Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA"

Transkrypt

1 Joanna Górka * Efeky agregacji czasowej szeregów finansowych a modele klasy Sign RCA Wsęp Wprowadzenie losowego parameru do modelu auoregresyjnego zwiększa możliwości aplikacyjne ego modelu, gdyż pozwala na uwzględnienie podwyższonej kurozy i grubych ogonów rozkładów. Jednak, model RCA jes wsanie modelować zmienną wariancję ylko w przypadku, gdy jes ona opisana za pomocą modelu ARCH. Sąd, modyfikacja modelu RCA polegająca na rozszerzeniu modelu RCA o model GARCH. Inną modyfikacją modelu RCA jes wprowadzenie do modelu RCA funkcji znaków, kóra pozwala na modelowanie asymerii reakcji sóp zwrou na różne informacje pochodzące z rynku oraz podwyższa warości kurozy procesu. Jeszcze inną modyfikację można znaleźć szczególnie w pracach Thavaneswaran i innych, kóra polega na rozszerzeniu modelu RCA o część MA. Wszyskie wymienione uogólnienia modelu RCA mająca wspólny mianownik w posaci losowego parameru auoregresyjnego, sad eż ego ypu modele nazywa się modelami klasy Sign RCA (ang. a Family Sign RCA Models). W lieraurze przedmiou znaleźć można część informacji doyczących srony eoreycznej ych modeli, niemniej jednak brak jes aplikacji empirycznych. Celem arykułu jes zbadanie efeków agregacji 1 czasowej, modeli z klasy Sign RCA, dla danych finansowych. 1. Modele klasy Sign RCA Modele auoregresyjne z losowymi paramerami (ozn. RCA) są nauralnym uogólnieniem klasycznych liniowych modeli auoregresyjnych. Pełny opis ych modeli wraz z własnościami i meodami esymacji jako pierwsi przedsawili Nicholls i Quinn [Nicholls i Quinn, 198]. Modele RCA przegrały konkurencję z modelami z klasy GARCH [Bollerslev, 1986; Engle, 198], kóre ze względu na swą prosoę, ławość poddawania się esymacji oraz dużym możliwością opisowym różnych aspeków nieliniowej dynamiki rynków finansowych cieszyły i cieszą się znacznie większą popularnością wśród badaczy. Niemniej jednak w osaniej dekadzie można zauważyć ponowne zaineresowanie badaczy modelami klasy RCA, wynikiem czego było powsanie modyfikacji ego modelu. * Dr, Kaedra Ekonomerii i Saysyki Wydziału Nauk Ekonomicznych i Zarządzania UMK w Toruniu, adres Praca naukowa finansowana ze środków na naukę w laach jako projek badawczy. 1 W niniejszym arykule agregacja rozumiana jes, jako agregacja czasowa szeregów, kóre mogą być obserwowane z różną częsoliwością: np. co minuę, codziennie, co ydzień, co miesiąc ip..

2 380 Joanna Górka W abeli 1 zaprezenowane zosały równania poszczególnych modeli (bez założeń) oraz odpowiednie ich nazwy. Tabela 1. Modele klasy Sign RCA (bez założeń) Model Równania modelu Równanie RCA(1) y ) y 1 + ε I Sign RCA(1) y + Φs 1 ) y 1 + ε II RCA(1)-MA(1) y ) y 1 + ε + θε 1 III Sign RCA(1)-MA(1) y + Φs 1) y 1 + ε + θε 1 IV y = φ + δ y 1 + ε, RCA(1)-GARCH(1,1) Sign RCA(1)-GARCH(1,1) ε = h ( ) h z = α 0 + α1ε 1 + β1h 1 + Φs 1 ) y 1 + ε, y ε = h h z = α 0 + α1ε 1 + β1h 1 [gdzie s jes funkcją znaku opisaną równaniem (3); φ, θ, Φ, α i, β1 są paramerami modeli.] Źródło: opracowanie własne. Aby isniały modele I-VI muszą być spełnione nasępujące założenia: δ iid 0 σ δ 0 ~,, (1) ε 0 0 σ ε φ + σ δ < 1. () Funkcja znaku określona jes wzorem: 1 dla y > 0 s = 0 dla y = 0, (3) 1 dla y < 0 i ma ciekawą inerpreację. Oóż, jeżeli φ + δ > Φ, o ujemna warość Φ oznacza, że dla ujemnych (dodanich) warości procesu y w czasie 1 maleją (rosną) warości procesu y w czasie. W przypadku sóp zwrou oznacza o, że po spadkach noowań nasępują większe niż oczekiwane spadki noowań, naomias w przypadku wzrosu noowań nasępują mniejsze niż oczekiwane wzrosy noowań. Warunek () jes warunkiem koniecznym i wysarczającym sacjonarności drugiego rzędu procesu opisanego równaniem I, naomias warunki (1)-() gwaranują ścisłą sacjonarność ego procesu. Spełnienie warunków (1)-() gwaranuje również sacjonarność w średniej dla modeli: II-IV. Teoreyczne własności procesów opisanych równaniami I-VI i spełniających warunki (1)-() można znaleźć w pracach doyczących ej emayki [Appadoo, Thavaneswaran i Singh, V VI

3 Efeky agregacji czasowej szeregów finansowych a modele klasy Sign RCA ; Aue, 004; Górka, 007; Thavaneswaran, Appadoo i Becor, 006; Thavaneswaran i Appadoo, 006]. Reszy modelu RCA mogą być opisane poprzez model GARCH [Thavaneswaran, Peiris i Appadoo, 008; Thavaneswaran, Appadoo i Ghahramani, 009]. Wówczas orzymujemy model RCA(1)-GARCH(p,q) opisany równaniami V, gdzie z ~ N( 0, σ z ), α 0 > 0, α i 0 oraz β j 0. Wprowadzenie, do modelu RCA-GARCH, funkcji znaku daje model opisany równaniem VI [Thavaneswaran, Appadoo i Ghahramani, 009], naomias resrykcje zapewniające dodanią warość wariancji warunkowej ego modelu są nasępujące: z ~ N( 0, σ z ), α 0 > 0, α i 0, β j 0, Φ α0.. Dane Przedmioem badań było 41 szeregów czasowych będących procenowymi logarymicznymi sopami zwrou z 8 indeksów oraz 33 spółek giełdowych noowanych na GWP w Warszawie. Przeanalizowane zosały dane dzienne, ygodniowe oraz miesięczne 3 z okresu od 30 lisopada 1998 roku do 4 lisopada 008 roku, co w sumie dało dla każdego szeregu 118 danych miesięcznych, 493 danych ygodniowych oraz 490 danych dziennych. W pierwszej kolejności obliczone zosały podsawowe saysyki (parz abela ) oraz wybrane esy. Analizując wyniki saysyk opisowych można zauważyć, że w większości przypadków wraz z agregacją: rośnie, co do modułu, warość średniej, rośnie warość odchylenia sandardowego, maleje warość kurozy. Tabela. Podsawowe charakerysyki rozkładów procenowych sóp zwrou Spółka/Indeks średnia odchylenie s, d m d m ALMA 0,080 0,383 1,611 3,04 6,98 15,00 AMICA -0,07-0,144-0,593,51 6,33 13,5 BANKBPH -0,054-0,86-1,93 4,64 10,74,34 BRE 0,036 0,19 0,665,40 5,88 1,56 BUDIMEX 0,057 0,63 1,155,45 5,91 11,5 BZWBK 0,051 0,6 0,997,33 5,39 10,5 DEBICA -0,011-0,071-0,6 1,90 4,70 10,15 EFEKT 0,003-0,00-0,066 3,09 6,94 13,63 ELBUDOWA 0,06 0,31 1,48,31 5,40 10,99 GRAJEWO 0,038 0,138 0,45,98 6,44 1,6 HANDLOWY 0,005 0,01 0,013 1,91 4,83 9,6 INDYKPOL -0,001-0,037-0,144 3,71 6,45 13,93 INGBSK 0,035 0,163 0,661 1,79 4,9 8,83 IRENA 0,009 0,050 0,14,88 6,9 11,38 Obserwowane dane z każdego osaniego dnia noowań w ygodniu. 3 Dane z każdego osaniego dnia noowań w miesiącu.

