ZASTOSOWANIE FUNKCJI KOPULI W MODELOWNIU INDEKSÓW GIEŁDOWYCH

Wielkość: px
Rozpocząć pokaz od strony:

Download "ZASTOSOWANIE FUNKCJI KOPULI W MODELOWNIU INDEKSÓW GIEŁDOWYCH"

Transkrypt

1 ZASTOSOWANIE FUNKCJI KOPULI W MODELOWNIU INDEKSÓW GIEŁDOWYCH Jacek Leśkow, Jusyna Mokrzycka, Kamil Krawiec 1 Sreszczenie Współczesne zarządzanie ryzykiem finansowanym opiera się na analizie zwroów szeregów czasowych. Jednym z najbardziej isonych błędów częso popełnianych przez analiyków jes zby częse wykorzysywanie rozkładu normalnego, podczas gdy założenie o nie jes spełnione. Modele wykorzysujące funkcje kopuli oraz inne modele, w kórych nie wysępuje założenie normalności, dosarczają nowych narzędzi rozwiązania ego problemu, gdyż orzymane rezulay mogą być bezpośrednio zasosowane w zarządzaniu porfelem, wycenie opcji, pomiarze ryzyka z pominięciem założenia normalności. Dlaego eż zarówno eoreycy, jak i prakycy są zaineresowani wielowymiarowymi modelami dla zwroów oraz funkcjami kopuli. Teoria funkcji kopuli dosarcza efekywnej oraz ciekawej w swej prosocie echniki konsrukcji wielowymiarowego rozkładu wekora losowego. Dzięki wierdzeniu Sklara sformułowanemu w 1959 r. możemy każdą wielowymiarową dysrybuanę przedsawić w posaci jej dysrybuan brzegowych oraz specyficznej funkcji kopuli. W niniejszej pracy przedsawiono zasosowanie funkcji kopuli w konsrukcji wielowymiarowego warunkowego rozkładu szeregów czasowych. W osaniej części poddano analizie modele dynamiczne: model dynamicznej warunkowej kopuli oraz model DCC-MVGARCH. Ponado zaprezenowano również zasosowanie meody boosrap w konekście funkcji kopuli. Teoreyczne rozwiązania zosały podsumowane opracowanymi przykładami wskazującymi na możliwość sosowania funkcji kopuli w prakyce. Klasyfikacja JEL: C, C5 Słowa kluczowe: funkcja kopuli, model GARCH, warunkowa funkcja kopuli, model DCC-MVGARCH, dynamiczna warunkowa funkcja kopuli, boosrap Nadesłany: Zaakcepowany: Wprowadzenie Funkcje kopuli sały sie osanio bardzo popularnym narzędziem zasosowań w ekonomerii finansowej oraz zarządzaniu ryzykiem z uwagi na możliwość uniknięcia nieprawidłowości w sosowaniu rozkładów normalnych w syuacji, gdy ewidennie zwroy z akywa nie mają ego rodzaju rozkładu. Funkcje kopuli są ważnym narzędziem saysycznym z uwagi na możliwość konsruowania wielowymiarowych modeli na podsawie rozkładów brzegowych oraz specyficznej funkcji zwanej właśnie funkcją kopuli. Sandardowe podejście w zarządzaniu ryzykiem porfela opiera się na założeniu normalności, co pozwala na modelowanie zachowania się porfela w oparciu o analizę poszczególnych pozycji oraz kowariancji. W podobnym sensie echnika wykorzysująca funkcje kopuli jes uogólnieniem ej meody z uwagi na możliwość modelowania poszczególnych pozycji z wykorzysaniem szerokiej gamy dysrybuan oraz funkcji kopuli w miejsce kowariancji. To podejście daje nam możliwość elasycznego doboru funkcji kopuli, co pozwala na lepsze modelowanie zależności pomiędzy poszczególnymi pozycjami porfela. Prowadzi o bezpośrednio do lepszego 1 Dr hab. Jacek Leśkow, Wyższa Szkoła Biznesu Naional-Louis Universiy, ul. Zielona 7, Nowy Sącz, mgr Jusyna Mokrzycka, mgr Kamil Krawiec Rzeszów 1

2 modelowania różnego rodzaju ryzyk powiązanych z porfelem, akich jak uraa płynności czy warość narażona na ryzyko (ang. Value a Risk, VaR) (Cherubini, Luciano i Vecchiao, 003). W celu przedsawienia eorii funkcji kopuli w sposób ławy do zrozumienia publikacja przedsawia szczegółową analizę porfela składającego się z dwóch indeksów giełdowych. W pracy pokazano, iż zasosowane meody z wykorzysaniem funkcji kopuli dają znacznie lepsze rezulay niż radycyjne meody z uwagi na brak konieczności zakładania normalności rozkładów. Praca ponado podejmuje ema modelowania zmiennej w czasie srukury zależności pomiędzy zmiennymi poprzez analizę zasosowania modelu dynamicznej warunkowej korelacji (DCC) oraz dynamicznej warunkowej kopuli. Prezenowane przykłady ilusrują eapy modelowania łącznego warunkowego rozkładu dwuwymiarowego szeregu zwroów o składowych WIG0 oraz DAX z zasosowaniem funkcji kopuli. Ogólna charakerysyka funkcji kopuli Adobe Sklar rozwinął eorię funkcji kopuli poprzez sformułowanie w 1959 r. ważnego wierdzenia, dzięki kóremu możliwe jes przedsawienie każdej wielowymiarowej dysrybuany w posaci jej dysrybuan brzegowych oraz odpowiedniej funkcji kopuli. W przypadku, gdy wielowymiarowa dysrybuana jes ciągła, funkcja kopuli wyznaczona jes jednoznacznie. Dla zilusrowania ego faku rozważmy dwuwymiarową dysrybuanę H( x1, x ) o dysrybuanach brzegowych F1( x 1) i F( x ), wówczas isnieje aka funkcja kopuli C, że zachodzi nasępujące równanie x1, x R, H( x1, x) C( F1 ( x1 ), F ( x)). (1) Odwronie, jeżeli C jes dwuwymiarową funkcją kopuli oraz F1, F są jednowymiarowymi dysrybuanami, wówczas możemy na podsawie równania (1) wyznaczyć aką dwuwymiarową dysrybuanę H, dla kórej F1, F są dysrybuanami brzegowymi H. Definicja funkcji kopuli wraz z innymi eoreycznymi zagadnieniami przedsawiona zosała w pracy Nelsena (1999). Poniżej przedsawiono przykłady wielowymiarowych dysrybuan orzymanych za pomocą funkcji kopuli. Przykład 1. Wielowymiarowa dysrybuana o składowych z rozkładu normalnego Niech F1, F będą jednowymiarowymi rozkładami normalnymi. Rozważmy nasępującą funkcję kopuli 1 ln (1 u ) ln (1 v ) C( u, v) u v 1 (1 u)(1 v) e. () Na podsawie wierdzenia Sklara dwuwymiarowa dysrybuana o rozkładach brzegowych F, F jes posaci: 1 1 ln (1 F ( x )) ln (1 F ( y )) 1 H( x, y) F ( x) F ( y) 1 (1 F ( x))(1 F ( y)) e. (3) 1 1 Przykład. Kopula -sudena Kopula -sudena podobnie jak kopula normalna konsruowana jes z wykorzysaniem meody odwroności (Nelsen, 1999). Jej równanie jes nasępujące: 35-5 Rzeszów

3 C 1 1 ( u1 ) ( u ) ( ) r rs s, ( u1, u ) (1 ) v ( ) 1 (1 ) 1 ( ) drds, (4) gdzie jes paramerem funkcji kopuli, liczbą sopni swobody, a funkcją Gamma. Modele finansowych szeregów czasowych Precyzyjne modelowanie warunkowych rozkładów brzegowych szeregu czasowego o isony krok algorymu wykorzysania funkcji kopuli w modelowaniu warunkowego łącznego rozkładu. Wielowymiarowe dysrybuany są najlepszym narzędziem modelowania porfela i dlaego konieczne jes rozszerzenie klasycznych narzędzi bazujących na założeniu normalności. Podczas analizy empirycznych szeregów czasowych odpowiadających zwroom na przykład z indeksów giełdowych bardzo częso obserwowane są akie zjawiska, jak efek skupienia (gromadzenia) zmienności (ang. volailiy clusering), co jes wynikiem zmiennej w czasie warunkowej wariancji. Innym rodzajem charakerysycznych zachowań szeregów czasowych jes wysępowanie grubych ogonów, gdy rozpięość zwroów jes znacznie większa, niż wynika o z rozkładu normalnego (Mandelbro, 1963; Fama, 1965). Ponado obserwowany jes również efek dźwigni finansowej rozumiany jako asymeryczny wpływ informacji pozyywnych i negaywnych na warość przyszłej wariancji. Ważny podkreślenia jes fak, iż wiele zwroów z finansowych szeregów czasowych nie spełnia założenia normalności. Dla zilusrowania użyjmy prosego narzędzia zwanego q-q plo. Orzymany wykres przesawia porównanie kwanyli rozkładu normalnego z kwanylami empirycznymi odpowiadającymi analizowanym zwroom. Jeżeli zwroy pochodziłyby z rozkładu normalnego, wówczas punky winny być położone na wykreślanej linii. Poniższy wykres wykonano dla dziennych zwroów indeksu WIG0 w okresie od sycznia 004 do luego 008 r. Rysunek 1: Porównanie kwanyli z rozkładu normalnego z kwanylami empirycznymi zwroów indeksu WIG0 Rysunek 1 wskazuje, iż użycie modelu, w kórym zakłada się rozkład normalny, może okazać się niepoprawnym rozwiązaniem dla ego rodzaju danych empirycznych. Wskazane jes 35-5 Rzeszów 3

