BADANIA OPERACYJNE PROGRAMOWANIE WIELOKRYTERIALNE

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "BADANIA OPERACYJNE PROGRAMOWANIE WIELOKRYTERIALNE"

Transkrypt

1 DR ADAM SOJDA

2 Czasem istnieje wiele kryteriów oceny. Kupno samochodu: cena prędkość maksymalna spalanie kolor typ nadwozia bagażnik najniższa najwyższa najniższe {czarny*, czerwony, } {sedan, coupe, SUV, } największy ## używany ## rok produkcji, liczba przejechanych kilometrów, bezwypadkowy, stan techniczny, liczba właścicieli, garażowany,

3 Czasem istnieje wiele kryteriów oceny. Kupno samochodu: cena prędkość maksymalna spalanie kolor typ nadwozia bagażnik najniższa najwyższa najniższe {czarny*, czerwony, } {sedan, coupe, SUV, } największy ## używany ## rok produkcji, liczba przejechanych kilometrów, bezwypadkowy, stan techniczny, liczba właścicieli, garażowany, KTÓRA Z DECYZJI DOPUSZCZALNYCH JEST NAJLEPSZA

4 Każde kryterium może wskazywać na inne rozwiązanie optymalne. Musimy znaleźć Są to OPTIMA CZĄSTKOWE

5 Każde kryterium może wskazywać na inne rozwiązanie optymalne. Są to OPTIMA CZĄSTKOWE Musimy znaleźć KOMPROMIS - jedną (albo zbiór) decyzję/ rozwiązanie.

6 Rozwiązanie optymalne w sensie Pareto / optimum Pareto / zbiór decyzji sprawnych, zbiór decyzji efektywnych / zbiór decyzji niezdominowanych. Rozwiązanie najlepsze z punktu widzenia wszystkich kryteriów, funkcji celu. Takie rozwiązania, że nie istnieje żadne inne rozwiązanie od nich lepsze chociaż dla jednej funkcji celu przy pozostałych funkcja zachowujących przynajmniej swoje wartości. Jest to takie rozwiązanie, że aby je polepszyć dla jednej funkcji celu, to tylko kosztem pogorszenia innej funkcji celu. Zbiór rozwiązań sprawnych leży pomiędzy optimami cząstkowymi.

7 Metakryterium - budowana jest nowa jedna funkcja, która jest optymalizowana. 1. Sumowane są funkcje poszczególnych kryteriów z takimi albo różnymi wagami dla funkcji kryterium, które są maksymalizowane powstałe metakryterium (jako ważona suma funkcji kryterium) jest maksymalizowane 1.2. dla funkcji kryterium, które są minimalizowane powstałe metakryterium (jako ważona suma funkcji kryterium) jest minimalizowane 1.3. dla mieszanych funkcji kryterium sumowane są funkcje kryterium, które maksymalizowane oraz oddzielnie sumowane są funkcje kryterium, które są minimalizowane, nowe metakryterium powstaje poprzez odjęcie do pierwszej sumy (maksymalizowanej) drugie sumy ( minimalizowanej), a całe kryterium jest maksymalizowane [podejście, to nie jest do końca poprawne]. 2. Sumowanie wraz z wagami stopnie realizacji celu poszczególnych funkcji kryterium, nowe metakryterium jest maksymalizowane. Podejście, to eliminuje różnice w jednostkach, skalach pomiędzy kryteriami.

8 Jedno kryterium główne, pozostałe drugorzędne 1. Należy określić, które z kryterium jest najważniejsze i ono jest optymalizowane. 2. Pozostałe kryteria stanowią dodatkowe ograniczenia: 2.1. przy funkcjach kryterium, które są maksymalizowane należy ustalić wartość wyznaczającą minimalny poziom realizacji kryterium. W ograniczeniu wartości nie mogą być mniejsze niż minimalny poziom, 2.2. przy funkcjach kryterium, które są minimalizowane należy ustalić wartość wyznaczającą maksymalny poziom realizacji kryterium. W ograniczeniu wartości nie mogą być większe niż maksymalny poziom.

9 Minimalizacja odległości od punktu idealnego Zakładamy, że wszystkie kryteria są jednakowo istotne Rozwiązanie kompromisowe, czyli punkt optymalny, to rozwiązania dopuszczalne, które leży najbliżej punktu idelanego. Problem wielokryterialny może być rozważany w dwóch przestrzeniach: przestrzeni decyzji przestrzeni kryteriów [ ]! n x 1,..., x n f 1 ( x 1,..., x n ),..., f K x 1,..., x n ( )! K Dla zagadnienia WPL (wielokryterialnego programowania liniowego) [wszystkie funkcje w zagadnieniu są liniowe] zbiór rozwiązań dopuszczalnych zadania w przestrzeni kryteriów jest wielościanem wypukłym. Każdy jego wierzchołek jest obrazem pewnego wierzchołka zbioru rozwiązań dopuszczalnych w przestrzeni decyzji. Pozostałe punkty zbioru rozwiązań dopuszczalnych w przestrzeni kryteriów wyznacza zbiór wszystkich kombinacji wypukłych punktów wierzchołkowych.