4 38 Joanna Górka JUTRZENKA 0,036 0,14 0,58,63 6,70 13,0 KABLE 0,017 0,073 0,343 3,75 8,71 0,51 KREDYTB -0,004-0,00-0,09,01 4,84 9,65 KROSNO -0,011-0,087-0,363,57 5,73 1,17 MIESZKO -0,05-0,141-0,61 3,9 8,11 14,30 MILLENNIUM 0,000 0,053 0,168 3,09 7,8 16,00 MOSTALEXP -0,013-0,08-0,549 3,59 8,40 18,68 MOSTALWAR 0,050 0,0 0,853,70 6,66 15,64 MOSTALZAB -0,045-0,74-1,185 3,74 9,1 1,45 OPTIMUS -0,150-0,783-3,75 4,56 10,56 1,79 PEKAO 0,050 0,4 0,884,0 5,15 8,70 PROCHNIK -0,115-0,601 -,553 5,15 9,60 3,18 RAFAKO -0,016-0,088-0,34 3,44 7,87 17,89 STALEXP -0,10-0,543 -,91 4,09 9,31 17,79 SWARZEDZ -0,08-0,436-1,695 3,86 8,34 18,07 SYGNITY -0,031-0,189-0,80,85 7,36 13,49 TPSA 0,010 0,045 0,146,9 5,33 10,79 VISTULA 0,059 0,90 1,07 3,15 7,49 14,90 WIG 0,037 0,178 0,676 1,40 3,44 7,5 WIG0 0,01 0,093 0,37 1,66 4,00 8,04 WIG-BANKI 0,053 0,67 1,016 1,59 3,90 7,95 WIG-BUDOW 0,059 0,84 1,13 1,50 3,81 8,1 WIG-INFO -0,006-0,047-0,38,06 4,94 11,3 WIG-PL 0,037 0,178 0,674 1,41 3,44 7,7 WIG-SPOZYW 0,007 0,034 0,16 1,3 3,0 7,48 WIG-TELKOM 0,000-0,008-0,074,17 5,1 10,63 ZYWIEC 0,009 0,040 0,137 1,65 3,59 6,88 Spółka/Indeks skośność kuroza d m d m ALMA 0,39 0,517 0,443 6,00 6,34 3,9 AMICA 0,187 0,700 0,34 8,9 1,85 4,13 BANKBPH -34,715-16,453-8, ,58 330,35 79,51 BRE -0,194-0,398-1,070 6,48 6,51 5,71 BUDIMEX 0,440 0,644 0,3 7,65 8,81 3,3 BZWBK 0,033-0,110-0,475 4,74 5,59 3,16 DEBICA -0,188-0,461-1,190 9,73 10,49 8,98 EFEKT 0,307 0,86-0,33 8,33 5,91 4,34 ELBUDOWA 0,47 0,33 0,19 6,9 5,57 4,40 GRAJEWO -1,8-0,046-0,936 5,54 14,73 7,44 HANDLOWY -0,57-0,553-0,083 1,38 8,94 5,59 INDYKPOL -0,438 0,666 0,917 9,13 6,50 5,73 INGBSK 0,190-0,88-0,585 8,00 6,80 3,94 IRENA 0,496-0,036-0,13 9,8 8,83 6,10 JUTRZENKA 0,466 0,350-0,36 11,13 10,50 4,56 KABLE 3,48 1,763,19 63,79 14,46 1,33 KREDYTB -0,406 0,064-0,683 11,60 6,49 4,55 KROSNO -1,71-1,761-1,81 39,45 1,07 9,13 MIESZKO -8,604-5,775 -,050 68,19 94,48 17,97 MILLENNIUM 0,395 0,380 1,449 11,74 7,50 13,14

5 Efeky agregacji czasowej szeregów finansowych a modele klasy Sign RCA 383 MOSTALEXP 0,79 0,538 0,35 11,37 6,9 8,15 MOSTALWAR -0,369 0,378-1,078 9,33 6,99 10,56 MOSTALZAB 0,046-0,190-1,11 11,30 8,73 9,99 OPTIMUS -3,73 -,08 0,065 95,15 7,8 10,87 PEKAO 0,139 0,816-0,303 4,93 11,8 4,1 PROCHNIK 0,609 1,57,110 9,9 11,78 1,7 RAFAKO -16,570-5,945 -, ,48 88,61 4,56 STALEXP 0,710-0,005 0,113 10,85 7,77 3,59 SWARZEDZ 0,444-0,63 0,85 14,66 7,40 5,69 SYGNITY 0,347 0,635-0,047 9,16 8,97 4,86 TPSA 0,3 0,551 0,514 4,61 5,86 5,38 VISTULA 0,900 1,590 0,539 13,88 18,99 5,05 WIG -0,76 0,05-0,600 5,77 6,84 4,10 WIG0-0,14 0,341-0,77 5, 7,18 3,5 WIG-BANKI -0,089-0,16-0,999 6,01 7,54 5,08 WIG-BUDOW -0,040 0,119-0,073 5,71 4,89 3,35 WIG-INFO 0,0 0,304 0,9 5,65 5,04 4,46 WIG-PL -0,7 0,063-0,58 5,7 6,71 4,01 WIG-SPOZYW -0,40-0,335 0,034 9,0 5,91 4,8 WIG-TELKOM 0,071 0,36 0,96 4,60 5,19 4,56 ZYWIEC 0,356 1,3 0,357 8,3 10,65 5,37 [gdzie: d - dane dzienne, - dane ygodniowe, m - dane miesięczne.] Źródło: obliczenia własne. W przypadku warości momenu rzeciego, nie można wyciągnąć jednoznacznych wniosków. Podobnie jes w przypadku esu na auokorelację rzędu pierwszego (es Boxa-Ljunga), gdzie dla danych dziennych i ygodniowych liczba szeregów charakeryzujących się isoną 4 auokorelacją jes podobna (8 dla danych miesięcznych i 9 dla danych ygodniowych), naomias dla danych dziennych 7 sóp zwrou cen akcji spółek charakeryzowało się isoną auokorelacją. Niemniej jednak z faku, że np. dla danych miesięcznych wysępowała auokorelacja nie musi wynikać, że dla danych ygodniowych czy dziennych eż musi wysępować auokorelacja i odwronie. Tylko dla sóp zwrou cen akcji Jurzenki oraz WIGu-Budowlanego dla wszyskich poziomów agregacji wysępowała auokorelacja. Analiza wyników esów Bery-Jarque i Engla, pozwala sformułować ylko bardzo ogólne wnioski: wraz ze wzrosem agregacji maleje liczba sóp zwrou charakeryzujących się efekem ARCH, przy czym wnioski wynikające z analizy danych jednego sopnia agregacji nie muszą znaleźć powierdzenia w wynikach dla danych innego sopnia agregacji, sopy zwrou o wysokiej częsoliwości nie charakeryzują się rozkładem normalnym, naomias wśród sóp zwrou o niskiej częsoliwości (dane miesięczne) można wskazać sopy zwrou posiadające rozkład normalny (choć nie jes o częsy przypadek). 4 Przy zadanym 5% poziomie isoności.