4 użycie rozkładu o ciężkich ogonach, np. rozkładu -sudena. Najczęściej sosowane w lieraurze modele do opisu ego rodzaju zjawisk w szeregach czasowych o uogólnienia modelu ARMA-GARCH z innowacjami o ciężkich ogonach rozkładu (Tsay, 00). Kluczem właściwego oraz precyzyjnego modelowania zwroów porfela, indeksów giełdowych jes modelowanie zmienności. Najbardziej popularna radycyjna ścieżka wykonania ego zadania wykorzysuje wariancję jako miarę zmienności. Jednak ego rodzaju miara zmienności jes właściwa w przypadku, gdy dane pochodzą z rozkładu normalnego, co jednak jak przedsawia powyższy rysunek, nie jes spełnione dla WIG0. Bardziej precyzyjne narzędzia w modelowaniu zmienności używają modeli ypu GARCH będących uogólnieniem modeli ARCH, kórych wórcą jes Rober Engle (Engle, 198). Zaleą ego rodzaju modeli jes zmienna w czasie warunkowa wariancja, podczas gdy bezwarunkowa wariancja pozosaje niezmienna. Wobec ego przyjrzyjmy się szczegółowo modelom GARCH(p,q). Szereg czasowy { } Z nazywamy szeregiem ypu GARCH(p,q), gdy h, gdzie h h q p 0 i i j j. (5) i 1 j 1 W równaniu (5) symbol oznacza innowacje. Model jes dobrze zdefiniowany, gdy p 0, q 0 oraz α 0 >0, α i 0, i =1,,,p, β j 0, j=1,,,q. W szeregu ypu GARCH(p,q) wariancja warunkowa w momencie zależy od kwadraów realizacji szeregu z momenów -1,, -q oraz od wariancji warunkowych z okresów -1,,-p. Dzięki wprowadzeniu wariancji z poprzednich okresów bieżąca zmienność procesu zależy od całej jego przeszłości. Modele GARCH podobnie jak ARCH zyskały swoją popularność ze względu na warunkową heeroskedasyczność. Model GARCH(p,q) jes bardzo ważny podczas modelowania klasrów zmienności (ang. volailiy clusering) dla zwroów { e } uzyskanych z modeli ARMA (Brockwell i Davis, 00). Efek dźwigni finansowej, jak już było wspomniane powyżej, określany jes jako wpływ informacji dobrych i złych na poziom przyszłej wariancji szeregu. Przez informację dobrą rozumiemy dodanią sopę zwrou, naomias informacja zła uożsamiana jes z ujemną sopą zwrou. Lieraura proponuje kilka sposobów modelowania omawianego zjawiska. Najpopularniejszymi modelami z ego zakresu są GJR-GARCH przedsawione w pracy Glosen, Jagannahan i Runkle (1993). Model GJR-GARCH(p,q) definiowany jes nasępująco: szereg czasowy { } Z jes szeregiem ypu GJR-GARCH(p,q), jeśli dla każdego zachodzi poniższe równanie: h, (6) gdzie q p q 0 i i j j i { i 0} i i 1 j 1 i 1 h h I oraz { } są dowolnymi innowacjami ze średnią zero oraz jednoskową wariancją. W równaniu (6) funkcja I [ ab, ] oznacza funkcję indykaorową dla przedziału [a,b], j. I ( ) 1 [ ab, ] x, gdy x [ a, b ] oraz I ( ) 0 [ ab, ] x, gdy x [ a, b ]. Ponado paramery spełniają nasępujące warunki 0 0, i 0, i 1,.., q, 1 0, j 1,.., p, i 0, i 1,.., q. W modelu GJR-GARCH paramer i odpowiada za asymerię modelu. Niech { } będzie Z szeregiem sóp zwrou z insrumenu finansowego, wówczas gdy warości paramerów są i, 35-5 Rzeszów 4

5 silnie większe od zera, wedy ujemne sopy zwrou mają większy wpływ na poziom warunkowej wariacji niż dodanie sopy zwrou. Im większa jes warość parameru, ym i efek dźwigni finansowej jes mocniejszy. Sąd eż paramer en idenyfikuje wrażliwość zmienności funkcji h w odpowiedzi na ujemne zwroy. Inną meodą parameryzowania braku symerii w reagowaniu rynku w sosunku do dodanich oraz ujemnych zwroów jes Asymmeric Power ARCH wprowadzony przez Ding, Granger i Engle (1993). Szereg czasowy { } Z jes nazywany szeregiem ypu APARCH(p,q), jeżeli dla każdego spełnione jes nasępujące równanie:, (7) gdzie 0 q ( ).\ n i i i i j j i 1 j 1 W równaniu (7) symbol { } odpowiada innowacjom o średniej zero i jednoskowej wariancji. Ponado model jes dobrze określony, gdy zachodzą nasępujące warunki: 0 0, i 0, i 1,.., q, 1 0, j 1,.., p, 1 i 1, i 1,.., q. Klasa modeli APARCH przy określonych warościach współczynników zawiera model ARCH, GARCH, jak również GJR- GARCH oraz inne modele omawiane w lieraurze (Wurz, Chalabi i Luksan, 00). Funkcje kopuli a modelowanie indeksów giełdowych W klasycznym podejściu do analizy zwroów z porfela zakłada się wielowymiarowy rozkład normalny. Na podsawie wcześniejszych rozważań założenie normalności okazuje się mało realisyczne. Współczesne narzędzia wykorzysywane w modelowaniu porfela bazują na funkcjach kopuli (Haerdle, 010). W dalszym ciągu ego rozdziału, uproszczając prezenowany algorym, ograniczono się do przypadku dwuwymiarowego. Wielowymiarowe uogólnienie dwuwymiarowego przypadku nie sprawia dużych problemów i można je znaleźć w lieraurze (por. Haerdle, 010). Rozpoczynając dopasowywanie funkcji kopuli do szeregów czasowych opisanych poprzez wcześniej omawiane modele (GJR, ARARCH ip.), należy precyzyjnie usalić, czy przyjęa meoda dopasowania może być zasosowana w konekście warunkowej funkcji kopuli, j. funkcji reprezenującej zmienną zależność zjawiska. Nasępnie esymując funkcję kopuli, najczęściej używa się meody IFM (Cherubini i in., 003). Szczegółowe kroki algorymu przedsawiają się nasępująco: KROK 1. Dla każdej pozycji porfela nasępuje idenyfikacja właściwego modelu (np. GARCH, GJR id.), esymującego funkcję zmienności { h } modelu oraz idenyfikującego warunkową dysrybuanę dla zmiennych { i }. W celu wyjaśnienia, w porfelu składającym się z dwóch pozycji, dwóch szeregów czasowych { x } p (8) T i { y } T przeprowadza się esymację osobno dla każdego szeregu. Idenyfikacja paramerów poszczególnych modeli wykonywana jes w oparciu o kryerium AIC (Mokrzycka, 008). KROK. Wykorzysując rezulay z kroku 1 dla każdego momenu czasowego {1,, T }, worzone są realizacje niezależnych o jednosajnych rozkładach na odcinku (0,1) zmiennych losowych { } u T i T { v } poprzez ransformacje 35-5 Rzeszów 5

6 wyjściowych danych { x } T i { y } T względem dysrybuan brzegowych (Cherubini in., 003). KROK 3. Wykorzysując szeregi czasowe { u } T oraz { v } T orzymane w kroku, wykonywana jes esymacja paramerów funkcji kopuli. Proces esymacji przebiegający w kroku 1 wymaga dużej precyzji z uwagi, iż odbywa się uaj określenie warunkowych dysrybuan. Ponado, krok 1 jes isony z uwagi na późniejszy właściwy dobór funkcji kopuli, kóry opiera się na rezulaach ego kroku. Nad ego rodzaju isonymi zagadnieniami rwają badania prowadzone przez auorów publikacji. W celu zilusrowania powyższej meody zaprezenowano poniżej przykład obejmujący dopasowanie dwuwymiarowej warunkowej funkcji kopuli odpowiadającej zależności pomiędzy indeksami WIG0 oraz DAX. Wykorzysano możliwości obliczeniowe pakieu R oraz algorymy dosępne na sronie inerneowej prof. Andrew Paona (Pozyskano z hp://www.nuffield.ox.ac.uk/users/nielsen/mphileconomerics/index008.hm). Przykład 3. (Esymacja warunkowego rozkładu dla WIG0 i DAX, ) Analizie poddano dzienne zwroy z porfela składającego się z dwóch indeksów giełdowych: WIG0 oraz DAX w okresie od sycznia 004 do 7 luego 008 r. W przypadku noowań indeksu DAX w rozparywanym okresie wysępuje różnica w liczbie obserwacji ze względu na fak większej liczy dni wolnych od pracy w Polsce niż w Niemczech. Z ego powodu analizie poddano obserwacje pochodzące z części wspólnej. Algorym konsrukcji warunkowej dysrybuany przedsawiony powyżej rozpoczyna się od esymowania paramerów rozkładów brzegowych. Dla szeregu zwroów z indeksu WIG0 najlepszym modelem okazał się model GARCH(1,1) z innowacjami ze skośnego rozkładu -sudena. Naomias dla szeregu zwroów z indeksu DAX zidenyfikowano model APARCH(1,1) z paramerem oraz skośnym rozkładem -sudena. Poniżej przedsawiono wyniki będące podsumowaniem wykonanego kroku 1 kolejno dla zwroów z indeksu WIG0 oraz DAX. Tabela 1: Esymowane współczynniki modelu GARCH(1,1) dla zwroów WIG0 Parameers Esimae Sd. Error value Pr(> ) α e e α e e ** β e e < e-16 *** LLF AIC Tabela : Esymowane współczynniki modelu APARCH(1,1) z dla zwroów DAX Parameers Esimae Sd. Error value Pr(> ) α e e ** α e e * γ e ** β e e <e-16 *** LLF AIC Rzeszów 6

7 Dla zwroów z indeksu DAX najlepszym modelem, biorąc pod uwagę kryerium AIC, jes model APARCH(1,1) z paramerem oraz innowacjami ze skośnego rozkładu -sudena. Ponado paramer γ 1 jes bliski warości 1, co implikuje dużą asymerię wpływu informacji pozyywnych i negaywnych. W powyższej abeli symbol AIC odpowiada warości kryerium informacyjnego Akaike orzymywanym podczas esymacji różnego rodzaju modeli z klasy modeli GARCH czy APARCH. Orzymana warość jes najmniejszą spośród uzyskanych w rakcie doboru modeli. Naomias oznaczenie LFF odpowiada logarymowi warości funkcji wiarygodności. Warość a w porównaniu modeli winna być maksymalizowana w celu wyboru najlepszego spośród analizowanych modeli. Przejdźmy do przedsawienia rezulaów orzymanych po wykonaniu kroku numer. W celu zweryfikowania poprawności wykonanych esymacji w kroku 1 wykonano dla ransformacji { u } T i { v } T es Kołmogorowa-Smirnowa zgodności z rozkładem jednosajnym na (0,1) oraz es LM na niezależność ransformacji. Tabela 3: p-warości wykonanych esów Transformed reurns p-value LM Tes p-value K-S Tes WIG DAX W obu przypadkach, dla WIG0 i DAX, nie ma podsaw do odrzucenia hipoez zerowych zarówno dla niezależności obserwacji, co weryfikowano, używając esu LM, oraz dla zgodności rozkładu z rozkładem jednosajnym. W obu warianach p warości są większe od 5%, sąd nie ma wąpliwości co do poprawności modeli zasosowanych w kroku 1. Nasępnie przechodząc do kroku rzeciego, przeprowadzono idenyfikację oraz esymację warunkowej funkcji kopuli, używając ransformacji { u } T i { v } T. Tabela 4: Warości LLF oraz AIC esymowanych funkcji kopuli Copula LLF AIC Normal Sym. Joe-Clayon Gumbel suden Największą warość logarymu funkcji wiarygodności LLF oraz najmniejszą warość kryerium Akaike orzymano dla kopuli -sudena. Esymowane paramery kopuli -sudena są nasępujące: liczba sopni swobody wynosi , naomias paramer jes równy Szczegółowo posać kopuli -sudena przedsawia równanie nr 4. Podsumowując powyższy przykład, należy zwrócić szczególną uwagę na fak, iż orzymano różne warunkowe dysrybuany rozkładów brzegowych, a zwroy w obu przypadkach modelowane są za pomocą rozkładów o grubych ogonach Rzeszów 7