10 Zbiór wszystkich wierzchołków zbioru rozwiązań dopuszczalnych w przestrzeni decyzji oznaczamy przez Z r. Wierzchołek w przestrzeni kryteriów wyznaczmy jako F( x r ) = y 1 y 2! y K = Rozwiązanie idealne w przestrzeni kryteriów to punkt F M, którego współrzędne odpowiadają optymalnym wartościom funkcji celu. c 1 T x r c 2 T x r! c K T x r, dla x r Z r F M = y 1 y 2! y K = { } { } opt c 1 T x r :x r Z r opt c 2 T x r :x r Z r opt c K T x r :x r Z r! { }

11 Stopień, poziom realizacji celu dla danej funkcji kryterium f f - wartość funkcji w danym punkcie, M - wartość maksymalna funkcji w zbiorze rozwiązań dopuszczalnych m - wartość minimalna funkcji f w zbiorze rozwiązań dopuszczalnych Wersja I - jeśli kryterium przyjmuje wartości dodatnie: f dla maksymalizacji funkcji f : dla minimalizacji funkcji f: M m f Wersja II - jeśli kryterium przyjmuje wartości ujemne: f m dla maksymalizacji funkcji f : dla minimalizacji funkcji f: M m M f M m

12 Firma rozważa wprowadzenie nowego produktu na rynek. Analizowane jest kilka strategii. W tabeli przedstawiono, dla każdej z analizowanych strategii koszt i zysk. Wyznaczyć zbiór rozwiązań sprawnych. Strategia A B C D E F G H koszt zysk ,5 ZYSK 35 12, 50 18, 45 23, 66 24, 55 34, 70 34, 45 35, 35 45, 40 17,5 0 KOSZT 0 12, ,5 50

13 Firma rozważa wprowadzenie nowego produktu na rynek. Analizowane jest kilka strategii. W tabeli przedstawiono, dla każdej z analizowanych strategii koszt i zysk. Wyznaczyć zbiór rozwiązań sprawnych. Strategia A B C D E F G H koszt zysk ,5 ZYSK 35 12, 50 18, 45 23, 66 24, 55 34, 70 34, 45 35, 35 45, 40 17,5 0 KOSZT 0 12, ,5 50

14 Firma rozważa wprowadzenie nowego produktu na rynek. Analizowane jest kilka strategii. W tabeli przedstawiono, dla każdej z analizowanych strategii koszt i zysk. Wyznaczyć zbiór rozwiązań sprawnych. Strategia A B C D E F G H koszt zysk ,5 ZYSK 35 12, 50 18, 45 23, 66 24, 55 34, 70 34, 45 35, 35 45, 40 17,5 0 KOSZT 0 12, ,5 50

Optymalizacja wielokryterialna

Optymalizacja wielokryterialna Optymalizacja wielokryterialna Optymalizacja wielokryterialna Dział badań operacyjnych zajmujący się wyznaczaniem optymalnej decyzji w przypadku, gdy występuje więcej niż jedno kryterium Problem wielokryterialny

Bardziej szczegółowo

Rozwiązaniem Pareto-optymalnym jest łamana ABC. x 2 A 2 6 B 10 7,5. x 1

Rozwiązaniem Pareto-optymalnym jest łamana ABC. x 2 A 2 6 B 10 7,5. x 1 Zadanie ). (PROGRMOWNIE WIELOKRYTERILNE IĄGŁE): a) pełen model dla zadania dwukryterialnego: obszar uprawy pszenicy [ha] obszar uprawy ziemniaków [ha] fc1: +15 max (dochody) istnieje izokwanta przecinająca

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 13. PROBLEMY OPTYMALIZACYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska PROBLEMY OPTYMALIZACYJNE Optymalizacja poszukiwanie

Bardziej szczegółowo

Analiza wielokryterialna wstęp do zagadnienia

Analiza wielokryterialna wstęp do zagadnienia Organizacja, przebieg i zarządzanie inwestycją budowlaną Analiza wielokryterialna wstęp do zagadnienia dr hab. Mieczysław Połoński prof. SGGW 1 Wprowadzenie Jednym z podstawowych, a równocześnie najważniejszym

Bardziej szczegółowo

Algorytmy ewolucyjne

Algorytmy ewolucyjne Algorytmy ewolucyjne Dr inż. Michał Bereta p. 144 / 10, Instytut Modelowania Komputerowego mbereta@pk.edu.pl beretam@torus.uck.pk.edu.pl www.michalbereta.pl Problemy świata rzeczywistego często wymagają

Bardziej szczegółowo

Analiza wielokryterialna

Analiza wielokryterialna Analiza wielokryterialna dr hab. inż. Krzysztof Patan, prof. PWSZ Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa w Głogowie k.patan@issi.uz.zgora.pl Wprowadzenie Wielokryterialny wybór wariantu

Bardziej szczegółowo

1-2. Formułowanie zadań decyzyjnych. Metoda geometryczna

1-2. Formułowanie zadań decyzyjnych. Metoda geometryczna -. Formułowanie zadań decyzyjnych. Metoda geometryczna Zagadnienie wyznaczania optymalnego asortymentu produkcji Firma zamierza uruchomić produkcję dwóch wyrobów A i B. Cenę zbytu oszacowano na zł/kg dla

Bardziej szczegółowo

Programowanie wielocelowe lub wielokryterialne

Programowanie wielocelowe lub wielokryterialne Programowanie wielocelowe lub wieloryterialne Zadanie wielocelowe ma co najmniej dwie funcje celu nazywane celami cząstowymi. Cele cząstowe f numerujemy indesem = 1, 2, K. Programowanie wielocelowe ciągłe.

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,

Bardziej szczegółowo

Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony.

Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony. GRY (część 1) Zastosowanie: Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony. Najbardziej znane modele: - wybór strategii marketingowych przez konkurujące ze sobą firmy

Bardziej szczegółowo

Elementy Modelowania Matematycznego

Elementy Modelowania Matematycznego Elementy Modelowania Matematycznego Wykład 8 Programowanie nieliniowe Spis treści Programowanie nieliniowe Zadanie programowania nieliniowego Zadanie programowania nieliniowego jest identyczne jak dla

Bardziej szczegółowo

Rozdział 1 PROGRAMOWANIE LINIOWE

Rozdział 1 PROGRAMOWANIE LINIOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.2 Ćwiczenia komputerowe Ćwiczenie 1.1 Wykorzystując

Bardziej szczegółowo

Ekonometria - ćwiczenia 10

Ekonometria - ćwiczenia 10 Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na

Bardziej szczegółowo

KOSZTY I OPTIMUM PRZEDSIĘBIORSTWA

KOSZTY I OPTIMUM PRZEDSIĘBIORSTWA KOSZTY I OPTIMUM PRZEDSIĘBIORSTWA PODSTAWOWE POJĘCIA Przedsiębiorstwo - wyodrębniona jednostka gospodarcza wytwarzająca dobra lub świadcząca usługi. Cel przedsiębiorstwa - maksymalizacja zysku Nakład czynniki

Bardziej szczegółowo

11. Gry Macierzowe - Strategie Czyste i Mieszane

11. Gry Macierzowe - Strategie Czyste i Mieszane 11. Gry Macierzowe - Strategie Czyste i Mieszane W grze z doskonałą informacją, gracz nie powinien wybrać akcję w sposób losowy (o ile wypłaty z różnych decyzji nie są sobie równe). Z drugiej strony, gdy

Bardziej szczegółowo

Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2

Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2 Document: Exercise*02*-*manual ---2014/11/12 ---8:31---page1of8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 Wybrane zagadnienia z

Bardziej szczegółowo

Wykład III Przewaga komparatywna

Wykład III Przewaga komparatywna Wykład III Przewaga komparatywna W prezentacji zostały wykorzystane slajdy pomocnicze do książki: Microeconomics, R.S.Pindyck D.L.Rubinfeld. Możliwości produkcyjne - Dwa dobra, które Robinson może produkować:

Bardziej szczegółowo

doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.

doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl

Bardziej szczegółowo

Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko.

Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko. Inwestycje finansowe Wycena obligacji. Stopa zwrotu z akcji. yzyko. Inwestycje finansowe Instrumenty rynku pieniężnego (np. bony skarbowe). Instrumenty rynku walutowego. Obligacje. Akcje. Instrumenty pochodne.

Bardziej szczegółowo

Zestaw 6 funkcje. Zad. 1. Zad.2 Funkcja określona jest przy pomocy tabeli

Zestaw 6 funkcje. Zad. 1. Zad.2 Funkcja określona jest przy pomocy tabeli Zestaw 6 funkcje Zad. 1 Zad.2 Funkcja określona jest przy pomocy tabeli 5 10 15 20 25 3 2 17 10-8 a) Określ dziedzinę i wypisz wartości tej funkcji. b) Jaka jest największa wartość tej funkcji? c) Dla

Bardziej szczegółowo

Maksymalizacja zysku

Maksymalizacja zysku Maksymalizacja zysku Na razie zakładamy, że rynki są doskonale konkurencyjne Firma konkurencyjna traktuje ceny (czynników produkcji oraz produktów jako stałe, czyli wszystkie ceny są ustalane przez rynek

Bardziej szczegółowo

Optymalizacja. doc. dr inż. Tadeusz Zieliński r. ak. 2013/14. Metody komputerowe w inżynierii komunikacyjnej. ograniczenie kosztów budowy.

Optymalizacja. doc. dr inż. Tadeusz Zieliński r. ak. 2013/14. Metody komputerowe w inżynierii komunikacyjnej. ograniczenie kosztów budowy. koszty optimum ograniczenie kosztów budowy Metody komputerowe w inżynierii komunikacyjnej Optymalizacja koszty całkowite koszty budowy koszty eksploatacji zła jakość rozwiązania dobra doc. dr inż. Tadeusz

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja Politechnika Wrocławska, Wydział Informatyki i Zarządzania Optymalizacja Dla podanych niżej problemów decyzyjnych (zad.1 zad.5) należy sformułować zadania optymalizacji, tj.: określić postać zmiennych

Bardziej szczegółowo

8. Podejmowanie Decyzji przy Niepewności

8. Podejmowanie Decyzji przy Niepewności 8. Podejmowanie Decyzji przy Niepewności Wcześniej, losowość (niepewność) nie była brana pod uwagę (poza przypadkiem ubezpieczenia życiowego). Na przykład, aby brać pod uwagę ryzyko że pożyczka nie zostanie

Bardziej szczegółowo

TOZ -Techniki optymalizacji w zarządzaniu

TOZ -Techniki optymalizacji w zarządzaniu TOZ -Techniki optymalizacji w zarządzaniu Wykład dla studentów II roku studiów II stopnia na kierunku Zarządzanie Semestr zimowy 2009/2010 Wykładowca: prof. dr hab. inż. Michał Inkielman Wykład 2 Optymalizacja

Bardziej szczegółowo

BADANIA OPERACYJNE Zagadnienie transportowe. dr Adam Sojda

BADANIA OPERACYJNE Zagadnienie transportowe. dr Adam Sojda BADANIA OPERACYJNE Zagadnienie transportowe dr Adam Sojda adam.sojda@polsl.pl http://dydaktyka.polsl.pl/roz6/asojda/default.aspx Pokój A405 Zagadnienie transportowe Założenia: Pewien jednorodny towar należy

Bardziej szczegółowo

Modele optymalizacyjne wspomagania decyzji wytwórców na rynku energii elektrycznej

Modele optymalizacyjne wspomagania decyzji wytwórców na rynku energii elektrycznej Modele optymalizacyjne wspomagania decyzji wytwórców na rynku energii elektrycznej mgr inż. Izabela Żółtowska Promotor: prof. dr hab. inż. Eugeniusz Toczyłowski Obrona rozprawy doktorskiej 5 grudnia 2006

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.