6 384 Joanna Górka Dalszą analizę przeprowadzono dla wszyskich szeregów czasowych sóp zwrou, gdyż modele klasy RCA wysępują również wówczas, gdy nie wysępuje auokorelacja szeregu czasowego [Gorka, 009]. 3. Wyniki badań Paramery srukuralne oraz paramery srukury sochasycznej poszczególnych modeli z klasy Sign RCA zosały oszacowane meodą największej wiarygodności z wykorzysaniem auorskich kodów źródłowych napisanych w programie Gauss 6.0. W dalszych badaniach przyjęo założenie, że dany model wysępuje, jeżeli jego paramery są saysycznie isone (dla 5% lub 10% poziomu isoności). W abeli 3 przedsawiono liczbę uzyskanych modeli z klasy Sing RCA oraz model AR dla danych o różnym sopniu agregacji. Tabela 3. Liczba uzyskanych modeli z klasy Sign RCA dla procenowych sóp zwrou Model 5% poziom isoności 10% poziom isoności d m d m AR(1) RCA(1) Sign RCA(1) RCA(1)-MA(1) Sign RCA(1)-MA(1) RCA(1)-GARCH(1,1) 5 5 Sign RCA(1)-GARCH(1,1) 1 1 [gdzie: d - dane dzienne, - dane ygodniowe, m - dane miesięczne.] Źródło: obliczenia własne. Modelem, kóry najczęściej wysępuje dla danych miesięcznych jes model RCA-MA (w ponad 50% szeregach). Można go zidenyfikować częściej niż model AR oraz model RCA (kóry wysępuje w około 5% przypadkach). Z kolei, modele Sing RCA i Sign RCA dla 5% poziomu isoności nie wysępują, a dla 10% poziomu isoności wysępuje ylko jeden model Sign RCA. Zmiana agregacji czasowej z danych z miesięcznych na ygodniowe nie powoduje znaczących różnic w liczbie idenyfikowanych modeli (mogą naomias zmieniać się szeregi, dla kórych dany yp modelu jes idenyfikowany). Naomias dla danych dziennych znacznie wzrasa liczba idenyfikowanych modeli AR, RCA oraz RCA-GARCH. Wyjąek sanowi model RCA-MA, kóry jes rzadziej idenyfikowany niż w przypadku danych ygodniowych czy miesięcznych. Modele Sing RCA oraz Sign RCA-GARCH prakycznie prawie nie były idenyfikowane. W abelach 4-5 przedsawione zosały oceny paramerów modeli RCA oraz RCA-MA dla wybranych spółek/indeksów. Wybrano e spółki/indeksy, dla kórych en sam model wysępował dla danych o różnym sopniu agregacji.

7 Efeky agregacji czasowej szeregów finansowych a modele klasy Sign RCA 385 Tabela 4. Modele RCA dla wybranych indeksów WIG-BUDOW WIG-SPOZYW d m d m φ 0,131 0,133 0,37 0,119 0,186 0,45 S ( φ ) 0,04 0,053 0,099 0,06 0,059 0,119 σ ε 1,799 1,441 60,744 1,300 6,835 45,575 σ δ 0,199 0,135 0,065 0,91 0,357 0,184 ln L -4480, ,43-409, ,8-144,88-398,75 Q(3) 4,810 5,784,989 19,371*,78 3,400 ARCH(3) 73,649* 11,911* 3,689 90,960* 4,364* 5,418 AIC 8966,66 70,86 85,8 899,64 495,76 803,50 BIC 8984,1 715,46 834, ,10 508,36 811,81 [gdzie: d - dane dzienne, - dane ygodniowe, m - dane miesięczne; * - odrzucenie H0 na korzyść H1; lnl - logarym funkcji wiarygodności; Q(3) - saysyka esu Boxa-Ljunga rzędu 3; ARCH(3) - saysyka esu Engla rzędu 3; AIC oraz BIC - kryeria informacyjne odpowiednio Akaike i Schwarza.] Źródło: obliczenia własne. Tabela 5. Modele RCA-MA dla wybranych spółek MIESZKO WIG-BANKI ZYWIEC m m d m φ 0,788-0,849 0,955-0,653 0,545-0,940 0,88 S ( φ ) 0,319 0,310 0,03 0,35 0,136 0,014 0,160 θ -0,800 0,763-0,944 0,639-0,587 0,971-0,87 S ( θ ) 0,305 0,357 0,05 0,31 0,135 0,017 0,01 σ ε 3,881 66,539 10,878 56,798 1,835 10,874 46,776 σ δ 1,946 1,311 0,14 0,111 0,371 0,165 0,000 lnl -1671,45-463,9-133,9-407, , ,16-390,97 Q(3) 19,401 3,60 0,19 1,599 1,843 4,499 1,019 ARCH(3) 4,780 0, ,838 3, ,868*,936 0,737 AIC 3350,91 934,57 673,83 83,79 984,90 64,33 789,94 BIC 3367,71 945,65 690,63 834, ,18 659,13 801,0 [gdzie: d - dane dzienne, - dane ygodniowe, m - dane miesięczne; * - odrzucenie H0 na korzyść H1; lnl - logarym funkcji wiarygodności; Q(3) - saysyka esu Boxa-Ljunga rzędu 3; ARCH(3) - saysyka esu Engla rzędu 3; AIC oraz BIC - kryeria informacyjne odpowiednio Akaike i Schwarza.] Źródło: obliczenia własne. Zakończenie W pracy, do idenyfikacji modeli z klasy Sign RCA GARCH, wykorzysano 41 procenowych sóp zwrou o 3 różnych sopniach agregacji. Orzymane wyniki pozwalają na sformułowanie nasępujących wniosków:

8 386 Joanna Górka 1. Wraz ze wzrosem sopnia agregacji czasowej danych, liczba idenyfikowanych modeli RCA oraz wariancja parameru maleje, naomias ocena parameru φ rośnie.. Modelem najczęściej idenyfikowanym, dla danych miesięcznych, jes model RCA-MA, zaś liczba ego ypu modeli maleje wraz ze wzrosem częsoliwości danych. 3. Oceny paramerów dla modelu RCA-MA przyjmują rożne znaki i różne warości dla różnych sopni agregacji czasowej i nie można w ym przypadku mówić o jakiejś ogólnej endencji. 4. Modele RCA-GARCH wysępują głównie dla danych dziennych. Ocena parameru φ w ych modelach jes liczbą bliską zeru, zn. co do modułu prawie zawsze mniejsza od 0,1. 5. Modele z funkcją znaku wysępują rzadko, przy czym wysępują częściej dla danych niezagregowanych (szczególnie model Sign RCA-MA). Może o oznaczać, że w analizowanych szeregach nie wysąpiła asymeryczna reakcja sóp zwrou na informacje pochodzące z rynku. 6. Własności saysyczne modeli są lepsze dla danych charakeryzujący się wyższym sopniem agregacji. 7. W 8 przypadkach, dla danych o różnym sopniu agregacji czasowej, nie wysępował model AR a wysąpił model RCA. Zaem wysępowanie modelu AR nie deerminuje wysępowania modelu RCA i odwronie [Gorka, 009]. Niemniej jednak zjawisko o nie jes zby częse. Lieraura 1. Appadoo S.S., Thavaneswaran A., Singh J. (006), RCA models wih correlaed errors Applied Mahemaics Leers 19, Aue A. (004), Srong approximaion for RCA(1) ime series wih applicaions, Saisics & Probabiliy Leers 68, Bollerslev T. (1986), Generalized auoregressive condiional heeroscedasiciy, Journal of Economerics, 31, Engle R. F. (198), Auoregressive condiional heeroscedasiciy wih esimaes of he variance of Unied Kingdom inflaion, Economerica, 50, Górka, J. (007), Opisu kurozy rozkładów za pomocą wybranych modeli z funkcją znaku, w: Z. Zielinski (red.), Dynamiczne modele ekonomeryczne, Toruń, Wydawnicwo UMK. 6. Górka, J. (009), Własności prognosyczne modeli RCA-MA, RCA- GARCH oraz Sign RCA, złożone do druku. 7. Nicholls D.F., Quinn B.G. (198), Random Coefficien Auoregressive Models: An Inroducion, in: Lecure Noes in Saisics, vol. 11, Springer, New York. 8. Thavaneswaran A., Appadoo S. (006), Properies of a new family of volailiy sing models, Compuers and Mahemaics wih Applicaions 5,