8 Rysunek : Porównanie empirycznych kwanyli zwroów z indeksu WIG0 z kwanylami rozkładu normalnego (wykres po lewej) oraz wykres sandaryzowanych residuów pochodzących z modelu GARCH (wykres po prawej) Ponado fak, iż najlepszą funkcją kopuli opisującą zależność pomiędzy zmiennymi jes kopula ypu -sudena, prowadzi do prosego wniosku, iż wielowymiarowy rozkład normalny nie powinien zosać w ym przypadku zasosowany. Wykazano, iż wykorzysanie możliwości, jakie daje eoria funkcji kopuli, prowadzi do lepszych rezulaów w porównaniu ze sandardowym podejściem do modelowania zwroów z porfela. Posępując dalej, wykorzysaliśmy prezenowany algorym do aproksymowania bardzo popularnej miary ryzyka rynkowego, jaką jes warość narażona na ryzyko (ang. Value a Risk). Poniżej przedsawiono ylko graficzne wyniki modelowania, naomias formalne ujęcie problemu przedsawione zosanie w przyszłych pracach auorów. Zwroy z porfela skalkulowane zosały na podsawie zwroów z indeksu WIG0 oraz DAX z wagami odpowiednio ½ i ½ w analizowanym w przykładzie nr 3 okresie Rzeszów 8

9 Rysunek 3: Zwroy z porfela oraz 95% VaR (zielona linia) Rysunek 3 wskazuje, iż użyy model poprawnie odzwierciedla zachowanie się warości narażonej na ryzyko nawe w przypadku gromadzenia się dużej zmienności obserwacji widocznej na rysunku nr 3 w osanim eapie obserwacji. Modele dynamiczne W poprzednim rozdziale zaprezenowano pozyywne aspeky zasosowania funkcji kopuli w opisie zachowania się porfela składającego się z pozycji wskazujących na fak, iż rozkłady warunkowe nie pochodzą z rozkładu normalnego. W powyższych rozważaniach przedsawiono model, zakładając, iż zależność pomiędzy składowymi porfela nie zmienia się w czasie, a co się z ym wiąże, również funkcja kopuli nie jes zmienna względem jednoski czasowej. W rzeczywisości obserwujemy jednak zmienną w czasie srukurę zależności. Posępując zgodnie za ego rodzaju przesłankami poddano analizie model DCC-MVGARCH (ang. dynamic condiional correlaion MVGARCH) oraz model warunkowej dynamicznej funkcji kopuli. W celu zapoznania się ze szczegółowymi zagadnieniami związanymi z wymienionymi modelami czyelnik odsyłany jes do nasępujących pozycji: Engle i Shephard (001) oraz Paon (001). Podsawowe informacje doyczące modelu DCC podano poniżej. Załóżmy, że dysponujemy k-wymiarowym wekorem r obserwacji w chwilach = 1; ; T np. r o wekor zwroów (w momencie ) z porfela zawierającego k akywów finansowych. Wekor en można przedsawić w równaniu warunkowej warości oczekiwanej jako model wekorowej auoregresji (VAR) A(L)r =ε, gdzie ε F -1 ~N k (0,H ) (9) oraz A(L) jes macierzą wielomianową operaora opóźnienia L (Lr 1, = r 1;-1 ), ε o wekor resz w modelu VAR z warunkową macierzą wariancji-kowariancji H { hij }, i, j 1,,..., k. W modelu zaprezenowanym w pracy Engle i Sheppard (001) macierz a zapisywana jes nasępująco: 35-5 Rzeszów 9

10 H =D R D, gdzie D jes diagonalną macierzą wymiaru k x k i zawiera warunkowe odchylenia sandardowe jednowymiarowych modeli GARCH, naomias R jes zmienną w czasie macierzą korelacji. Takie przedsawienie macierzy wariancji-kowariancji ma isony wpływ na uproszczenie procesu esymacji paramerów. Esymacja paramerów modelu odbywa się z wykorzysaniem meody największej wiarygodności. Przykład 4. Esymacja modelu DCC-MVGARCH dla szeregu zwroów DAX i WIG0 Analizie poddano en sam zbiór danych co w przykładzie numer 3. Wykonano esymację modelu DCC-MVGARCH bezpośrednio do zwroów, gdyż po weryfikacji część auoregresyjna nie jes isona. W celu powierdzenia zasadności zasosowania modelu dynamicznego wykonano es sałości korelacji opisany przez Engle i Shephard (001). Zgodnie z orzymaną p-warością esu model sałej korelacji zosał odrzucony na rzecz modelu o zmiennej macierzy korelacji w opóźnieniu rzędu 4. Dla kolejnych opóźnień p- warość wynosi odpowiednio: pvalue1= 0.908, pvalue=0.9504, pvalue3=0.994, pvalue4= Sała esymowana warość współczynnika korelacji zwroów wynosi Naomias wykres zmiennego w czasie esymowanego w modelu DCC(1,1) współczynnika przebiega ak, jak zosało o zaprezenowane na rysunku 4. Rysunek 4: Esymowany współczynnik korelacji w modelu DCC(1,1) Warość logarymu funkcji wiarygodności dla modelu ze zmienną korelacją wynosi LLF=6496,8. Z kolei warość ej funkcji dla modelu Bollersleva (Bollerslev, 1986) ze sałą korelacją jes mniejsza i wynosi 6489,6. Wykonajmy porównanie zmiennej w czasie korelacji w modelu DCC-MVGARCH oraz zwroów w analizowanym przedziale czasowym. Rysunek 5 przedsawia przeskalowane w nasępujący sposób warości indeksów: { x R } T i { R R x y } T, gdzie x x i R y y 1 y oraz x oznacza dzienny kurs zamknięcia indeksu WIG0, 1 a y dzienny kurs zamknięcia indeksu DAX Rzeszów 10

11 Rysunek 5: Przeskalowane warości indeksów oraz zmienna w czasie korelacja Obserwacja dynamicznej korelacji oraz zachowania się { x R } T i { y R } T prowadzi do nasępującego wniosku. Jednoczesny spadek warości indeksów (w obrębie punku 1000) generuje wyższą warość współczynnika korelacji. Naomias w przypadku wysępowania wzrosowych endencji na rynkach zależność pomiędzy indeksami giełdowymi wyrażona współczynnikiem korelacji słabnie. Tendencja spadkowa cen indeksów wpływa zaś na zwiększenie warości korelacji. Jes o kolejny przykład powierdzający brak symerii podczas równoległych zachowań na rynku. Ponownie, złe informacje rozumiane uaj jako ujemne zwroy rozprzesrzeniają się dużo szybciej. Model dynamicznej warunkowej kopuli Poprzedni przykład wskazywał na brak symerii w zależności pomiędzy dwoma indeksami giełdowymi, fak en moywuje do dalszej szczegółowej weryfikacji ego zjawiska w konekście dynamicznych funkcji kopuli. Poszukiwanie lepszych modeli rozpoczęo od analizy warunkowej kopuli normalnej ze zmiennym w czasie współczynnikiem korelacji. Nasępnie pod uwagę wzięo inny rodzaj zależności pomiędzy zmiennymi, j. zależności ogonowe oraz kopule Joe-Clayona. Zacznijmy od przedsawienia dynamicznej kopuli normalnej. Posać dwuwymiarowej kopuli normalnej jes nasępująca: 1 1 ( u) ( v) 1 ( r rs s ) C ( u, v) exp{ } drds, 1 1. (10) 1 (1 ) Badania prowadzone przez Paona (006) wskazują na nasępującą srukurę zmienności parameru kopuli normalnej: ( 1 ( u j ) ( j ), 10 j Rzeszów 11

12 x 1 e gdzie ( x) jes logisyczną ransformacją pozwalającą na urzymanie warości x 1 e współczynnika korelacji w przedziale (-1,1). Przeprowadźmy esymację dynamicznej kopuli normalnej dla danych z poprzedniego przykładu. Przykład 5. Model dynamicznej kopuli normalnej Dane doyczą dziennych zwroów z indeksu WIG0 i DAX, podobnie jak w przykładzie 3. Po esymacji dynamicznej warunkowej kopuli, gdzie w procesie ym dla rozkładów brzegowych wykorzysano rezulay z przykładu 3, orzymano bardzo podobny przebieg współczynnika korelacji jak dla modelu DCC-MVGARCH. Rysunek 6: Esymacja współczynnika korelacji w modelu dynamicznej warunkowej kopuli Po dopasowaniu dynamicznej kopuli warość funkcji wiarygodności wynosi i jes większa od wszyskich orzymanych warości w przykładzie 3 poza przypadkiem kopuli - sudena. W ym przypadku również obserwujemy zwiększenie warości współczynnika korelacji, gdy pojawiają się ujemne zwroy przez dłuższy okres. Z kolei kopula Joy-Clayona definiowana jes nasępująco: 1/ 1/ C ( u, v, ) 1 (1 {[1 (1 u) ] [1 (1 v) ] 1} ), (11) JC U L U L U L gdzie 1/ log (1 ), 1/ log ( ), (0,1), (0,1). Paramerami ej kopuli są L i U miary zależności zwane zależnościami ogonowymi (Paon, 006). Dla zmiennych losowych X 1 i X o ciągłych dysrybuanach brzegowych odpowiednio F 1 i F górna zależność ogonowa U jes posaci: U lim Pr[ X F ( u) X F ( u)] lim Pr[ X F ( u) X F ( u )]. (1) u u L Z kolei dolna zależność ogonowa L limu 0Pr[ X F ( u) X1 F1 ( u)] limu 0Pr[ X1 F1 ( u) X F ( u )]. (13) Zależności ogonowe odzwierciedlają zachowanie się zmiennych losowych w przypadku skrajnych obserwacji. Z ego eż powodu nauralne jes rozparywanie ego rodzaju zależności w przypadku modelowania wzajemnie zależnych pozycji porfela. Zasadniczym problemem jes uaj odpowiedź na pyanie, w jaki sposób wprowadzić zmienność współczynników w Rzeszów