Bardziej szczegółowo

Programowanie matematyczne

Programowanie matematyczne dr Adam Sojda Badania Operacyjne Wykład Politechnika Śląska Programowanie matematyczne Programowanie matematyczne, to problem optymalizacyjny w postaci: f ( x) max przy warunkach g( x) 0 h( x) = 0 x X

Bardziej szczegółowo

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE] Spis treści 1 Metoda geometryczna... 2 1.1 Wstęp... 2 1.2 Przykładowe zadanie... 2 2 Metoda simpleks... 6 2.1 Wstęp... 6 2.2 Przykładowe zadanie... 6 1 Metoda geometryczna Anna Tomkowska 1 Metoda geometryczna

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM. I. Funkcje. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM. 1. Pojęcie funkcji i jej dziedzina. 2. Zbiór wartości funkcji. 3. Wykres funkcji liczbowej i odczytywanie jej własności

Bardziej szczegółowo

MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH

MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH 1. Przedmiot nie wymaga przedmiotów poprzedzających 2. Treść przedmiotu Proces i cykl decyzyjny. Rola modelowania matematycznego w procesach decyzyjnych.

Bardziej szczegółowo

Wykład VII. Równowaga ogólna

Wykład VII. Równowaga ogólna Wykład VII Równowaga ogólna Efektywnośd w produkcji Założenia: 2 czynniki produkcji: kapitał (K) i praca (L) Produkcja 2 dóbr: żywnośd (f) i ubrania (c) Doskonała konkurencja na rynku czynników produkcji,

Bardziej szczegółowo

budowlanymi - WAP Aleksandra Radziejowska

budowlanymi - WAP Aleksandra Radziejowska budowlanymi - WAP Aleksandra Radziejowska Co to jest optymalizacja wielokryterialna? ustalenie kryterium poszukiwania i oceny optymalnego. Co to jest optymalizacja wielokryterialna? pod zakup maszyny budowlanej

Bardziej szczegółowo

5.1 Stopa Inflacji - Dyskonto odpowiadające sile nabywczej

5.1 Stopa Inflacji - Dyskonto odpowiadające sile nabywczej 5.1 Stopa Inflacji - Dyskonto odpowiadające sile nabywczej Stopa inflacji, i, mierzy jak szybko ceny się zmieniają jako zmianę procentową w skali rocznej. Oblicza się ją za pomocą średniej ważonej cząstkowych

Bardziej szczegółowo

9 Funkcje Użyteczności

9 Funkcje Użyteczności 9 Funkcje Użyteczności Niech u(x) oznacza użyteczność wynikającą z posiadania x jednostek pewnego dobra. Z założenia, 0 jest punktem referencyjnym, czyli u(0) = 0. Należy to zinterpretować jako użyteczność

Bardziej szczegółowo

Algorytmy wyznaczania centralności w sieci Szymon Szylko

Algorytmy wyznaczania centralności w sieci Szymon Szylko Algorytmy wyznaczania centralności w sieci Szymon Szylko Zakład systemów Informacyjnych Wrocław 10.01.2008 Agenda prezentacji Cechy sieci Algorytmy grafowe Badanie centralności Algorytmy wyznaczania centralności

Bardziej szczegółowo

BADANIA OPERACYJNE i teoria optymalizacji. Prowadzący: dr Tomasz Pisula Katedra Metod Ilościowych

BADANIA OPERACYJNE i teoria optymalizacji. Prowadzący: dr Tomasz Pisula Katedra Metod Ilościowych BADANIA OPERACYJNE i teoria optymalizacji Prowadzący: dr Tomasz Pisula Katedra Metod Ilościowych e-mail: tpisula@prz.edu.pl 1 Literatura podstawowa wykorzystywana podczas zajęć wykładowych: 1. Gajda J.,

Bardziej szczegółowo

BADANIA OPERACYJNE i teoria optymalizacji. Prowadzący: dr Tomasz Pisula Katedra Metod Ilościowych

BADANIA OPERACYJNE i teoria optymalizacji. Prowadzący: dr Tomasz Pisula Katedra Metod Ilościowych BADANIA OPERACYJNE i teoria optymalizacji Prowadzący: dr Tomasz Pisula Katedra Metod Ilościowych e-mail: tpisula@prz.edu.pl 1 Literatura podstawowa wykorzystywana podczas zajęć wykładowych: 1. Gajda J.,

Bardziej szczegółowo

Algorytmy i struktury danych. Co dziś? Tytułem przypomnienia metoda dziel i zwyciężaj. Wykład VIII Elementarne techniki algorytmiczne

Algorytmy i struktury danych. Co dziś? Tytułem przypomnienia metoda dziel i zwyciężaj. Wykład VIII Elementarne techniki algorytmiczne Algorytmy i struktury danych Wykład VIII Elementarne techniki algorytmiczne Co dziś? Algorytmy zachłanne (greedyalgorithms) 2 Tytułem przypomnienia metoda dziel i zwyciężaj. Problem można podzielić na

Bardziej szczegółowo

OCENA ZAAWANSOWANIA TECHNICZNEGO INFRASTRUK- TURY SIECIOWEJ OBSZARÓW SPÓŁKI DYSTRYBUCYJNEJ

OCENA ZAAWANSOWANIA TECHNICZNEGO INFRASTRUK- TURY SIECIOWEJ OBSZARÓW SPÓŁKI DYSTRYBUCYJNEJ Barbara KASZOWSKA, Andrzej WŁÓCZYK Politechnika Opolska OCENA ZAAWANSOWANIA TECHNICZNEGO INFRASTRUK- TURY SIECIOWEJ OBSZARÓW SPÓŁKI DYSTRYBUCYJNEJ Przedmiotem oceny jest zaawansowanie techniczne obszarów

Bardziej szczegółowo

Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład):

Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): 1 Narysuj na płaszczyźnie zbiór dopuszczalnych rozwiazań. 2 Narysuj funkcję

Bardziej szczegółowo

EKONOMIA MENEDŻERSKA

EKONOMIA MENEDŻERSKA EKONOMIA MENEDŻERSKA Koszt całkowity produkcji - Jest to suma kosztów stałych całkowitych i kosztów zmiennych całkowitych. K c = K s + K z Koszty stałe produkcji (K s ) to koszty, które nie zmieniają się

Bardziej szczegółowo

System transakcyjny oparty na średnich ruchomych. ś h = + + + + gdzie, C cena danego okresu, n liczba okresów uwzględnianych przy kalkulacji.