9 Efeky agregacji czasowej szeregów finansowych a modele klasy Sign RCA Thavaneswaran A., Appadoo S., Becor C. (006), Recen developmens in volailiy modeling and applicaion, Journal of Applied Mahemaics and Decision Sciences, Thavaneswaran A., Peiris S., Appadoo S. (008), Random coefficien volailiy models, Saisics & Probabiliy Leers 78, Thavaneswaran, S., Appadoo, S., i Ghahramani, M. (009), RCA models wih GARCH innovaions, Applied Mahemaics Leers, Sreszczenie W arykule zbadano efek agregacji czasowej, modeli klasy Sign RCA, dla danych finansowych. Do ego celu wykorzysano wszyskie szeregi czasowe cen akcji spółek noowanych 30 lisopada 1998 oraz noowanych do dnia 4 lisopada 008 roku na GWP w Warszawie. Dla orzymanych szeregów procenowych sóp zwrou, o 3 różnych sopniach agregacji, meodą największej wiarygodności oszacowane zosały oceny paramerów modeli klasy Sign RCA. Orzymane wyniki pokazują, że sopień agregacji ma wpływ nie ylko na warość oceny parameru φ, ale również na liczbę idenyfikowanych modeli z klasy Sing RCA. Ponado przeprowadzone badanie wskazuje, że w badanym okresie, nie wysępowała asymeryczna reakcja sóp zwrou na informacje pochodzące z rynku. Powierdzone zosały eż wcześniejsze wyniki badań auorki, iż wysępowanie modelu AR nie deerminuje wysępowania modelu RCA i odwronie. Effecs of ime aggregaion in sock prices and a family Sign RCA models In his paper, effecs of ime aggregaion in sock prices for family Sign RCA models were presened. To his end, all daily prices of shares from he Warsaw Sock Exchange for period from 30 November 005 o 4 November 009 were used. All model parameers from family Sign RCA models were esimaed using maximum likelihood (MLE). We concluded ha he ime aggregaion has influence boh he value of φ parameer and quaniy of Sign RCA models. We concluded ha, for his dae, an asymmeric reacion of changes in reurns o good or bad news was no occurred.

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODEE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Joanna Małgorzaa andmesser Szkoła Główna

Bardziej szczegółowo

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE Paweł Kobus, Rober Pierzykowski Kaedra Ekonomerii i Informayki SGGW e-mail: pawel.kobus@saysyka.info EFEKT DŹWIGNI NA GPW W WARSZAWIE Sreszczenie: Do modelowania asymerycznego wpływu dobrych i złych informacji

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. 1. Wstęp

MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. 1. Wstęp WERSJA ROBOCZA - PRZED POPRAWKAMI RECENZENTA Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. Wsęp Spośród wielu rodzajów ryzyka, szczególną

Bardziej szczegółowo

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015 Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 2083-86 Nr 29 205 Alicja Ganczarek-Gamro Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Kaedra Demografii

Bardziej szczegółowo

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Wsęp MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Nowoczesne echniki zarządzania ryzykiem rynkowym

Bardziej szczegółowo

Wyzwania praktyczne w modelowaniu wielowymiarowych procesów GARCH

Wyzwania praktyczne w modelowaniu wielowymiarowych procesów GARCH Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu Wyzwania prakyczne w modelowaniu wielowymiarowych procesów GARCH Wsęp Od zaproponowania przez Engla w 1982 roku jednowymiarowego modelu klasy ARCH, modele

Bardziej szczegółowo

EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 391 TORUŃ Joanna Górka WŁASNOŚCI PROGNOSTYCZNE MODELI KLASY RCA *

EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 391 TORUŃ Joanna Górka WŁASNOŚCI PROGNOSTYCZNE MODELI KLASY RCA * ACTA UNIVERSITATIS NICOLAI COPERNICI EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 391 TORUŃ 2009 Uniwersytet Mikołaja Kopernika w Toruniu Katedra Ekonometrii i Statystyki Joanna Górka WŁASNOŚCI PROGNOSTYCZNE

Bardziej szczegółowo

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków

Bardziej szczegółowo

EFEKT DNIA TYGODNIA NA GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE WSTĘP

EFEKT DNIA TYGODNIA NA GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE WSTĘP Joanna Landmesser Kaedra Ekonomerii i Informayki SGGW e-mail: jgwiazda@mors.sggw.waw.pl EFEKT DNIA TYGODNIA NA GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE Sreszczenie: W pracy zbadano wysępowanie efeku

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

Analiza rynku projekt

Analiza rynku projekt Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes

Bardziej szczegółowo

MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW

MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW Wprowadzenie Współczesne zarządzanie ryzykiem

Bardziej szczegółowo

Ocena efektywności procedury Congruent Specyfication dla małych prób

Ocena efektywności procedury Congruent Specyfication dla małych prób 243 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Ocena efekywności procedury Congruen Specyficaion dla małych prób Sreszczenie. Procedura specyfikacji

Bardziej szczegółowo

OeconomiA copernicana. Małgorzata Madrak-Grochowska, Mirosława Żurek Uniwersytet Mikołaja Kopernika w Toruniu

OeconomiA copernicana. Małgorzata Madrak-Grochowska, Mirosława Żurek Uniwersytet Mikołaja Kopernika w Toruniu OeconomiA copernicana 2011 Nr 4 Małgorzaa Madrak-Grochowska, Mirosława Żurek Uniwersye Mikołaja Kopernika w Toruniu TESTOWANIE PRZYCZYNOWOŚCI W WARIANCJI MIĘDZY WYBRANYMI INDEKSAMI RYNKÓW AKCJI NA ŚWIECIE

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml

Bardziej szczegółowo

Transakcje insiderów a ceny akcji spółek notowanych na Giełdzie Papierów Wartościowych w Warszawie S.A.

Transakcje insiderów a ceny akcji spółek notowanych na Giełdzie Papierów Wartościowych w Warszawie S.A. Agaa Srzelczyk Transakcje insiderów a ceny akcji spółek noowanych na Giełdzie Papierów Warościowych w Warszawie S.A. Wsęp Inwesorzy oczekują od każdej noowanej na Giełdzie Papierów Warościowych spółki

Bardziej szczegółowo

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar. EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b

Bardziej szczegółowo

METODY STATYSTYCZNE W FINANSACH

METODY STATYSTYCZNE W FINANSACH METODY STATYSTYCZNE W FINANSACH Krzyszof Jajuga Akademia Ekonomiczna we Wrocławiu, Kaedra Inwesycji Finansowych i Ubezpieczeń Wprowadzenie W osanich kilkunasu laach na świecie obserwuje się dynamiczny

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 2013

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 2013 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 2013 MAŁGORZATA BOŁTUĆ Uniwersye Ekonomiczny we Wrocławiu ZALEŻNOŚĆ POMIĘDZY RYNKIEM SWAPÓW KREDYTOWYCH

Bardziej szczegółowo

Alicja Ganczarek Akademia Ekonomiczna w Katowicach. Analiza niezależności przekroczeń VaR na wybranym segmencie rynku energii

