liczby γ +δi oraz γ δi opisują pierwiastki z a+bi.

, to liczby γ +δi oraz γ δi opisują pierwiastki z a+bi. Zestaw 1 Liczby zespolone 1 Zadania do przeliczenia Nie będziemy robić na ćwiczeniach S 1 Policz wartość 1 + i + (2 + i)(i 3) 1 i Zadania domowe x y(1 + i) 1 Znajdź liczby rzeczywiste x, y takie, że +

Bardziej szczegółowo

Wykład 5. Ker(f) = {v V ; f(v) = 0}

Wykład 5. Ker(f) = {v V ; f(v) = 0} Wykład 5 Niech f : V W będzie przekształceniem liniowym przestrzeni wektorowych Wtedy jądrem przekształcenia nazywamy zbiór tych elementów z V, których obrazem jest wektor zerowy w przestrzeni W Jądro

Bardziej szczegółowo

Zadania z GAL-u. 1 Rozwia. Listopad x + 3y = 1 3x + y = x + y = 1 x + 2y 3z = 3 2x + 4y + z = 1 1.2

Zadania z GAL-u. 1 Rozwia. Listopad x + 3y = 1 3x + y = x + y = 1 x + 2y 3z = 3 2x + 4y + z = 1 1.2 Zadania z GAL-u Listopad 2004 1 Rozwia zać uk lady równań: 11 12 13 14 15 { 2x + 3y = 1 3x + y = 0 x + y = 1 x + 2y 3z = 3 2x + 4y + z = 1 3x + y + z = 1 x + 2z = 6 3y + 2z = 0 2x + 3y + 2z = 1 3x + 4y

Bardziej szczegółowo

WIELOMIANY. ZADANIE 1 (5 PKT) Reszta z dzielenia wielomianu x 3 + px 2 x + q przez trójmian (x + 2) 2 wynosi 1 x. Wyznacz pierwiastki tego wielomianu.

WIELOMIANY. ZADANIE 1 (5 PKT) Reszta z dzielenia wielomianu x 3 + px 2 x + q przez trójmian (x + 2) 2 wynosi 1 x. Wyznacz pierwiastki tego wielomianu. IMIE I NAZWISKO WIELOMIANY SUMA PUNKTÓW: 125 ZADANIE 1 (5 PKT) Reszta z dzielenia wielomianu x 3 + px 2 x + q przez trójmian (x + 2) 2 wynosi 1 x. Wyznacz pierwiastki tego wielomianu. ZADANIE 2 (5 PKT)

Bardziej szczegółowo

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5 Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe ALGEBRA LINIOWA 2 Wydział Mechaniczny / AIR, MTR Semestr letni 2009/2010 Prowadzący: dr Teresa Jurlewicz Przestrzenie liniowe Uwaga. W nawiasach kwadratowych podane są numery zadań znajdujących się w podręczniku

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią prof. dr hab. Andrzej Szczepański Wydział MFI UG Instytut Matematyki 14 czerwca 2017 rof. dr hab. Andrzej Szczepański (Wydział MFI UG Algebra Instytut liniowa Matematyki) z

Bardziej szczegółowo

Algebra WYKŁAD 9 ALGEBRA

Algebra WYKŁAD 9 ALGEBRA Algebra WYKŁAD 9 Krzwe sożkowe Definicja Prosa sczna do krzwej K w punkcie P jes o prosa, będąca granicznm położeniem siecznch s k przechodzącch przez punk P i P k gd punk P k dąż zbliża się do punku P

Bardziej szczegółowo

1 Elementy logiki i teorii mnogości

1 Elementy logiki i teorii mnogości 1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz

Bardziej szczegółowo

Wyk lad 11 Przekszta lcenia liniowe a macierze

Wyk lad 11 Przekszta lcenia liniowe a macierze Wyk lad 11 Przekszta lcenia liniowe a macierze 1 Izomorfizm przestrzeni L(V ; W ) i M m n (R) Twierdzenie 111 Niech V i W bed a przestrzeniami liniowymi o bazach uporzadkowanych (α 1,, α n ) i (β 1,, β