13 konekście empirycznie obserwowanych endencji, np. przy analizie indeksu WIG0 oraz DAX. Do ego celu posłuży nam symeryczna kopula Joe-Clayona, kórej posać jes nasępująca: C ( u, v U, L ) 0.5( C ( u, v U, L ) C (1 u,1 v U, L ) u v 1). (14) SJC JC JC U L W przypadku, gdy, wówczas kopula jes symeryczna. Równania przedsawiające srukurę zmiennych w czasie paramerów ej kopuli o: p p U U 1 L U 1 ( U U 1 U u j v j ), ( L L 1 L u j v j ), p p j 1 x 1 gdzie ( x) (1 e ) jes ransformacją pozwalającą na zachowanie warości L U i w przedziale (0,1) dla każdego. W prakyce warość p jes odpowiednio dobierana (Paon, 006), w naszym przypadku zakładamy, że jes równa 10. Przedsawmy zaem wyniki esymacji modelu dynamicznej warunkowej kopuli Joe-Clayona dla poprzednio analizowanych danych. Przykład 6. Esymacja modelu warunkowej symerycznej kopuli Joe-Clayon a Przeprowadzono esymację symerycznej dynamicznej kopuli Joe-Clayon a (ozn. SJC) dla zwroów z indeksu WIG0 oraz DAX. Zakres danych jes aki jak w przykładzie 3. Po wykonaniu esymacji ej kopuli warość funkcji wiarygodności wynosi LLFSJC = Wykres esymowanych zmiennych w czasie paramerów jes posaci zaprezenowanej na rysunku 7. Rysunek 7: Paramery dynamicznej kopuli SJC j 1 Na rysunku 7 przerywaną linią wykreślona zosała sała warość paramerów esymowanych dla przypadku niedynamicznego. Funkcja wiarygodności dla ej kopuli przyjmuje największą warość, ze względu na en fak przyjmujemy, że dynamiczna symeryczna kopula Joe- Clayon a jes najodpowiedniejszą kopulą w modelowaniu zależności między zwroami z indeksu WIG0 oraz DAX Rzeszów 13

14 Boosrap w konekście wyznaczania przedziału ufności dla VaR W niniejszym rozdziale przedsawiono zasosowanie wcześniej omawianej echniki wykorzysującej funkcje kopuli oraz meody boosrap do uzyskania przedziału ufności dla warości narażonej na ryzyko. Prezenowana meoda będzie analizowana równocześnie z wykonanymi obliczeniami dla danych empirycznych. Rozważmy porfel złożony z 4 akywów ryzykownych pochodzących z polskiego rynku akcji. Niech w jego skład wchodzą akcje spółek należących do różnych sekorów gospodarki: elekomunikacyjnego TP SA, bankowego PKO BP, paliwowo-echnologicznego PKN ORLEN, medialnego TVN. Wyznaczenie warości narażonej na ryzyko, dla funkcji zysku i sray L, przeprowadzono w oparciu o zwroy logarymiczne, kórych srukura zosała opisana za pomocą modelu GARCH(1,1). Nasępnie założono, że orzymane z modelu GARCH reszy charakeryzują się rozkładami -sudena, a ich łączny rozkład może być wyrażony za pomocą funkcji kopuli C. W procesie esymacji VaR wykorzysano kopulę - sudena o esymowanych, za pomocą meody IFM, paramerach zależności i sopniach swobody. W przypadku analizowanego zbioru obserwacji przeprowadzono również weryfikację możliwości zasosowania modelu dynamicznej warunkowej korelacji. Wykonany es saysyczny szczegółowo opisany w pracy Engle i Sheppard (001) nie dał podsaw do rozważania zmiennej srukury zależności dla ego rodzaju obserwacji. W abeli 5 znajdują się wyniki ego esu. Tabela 5: p-value esu idenyfikującego dynamiczną zależność Lag p-value Proces esymacji paramerów modelu ze sałą zależnością przeprowadzono na danych pochodzących z okresu od sycznia 007 do czerwca 010 r. W celu wyznaczenia VaR zasosowano symulacje Mone Carlo z łącznego rozkładu innowacji, co pozwoliło na obliczenie prognozy funkcji zysku i sray L. Na ej podsawie wyznaczono VaR jako empiryczny α kwanyl z prognozowanego L. Dla obliczonej na podsawie powyższej meody warości narażonej na ryzyko wyznaczono przedziały ufności. W ym celu wykorzysano meodę boosrapu nieparamerycznego (Lahiri, 003, s. 00). Próbkowanie przeprowadzono na reszach (ε 1,,ε n ) wygenerowanych z łącznego rozkładu C, kóre posłużyły do wyznaczenia VaR w symulacjach Mone Carlo. Weryfikacja niezależności boosrapowanych resz zosała wykonana w oparciu o analizę funkcji auokorelacji (ACF) i auokorelacji próbkowej (PACF). Orzymane za pomocą próbkowania obserwacje boosrapowe (ε p 1,,ε p n ) pozwoliły na orzymywanie kolejnych realizacji zwroów posaci: r. (15) b b 35-5 Rzeszów 14

15 Przyjęo, że kwanyl empiryczny z funkcji zysku i sray obliczonej dla powyższych zwroów będzie boosrapowym esymaorem warości narażonej na ryzyko b. Esymaory ego ypu posłużyły do wyznaczenia przedziałów ufności dla VaR. Przedziałem ufności dla na poziomie ufności 1 β jes przedział ( u, u ), są kwanylami empirycznymi, z rozkładu esymaorów 1 b, rzędu odpowiednio i 1. Rysunek 8: 95-procenowy przedział ufności dla VaR na poziomie 5% 35-5 Rzeszów 15

16 Rysunek 9: 99-procenowy przedział ufności dla VaR na poziomie 1% Rysunki 8 i 9 przedsawiają zaleę użycia meod boosrap, jaką jes wyznaczenie przedziału ufności dla warości narażonej na ryzyko. Sandardowo 99-procenowy przedział ufności jes szerszy niż 95-procenowy. Konkluzje W pracy zaprezenowano ideę wykorzysania eorii funkcji kopuli w modelowaniu zwroów dwuwymiarowego porfela. Dzięki kopulom orzymano bardziej elasyczną pod względem doboru rozkładów brzegowych echnikę opisu analizowanego szeregu zwroów. Sosując ę echnikę założenie o normalności rozkładów nie miało uaj znaczenia. Ponado zależność pomiędzy zmiennymi losowymi określona zosała poprzez posać funkcji kopuli. Aspeky e przyczyniają się do coraz większej popularności ych funkcji w rachunku prawdopodobieńswa czy saysyce. W prezenowanych wynikach zaobserwowano isony wpływ modeli dynamicznych na poprawę dopasowania. Zesawienie warości funkcji wiarygodności dla rozparywanych modeli prezenuje abela: Tabela 6: Porównanie warości logarymu funkcji wiarygodności -sud. DCC(1,1) dyn. SJC dyn. normal LLF WIG LLF DAX LLF Copula LLF Ze względu na warość funkcji wiarygodności model z zasosowaniem dynamicznej funkcji kopuli jes najlepiej dopasowany. Zauważmy, że modele wykorzysujące funkcje kopuli mają przewagę nad modelem DCC(1,1). Isone znaczenie ma uaj elasyczny dobór rozkładów brzegowych, kóry jes możliwy poprzez wykorzysanie rezulaów eorii funkcji kopuli Rzeszów 16

17 Dodakowo esymacja warunkowych rozkładów brzegowych dla ych szeregów uwzględnienia omawiane zjawiska wysępujące w finansowych szeregach czasowych. Jeseśmy przekonani, że eoria funkcji kopuli oraz jej zasosowanie będzie miało isone znaczenie dla prakyków. Powierdzeniem ego przekonania jes chociażby osani rozdział publikacji, w kórym bazując na eorii funkcji kopuli, wykonano esymację VaR, a nasępnie sosując meody boosrap, uzyskano konrolę nad poziomem błędu wykonanych kalkulacji. Zachęcamy prakyków do wykorzysania prezenowanych echnik prognozowania warości narażonej na ryzyko z uwagi na fak, iż meoda a dla danych finansowych daje lepsze rezulay niż meody, w kórych zakłada się normalność rozkładów. Lieraura Bollerslev, T. (1986). Generalized Auoregressive Condiional Heeroscedasiciy, Journal of Economerics, 31, Brockwell, P. J., Davis, R. A. (00). Inroducion o Time Series and Forecasing, New York: Springer-Verlag. Cherubini, U., Luciano, E., Vecchiao W. (003). Copula Mehods in Finance, Wiley Series in Finance. Ding, Z., Granger C. W. J., Engle R. F. (1993). A Long Memory Propery of Sock Marke Reurns and a New Model, Journal of Empirical Finance, Engle, R. (198). Auoregressive Condiional Heeroscedasiciy wih Esimaes of he Variance of UK Inaion, Economerica 50 (4), Engle, R., Sheppard, R. (001). Theoreical and Empirical Properies of Dynamic Condiional Correlaion Mulivariae GARCH, Universiy of California a San Diego, Economics Working Paper Series. Fama, E. G. (1965). The Behavior of Sock-Marke Prices, The Journal of Business, 38 (1), van den Goorbergh, R. W. J. (004). A Copula-Based Auoregressive Condiional Dependence Model of Inernaional Sock Markes, Pozyskano z hp://ideas.repec.org/p/dnb/dnbwpp/0.hml. Glosen, L., Jagannahan, R., Runkle, D. (1993). On he Relaion Beween he Expeced Value and he Volailiy of he Nominal Excess Reurn on Socks, Journal of Finance, 48, Haerdle, W., Durane, F., Jaworski, P. and Rychlik, T. (010). Copula Theory and Is Applicaions, Lecure Noes in Saisics, Springer. Lahiri, S. N. (003). Resampling Mehods for Dependen Daa, Springer Series in Saisics. Leśkow, J., Napoliano, A. (00). Quanile Predicion for Time Series in he Fracion-of- Time Probabiliy Framework, Signal Processing, 8, Mandelbro, B. (1963). The Variaion of Cerain Speculaive Prices, The Journal of Business, 36 (4), Mokrzycka, J. (008). Applicaions of Copula Funcions o Analysis of Characerisics of Time Series, MSc heses (in Polish), Academy of Mining and Meallurgy, Cracow. Nelsen, R. B. (1999). An Inroducion o Copulas, Springer-Verlag. Nelson, D. B. (1991). Condiional Heeroscedasiciy in Asses Reurns: A New Approach, Economerica, 59 (), Paon, A. J. (001). Modeling Time-Varying Exchange Rae Dependence Using he Condiional Copula, Discussion Paper , Universiy of California, San Diego Rzeszów 17