Alicja Ganczarek Akademia Ekonomiczna w Katowicach. Analiza niezależności przekroczeń VaR na wybranym segmencie rynku energii DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Akademia Ekonomiczna w Kaowicach Analiza

Bardziej szczegółowo

POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE

POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE Anea Kłodzińska, Poliechnika Koszalińska, Zakład Ekonomerii POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE Sopy procenowe w analizach ekonomicznych Sopy procenowe

Bardziej szczegółowo

Prognozowanie średniego miesięcznego kursu kupna USD

Prognozowanie średniego miesięcznego kursu kupna USD Prognozowanie średniego miesięcznego kursu kupna USD Kaarzyna Halicka Poliechnika Białosocka, Wydział Zarządzania, Kaedra Informayki Gospodarczej i Logisyki, e-mail: k.halicka@pb.edu.pl Jusyna Godlewska

Bardziej szczegółowo

UMK w Toruniu ANALIZA ZALEŻNOŚCI MIĘDZY INDEKSEM WIG A WYBRANYMI INDEKSAMI RYNKÓW AKCJI NA ŚWIECIE

UMK w Toruniu ANALIZA ZALEŻNOŚCI MIĘDZY INDEKSEM WIG A WYBRANYMI INDEKSAMI RYNKÓW AKCJI NA ŚWIECIE Pior Fiszeder UMK w Toruniu ANALIZA ZALEŻNOŚCI MIĘDZY INDEKSEM WIG A WYBRANYMI INDEKSAMI RYNKÓW AKCJI NA ŚWIECIE. Wprowadzenie Rynki kapiałowe na świecie są coraz silniej powiązane. Do najważniejszych

Bardziej szczegółowo

Krzysztof Piontek MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR

Krzysztof Piontek MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR Inwesycje finansowe i ubezpieczenia endencje świaowe a rynek polski Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR Wsęp Konieczność

Bardziej szczegółowo

Jacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie.

Jacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie. DYNAMICZNE MODELE EKONOMETRYCZNE Jacek Kwiakowski Magdalena Osińska Uniwersye Mikołaja Kopernika Procesy zawierające sochasyczne pierwiaski jednoskowe idenyfikacja i zasosowanie.. Wsęp Większość lieraury

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Kaarzyna Kuziak Akademia Ekonomiczna

Bardziej szczegółowo

Niestacjonarne zmienne czasowe własności i testowanie

Niestacjonarne zmienne czasowe własności i testowanie Maeriał dla sudenów Niesacjonarne zmienne czasowe własności i esowanie (sudium przypadku) Nazwa przedmiou: ekonomeria finansowa I (22204), analiza szeregów czasowych i prognozowanie (13201); Kierunek sudiów:

Bardziej szczegółowo

Daniel Papla Akademia Ekonomiczna we Wrocławiu. Wykorzystanie modelu DCC-MGARCH w analizie zmian zależności wybranych akcji GPW w Warszawie

Daniel Papla Akademia Ekonomiczna we Wrocławiu. Wykorzystanie modelu DCC-MGARCH w analizie zmian zależności wybranych akcji GPW w Warszawie DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 27 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Akademia Ekonomiczna we Wrocławiu Wykorzysanie

Bardziej szczegółowo

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE Janusz Sowiński, Rober Tomaszewski, Arur Wacharczyk Insyu Elekroenergeyki Poliechnika Częsochowska Aky prawne

Bardziej szczegółowo

specyfikacji i estymacji modelu regresji progowej (ang. threshold regression).

specyfikacji i estymacji modelu regresji progowej (ang. threshold regression). 4. Modele regresji progowej W badaniach empirycznych coraz większym zaineresowaniem cieszą się akie modele szeregów czasowych, kóre pozwalają na objaśnianie nieliniowych zależności między poszczególnymi

Bardziej szczegółowo

PIOTR FISZEDER, JACEK KWIATKOWSKI Katedra Ekonometrii i Statystyki

PIOTR FISZEDER, JACEK KWIATKOWSKI Katedra Ekonometrii i Statystyki PIOTR FISZEDER, JACEK KWIATKOWSKI Kaedra Ekonomerii i Saysyki DYNAMICZNA ANALIZA ZALEŻNOŚCI POMIĘDZY OCZEKIWANĄ STOPĄ ZWROTU A WARUNKOWĄ WARIANCJĄ Sreszczenie: W badaniu zasosowano modele GARCHM ze sałym

Bardziej szczegółowo

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 390 TORUŃ 2009.

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 390 TORUŃ 2009. A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 390 TORUŃ 009 Uniwerse Mikołaja Kopernika w Toruniu Kaedra Ekonomerii i Saski WŁASNOŚCI

Bardziej szczegółowo

MODELOWANIE KURSÓW WALUTOWYCH NA PRZYKŁADZIE MODELI KURSÓW RÓWNOWAGI ORAZ ZMIENNOŚCI NA RYNKU FOREX

MODELOWANIE KURSÓW WALUTOWYCH NA PRZYKŁADZIE MODELI KURSÓW RÓWNOWAGI ORAZ ZMIENNOŚCI NA RYNKU FOREX Krzyszof Ćwikliński Uniwersye Ekonomiczny we Wrocławiu Wydział Zarządzania, Informayki i Finansów Kaedra Ekonomerii krzyszof.cwiklinski@ue.wroc.pl Daniel Papla Uniwersye Ekonomiczny we Wrocławiu Wydział

Bardziej szczegółowo

ZASTOSOWANIE FUNKCJI KOPULI W MODELOWNIU INDEKSÓW GIEŁDOWYCH

ZASTOSOWANIE FUNKCJI KOPULI W MODELOWNIU INDEKSÓW GIEŁDOWYCH ZASTOSOWANIE FUNKCJI KOPULI W MODELOWNIU INDEKSÓW GIEŁDOWYCH Jacek Leśkow, Jusyna Mokrzycka, Kamil Krawiec 1 Sreszczenie Współczesne zarządzanie ryzykiem finansowanym opiera się na analizie zwroów szeregów

Bardziej szczegółowo

ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYCH INDEKSÓW GIEŁDOWYCH: WIG, WIG20, MIDWIG I TECHWIG

ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYCH INDEKSÓW GIEŁDOWYCH: WIG, WIG20, MIDWIG I TECHWIG Doroa Wikowska, Anna Gasek Kaedra Ekonomerii i Informayki SGGW dwikowska@mors.sggw.waw.pl ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYC INDEKSÓW GIEŁDOWYC: WIG, WIG2, MIDWIG I TECWIG Sreszczenie:

Bardziej szczegółowo

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Marcin Gajewski Uniwersye Łódzki 4.12.2008 Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Niezabazpieczony UIP)

Bardziej szczegółowo

WYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA NA PRZYKŁADZIE VALUE AT RISK

WYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA NA PRZYKŁADZIE VALUE AT RISK Przemysław Jeziorski Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Zakład Demografii i Saysyki Ekonomicznej przemyslaw.jeziorski@ue.kaowice.pl WYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA

Bardziej szczegółowo

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak ( ) ( ) ( ) i E E E i r r = = = = = θ θ ρ ν φ ε ρ α * 1 1 1 ) ( R. popyu R. Fishera Krzywa Phillipsa

Bardziej szczegółowo

Metody analizy i prognozowania szeregów czasowych

Metody analizy i prognozowania szeregów czasowych Meody analizy i prognozowania szeregów czasowych Wsęp 1. Modele szeregów czasowych 2. Modele ARMA i procedura Boxa-Jenkinsa 3. Modele rendów deerminisycznych i sochasycznych 4. Meody dekompozycji szeregów

Bardziej szczegółowo

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Barbara Baóg Iwona Foryś PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH Wsęp Koszy dosarczenia wody