System transakcyjny oparty na średnich ruchomych. ś h = + + + + gdzie, C cena danego okresu, n liczba okresów uwzględnianych przy kalkulacji. Średnie ruchome Do jednych z najbardziej znanych oraz powszechnie wykorzystywanych wskaźników analizy technicznej, umożliwiających analizę trendu zaliczyć należy średnie ruchome (ang. moving averages).

Bardziej szczegółowo

Zasada racjonalnego gospodarowania RACJONALNE GOSPODAROWANIE. Zasada racjonalnego gospodarowania. Zasada racjonalnego gospodarowania

Zasada racjonalnego gospodarowania RACJONALNE GOSPODAROWANIE. Zasada racjonalnego gospodarowania. Zasada racjonalnego gospodarowania HOMO OECONOMICUS Człowiek jest z natury próżny, dumny, leniwy, chciwy, samolubny, niemoralny, kieruje się własnym interesem i chce osiągnąć maksimum zysku przy minimum wysiłku Każdy człowiek w sposób wrodzony

Bardziej szczegółowo

Planowanie przedsięwzięć

Planowanie przedsięwzięć K.Pieńkosz Badania Operacyjne Planowanie przedsięwzięć 1 Planowanie przedsięwzięć Model przedsięwzięcia lista operacji relacje poprzedzania operacji modele operacji funkcja celu planowania K.Pieńkosz Badania

Bardziej szczegółowo

1 Programowanie całkowitoliczbowe PLC

1 Programowanie całkowitoliczbowe PLC Metody optymalizacji, wykład nr 9 Paweł Zieliński Programowanie całkowitoliczbowe PLC Literatura [] S.P. Bradley, A.C. Hax, T. L. Magnanti Applied Mathematical Programming Addison-Wesley Pub. Co. (Reading,

Bardziej szczegółowo

MODELE STRUKTUR RYNKOWYCH

MODELE STRUKTUR RYNKOWYCH MODELE STRUKTUR RYNKOWYCH ZADANIE. Mamy trzech konsumentów, którzy zastanawiają się nad nabyciem trzech rożnych programów komputerowych. Właściwości popytu konsumentów przedstawiono w następującej tabeli:

Bardziej szczegółowo

Optymalizacją wielokryterialną nazwiemy próbę znalezienia wektora zmiennych decyzyjnych: x = [x 1

Optymalizacją wielokryterialną nazwiemy próbę znalezienia wektora zmiennych decyzyjnych: x = [x 1 1 Optymalizacją wielokryterialną nazwiemy próbę znalezienia wektora zmiennych decyzyjnych: x = [x 1,x 2,,x k ], który spełnia warunki ograniczające: g i (x) 0 (i = 1 m), h i (x) = 0 (i = 1 p) oraz optymalizuje

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo

Bardziej szczegółowo

7. OPTYMALIZACJA PARAMETRÓW SKRAWANIA. 7.1 Cel ćwiczenia. 7.2 Wprowadzenie

7. OPTYMALIZACJA PARAMETRÓW SKRAWANIA. 7.1 Cel ćwiczenia. 7.2 Wprowadzenie 7. OPTYMALIZACJA PAAMETÓW SKAWANIA 7.1 Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z wyznaczaniem optymalnych parametrów skrawania metodą programowania liniowego na przykładzie toczenia. 7.2

Bardziej szczegółowo

Zasady wystawiania ocen klasyfikacyjnych szkoła podstawowa.

Zasady wystawiania ocen klasyfikacyjnych szkoła podstawowa. Zasady wystawiania ocen klasyfikacyjnych szkoła podstawowa. Oceny klasyfikacyjne śródroczne i końcoworoczne ustalone są według skali: stopień niedostateczny 1 stopień dopuszczający 2 stopień dostateczny

Bardziej szczegółowo

6. Teoria Podaży Koszty stałe i zmienne

6. Teoria Podaży Koszty stałe i zmienne 6. Teoria Podaży - 6.1 Koszty stałe i zmienne Koszty poniesione przez firmę zwykle są podzielone na dwie kategorie. 1. Koszty stałe - są niezależne od poziomu produkcji, e.g. stałe koszty energetyczne

Bardziej szczegółowo

Metody ilościowe w badaniach ekonomicznych

Metody ilościowe w badaniach ekonomicznych prof. dr hab. Tadeusz Trzaskalik dr hab. Maciej Nowak, prof. UE Wybór portfela projektów z wykorzystaniem wielokryterialnego programowania dynamicznego Metody ilościowe w badaniach ekonomicznych 19-06-2017

Bardziej szczegółowo

Optymalizacja. Przeszukiwanie lokalne

Optymalizacja. Przeszukiwanie lokalne dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Idea sąsiedztwa Definicja sąsiedztwa x S zbiór N(x) S rozwiązań, które leżą blisko rozwiązania x

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Standardowe zadanie programowania liniowego. Gliwice 1

Standardowe zadanie programowania liniowego. Gliwice 1 Standardowe zadanie programowania liniowego 1 Standardowe zadanie programowania liniowego Rozważamy proces, w którym zmiennymi są x 1, x 2,, x n. Proces poddany jest m ograniczeniom, zapisanymi w postaci

Bardziej szczegółowo

OPTYMALIZACJA DYSKRETNA

OPTYMALIZACJA DYSKRETNA Temat nr a: odelowanie problemów decyzyjnych, c.d. OPTYALIZACJA DYSKRETA Zagadnienia decyzyjne, w których chociaż jedna zmienna decyzyjna przyjmuje wartości dyskretne (całkowitoliczbowe), nazywamy dyskretnymi