18 Paon, A. J. (006). Modeling Asymmeric Exchange Rae Dependence, Inernaional Economic Review, 47 (). Pesaran, M. H., Ullah, A., Yamagaa, T. (008). A Bias-Adjused LM Tes of Error Cross- Secion Independence, Economeric Journal, 11 (1), Sklar, A. (1959). Foncions de Répariion à n Dimensions e Leurs Marges, Publicaions de l'insiu de Saisique de L'Universié de Paris 8, Tsay, R. (00). Analysis of Financial Time Series, Chicago: Wiley and Sons. Wurz, D., Chalabi, Y., Luksan, L. (00). Parameer Esimaion of ARMA Models wih GARCH/ARCH Errors. An R and SPlus Sofware Implemenaion, Journal of Saisical Sofware. Absrac Modeling Sock Marke Indexes wih Copula Funcions Conemporary financial risk managemen is significanly based on he analysis of ime series of reurns. One of he mos significan errors frequenly commied by analyss is he predominan use of normal disribuions when i is clear ha he reurns are no normal. Copula models and models for non-normal mulivariae disribuions provide new ools o solve he problem because he obained resuls are immediaely applicable in porfolio managemen, opion pricing and measuring risk wihou assuming normaliy. Therefore, boh a heoreician and a praciioner are ineresed in mulivariae models for reurns and copula funcions. The copula funcion models provide an effecive and ineresing echnique of consrucing mulivariae disribuion saring from marginal ones. Due o Sklar's resul esablished in 1959, we can presen any mulivariae disribuion wih a help of corresponding marginal disribuions and a seleced copula funcion. In his work we presen an applicaion of copula funcion o consruc mulivariae condiional disribuions of imes series. In he las par of his paper dynamic models such as DCC-MVGARCH and condiional copula are analyzed. Moreover, we also presen an applicaion of boosrap in he conex of copula funcion. This work is appended by examples showing pracical applicaion of our work. JEL classificaion: C, C5 Key words: copula funcion, GARCH model, condiional copula, DCC-MVGARCH, dynamic condiional copula, boosrap 35-5 Rzeszów 18

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE Paweł Kobus, Rober Pierzykowski Kaedra Ekonomerii i Informayki SGGW e-mail: pawel.kobus@saysyka.info EFEKT DŹWIGNI NA GPW W WARSZAWIE Sreszczenie: Do modelowania asymerycznego wpływu dobrych i złych informacji

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Wsęp MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Nowoczesne echniki zarządzania ryzykiem rynkowym

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODEE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Joanna Małgorzaa andmesser Szkoła Główna

Bardziej szczegółowo

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015 Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 2083-86 Nr 29 205 Alicja Ganczarek-Gamro Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Kaedra Demografii

Bardziej szczegółowo

Wyzwania praktyczne w modelowaniu wielowymiarowych procesów GARCH

Wyzwania praktyczne w modelowaniu wielowymiarowych procesów GARCH Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu Wyzwania prakyczne w modelowaniu wielowymiarowych procesów GARCH Wsęp Od zaproponowania przez Engla w 1982 roku jednowymiarowego modelu klasy ARCH, modele

Bardziej szczegółowo

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA Joanna Górka * Efeky agregacji czasowej szeregów finansowych a modele klasy Sign RCA Wsęp Wprowadzenie losowego parameru do modelu auoregresyjnego zwiększa możliwości aplikacyjne ego modelu, gdyż pozwala

Bardziej szczegółowo

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków

Bardziej szczegółowo

MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. 1. Wstęp

MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. 1. Wstęp WERSJA ROBOCZA - PRZED POPRAWKAMI RECENZENTA Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. Wsęp Spośród wielu rodzajów ryzyka, szczególną

Bardziej szczegółowo

MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW

MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW Wprowadzenie Współczesne zarządzanie ryzykiem

Bardziej szczegółowo

EFEKT DNIA TYGODNIA NA GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE WSTĘP

EFEKT DNIA TYGODNIA NA GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE WSTĘP Joanna Landmesser Kaedra Ekonomerii i Informayki SGGW e-mail: jgwiazda@mors.sggw.waw.pl EFEKT DNIA TYGODNIA NA GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE Sreszczenie: W pracy zbadano wysępowanie efeku

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml

Bardziej szczegółowo

Prognozowanie średniego miesięcznego kursu kupna USD

Prognozowanie średniego miesięcznego kursu kupna USD Prognozowanie średniego miesięcznego kursu kupna USD Kaarzyna Halicka Poliechnika Białosocka, Wydział Zarządzania, Kaedra Informayki Gospodarczej i Logisyki, e-mail: k.halicka@pb.edu.pl Jusyna Godlewska

Bardziej szczegółowo

Ocena efektywności procedury Congruent Specyfication dla małych prób

Ocena efektywności procedury Congruent Specyfication dla małych prób 243 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Ocena efekywności procedury Congruen Specyficaion dla małych prób Sreszczenie. Procedura specyfikacji

Bardziej szczegółowo

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20 Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informayki Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Krzyszof Pionek Weryfikacja modeli Blacka-Scholesa oraz AR-GARCH

Bardziej szczegółowo

OeconomiA copernicana. Małgorzata Madrak-Grochowska, Mirosława Żurek Uniwersytet Mikołaja Kopernika w Toruniu

OeconomiA copernicana. Małgorzata Madrak-Grochowska, Mirosława Żurek Uniwersytet Mikołaja Kopernika w Toruniu OeconomiA copernicana 2011 Nr 4 Małgorzaa Madrak-Grochowska, Mirosława Żurek Uniwersye Mikołaja Kopernika w Toruniu TESTOWANIE PRZYCZYNOWOŚCI W WARIANCJI MIĘDZY WYBRANYMI INDEKSAMI RYNKÓW AKCJI NA ŚWIECIE

Bardziej szczegółowo

Krzysztof Piontek MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR

Krzysztof Piontek MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR Inwesycje finansowe i ubezpieczenia endencje świaowe a rynek polski Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR Wsęp Konieczność

Bardziej szczegółowo

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Marcin Gajewski Uniwersye Łódzki 4.12.2008 Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Niezabazpieczony UIP)

Bardziej szczegółowo

PREDYKCJA KURSU EURO/DOLAR Z WYKORZYSTANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WYBRANE MODELE EKONOMETRYCZNE I PERCEPTRON WIELOWARSTWOWY

PREDYKCJA KURSU EURO/DOLAR Z WYKORZYSTANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WYBRANE MODELE EKONOMETRYCZNE I PERCEPTRON WIELOWARSTWOWY B A D A N I A O P E R A C J N E I D E C Z J E Nr 2004 Aleksandra MAUSZEWSKA Doroa WIKOWSKA PREDKCJA KURSU EURO/DOLAR Z WKORZSANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WBRANE MODELE EKONOMERCZNE I PERCEPRON WIELOWARSWOW

Bardziej szczegółowo

METODY STATYSTYCZNE W FINANSACH

METODY STATYSTYCZNE W FINANSACH METODY STATYSTYCZNE W FINANSACH Krzyszof Jajuga Akademia Ekonomiczna we Wrocławiu, Kaedra Inwesycji Finansowych i Ubezpieczeń Wprowadzenie W osanich kilkunasu laach na świecie obserwuje się dynamiczny

Bardziej szczegółowo

Niestacjonarne zmienne czasowe własności i testowanie

Niestacjonarne zmienne czasowe własności i testowanie Maeriał dla sudenów Niesacjonarne zmienne czasowe własności i esowanie (sudium przypadku) Nazwa przedmiou: ekonomeria finansowa I (22204), analiza szeregów czasowych i prognozowanie (13201); Kierunek sudiów:

Bardziej szczegółowo

Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Katedra Inwestycji Finansowych i Ubezpieczeń

Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Katedra Inwestycji Finansowych i Ubezpieczeń Krzyszof Pionek Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Kaedra Inwesycji Finansowych i Ubezpieczeń Przegląd i porównanie meod oceny modeli VaR Wsęp - Miara VaR Warość zagrożona (warość narażona

Bardziej szczegółowo

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów

Bardziej szczegółowo

Transakcje insiderów a ceny akcji spółek notowanych na Giełdzie Papierów Wartościowych w Warszawie S.A.

Transakcje insiderów a ceny akcji spółek notowanych na Giełdzie Papierów Wartościowych w Warszawie S.A. Agaa Srzelczyk Transakcje insiderów a ceny akcji spółek noowanych na Giełdzie Papierów Warościowych w Warszawie S.A. Wsęp Inwesorzy oczekują od każdej noowanej na Giełdzie Papierów Warościowych spółki

Bardziej szczegółowo

ŹRÓDŁA FLUKTUACJI REALNEGO EFEKTYWNEGO KURSU EUR/ PLN

ŹRÓDŁA FLUKTUACJI REALNEGO EFEKTYWNEGO KURSU EUR/ PLN METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XII/, 0, sr. 389 398 ŹRÓDŁA FLUKTUACJI REALNEGO EFEKTYWNEGO KURSU EUR/ PLN Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków Gospodarczych

Bardziej szczegółowo

POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE

POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE Anea Kłodzińska, Poliechnika Koszalińska, Zakład Ekonomerii POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE Sopy procenowe w analizach ekonomicznych Sopy procenowe

Bardziej szczegółowo

Komputerowa analiza przepływów turbulentnych i indeksu Dow Jones

Komputerowa analiza przepływów turbulentnych i indeksu Dow Jones Kompuerowa analiza przepływów urbulennych i indeksu Dow Jones Rafał Ogrodowczyk Pańswowa Wyższa Szkoła Zawodowa w Chełmie Wiesław A. Kamiński Uniwersye Marii Curie-Skłodowskie w Lublinie W badaniach porównano

Bardziej szczegółowo

Magdalena Osińska, Marcin Fałdziński Uniwersytet Mikołaja Kopernika w Toruniu. Modele GARCH i SV z zastosowaniem teorii wartości ekstremalnych

Magdalena Osińska, Marcin Fałdziński Uniwersytet Mikołaja Kopernika w Toruniu. Modele GARCH i SV z zastosowaniem teorii wartości ekstremalnych DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarim Nakowe 4 6 września 2007 w Torni Kaedra Ekonomerii i Saysyki Uniwersye Mikołaja Kopernika w Torni Magdalena Osińska Marcin Fałdziński Uniwersye

Bardziej szczegółowo

KONCEPCJA WARTOŚCI ZAGROŻONEJ VaR (VALUE AT RISK)

KONCEPCJA WARTOŚCI ZAGROŻONEJ VaR (VALUE AT RISK) KONCEPCJA WARTOŚCI ZAGROŻONEJ VaR (VALUE AT RISK) Kaarzyna Kuziak Akademia Ekonomiczna we Wrocławiu, Kaedra Inwesycji Finansowych i Ubezpieczeń Wprowadzenie W 1994 roku insyucja finansowa JP Morgan opublikowała