Bardziej szczegółowo

Strukturalne podejście w prognozowaniu produktu krajowego brutto w ujęciu regionalnym

Strukturalne podejście w prognozowaniu produktu krajowego brutto w ujęciu regionalnym Jacek Baóg Uniwersye Szczeciński Srukuralne podejście w prognozowaniu produku krajowego bruo w ujęciu regionalnym Znajomość poziomu i dynamiki produku krajowego bruo wyworzonego w poszczególnych regionach

Bardziej szczegółowo

OPTYMALIZACJA PORTFELA INWESTYCYJNEGO ZE WZGLĘDU NA MINIMALNY POZIOM TOLERANCJI DLA USTALONEGO VaR

OPTYMALIZACJA PORTFELA INWESTYCYJNEGO ZE WZGLĘDU NA MINIMALNY POZIOM TOLERANCJI DLA USTALONEGO VaR Daniel Iskra Uniwersye Ekonomiczny w Kaowicach OPTYMALIZACJA PORTFELA IWESTYCYJEGO ZE WZGLĘDU A MIIMALY POZIOM TOLERACJI DLA USTALOEGO VaR Wprowadzenie W osanich laach bardzo popularną miarą ryzyka sała

Bardziej szczegółowo

ŹRÓDŁA FLUKTUACJI REALNEGO EFEKTYWNEGO KURSU EUR/ PLN

ŹRÓDŁA FLUKTUACJI REALNEGO EFEKTYWNEGO KURSU EUR/ PLN METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XII/, 0, sr. 389 398 ŹRÓDŁA FLUKTUACJI REALNEGO EFEKTYWNEGO KURSU EUR/ PLN Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków Gospodarczych

Bardziej szczegółowo

Bayesowskie porównanie modeli STUR i GARCH w finansowych szeregach czasowych 1

Bayesowskie porównanie modeli STUR i GARCH w finansowych szeregach czasowych 1 Jacek Kwiakowski Uniwersye Mikołaja Kopernika w Toruniu Bayesowskie porównanie modeli STUR i GARCH w finansowych szeregach czasowych 1 WSTĘP Powszechnie wiadomo, że podsawowymi własnościami procesów finansowych

Bardziej szczegółowo

TESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH

TESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Mariusz Doszyń TESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH Od pewnego czasu w lieraurze ekonomerycznej pojawiają się

Bardziej szczegółowo

Komputerowa analiza przepływów turbulentnych i indeksu Dow Jones

Komputerowa analiza przepływów turbulentnych i indeksu Dow Jones Kompuerowa analiza przepływów urbulennych i indeksu Dow Jones Rafał Ogrodowczyk Pańswowa Wyższa Szkoła Zawodowa w Chełmie Wiesław A. Kamiński Uniwersye Marii Curie-Skłodowskie w Lublinie W badaniach porównano

Bardziej szczegółowo

ZJAWISKA SZOKOWE W ROZWOJU GOSPODARCZYM WYBRANYCH KRAJÓW UNII EUROPEJSKIEJ

ZJAWISKA SZOKOWE W ROZWOJU GOSPODARCZYM WYBRANYCH KRAJÓW UNII EUROPEJSKIEJ Anna Janiga-Ćmiel Uniwersye Ekonomiczny w Kaowicach Wydział Zarządzania Kaedra Maemayki anna.janiga-cmiel@ue.kaowice.pl ZJAWISKA SZOKOWE W ROZWOJU GOSPODARCZYM WYBRANYCH KRAJÓW UNII EUROPEJSKIEJ Sreszczenie:

Bardziej szczegółowo

PREDYKCJA KURSU EURO/DOLAR Z WYKORZYSTANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WYBRANE MODELE EKONOMETRYCZNE I PERCEPTRON WIELOWARSTWOWY

PREDYKCJA KURSU EURO/DOLAR Z WYKORZYSTANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WYBRANE MODELE EKONOMETRYCZNE I PERCEPTRON WIELOWARSTWOWY B A D A N I A O P E R A C J N E I D E C Z J E Nr 2004 Aleksandra MAUSZEWSKA Doroa WIKOWSKA PREDKCJA KURSU EURO/DOLAR Z WKORZSANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WBRANE MODELE EKONOMERCZNE I PERCEPRON WIELOWARSWOW

Bardziej szczegółowo

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20 Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informayki Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Krzyszof Pionek Weryfikacja modeli Blacka-Scholesa oraz AR-GARCH

Bardziej szczegółowo

MODELE AUTOREGRESYJNE JAKO INSTRUMENT ZARZĄDZANIA ZAPASAMI NA PRZYKŁADZIE ELEKTROWNI CIEPLNEJ

MODELE AUTOREGRESYJNE JAKO INSTRUMENT ZARZĄDZANIA ZAPASAMI NA PRZYKŁADZIE ELEKTROWNI CIEPLNEJ Agaa MESJASZ-LECH * MODELE AUTOREGRESYJNE JAKO INSTRUMENT ZARZĄDZANIA ZAPASAMI NA PRZYKŁADZIE ELEKTROWNI CIEPLNEJ Sreszczenie W arykule przedsawiono wyniki analizy ekonomerycznej miesięcznych warości w

Bardziej szczegółowo

O PEWNYCH KRYTERIACH INWESTOWANIA W OPCJE NA AKCJE

O PEWNYCH KRYTERIACH INWESTOWANIA W OPCJE NA AKCJE MEODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH om XIII/3, 01, sr 43 5 O EWNYCH KRYERIACH INWESOWANIA W OCJE NA AKCJE omasz Warowny Kaedra Meod Ilościowych w Zarządzaniu oliechnika Lubelska e-mail: warowny@pollubpl

Bardziej szczegółowo

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU B A D A N I A O P E R A C J N E I D E C Z J E Nr 2 2006 Bogusław GUZIK* SZACOWANIE MODELU RNKOWEGO CKLU ŻCIA PRODUKTU Przedsawiono zasadnicze podejścia do saysycznego szacowania modelu rynkowego cyklu

Bardziej szczegółowo

EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 391 TORUŃ Tomasz Zdanowicz TESTOWANIE SYMETRYCZNOŚCI ROZKŁADU WARUNKOWEGO

EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 391 TORUŃ Tomasz Zdanowicz TESTOWANIE SYMETRYCZNOŚCI ROZKŁADU WARUNKOWEGO ACTA UNIVERSITATIS NICOLAI COPERNICI EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 391 TORUŃ 2009 Uniwersytet Mikołaja Kopernika w Toruniu Katedra Ekonometrii i Statystyki Tomasz Zdanowicz TESTOWANIE

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika Zależność

Bardziej szczegółowo

TESTOWANIE STABILNOŚCI PARAMETRÓW WIELOCZYNNIKOWYCH MODELI MARKET TIMING Z OPÓŹNIONĄ ZMIENNĄ RYNKOWĄ 1

TESTOWANIE STABILNOŚCI PARAMETRÓW WIELOCZYNNIKOWYCH MODELI MARKET TIMING Z OPÓŹNIONĄ ZMIENNĄ RYNKOWĄ 1 METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XII/, 011, sr. 59 69 TESTOWANIE STABILNOŚCI PARAMETRÓW WIELOCZYNNIKOWYCH MODELI MARKET TIMING Z OPÓŹNIONĄ ZMIENNĄ RYNKOWĄ 1 Joanna Olbryś Wydział Informayki,