Bardziej szczegółowo

ZAGADNIENIA TRANSPORTOWE

ZAGADNIENIA TRANSPORTOWE ZAGADNIENIA TRANSPORTOWE Maciej Patan Uniwersytet Zielonogórski WPROWADZENIE opracowano w 1941 r. (F.L. Hitchcock) Jest to problem opracowania planu przewozu pewnego jednorodnego produktu z kilku różnych

Bardziej szczegółowo

METODY WIELOKRYTERIALNE

METODY WIELOKRYTERIALNE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 4 METODY WIELOKRYTERIALNE 4.3. ZADANIA Zadanie 4.1 Wykorzystując tryb konwersacyjny

Bardziej szczegółowo

PODSTAWOWE KONSTRUKCJE GEOMETRYCZNE

PODSTAWOWE KONSTRUKCJE GEOMETRYCZNE PODSTAWOWE KONSTRUKCJE GEOMETRYCZNE Dane będę rysował na czarno. Różne etapy konstrukcji kolorami: (w kolejności) niebieskim, zielonym, czerwonym i ewentualnie pomarańczowym i jasnozielonym. 1. Prosta

Bardziej szczegółowo

Inne kryteria tworzenia portfela. Inne kryteria tworzenia portfela. Poziom bezpieczeństwa. Analiza i Zarządzanie Portfelem cz. 3. Dr Katarzyna Kuziak

Inne kryteria tworzenia portfela. Inne kryteria tworzenia portfela. Poziom bezpieczeństwa. Analiza i Zarządzanie Portfelem cz. 3. Dr Katarzyna Kuziak Inne kryteria tworzenia portfela Analiza i Zarządzanie Portfelem cz. 3 Dr Katarzyna Kuziak. Minimalizacja ryzyka przy zadanym dochodzie Portfel efektywny w rozumieniu Markowitza odchylenie standardowe

Bardziej szczegółowo

Historia ekonomii. Mgr Robert Mróz. Leon Walras

Historia ekonomii. Mgr Robert Mróz. Leon Walras Historia ekonomii Mgr Robert Mróz Leon Walras 06.12.2016 Leon Walras (1834 1910) Jeden z dwóch ojców neoklasycznej mikroekonomii (drugim Marshall) Nie był tak dobrym matematykiem jak niektórzy inni ekonomiści

Bardziej szczegółowo

Rozwiązanie Powyższe zadanie możemy przedstawić jako następujące zagadnienie programowania liniowego:

Rozwiązanie Powyższe zadanie możemy przedstawić jako następujące zagadnienie programowania liniowego: Zadanie Rafineria naftowa otrzymała zamówienie na dwa rodzaje specjalnych paliw węglowodorowych X oraz Y. Zamówienie opiewa na minimum 4 000 galonów paliwa X i minimum 2 400 galonów paliwa Y. Paliwa te

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Są to zjawiska ekonomiczne związane z gromadzeniem i wydatkowaniem środków pienięŝnych na cele działalności gospodarczej przedsiębiorstwa.

Są to zjawiska ekonomiczne związane z gromadzeniem i wydatkowaniem środków pienięŝnych na cele działalności gospodarczej przedsiębiorstwa. Finanse przedsiębiorstwa Są to zjawiska ekonomiczne związane z gromadzeniem i wydatkowaniem środków pienięŝnych na cele działalności gospodarczej przedsiębiorstwa. Zarządzanie Polega na pozyskiwaniu źródeł

Bardziej szczegółowo

Kryteria oceniania z fizyki w klasie I, II i III gimnazjum

Kryteria oceniania z fizyki w klasie I, II i III gimnazjum Kryteria oceniania z fizyki w klasie I, II i III gimnazjum 1. Obowiązkowy podręcznik na lekcji: - klasa I: J. Poznańska, M. Rowińska, E. Zając CIEKAWA FIZYKA, wyd. WSIP - klasa II: J. Poznańska, M. Rowińska,

Bardziej szczegółowo

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby Zadania 1 Przedsiębiorstwo wytwarza cztery rodzaje wyrobów: A, B, C, D, które są obrabiane na dwóch maszynach M 1 i M 2. Czas pracy maszyn przypadający na obróbkę jednostki poszczególnych wyrobów podany

Bardziej szczegółowo

Test kwalifikacyjny na I Warsztaty Matematyczne

Test kwalifikacyjny na I Warsztaty Matematyczne Test kwalifikacyjny na I Warsztaty Matematyczne Na pytania odpowiada się tak lub nie poprzez wpisanie odpowiednio T bądź N w pole obok pytania. W danym trzypytaniowym zestawie możliwa jest dowolna kombinacja

Bardziej szczegółowo

Autostopem przez galaiktykę: Intuicyjne omówienie zagadnień. Tom I: Optymalizacja. Nie panikuj!

Autostopem przez galaiktykę: Intuicyjne omówienie zagadnień. Tom I: Optymalizacja. Nie panikuj! Autostopem przez galaiktykę: Intuicyjne omówienie zagadnień Tom I: Optymalizacja Nie panikuj! Autorzy: Iwo Błądek Konrad Miazga Oświadczamy, że w trakcie produkcji tego tutoriala nie zginęły żadne zwierzęta,

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2012 Mirosław Sobolewski (UW) Warszawa, 2012 1 / 12

Bardziej szczegółowo

6.6.5. WSKAŹNIK BOLTONA

6.6.5. WSKAŹNIK BOLTONA 6.6.5. WSKAŹNIK BOLTONA Wskaźnik Boltona określa zależność pomiędzy sumą mezjodystalnych szerokości zębów stałych szczęki i żuchwy. Overall ratio (wskaźnik całkowity): Suma ---------------------------------------------------------------------------------------------