Bardziej szczegółowo

MODELOWANIE KURSÓW WALUTOWYCH NA PRZYKŁADZIE MODELI KURSÓW RÓWNOWAGI ORAZ ZMIENNOŚCI NA RYNKU FOREX

MODELOWANIE KURSÓW WALUTOWYCH NA PRZYKŁADZIE MODELI KURSÓW RÓWNOWAGI ORAZ ZMIENNOŚCI NA RYNKU FOREX Krzyszof Ćwikliński Uniwersye Ekonomiczny we Wrocławiu Wydział Zarządzania, Informayki i Finansów Kaedra Ekonomerii krzyszof.cwiklinski@ue.wroc.pl Daniel Papla Uniwersye Ekonomiczny we Wrocławiu Wydział

Bardziej szczegółowo

Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak

Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak Ocena wyników zarządzania porelem Analiza i Zarządzanie Porelem cz. 6 Dr Kaarzyna Kuziak Eapy oceny wyników zarządzania porelem: - (porolio perormance measuremen) - Przypisanie wyników zarządzania porelem

Bardziej szczegółowo

Wykorzystanie funkcji powiązań do pomiaru ryzyka rynkowego. Katarzyna Kuziak

Wykorzystanie funkcji powiązań do pomiaru ryzyka rynkowego. Katarzyna Kuziak Wykorzystanie funkcji powiązań do pomiaru ryzyka rynkowego Katarzyna Kuziak Cel: łączenie różnych rodzajów ryzyka rynkowego za pomocą wielowymiarowej funkcji powiązań 2 Ryzyko rynkowe W pomiarze ryzyka

Bardziej szczegółowo

OCENA ATRAKCYJNOŚCI INWESTYCYJNEJ AKCJI NA PODSTAWIE CZASU PRZEBYWANIA W OBSZARACH OGRANICZONYCH KRZYWĄ WYKŁADNICZĄ

OCENA ATRAKCYJNOŚCI INWESTYCYJNEJ AKCJI NA PODSTAWIE CZASU PRZEBYWANIA W OBSZARACH OGRANICZONYCH KRZYWĄ WYKŁADNICZĄ Tadeusz Czernik Daniel Iskra Uniwersye Ekonomiczny w Kaowicach Kaedra Maemayki Sosowanej adeusz.czernik@ue.kaowice.pl daniel.iskra@ue.kaowice.pl OCEN TRKCYJNOŚCI INWESTYCYJNEJ KCJI N PODSTWIE CZSU PRZEBYWNI

Bardziej szczegółowo

Analiza rynku projekt

Analiza rynku projekt Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes

Bardziej szczegółowo

Estymacja stopy NAIRU dla Polski *

Estymacja stopy NAIRU dla Polski * Michał Owerczuk * Pior Śpiewanowski Esymacja sopy NAIRU dla Polski * * Sudenci, Szkoła Główna Handlowa, Sudenckie Koło Naukowe Ekonomii Teoreycznej przy kaedrze Ekonomii I. Auorzy będą bardzo wdzięczni

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Anna Krauze Uniwersye Warmińsko-Mazurski

Bardziej szczegółowo

ZJAWISKA SZOKOWE W ROZWOJU GOSPODARCZYM WYBRANYCH KRAJÓW UNII EUROPEJSKIEJ

ZJAWISKA SZOKOWE W ROZWOJU GOSPODARCZYM WYBRANYCH KRAJÓW UNII EUROPEJSKIEJ Anna Janiga-Ćmiel Uniwersye Ekonomiczny w Kaowicach Wydział Zarządzania Kaedra Maemayki anna.janiga-cmiel@ue.kaowice.pl ZJAWISKA SZOKOWE W ROZWOJU GOSPODARCZYM WYBRANYCH KRAJÓW UNII EUROPEJSKIEJ Sreszczenie:

Bardziej szczegółowo

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU B A D A N I A O P E R A C J N E I D E C Z J E Nr 2 2006 Bogusław GUZIK* SZACOWANIE MODELU RNKOWEGO CKLU ŻCIA PRODUKTU Przedsawiono zasadnicze podejścia do saysycznego szacowania modelu rynkowego cyklu

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

Analiza metod oceny efektywności inwestycji rzeczowych**

Analiza metod oceny efektywności inwestycji rzeczowych** Ekonomia Menedżerska 2009, nr 6, s. 119 128 Marek Łukasz Michalski* Analiza meod oceny efekywności inwesycji rzeczowych** 1. Wsęp Podsawowymi celami przedsiębiorswa w długim okresie jes rozwój i osiąganie

Bardziej szczegółowo

WPŁYW NIEPEWNOŚCI OSZACOWANIA ZMIENNOŚCI NA CENĘ INSTRUMENTÓW POCHODNYCH

WPŁYW NIEPEWNOŚCI OSZACOWANIA ZMIENNOŚCI NA CENĘ INSTRUMENTÓW POCHODNYCH Tadeusz Czernik Uniwersye Ekonomiczny w Kaowicach WPŁYW NIEPEWNOŚCI OZACOWANIA ZMIENNOŚCI NA CENĘ INTRUMENTÓW POCHODNYCH Wprowadzenie Jednym z filarów współczesnych finansów jes eoria wyceny insrumenów

Bardziej szczegółowo

ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYCH INDEKSÓW GIEŁDOWYCH: WIG, WIG20, MIDWIG I TECHWIG

ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYCH INDEKSÓW GIEŁDOWYCH: WIG, WIG20, MIDWIG I TECHWIG Doroa Wikowska, Anna Gasek Kaedra Ekonomerii i Informayki SGGW dwikowska@mors.sggw.waw.pl ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYC INDEKSÓW GIEŁDOWYC: WIG, WIG2, MIDWIG I TECWIG Sreszczenie:

Bardziej szczegółowo

Krzysztof Piontek Katedra Inwestycji Finansowych i Ubezpiecze Akademia Ekonomiczna we Wrocławiu

Krzysztof Piontek Katedra Inwestycji Finansowych i Ubezpiecze Akademia Ekonomiczna we Wrocławiu Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpiecze Akademia Ekonomiczna we Wrocławiu Zasosowanie modeli klasy ARCH do opisu własnoci szeregu sóp zwrou indeksu WIG Wsp Sporód rónych rodzajów ryzyka

Bardziej szczegółowo

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE Janusz Sowiński, Rober Tomaszewski, Arur Wacharczyk Insyu Elekroenergeyki Poliechnika Częsochowska Aky prawne

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 2013

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 2013 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 2013 MAŁGORZATA BOŁTUĆ Uniwersye Ekonomiczny we Wrocławiu ZALEŻNOŚĆ POMIĘDZY RYNKIEM SWAPÓW KREDYTOWYCH

Bardziej szczegółowo

TESTOWANIE STABILNOŚCI PARAMETRÓW WIELOCZYNNIKOWYCH MODELI MARKET TIMING Z OPÓŹNIONĄ ZMIENNĄ RYNKOWĄ 1

TESTOWANIE STABILNOŚCI PARAMETRÓW WIELOCZYNNIKOWYCH MODELI MARKET TIMING Z OPÓŹNIONĄ ZMIENNĄ RYNKOWĄ 1 METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XII/, 011, sr. 59 69 TESTOWANIE STABILNOŚCI PARAMETRÓW WIELOCZYNNIKOWYCH MODELI MARKET TIMING Z OPÓŹNIONĄ ZMIENNĄ RYNKOWĄ 1 Joanna Olbryś Wydział Informayki,

Bardziej szczegółowo

WARTOŚĆ ZAGROŻONA OPCJI EUROPEJSKICH SZACOWANA PRZEDZIAŁOWO. SYMULACJE

WARTOŚĆ ZAGROŻONA OPCJI EUROPEJSKICH SZACOWANA PRZEDZIAŁOWO. SYMULACJE Daniel Iskra Uniwersye Ekonomiczny w Kaowicach WARTOŚĆ ZAGROŻONA OPCJI EUROPEJSKICH SZACOWANA PRZEDZIAŁOWO. SYMULACJE Wprowadzenie Jednym z aspeków współczesnej ekonomii jes zarządzanie ryzykiem związanym

Bardziej szczegółowo

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne

Bardziej szczegółowo

Metody analizy i prognozowania szeregów czasowych

Metody analizy i prognozowania szeregów czasowych Meody analizy i prognozowania szeregów czasowych Wsęp 1. Modele szeregów czasowych 2. Modele ARMA i procedura Boxa-Jenkinsa 3. Modele rendów deerminisycznych i sochasycznych 4. Meody dekompozycji szeregów

Bardziej szczegółowo

ZALEŻNOŚCI POMIĘDZY KURSAMI WALUT ŚRODKOWOEUROPEJSKICH W OKRESIE KRYZYSU 2008 *

ZALEŻNOŚCI POMIĘDZY KURSAMI WALUT ŚRODKOWOEUROPEJSKICH W OKRESIE KRYZYSU 2008 * PRZEGLĄD STATYSTYCZNY R. LVII ZESZYT 1 2010 AGATA KLIBER, PAWEŁ KLIBER ZALEŻNOŚCI POMIĘDZY KURSAMI WALUT ŚRODKOWOEUROPEJSKICH W OKRESIE KRYZYSU 2008 * 1. WSTĘP Celem niniejszego badania było zbadanie zależności

Bardziej szczegółowo

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Barbara Baóg Iwona Foryś PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH Wsęp Koszy dosarczenia wody

Bardziej szczegółowo

Eliza Buszkowska * DYNAMIKA PRZEPŁYWÓW INWESTYCJI POMIĘDZY GIEŁDAMI

Eliza Buszkowska * DYNAMIKA PRZEPŁYWÓW INWESTYCJI POMIĘDZY GIEŁDAMI ACTA UNIVERSITATIS NICOLAI COPERNICI DOI: hp://dx.doi.org/10.12775/aunc_econ.2014.017 EKONOMIA XLV nr 2 (2014) 275 288 Pierwsza wersja złożona 26 czerwca 2014 ISSN Końcowa wersja zaakcepowana 20 grudnia

Bardziej szczegółowo

POMIAR RYZYKA RYNKOWEGO OPCJI NA PRZYKŁADZIE OPCJI NA WIG20

POMIAR RYZYKA RYNKOWEGO OPCJI NA PRZYKŁADZIE OPCJI NA WIG20 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 450 PRACE KATEDRY EKONOMETRII I STATYSTYKI NR 17 2006 KATARZYNA KUZIAK Akademia Ekonomiczna Wrocław POMIAR RYZYKA RYNKOWEGO OPCJI NA PRZYKŁADZIE OPCJI NA

Bardziej szczegółowo

Nie(efektywność) informacyjna giełdowego rynku kontraktów terminowych w Polsce

Nie(efektywność) informacyjna giełdowego rynku kontraktów terminowych w Polsce Zeszyy Naukowe Uniwersyeu Szczecińskiego nr 862 Finanse, Rynki Finansowe, Ubezpieczenia nr 75 (2015) DOI: 10.18276/frfu.2015.75-16 s. 193 204 Nie(efekywność) informacyjna giełdowego rynku konraków erminowych

Bardziej szczegółowo

1.1. Bezpośrednie transformowanie napięć przemiennych

1.1. Bezpośrednie transformowanie napięć przemiennych Rozdział Wprowadzenie.. Bezpośrednie ransformowanie napięć przemiennych Bezpośrednie ransformowanie napięć przemiennych jes formą zmiany paramerów wielkości fizycznych charakeryzujących energię elekryczną

Bardziej szczegółowo

WYCENA OBLIGACJI KATASTROFICZNEJ WRAZ Z SYMULACJAMI NUMERYCZNYMI

WYCENA OBLIGACJI KATASTROFICZNEJ WRAZ Z SYMULACJAMI NUMERYCZNYMI Zeszyy Naukowe Wydziału Informaycznych Technik Zarządzania Wyższej Szkoły Informayki Sosowanej i Zarządzania Współczesne Problemy Zarządzania Nr 1/2010 WYCENA OBLIGACJI KATASTROFICZNEJ WRAZ Z SYULACJAI

Bardziej szczegółowo

Porównanie jakości nieliniowych modeli ekonometrycznych na podstawie testów trafności prognoz

Porównanie jakości nieliniowych modeli ekonometrycznych na podstawie testów trafności prognoz 233 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Porównanie jakości nieliniowych modeli ekonomerycznych na podsawie esów rafności prognoz Sreszczenie.

Bardziej szczegółowo

WPŁYW PUBLIKACJI DANYCH MAKROEKONOMICZNYCH NA KURS EUR/PLN W KONTEKŚCIE BADANIA MIKROSTRUKTURY RYNKU

WPŁYW PUBLIKACJI DANYCH MAKROEKONOMICZNYCH NA KURS EUR/PLN W KONTEKŚCIE BADANIA MIKROSTRUKTURY RYNKU METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XII/2, 2011, sr. 48 57 WPŁYW PUBLIKACJI DANYCH MAKROEKONOMICZNYCH NA KURS EUR/PLN W KONTEKŚCIE BADANIA MIKROSTRUKTURY RYNKU Kaarzyna Bień-Barkowska 1 Insyu

Bardziej szczegółowo

Identyfikacja wahań koniunkturalnych gospodarki polskiej

Identyfikacja wahań koniunkturalnych gospodarki polskiej Rozdział i Idenyfikacja wahań koniunkuralnych gospodarki polskiej dr Rafał Kasperowicz Uniwersye Ekonomiczny w Poznaniu Kaedra Mikroekonomii Sreszczenie Celem niniejszego opracowania jes idenyfikacja wahao

Bardziej szczegółowo

Zarządzanie ryzykiem. Lista 3

Zarządzanie ryzykiem. Lista 3 Zaządzanie yzykiem Lisa 3 1. Oszacowano nasępujący ozkład pawdopodobieńswa dla sóp zwou z akcji A i B (Tabela 1). W chwili obecnej Akcja A ma waość ynkową 70, a akcja B 50 zł. Ile wynosi pięciopocenowa

Bardziej szczegółowo

PROPOZYCJA NOWEJ METODY OKREŚLANIA ZUŻYCIA TECHNICZNEGO BUDYNKÓW

PROPOZYCJA NOWEJ METODY OKREŚLANIA ZUŻYCIA TECHNICZNEGO BUDYNKÓW Udosępnione na prawach rękopisu, 8.04.014r. Publikacja: Knyziak P., "Propozycja nowej meody określania zuzycia echnicznego budynków" (Proposal Of New Mehod For Calculaing he echnical Deerioraion Of Buildings),

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika Empiryczna

Bardziej szczegółowo

OeconomiA copernicana. Adam Waszkowski Szkoła Główna Gospodarstwa Wiejskiego w Warszawie

OeconomiA copernicana. Adam Waszkowski Szkoła Główna Gospodarstwa Wiejskiego w Warszawie OeconomiA copernicana 2012 Nr 3 ISSN 2083-1277 Adam Waszkowski Szkoła Główna Gospodarswa Wiejskiego w Warszawie MECHANIZM TRANSMISJI IMPULSÓW POLITYKI MONETARNEJ DLA POLSKIEJ GOSPODARKI Klasyfikacja JEL:

Bardziej szczegółowo

Zastosowanie technologii SDF do lokalizowania źródeł emisji BPSK i QPSK

Zastosowanie technologii SDF do lokalizowania źródeł emisji BPSK i QPSK Jan M. KELNER, Cezary ZIÓŁKOWSKI Wojskowa Akademia Techniczna, Wydział Elekroniki, Insyu Telekomunikacji doi:1.15199/48.15.3.14 Zasosowanie echnologii SDF do lokalizowania źródeł emisji BPSK i QPSK Sreszczenie.

Bardziej szczegółowo

Wybrane dwuwymiarowe modele dla zmiennych licznikowych w ekonomii 1

Wybrane dwuwymiarowe modele dla zmiennych licznikowych w ekonomii 1 Jerzy Marzec Adres e mail: marzecj@uek.krakow.pl Uniwersye Ekonomiczny w Krakowie Kaedra: Kaedra Ekonomerii i Badań Operacyjnych Wybrane dwuwymiarowe modele dla zmiennych licznikowych w ekonomii. Wsęp

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika Zależność

Bardziej szczegółowo

ANALIZA SZEREGÓW CZASOWYCH A STATYSTYCZNY POMIAR RYZYKA

ANALIZA SZEREGÓW CZASOWYCH A STATYSTYCZNY POMIAR RYZYKA ANALIZA SZEREGÓW CZASOWYCH A STATYSTYCZNY POMIAR RYZYKA Sudia Ekonomiczne ZESZYTY NAUKOWE WYDZIAŁOWE UNIWERSYTETU EKONOMICZNEGO W KATOWICACH ANALIZA SZEREGÓW CZASOWYCH A STATYSTYCZNY POMIAR RYZYKA Redakor

Bardziej szczegółowo

Giełdy Papierów Wartościowych w Warszawie

Giełdy Papierów Wartościowych w Warszawie SZKOŁA GŁÓWNA HANDLOWA W WARSZAWIE STUDIUM DYPLOMOWE KIERUNEK: Meody Ilościowe i Sysemy Informacyjne Michał Rubaszek Nr alb. 5346 Arbiraż cenowy na przykładzie Giełdy Papierów Warościowych w Warszawie

Bardziej szczegółowo

IMPLEMENTACJA WYBRANYCH METOD ANALIZY STANÓW NIEUSTALONYCH W ŚRODOWISKU MATHCAD

IMPLEMENTACJA WYBRANYCH METOD ANALIZY STANÓW NIEUSTALONYCH W ŚRODOWISKU MATHCAD Pior Jankowski Akademia Morska w Gdyni IMPLEMENTACJA WYBRANYCH METOD ANALIZY STANÓW NIEUSTALONYCH W ŚRODOWISKU MATHCAD W arykule przedsawiono możliwości (oraz ograniczenia) środowiska Mahcad do analizy

Bardziej szczegółowo

MODELE AUTOREGRESYJNE JAKO INSTRUMENT ZARZĄDZANIA ZAPASAMI NA PRZYKŁADZIE ELEKTROWNI CIEPLNEJ

MODELE AUTOREGRESYJNE JAKO INSTRUMENT ZARZĄDZANIA ZAPASAMI NA PRZYKŁADZIE ELEKTROWNI CIEPLNEJ Agaa MESJASZ-LECH * MODELE AUTOREGRESYJNE JAKO INSTRUMENT ZARZĄDZANIA ZAPASAMI NA PRZYKŁADZIE ELEKTROWNI CIEPLNEJ Sreszczenie W arykule przedsawiono wyniki analizy ekonomerycznej miesięcznych warości w

Bardziej szczegółowo

Nierównowaga na rynku kredytowym w Polsce: założenia i wyniki

Nierównowaga na rynku kredytowym w Polsce: założenia i wyniki Maszynopis arykułu: Marzec J. 011, Nierównowaga na rynku kredyowym w Polsce: założenia i wyniki, w: Meody maemayczne, ekonomeryczne i kompuerowe w finansach i ubezpieczeniach, (red. A. Barczak i S. Barczak),

Bardziej szczegółowo

MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII

MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII KRZYSZTOF JAJUGA Akademia Ekonomiczna we Wrocławiu MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII. Modele makroekonomiczne a modele sóp procenowych wprowadzenie Nie do podważenia

Bardziej szczegółowo

Stała potencjalnego wzrostu w rachunku kapitału ludzkiego

Stała potencjalnego wzrostu w rachunku kapitału ludzkiego 252 Dr Wojciech Kozioł Kaedra Rachunkowości Uniwersye Ekonomiczny w Krakowie Sała poencjalnego wzrosu w rachunku kapiału ludzkiego WSTĘP Prowadzone do ej pory badania naukowe wskazują, że poencjał kapiału

Bardziej szczegółowo

Europejska opcja kupna akcji calloption

Europejska opcja kupna akcji calloption Europejska opcja kupna akcji callopion Nabywca holder: prawo kupna long posiion jednej akcji w okresie epiraiondae po cenie wykonania eercise price K w zamian za opłaę C Wysawca underwrier: obowiązek liabiliy

Bardziej szczegółowo

ANNA GÓRSKA MONIKA KRAWIEC Szkoła Główna Gospodarstwa Wiejskiego w Warszawie

ANNA GÓRSKA MONIKA KRAWIEC Szkoła Główna Gospodarstwa Wiejskiego w Warszawie ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 013 ANNA GÓRSKA MONIKA KRAWIEC Szkoła Główna Gospodarswa Wiejskiego w Warszawie BADANIE EFEKTYWNOŚCI INFORMACYJNEJ

Bardziej szczegółowo

PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM

PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM prof. dr hab. Paweł Dimann 1 Znaczenie prognoz w zarządzaniu firmą Zarządzanie firmą jes nieusannym procesem podejmowania decyzji, kóry może być zdefiniowany

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012 MAŁGORZATA WASILEWSKA PORÓWNANIE METODY NPV, DRZEW DECYZYJNYCH I METODY OPCJI REALNYCH W WYCENIE PROJEKTÓW

Bardziej szczegółowo

Kobiety w przedsiębiorstwach usługowych prognozy nieliniowe

Kobiety w przedsiębiorstwach usługowych prognozy nieliniowe Pior Srożek * Kobiey w przedsiębiorswach usługowych prognozy nieliniowe Wsęp W dzisiejszym świecie procesy społeczno-gospodarcze zachodzą bardzo dynamicznie. W związku z ym bardzo zmienił się sereoypowy

Bardziej szczegółowo

z graniczną technologią

z graniczną technologią STUDIA OECOOMICA POSAIESIA 23, vol., no. (25) Uniwersye Ekonomiczny w Poznaniu, Wydział Informayki i Gospodarki Elekronicznej, Kaedra Ekonomii Maemaycznej emil.panek@ue.poznan.pl iesacjonarny model von

Bardziej szczegółowo

ZASTOSOWANIE DRZEW KLASYFIKACYJNYCH DO BADANIA KONDYCJI FINANSOWEJ PRZEDSIĘBIORSTW SEKTORA ROLNO-SPOŻYWCZEGO

ZASTOSOWANIE DRZEW KLASYFIKACYJNYCH DO BADANIA KONDYCJI FINANSOWEJ PRZEDSIĘBIORSTW SEKTORA ROLNO-SPOŻYWCZEGO 120 Krzyszof STOWARZYSZENIE Gajowniczek, Tomasz Ząbkowski, EKONOMISTÓW Michał Goskowski ROLNICTWA I AGROBIZNESU Roczniki Naukowe om XVI zeszy 6 Krzyszof Gajowniczek, Tomasz Ząbkowski, Michał Goskowski

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR LORTORIUM PODSTWY ELEKTRONIKI adanie ramki X-OR 1.1 Wsęp eoreyczny. ramka XOR ramka a realizuje funkcję logiczną zwaną po angielsku EXLUSIVE-OR (WYŁĄZNIE LU). Polska nazwa brzmi LO. Funkcję EX-OR zapisuje

Bardziej szczegółowo

JAKOŚĆ ZYSKU SPÓŁEK IPO NA PRZYKŁADZIE GPW W WARSZAWIE

JAKOŚĆ ZYSKU SPÓŁEK IPO NA PRZYKŁADZIE GPW W WARSZAWIE Rafał Cieślik Uniwersye Warszawski JAKOŚĆ ZYSKU SPÓŁEK IPO NA PRZYKŁADZIE GPW W WARSZAWIE Wprowadzenie Noblisa Joseph E. Sigliz za jedną z pięciu głównych przyczyn obecnego kryzysu gospodarczego uważa

Bardziej szczegółowo

Zastosowanie narzędzi analizy technicznej w bezpośrednim i pośrednim inwestowaniu w towary

Zastosowanie narzędzi analizy technicznej w bezpośrednim i pośrednim inwestowaniu w towary Anna Górska 1 Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków Gospodarczych Szkoła Główna Gospodarswa Wiejskiego Warszawa Zasosowanie narzędzi analizy echnicznej w bezpośrednim i pośrednim inwesowaniu

Bardziej szczegółowo

O PEWNYCH KRYTERIACH INWESTOWANIA W OPCJE NA AKCJE

O PEWNYCH KRYTERIACH INWESTOWANIA W OPCJE NA AKCJE MEODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH om XIII/3, 01, sr 43 5 O EWNYCH KRYERIACH INWESOWANIA W OCJE NA AKCJE omasz Warowny Kaedra Meod Ilościowych w Zarządzaniu oliechnika Lubelska e-mail: warowny@pollubpl

Bardziej szczegółowo

PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010

PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010 STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Chrisian Lis PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010 Wprowadzenie Przedmioem

Bardziej szczegółowo

U b e zpieczenie w t eo r ii użyteczności i w t eo r ii w yceny a ktywów

U b e zpieczenie w t eo r ii użyteczności i w t eo r ii w yceny a ktywów dr Dariusz Sańko Kaedra Ubezpieczenia Społecznego Szkoła Główna Handlowa dariusz.sanko@gmail.com lisopada 006 r., akualizacja i poprawki: 30 sycznia 008 r. U b e zpieczenie w eo r ii użyeczności i w eo

Bardziej szczegółowo

METODA DOBORU ŚCIEŻEK TRANSMISYJNYCH DLA POPRAWY JAKOŚCI POŁĄCZEŃ GŁOSOWYCH IP

METODA DOBORU ŚCIEŻEK TRANSMISYJNYCH DLA POPRAWY JAKOŚCI POŁĄCZEŃ GŁOSOWYCH IP Krysian Ryłko Zakład Sieci Kompuerowych Wydział Informayki Poliechnika Szczecińska krysian@ps.pl 2005 Poznańskie Warszay Telekomunikacyjne Poznań 8-9 grudnia 2005 METODA DOBORU ŚCIEŻEK TRANSMISYJNYCH DLA

Bardziej szczegółowo

Analiza stabilności parametrów hybrydowych modeli market-timing polskich funduszy inwestycyjnych 1

Analiza stabilności parametrów hybrydowych modeli market-timing polskich funduszy inwestycyjnych 1 Joanna Olbryś * Analiza sabilności paramerów hybrydowych modeli marke-iming polskich funduszy inwesycyjnych 1 Wsęp Hybrydowe czeroczynnikowe modele marke-iming funduszy inwesycyjnych akcji polskich zosały

Bardziej szczegółowo

STATYSTYCZNY POMIAR EFEKTYWNOŚCI FUNDUSZY INWESTYCYJNYCH OTWARTYCH ZA POMOCĄ EAM (I)

STATYSTYCZNY POMIAR EFEKTYWNOŚCI FUNDUSZY INWESTYCYJNYCH OTWARTYCH ZA POMOCĄ EAM (I) STATYSTYCZNY POMIAR EFEKTYWNOŚCI FUNDUSZY INWESTYCYJNYCH OTWARTYCH ZA POMOCĄ EAM (I) dr Jacek, M. Kowalski Wyższa Szkoła Bankowa w Poznaniu jakowalski@op.pl Absrak Jes o pierwsza część, drugiego z cyklu

Bardziej szczegółowo

Analiza stabilności parametrów hybrydowych modeli market-timing polskich funduszy inwestycyjnych 1

Analiza stabilności parametrów hybrydowych modeli market-timing polskich funduszy inwestycyjnych 1 Joanna Olbryś * Analiza sabilności paramerów hybrydowych modeli marke-iming polskich funduszy inwesycyjnych Wsęp Hybrydowe czeroczynnikowe modele marke-iming funduszy inwesycyjnych akcji polskich zosały

Bardziej szczegółowo

ANALIZA SZEREGÓW CZASOWYCH A STATYSTYCZNY POMIAR RYZYKA

ANALIZA SZEREGÓW CZASOWYCH A STATYSTYCZNY POMIAR RYZYKA ANALIZA SZEREGÓW CZASOWYCH A STATYSTYCZNY POMIAR RYZYKA Sudia Ekonomiczne ZESZYTY NAUKOWE WYDZIAŁOWE UNIWERSYTETU EKONOMICZNEGO W KATOWICACH ANALIZA SZEREGÓW CZASOWYCH A STATYSTYCZNY POMIAR RYZYKA Redakor

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012 GRZEGORZ MICHALSKI POZIOM ZAANGAŻOWANIA KAPITAŁU W ZAPASACH W ORGANIZACJACH NON-PROFIT * Wprowadzenie

Bardziej szczegółowo

ZARZĄDZANIE KOSZTAMI UTRZYMANIA GOTÓWKI W ODDZIAŁACH BANKU KOMERCYJNEGO

ZARZĄDZANIE KOSZTAMI UTRZYMANIA GOTÓWKI W ODDZIAŁACH BANKU KOMERCYJNEGO ZARZĄDZANIE KOSZTAMI UTRZYMANIA GOTÓWKI W ODDZIAŁACH BANKU KOMERCYJNEGO Sreszczenie Michał Barnicki Poliechnika Śląska, Wydział Oranizacji i Zarządzania Monika Odlanicka-Poczobu Poliechnika Śląska, Wydział

Bardziej szczegółowo

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XLIII nr 2 (2012) 161 181

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XLIII nr 2 (2012) 161 181 A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XLIII nr (01) 161 181 Pierwsza wersja złożona 9 marca 01 ISSN Końcowa wersja zaakcepowana 15 grudnia 01 080-0339 Anna Michałek

Bardziej szczegółowo

Struktura sektorowa finansowania wydatków na B+R w krajach strefy euro

Struktura sektorowa finansowania wydatków na B+R w krajach strefy euro Rozdział i. Srukura sekorowa finansowania wydaków na B+R w krajach srefy euro Rober W. Włodarczyk 1 Sreszczenie W arykule podjęo próbę oceny srukury sekorowej (sekor przedsiębiorsw, sekor rządowy, sekor

Bardziej szczegółowo

ZASTOSOWANIE METODY OBLICZEŃ UPROSZCZONYCH DO WYZNACZANIA CZASU JAZDY POCIĄGU NA SZLAKU

ZASTOSOWANIE METODY OBLICZEŃ UPROSZCZONYCH DO WYZNACZANIA CZASU JAZDY POCIĄGU NA SZLAKU PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 87 Transpor 01 Jarosław Poznański Danua Żebrak Poliechnika Warszawska, Wydział Transporu ZASTOSOWANIE METODY OBLICZEŃ UPROSZCZONYCH DO WYZNACZANIA CZASU JAZDY

Bardziej szczegółowo

Jednofazowe przekształtniki DC AC i AC DC z eliminacją składowej podwójnej częstotliwości po stronie DC

Jednofazowe przekształtniki DC AC i AC DC z eliminacją składowej podwójnej częstotliwości po stronie DC Akademia Górniczo-Hunicza im. Sanisława Saszica w Krakowie Wydział Elekroechniki, Auomayki, Informayki i Inżynierii Biomedycznej Kaedra Energoelekroniki i Auomayki Sysemów Przewarzania Energii Auorefera

Bardziej szczegółowo

TRANSMISJA KRYZYSU ZAUFANIA NA POLSKI RYNEK MIĘDZYBANKOWY

TRANSMISJA KRYZYSU ZAUFANIA NA POLSKI RYNEK MIĘDZYBANKOWY ACTA UNIVERSITATIS NICOLAI COPERNICI EKONOMIA XLIII nr (202) Pierwsza wersja złożona 26 października 20 ISSN Końcowa wersja zaakcepowana 6 września 202 2080-0339 Agaa Kliber, Pior Płuciennik* TRANSMISJA

Bardziej szczegółowo

Wykorzystanie rozkładu GED do modelowania rozkładu stóp zwrotu spółek sektora transportowego

Wykorzystanie rozkładu GED do modelowania rozkładu stóp zwrotu spółek sektora transportowego PUCZYŃSKI Jan CZYŻYCKI afał Wykorzyanie rozkładu GED do modelowania rozkładu óp zwrou półek ekora ranporowego WSTĘP Jednym z najczęściej prowadzonych badań doyczących rynku kapiałowego ą badania doyczące

Bardziej szczegółowo