Bardziej szczegółowo

STOPIEŃ AGREGACJI PRZESTRZENNEJ A ZMIENNOŚĆ SZEREGÓW CZASOWYCH CEN SUROWCÓW ROLNYCH

STOPIEŃ AGREGACJI PRZESTRZENNEJ A ZMIENNOŚĆ SZEREGÓW CZASOWYCH CEN SUROWCÓW ROLNYCH METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XII/, 011, sr. 180 190 STOPIEŃ AGREGACJI PRZESTRZENNEJ A ZMIENNOŚĆ SZEREGÓW CZASOWYCH CEN SUROWCÓW ROLNYCH Mariusz Hamulczuk Kaedra Ekonomiki Rolnicwa i Międzynarodowych

Bardziej szczegółowo

MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII

MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII KRZYSZTOF JAJUGA Akademia Ekonomiczna we Wrocławiu MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII. Modele makroekonomiczne a modele sóp procenowych wprowadzenie Nie do podważenia

Bardziej szczegółowo

Zarządzanie ryzykiem. Lista 3

Zarządzanie ryzykiem. Lista 3 Zaządzanie yzykiem Lisa 3 1. Oszacowano nasępujący ozkład pawdopodobieńswa dla sóp zwou z akcji A i B (Tabela 1). W chwili obecnej Akcja A ma waość ynkową 70, a akcja B 50 zł. Ile wynosi pięciopocenowa

Bardziej szczegółowo

Eliza Buszkowska * DYNAMIKA PRZEPŁYWÓW INWESTYCJI POMIĘDZY GIEŁDAMI

Eliza Buszkowska * DYNAMIKA PRZEPŁYWÓW INWESTYCJI POMIĘDZY GIEŁDAMI ACTA UNIVERSITATIS NICOLAI COPERNICI DOI: hp://dx.doi.org/10.12775/aunc_econ.2014.017 EKONOMIA XLV nr 2 (2014) 275 288 Pierwsza wersja złożona 26 czerwca 2014 ISSN Końcowa wersja zaakcepowana 20 grudnia

Bardziej szczegółowo

licencjat Pytania teoretyczne:

licencjat Pytania teoretyczne: Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

STATYSTYCZNA WERYFIKACJA MODELU CAPM NA PRZYKŁADZIE POLSKIEGO RYNKU KAPITAŁOWEGO WPROWADZENIE METODOLOGIA TESTOWANIA MODELU

STATYSTYCZNA WERYFIKACJA MODELU CAPM NA PRZYKŁADZIE POLSKIEGO RYNKU KAPITAŁOWEGO WPROWADZENIE METODOLOGIA TESTOWANIA MODELU GraŜyna Trzpio, Dominik KręŜołek Kaedra Saysyki Akademii Ekonomicznej w Kaowicach e-mail rzpio@sulu.ae.kaowice.pl, dominik_arkano@wp.pl STATYSTYCZNA WERYFIKACJA MODELU CAPM NA PRZYKŁADZIE POLSKIEGO RYNKU

Bardziej szczegółowo

ZALEŻNOŚCI POMIĘDZY KURSAMI WALUT ŚRODKOWOEUROPEJSKICH W OKRESIE KRYZYSU 2008 *

ZALEŻNOŚCI POMIĘDZY KURSAMI WALUT ŚRODKOWOEUROPEJSKICH W OKRESIE KRYZYSU 2008 * PRZEGLĄD STATYSTYCZNY R. LVII ZESZYT 1 2010 AGATA KLIBER, PAWEŁ KLIBER ZALEŻNOŚCI POMIĘDZY KURSAMI WALUT ŚRODKOWOEUROPEJSKICH W OKRESIE KRYZYSU 2008 * 1. WSTĘP Celem niniejszego badania było zbadanie zależności

Bardziej szczegółowo

Analiza stabilności parametrów hybrydowych modeli market-timing polskich funduszy inwestycyjnych 1

Analiza stabilności parametrów hybrydowych modeli market-timing polskich funduszy inwestycyjnych 1 Joanna Olbryś * Analiza sabilności paramerów hybrydowych modeli marke-iming polskich funduszy inwesycyjnych 1 Wsęp Hybrydowe czeroczynnikowe modele marke-iming funduszy inwesycyjnych akcji polskich zosały

Bardziej szczegółowo

Analiza stabilności parametrów hybrydowych modeli market-timing polskich funduszy inwestycyjnych 1

Analiza stabilności parametrów hybrydowych modeli market-timing polskich funduszy inwestycyjnych 1 Joanna Olbryś * Analiza sabilności paramerów hybrydowych modeli marke-iming polskich funduszy inwesycyjnych Wsęp Hybrydowe czeroczynnikowe modele marke-iming funduszy inwesycyjnych akcji polskich zosały

Bardziej szczegółowo

1.1. Bezpośrednie transformowanie napięć przemiennych

1.1. Bezpośrednie transformowanie napięć przemiennych Rozdział Wprowadzenie.. Bezpośrednie ransformowanie napięć przemiennych Bezpośrednie ransformowanie napięć przemiennych jes formą zmiany paramerów wielkości fizycznych charakeryzujących energię elekryczną

Bardziej szczegółowo

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

Czy prowadzona polityka pieniężna jest skuteczna? Jaki ma wpływ na procesy

Czy prowadzona polityka pieniężna jest skuteczna? Jaki ma wpływ na procesy Dobromił Serwa Reakcje rynków finansowych na szoki w poliyce pieniężnej.. Wsęp Czy prowadzona poliyka pieniężna jes skueczna? Jaki ma wpływ na procesy ekonomiczne zachodzące w kraju? Czy jes ona równie

Bardziej szczegółowo

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów

Bardziej szczegółowo

Magdalena Osińska, Marcin Fałdziński Uniwersytet Mikołaja Kopernika w Toruniu. Modele GARCH i SV z zastosowaniem teorii wartości ekstremalnych

Magdalena Osińska, Marcin Fałdziński Uniwersytet Mikołaja Kopernika w Toruniu. Modele GARCH i SV z zastosowaniem teorii wartości ekstremalnych DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarim Nakowe 4 6 września 2007 w Torni Kaedra Ekonomerii i Saysyki Uniwersye Mikołaja Kopernika w Torni Magdalena Osińska Marcin Fałdziński Uniwersye

Bardziej szczegółowo

Analiza metod oceny efektywności inwestycji rzeczowych**

Analiza metod oceny efektywności inwestycji rzeczowych** Ekonomia Menedżerska 2009, nr 6, s. 119 128 Marek Łukasz Michalski* Analiza meod oceny efekywności inwesycji rzeczowych** 1. Wsęp Podsawowymi celami przedsiębiorswa w długim okresie jes rozwój i osiąganie

Bardziej szczegółowo

ANNA GÓRSKA MONIKA KRAWIEC Szkoła Główna Gospodarstwa Wiejskiego w Warszawie

ANNA GÓRSKA MONIKA KRAWIEC Szkoła Główna Gospodarstwa Wiejskiego w Warszawie ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 013 ANNA GÓRSKA MONIKA KRAWIEC Szkoła Główna Gospodarswa Wiejskiego w Warszawie BADANIE EFEKTYWNOŚCI INFORMACYJNEJ

Bardziej szczegółowo

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II

Bardziej szczegółowo

PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010

PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010 STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Chrisian Lis PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010 Wprowadzenie Przedmioem

Bardziej szczegółowo

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia

Bardziej szczegółowo

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,

Bardziej szczegółowo

Porównanie jakości nieliniowych modeli ekonometrycznych na podstawie testów trafności prognoz

Porównanie jakości nieliniowych modeli ekonometrycznych na podstawie testów trafności prognoz 233 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Porównanie jakości nieliniowych modeli ekonomerycznych na podsawie esów rafności prognoz Sreszczenie.