Bardziej szczegółowo

Program do obliczania zapasu przepustowości sieci gazowej o dowolnej strukturze

Program do obliczania zapasu przepustowości sieci gazowej o dowolnej strukturze Andrzej J. Osiadacz Maciej Chaczykowski Łukasz Kotyński Program do obliczania zapasu przepustowości sieci gazowej o dowolnej strukturze Andrzej J. Osiadacz, Maciej Chaczykowski, Łukasz Kotyński, Fluid

Bardziej szczegółowo

Copyright 2012 Daniel Szydłowski

Copyright 2012 Daniel Szydłowski Copyright 2012 Daniel Szydłowski 2012-10-23 1 Przedmiot rzeczywisty wykonany na podstawie rysunku prawie nigdy nie odpowiada obrazowi nominalnemu. Różnice, spowodowane różnymi czynnikami, mogą dotyczyć

Bardziej szczegółowo

13. Teoriogrowe Modele Konkurencji Gospodarczej

13. Teoriogrowe Modele Konkurencji Gospodarczej 13. Teoriogrowe Modele Konkurencji Gospodarczej Najpierw, rozważamy model monopolu. Zakładamy że monopol wybiera ile ma produkować w danym okresie. Jednostkowy koszt produkcji wynosi k. Cena wynikająca

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Struktury i Algorytmy Wspomagania Decyzji Zadanie projektowe 2 Czas realizacji: 6 godzin Maksymalna liczba

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI Rozproszone programowanie produkcji z wykorzystaniem

Bardziej szczegółowo

Optymalne Planowanie Energetyczne (OPE) jako. narzędzie realizacji lokalnych strategii rozwoju

Optymalne Planowanie Energetyczne (OPE) jako. narzędzie realizacji lokalnych strategii rozwoju Optymalne Planowanie Energetyczne (OPE) jako narzędzie realizacji lokalnych strategii rozwoju Konwent Burmistrzów w i WójtW jtów Śląskiego Związku Gmin i Powiatów, w, śarki, 19 października 2012 mgr Ewa

Bardziej szczegółowo

SPIS TREŚCI. Do Nauczyciela Regulamin konkursu Zadania

SPIS TREŚCI. Do Nauczyciela Regulamin konkursu Zadania SPIS TREŚCI Do Nauczyciela... 6 Regulamin konkursu... 7 Zadania Liczby i działania... 9 Procenty... 14 Figury geometryczne... 19 Kąty w kole... 24 Wyrażenia algebraiczne... 29 Równania i nierówności...

Bardziej szczegółowo

WPROWADZENIE DO EKONOMII MENEDŻERSKIEJ.

WPROWADZENIE DO EKONOMII MENEDŻERSKIEJ. Wykład 1 Wprowadzenie do ekonomii menedżerskiej 1 WPROWADZENIE DO EKONOMII MENEDŻERSKIEJ. PODEJMOWANIE OPTYMALNYCH DECYZJI NA PODSTAWIE ANALIZY MARGINALNEJ. 1. EKONOMIA MENEDŻERSKA ekonomia menedżerska

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Przedmiot: Nr ćwiczenia: 3 Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Temat: Programowanie dynamiczne Cel ćwiczenia: Formułowanie i rozwiązywanie problemów optymalizacyjnych

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3

PRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3 PRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3 I. FUNKCJE grupuje elementy w zbiory ze względu na wspólne cechy wymienia elementy zbioru rozpoznaje funkcje wśród przyporządkowań

Bardziej szczegółowo

Dane są następujące reguły gry losowej: losujemy jedną kartę z pełnej talii (bez jokerów) i sprawdzamy wynik:

Dane są następujące reguły gry losowej: losujemy jedną kartę z pełnej talii (bez jokerów) i sprawdzamy wynik: Elementy teorii gier Dane są następujące reguły gry losowej: losujemy jedną kartę z pełnej talii (bez jokerów) i sprawdzamy wynik: wylosowanie karty w kolorze czerwonym (kier lub karo) oznacza wygraną

Bardziej szczegółowo

Mikroekonomia II: Kolokwium, grupa II

Mikroekonomia II: Kolokwium, grupa II Mikroekonomia II: Kolokwium, grupa II Prowadząca: Martyna Kobus 2012-06-11 Piszemy 90 minut. Sprawdzian jest za 70 punktów. Jest 10 pytań testowych, każde za 2 punkty (łącznie 20 punktów za test) i 3 zadania,

Bardziej szczegółowo

Programowanie nieliniowe. Badania operacyjne Wykład 3 Metoda Lagrange a

Programowanie nieliniowe. Badania operacyjne Wykład 3 Metoda Lagrange a Programowanie nieliniowe Badania operacyjne Wykład 3 Metoda Lagrange a Plan wykładu Przykład problemu z nieliniową funkcją celu Sformułowanie problemu programowania matematycznego Podstawowe definicje

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Funkcja liniowa. Uczeń otrzymuje ocenę dopuszczającą, jeśli: - rozpoznaje funkcję liniową

Bardziej szczegółowo

1.2. Rozwiązywanie zadań programowania liniowego metodą geometryczną

1.2. Rozwiązywanie zadań programowania liniowego metodą geometryczną binarną są określane mianem zadania programowania binarnego. W stosunku do dyskretnych modeli decyzyjnych stosuje się odrębną klasę metod ich rozwiązywania. W dalszych częściach niniejszego rozdziału zostaną

Bardziej szczegółowo

KOMPUTEROWE WSPOMAGANIE PODEJMOWANIA DECYZJI: UJĘCIE WIELOKRYTERIALNE, NA PRZYKŁADZIE WYBORU PRZEBIEGU DROGI EKSPRESOWEJ VIA BALTICA

KOMPUTEROWE WSPOMAGANIE PODEJMOWANIA DECYZJI: UJĘCIE WIELOKRYTERIALNE, NA PRZYKŁADZIE WYBORU PRZEBIEGU DROGI EKSPRESOWEJ VIA BALTICA Zeszyty Naukowe Wydziału Informatycznych Technik Zarządzania Wyższej Szkoły Informatyki Stosowanej i Zarządzania Współczesne Problemy Zarządzania Nr 1/2011 KOMPUTEROWE WSPOMAGANIE PODEJMOWANIA DECYZJI:

Bardziej szczegółowo

ZADANIA Z KINEMATYKI

ZADANIA Z KINEMATYKI ZADANIA Z KINEMATYKI 1. Określ na poszczególnych przykładach czy względem określonego układu odniesienia ciało jest w ruchu, czy w spoczynku: a) kubek stojący na stole względem stołu b) kubek stojący na

Bardziej szczegółowo

Liczby i działania str. 1/6

Liczby i działania str. 1/6 Liczby i działania str. 1/6 1. Rysunek, na którym zacieniowano 4 figury, to rysunek: 2. Odwrotnością liczby 1 1 jest: 6 B. 6 C. 1 1 D. 1 1 3. Odwrotnością liczby 2 7 jest: 2 7 B. 3 1 2 C. 7 2 D. 2 7 4.

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 3 autorzy: A. Gonczarek, J.M. Tomczak Zbiory i funkcje wypukłe Zad. 1 Pokazać, że następujące zbiory są wypukłe: a) płaszczyzna S = {x

Bardziej szczegółowo

2010 W. W. Norton & Company, Inc. Oligopol

2010 W. W. Norton & Company, Inc. Oligopol 2010 W. W. Norton & Company, Inc. Oligopol Oligopol Monopol jedna firma na rynku. Duopol dwie firmy na rynku. Oligopol kilka firm na rynku. W szczególności decyzje każdej firmy co do ceny lub ilości produktu

Bardziej szczegółowo

Warszawa, dnia 5 stycznia 2017 r. Poz. 26 ROZPORZĄDZENIE MINISTRA ROZWOJU I FINANSÓW 1) z dnia 27 grudnia 2016 r.

Warszawa, dnia 5 stycznia 2017 r. Poz. 26 ROZPORZĄDZENIE MINISTRA ROZWOJU I FINANSÓW 1) z dnia 27 grudnia 2016 r. DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ Warszawa, dnia 5 stycznia 2017 r. Poz. 26 ROZPORZĄDZENIE MINISTRA ROZWOJU I FINANSÓW 1) z dnia 27 grudnia 2016 r. w sprawie sposobu określania profilu ryzyka spółdzielczych

Bardziej szczegółowo

10. Wstęp do Teorii Gier

10. Wstęp do Teorii Gier 10. Wstęp do Teorii Gier Definicja Gry Matematycznej Gra matematyczna spełnia następujące warunki: a) Jest co najmniej dwóch racjonalnych graczy. b) Zbiór możliwych dezycji każdego gracza zawiera co najmniej

Bardziej szczegółowo

Podaż firmy. Zakładamy, że firmy maksymalizują zyski

Podaż firmy. Zakładamy, że firmy maksymalizują zyski odaż firmy Zakładamy, że firmy maksymalizują zyski Inne cele działalności firm: Maksymalizacja przychodów Maksymalizacja dywidendy Maksymalizacja zysków w krótkim okresie Maksymalizacja udziału w rynku

Bardziej szczegółowo

Wykorzystanie pojęć sprawności, skuteczności, efektywności i produktywności w administracji publicznej

Wykorzystanie pojęć sprawności, skuteczności, efektywności i produktywności w administracji publicznej Wykorzystanie pojęć sprawności, skuteczności, efektywności i produktywności w administracji publicznej dr Piotr Modzelewski Zakład Strategii i Polityki Gospodarczej Plan prezentacji 1) Rodzaje sprawności

Bardziej szczegółowo

Mikroekonomia. Wykład 8

Mikroekonomia. Wykład 8 Mikroekonomia Wykład 8 Efekty zewnętrzne Dotychczas zakładaliśmy, że wszystkie interakcje między konsumentami a producentami dokonywały się poprzez rynek: Zysk firmy zależy wyłącznie od zmiennych znajdujących

Bardziej szczegółowo

Wielokryteriowa optymalizacja liniowa (WPL)

Wielokryteriowa optymalizacja liniowa (WPL) arek isyński BO UŁ 007 - Wielokryteriowa optymaliaja liniowa (WPL) -. Wielokryteriowa optymaliaja liniowa (WPL) Zadaniem WPL naywamy następująe adanie optymaliaji liniowej: a a m L O L L O L L a a n n

Bardziej szczegółowo

ANALIZA STRATEGII OBROTU ŚWIADECTWAMI POCHODZENIA ENERGII ODNAWIALNEJ PODCZAS NOTOWAŃ SESYJNYCH RYNKU PRAW MAJĄTKOWYCH

ANALIZA STRATEGII OBROTU ŚWIADECTWAMI POCHODZENIA ENERGII ODNAWIALNEJ PODCZAS NOTOWAŃ SESYJNYCH RYNKU PRAW MAJĄTKOWYCH Jerzy ANDRUSZKIEWICZ, Kamil HOPPE Politechnika Poznańska ANALIZA STRATEGII OBROTU ŚWIADECTWAMI POCHODZENIA ENERGII ODNAWIALNEJ PODCZAS NOTOWAŃ SESYJNYCH RYNKU PRAW MAJĄTKOWYCH Świadectwa pochodzenia, potwierdzające

Bardziej szczegółowo

Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa. Marzec Podstawy teorii optymalizacji Oceanotechnika, II stop., sem.

Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa. Marzec Podstawy teorii optymalizacji Oceanotechnika, II stop., sem. Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa St. II stop., sem. I, Kierunek Oceanotechnika, Spec. Okrętowe Podstawy teorii optymalizacji Wykład 1 M. H. Ghaemi Marzec 2016 Podstawy teorii

Bardziej szczegółowo