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

ĆWICZENIA Z ARYTMETYKI TEORETYCZNEJ 1. LICZBY NATURALNE. x + 1 = x, x + y = (x + y). ( y + (z + w) ) + w = x + (d) jeśli (x) = 1, to x = 1,

ĆWICZENIA Z ARYTMETYKI TEORETYCZNEJ 1. LICZBY NATURALNE. x + 1 = x, x + y = (x + y). ( y + (z + w) ) + w = x + (d) jeśli (x) = 1, to x = 1, ĆWICZENIA Z ARYTMETYKI TEORETYCZNEJ 1. LICZBY NATURALNE. Dodawanie liczb naturalnych. Przypomnijmy, że dodawanie "+" jest działaniem scharakteryzowanym jednoznacznie przez warunki: (1 + ) (2 + ) x + 1

Bardziej szczegółowo

Równania różniczkowe liniowe rzędu pierwszego

Równania różniczkowe liniowe rzędu pierwszego Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to

Bardziej szczegółowo

Baza w jądrze i baza obrazu ( )

Baza w jądrze i baza obrazu ( ) Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem

Bardziej szczegółowo

1. Krótki zarys teorii grup 1

1. Krótki zarys teorii grup 1 1. Krótki ars teorii grup 1 1.1. Grup Co prawda w dalsej cęści wkładu będiem ajmować się tlko grupami operacji smetrii, ale najpierw wprowadim ścisłe, matematcne pojęcie grup niealeŝne od wobraŝeń geometrcnch,

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K

Bardziej szczegółowo

1 Przestrzeń liniowa. α 1 x α k x k = 0

1 Przestrzeń liniowa. α 1 x α k x k = 0 Z43: Algebra liniowa Zagadnienie: przekształcenie liniowe, macierze, wyznaczniki Zadanie: przekształcenie liniowe, jądro i obraz, interpretacja geometryczna. Przestrzeń liniowa Już w starożytności człowiek

Bardziej szczegółowo

1. Podstawy rachunku wektorowego

1. Podstawy rachunku wektorowego 1 Postaw rachunku wektorowego Wektor Wektor est wielkością efiniowaną pre ługość (mouł) kierunek iałania ora wrot Dwa wektor o tm samm moule kierunku i wrocie są sobie równe Wektor presunięt równolegle

Bardziej szczegółowo

Mechanika kwantowa III

Mechanika kwantowa III Mecaika kwatowa III Opracowaie: Barbara Pac, Piotr Petele Powtóreie Moet pędu jest wielkością pojęciowo bardo istotą, gdż dla wsstkic pól o setrii sfercej operator jego kwadratu ( ˆM koutuje ailtoiae (

Bardziej szczegółowo

ODKSZTAŁCENIE PLASTYCZNE MATERIAŁÓW IZOTROPOWYCH. Opis dla ośrodka ciągłego

ODKSZTAŁCENIE PLASTYCZNE MATERIAŁÓW IZOTROPOWYCH. Opis dla ośrodka ciągłego ODKSZTAŁCENIE LASTYCZNE MATERIAŁÓW IZOTROOWYCH. Opis dla ośrodka ciągłego (opracowano na podstawie: C.N. Reid, deformation geometr for Materials Scientists, ergamon ress, Oford, 97) Wstęp Omówim tera sposób

Bardziej szczegółowo

(6) Homomorfizm φ : P R nazywamy epimorfizmem kategoryjnym, jeśli dla każdego pierścienia. jeśli φ ψ 1 = φ ψ 2, to ψ 1 = ψ 2 ;

(6) Homomorfizm φ : P R nazywamy epimorfizmem kategoryjnym, jeśli dla każdego pierścienia. jeśli φ ψ 1 = φ ψ 2, to ψ 1 = ψ 2 ; 10. Wykład 10: Homomorfizmy pierścieni, ideały pierścieni. Ideały generowane przez zbiory. 10.1. Homomorfizmy pierścieni, ideały pierścieni. Definicja 10.1. Niech P, R będą pierścieniami. (1) Odwzorowanie

Bardziej szczegółowo

Przestrzenie wektorowe

Przestrzenie wektorowe Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:

Bardziej szczegółowo