Bardziej szczegółowo

KRZYSZTOF JAJUGA Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Akademia Ekonomiczna we Wrocławiu 25 LAT EKONOMETRII FINANSOWEJ

KRZYSZTOF JAJUGA Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Akademia Ekonomiczna we Wrocławiu 25 LAT EKONOMETRII FINANSOWEJ KRZYSZTOF JAJUGA Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Akademia Ekonomiczna we Wrocławiu 25 LAT EKONOMETRII FINANSOWEJ EKONOMETRIA FINANSOWA OKREŚLENIE Modele ekonomerii finansowej są worzone

Bardziej szczegółowo

Kobiety w przedsiębiorstwach usługowych prognozy nieliniowe

Kobiety w przedsiębiorstwach usługowych prognozy nieliniowe Pior Srożek * Kobiey w przedsiębiorswach usługowych prognozy nieliniowe Wsęp W dzisiejszym świecie procesy społeczno-gospodarcze zachodzą bardzo dynamicznie. W związku z ym bardzo zmienił się sereoypowy

Bardziej szczegółowo

Struktura sektorowa finansowania wydatków na B+R w krajach strefy euro

Struktura sektorowa finansowania wydatków na B+R w krajach strefy euro Rozdział i. Srukura sekorowa finansowania wydaków na B+R w krajach srefy euro Rober W. Włodarczyk 1 Sreszczenie W arykule podjęo próbę oceny srukury sekorowej (sekor przedsiębiorsw, sekor rządowy, sekor

Bardziej szczegółowo

Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Katedra Inwestycji Finansowych i Ubezpieczeń

Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Katedra Inwestycji Finansowych i Ubezpieczeń Krzyszof Pionek Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Kaedra Inwesycji Finansowych i Ubezpieczeń Przegląd i porównanie meod oceny modeli VaR Wsęp - Miara VaR Warość zagrożona (warość narażona

Bardziej szczegółowo

Heteroskedastyczność szeregu stóp zwrotu a koncepcja pomiaru ryzyka metodą VaR

Heteroskedastyczność szeregu stóp zwrotu a koncepcja pomiaru ryzyka metodą VaR Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Heeroskedasyczność szeregu sóp zwrou a koncepcja pomiaru ryzyka meodą VaR Wsęp Spośród wielu rodzajów ryzyka

Bardziej szczegółowo

Badanie funktorów logicznych TTL - ćwiczenie 1

Badanie funktorów logicznych TTL - ćwiczenie 1 adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami

Bardziej szczegółowo

TRANSMISJA KRYZYSU ZAUFANIA NA POLSKI RYNEK MIĘDZYBANKOWY

TRANSMISJA KRYZYSU ZAUFANIA NA POLSKI RYNEK MIĘDZYBANKOWY ACTA UNIVERSITATIS NICOLAI COPERNICI EKONOMIA XLIII nr (202) Pierwsza wersja złożona 26 października 20 ISSN Końcowa wersja zaakcepowana 6 września 202 2080-0339 Agaa Kliber, Pior Płuciennik* TRANSMISJA

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika Empiryczna

Bardziej szczegółowo

Komunikat Zarządu Giełdy Papierów Wartościowych w Warszawie S.A. z dnia 13 maja 2005 roku

Komunikat Zarządu Giełdy Papierów Wartościowych w Warszawie S.A. z dnia 13 maja 2005 roku Komunikat Zarządu Giełdy Papierów Wartościowych w Warszawie S.A. z dnia 13 maja 2005 roku Na dstawie Uchwały nr 167/03 Zarządu Giełdy z dnia 28 maja 2003 r. z późn. zm. tyczącej indeksów giełwych Giełda

Bardziej szczegółowo

Wybrane dwuwymiarowe modele dla zmiennych licznikowych w ekonomii 1

Wybrane dwuwymiarowe modele dla zmiennych licznikowych w ekonomii 1 Jerzy Marzec Adres e mail: marzecj@uek.krakow.pl Uniwersye Ekonomiczny w Krakowie Kaedra: Kaedra Ekonomerii i Badań Operacyjnych Wybrane dwuwymiarowe modele dla zmiennych licznikowych w ekonomii. Wsęp

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 27 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaa Kopernika w Toruniu Małgorzaa Borzyszkowska Uniwersye Gdański

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

Krzysztof Jajuga Akademia Ekonomiczna we Wrocławiu. Modelowanie stóp procentowych a narzędzia ekonometrii finansowej

Krzysztof Jajuga Akademia Ekonomiczna we Wrocławiu. Modelowanie stóp procentowych a narzędzia ekonometrii finansowej DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Krzyszof Jajuga Akademia Ekonomiczna

Bardziej szczegółowo

O EFEKTACH ZASTOSOWANIA PEWNEJ METODY WYZNACZANIA PROGNOZ JAKOŚCIOWYCH ZMIAN CEN AKCJI W WARUNKACH KRYZYSU FINANSOWEGO 2008 ROKU

O EFEKTACH ZASTOSOWANIA PEWNEJ METODY WYZNACZANIA PROGNOZ JAKOŚCIOWYCH ZMIAN CEN AKCJI W WARUNKACH KRYZYSU FINANSOWEGO 2008 ROKU Arykuł opublikowany w: Rynki kapiałowe a koniunkura gospodarcza, red. A. Szablewski, R. Wójcikowski, Wydawnicwo Poliechniki Łódzkiej, Łódź 009, s. 95-07 Doroa Wiśniewska Uniwersye Ekonomiczny w Poznaniu

Bardziej szczegółowo

Pomiar ryzyka odchylenia od benchmarku w warunkach zmiennej w czasie strategii inwestycyjnej OFE - kotynuacja. Wojciech Otto Uniwersytet Warszawski

Pomiar ryzyka odchylenia od benchmarku w warunkach zmiennej w czasie strategii inwestycyjnej OFE - kotynuacja. Wojciech Otto Uniwersytet Warszawski Pomiar ryzyka odchylenia od benchmarku w warunkach zmiennej w czasie sraegii inwesycyjnej OFE - koynuacja Wojciech Oo Uniwersye Warszawski Refera przygoowany na Ogólnopolską Konferencję Naukową Zagadnienia

Bardziej szczegółowo

Nie(efektywność) informacyjna giełdowego rynku kontraktów terminowych w Polsce

Nie(efektywność) informacyjna giełdowego rynku kontraktów terminowych w Polsce Zeszyy Naukowe Uniwersyeu Szczecińskiego nr 862 Finanse, Rynki Finansowe, Ubezpieczenia nr 75 (2015) DOI: 10.18276/frfu.2015.75-16 s. 193 204 Nie(efekywność) informacyjna giełdowego rynku konraków erminowych

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Anna Krauze Uniwersye Warmińsko-Mazurski

Bardziej szczegółowo

Krzysztof Borowski, Paweł Skrzypczyński Szkoła Główna Handlowa. Analiza spektralna indeksów giełdowych DJIA i WIG. 1. Wprowadzenie

Krzysztof Borowski, Paweł Skrzypczyński Szkoła Główna Handlowa. Analiza spektralna indeksów giełdowych DJIA i WIG. 1. Wprowadzenie Krzyszof Borowski, Paweł Skrzypczyński Szkoła Główna Handlowa Analiza spekralna indeksów giełdowych DJIA i WIG 1 Wprowadzenie We współczesnych analizach ekonomicznych doyczących pomiaru cyklu koniunkuralnego

Bardziej szczegółowo

Wykorzystanie rozkładu GED do modelowania rozkładu stóp zwrotu spółek sektora transportowego

Wykorzystanie rozkładu GED do modelowania rozkładu stóp zwrotu spółek sektora transportowego PUCZYŃSKI Jan CZYŻYCKI afał Wykorzyanie rozkładu GED do modelowania rozkładu óp zwrou półek ekora ranporowego WSTĘP Jednym z najczęściej prowadzonych badań doyczących rynku kapiałowego ą badania doyczące

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo