MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. 1. Wstęp

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. 1. Wstęp"

Transkrypt

1 WERSJA ROBOCZA - PRZED POPRAWKAMI RECENZENTA Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. Wsęp Spośród wielu rodzajów ryzyka, szczególną uwagę zwrócono na ryzyko rynkowe (związane ze zmianami kursów akcji, indeksów, owarów, walu, insrumenów pochodnych i sóp procenowych) oraz ryzyko kredyowe (związane z możliwością niewywiązania się jednej ze sron z konraku). Jedną z grup pomiaru ryzyka rynkowego miary sanowią miary zmienności cen insrumenów finansowych (volailiy measures). U podsaw rozważań o zmienności insrumenów finansowych znajduje się dyskusja o dynamicznych modelach opisujących zmianę ceny insrumenu finansowego. Ceny lub sopy zwrou opisuje się jako procesy sochasyczne o czasie dyskrenym lub ciągłym. Sandardowe modele zakładają, że procesem kszałującym zmiany cen insrumenów bazowych jes geomeryczny proces Browna ze sałymi paramerami dryfu oraz zmienności. Model en zakłada że rozkład sop zwrou jes rozkładem normalnym. Jednak badania empiryczne sóp zwrou wykazały wysępowanie na rynkach finansowych: efeku skupiania danych, grubych ogonów rozkładów, skośności rozkładu, długoerminowej zależności danych, niesałości wariancji sóp zwrou w czasie. Niezbędne sało się więc poszukiwanie modeli lepiej opisujących rynek. W niniejszej pracy przedsawione zosały podsawowe modele klasy (G)ARCH zapocząkowane przez Engla (98) oraz Bollersleva (986) oraz ich właściwości. Procesy K. Jajuga, Nowe endencje w zarządzaniu ryzykiem finansowym K. Jajuga, Miary ryzyka rynkowego - cz., Rynek Terminowy, lisopad 999

2 e uwzględniają zmienną wariancję sóp zwrou. Zaprezenowane zosały meody szacowania paramerów modeli. W dalszej części pracy przedsawione zosało oszacowanie podsawowego dla rynków finansowych modelu GARCH(,) dla danych polskich oraz omówienie jego właściwości. Przedsawione zagadnienia mogą zosać wykorzysane w zarządzaniu: - ryzykiem kursu waluowego (exchange rae risk); - ryzykiem cen akcji (sock price risk); - ryzykiem cen owarów (commodiy price risk). Z opracowania wyłączone zosało ryzyko sopy procenowej (ineres rae risk), co związane jes z odmiennymi narzędziami sosowanymi w analizie zmienności oraz srukury sóp procenowych (obiekem badania jes wówczas cała krzywa dochodowości papierów dłużnych).. Empiryczne własności rozkładów sóp zwroów Badania empiryczne sóp zwrou 345 w dłuższym okresie wykazały, wysępowanie na rynkach finansowych: efeku skupiania danych (po okresie dużej zmienności, nasępują okresy charakeryzujące się mniejszą zmiennością), grubych ogonów rozkładów (prawdopodobieńswo pojawienia się bardzo dużych lub bardzo małych warości jes większe niż w przypadku rozkładu normalnego), skośności rozkładu (rozkład sóp zwrou nie jes symeryczny względem średniej, co łumaczy się odmiennym zachowanie inwesorów w czasie bessy i hossy), długoerminowej zależności danych (po znacznych wzrosach nasępują dalsze wzrosy, po kórych nadchodzą nagłe spadki a po nich kolejne), efeku dźwigni (wariancja procesu zależy od wcześniejszych sóp zwrou, wraz ze spadkiem ceny insrumenu wysępuje endencja do wzrosu wariancji sóp zwrou). Rys.. przedsawia wykres dziennych sóp zwrou z indeksu WIG od począku noowań w kwieniu 99 do października 000 roku. Wyraźnie można zaobserwować efek skupiania danych oraz zmienność wariancji w czasie. 3 E. Fama, The behaviour of sock marke prices, Journal of Business, 38, Meody ekonomeryczne i saysyczne w analizie rynku kapialowego, pod red. K. Jajugi, Wydawnicwo AE we Wrocławiu, Wrocław, 000, 5 Weron A., Weron R. (998). Inżynieria finansowa. WNT. Warszawa

3 Rys.. Dzienne sopy zwrou indeksu WIG. Efek grubych ogonów oraz dużo większej kurozy niż dla rozkładu normalnego przedsawiają odpowiednio rysunki oraz 3. lepokuroza rozkład normalny grube ogony Rys.. Hisogram sop zwrou Rys. 3. QQ-plo dziennych sóp zwrou Zaobserwowane efeky zmiennej wariancji w czasie oraz grubych ogonow rozkładow legły u podsaw wprowadzenia modeli z warunkową wariancją. 3. Modele zmienności insrumenów finansowych Dokonanie podziału modeli zmienności insrumenów finansowych nie jes ławe. Ogólnie można podzielić modele szeregów czasowych na 6 : modele ze sałym paramerem zmienności, modele ze zmiennym paramerem zmienności. 6 P. Abken, S. Nandi, Opions and Volailiy, Economic Review, grudzień 996 3

4 Do pierwszej grupy modeli zaliczymy przede wszyskim najbardziej popularny model zmian cen insrumenów finansowych - model geomerycznego ruchu Browna. 7 Innymi modelami ze sałym paramerem zmienności są np. 8 : model Ornseina-Uhlenbecka, model skoku i dyfuzji (jump-diffusion process), model Coxa-Rossa-Rubinseina 9 Ponieważ modele e w sposób niewysarczający modelowały rzeczywise szeregi sóp zwrou, zaproponowano szereg klas modeli ze zmiennym współczynnikiem zmienności. Ogólnie modele e dzieli się na: modele deerminisyczne, w kórych zakłada się, że możliwe jes jednoznaczne oszacowanie parameru zmienności dla poszczególnych okresów na podsawie informacji dosępnych w przeszłych okresach. Zbiór niezbędnych informacji może zawierać zarówno informacje o cenach insrumenów bazowych, jak i pochodnych. Najbardziej znanymi modelami ej klasy są 0 : a) consan elasiciy of variance model (CEV), b) implied binominal rees model, c) auoregressive condiional heeroskedasiciy models (ARCH), d) exponenially weighed momens models, modele sochasyczne, w kórych zakłada się, że przyszły poziom zmienności nie może być dokładnie oszacowany na podsawie informacji dosępnych w dniu dzisiejszym. W modelach ych zmienność zmienia się w sposób losowy, a źródło ej losowości jes inne niż źródło zmian poziomu cen, choć e dwa procesy zakłóceń mogą być skorelowane. W niniejszej pracy rozważane są jedynie modele klasy ARCH wraz z późniejszymi modyfikacjami. 4. Modele procesów klasy (G)ARCH Od wprowadzenia w 98 roku przez R. Engla podsawowego modelu klasy ARCH, powsalo wiele kolejnych modyfikacji mających na celu jeszcze lepsze modelowanie własności finansowych szeregów finansowych. 7 P. Wilmo, Derivaives. The Theory and Pracice of Financial Engineering, Wiley, 999, 8 K. Jajuga, Modele dynamiczne w analizie insrumenów finansowych, Dynamiczne Modele Ekonomeryczne, Toruń, wrzesień J. Cox, S. Ross, M. Rubinsein, Opion pricing: A simplified approach, Journal of Financial Economics, 7, 979, 0 P. Abken, S. Nandi, Opions and Volailiy, Economic Review, grudzień 996 R. Engle, Auoregressive condiional heeroskedasiciy wih esimaes of he variance of UK inflaion, Economerica, 50, 98 4

5 Hisorycznie pierwszym modelem uwzględniającym zależność warunkowej wariancji procesu od jego poprzednich warości jes model ARCH(q) dany nasępującymi równaniami: r = ε () h q i= i i h = ω + α r ε N(0,), (3) gdzie: r - sopy zwrou z danego insrumenu finansowego, h - warunkowa chwilowa wariancja szeregu finansowego, ε - szum o jednoskowym rozkładzie normalnym. Okazało się jednak, że do poprawnego modelowania rzeczywisych szeregow fianansowych niezbędne jes rozparywanie modeli ARCH wysokiego rzędu, co oznacza porzebę esymacji dużej liczby paramerów modelu. Rozwiązaniem okazał się uogólniony model ARCH (GARCH) zaproponowany przez T. Bollersleva w 986r., w kórym warunkowa wariancja h zależy nie ylko od poprzednich sóp zwrou, lecz również od poprzednich wariancji warunkowych. Warunkowa wariancja procesu GARCH(p,q) dana jes nasępującym wzorem: h q p = + ω αir i + i= i= β h i i W powyższych modelach nie mam możliwosci modelowania efeku dźwigni, gdyż warunkowa wariancja zależy jedynie od warości bezwzględnych wcześniejszych realizacji, a nie uwzględnia znaków. Odpowiedznie modyfikacje zaproponowane zosały przez Nelsona 3 (99), jako model EGARCH (exponenial GARCH): q p r r ln h = ω + α ϕ γ i i i + + i= h i h π j= β ln h i j () (4) (5) T. Bollerslev, Generalized auoregressive condiional heeroskedasiciy, Journal of Economerics, 3, D. Nelson, Condiional heeroskedasiciy in asse reurns: a new approach, Economerica, 59, 99 5

6 oraz przez Zakoiana 4, jako model TARCH (hreshold ARCH): p ω + αir i + ε ; r d T i= r = p' ' ' ω + + < αir i ε ; r d T i= (6) gdzie: d- paramer odroczenia, T - paramer progowy. Obydwa e modele umożliwiają modelowanie efeku asymerii informacji, czyli odmiennego wpływu dodanich i ujemnych sóp zwrou na warunkową wariancję, a co za ym idzie na możliwość modelowania skośności rozkładow. Dynamiczny rozwój modeli z warunkową wariancją doprowadzil do powsania kilkudziesięciu modeli w ramach ej klasy. Przykładowe modele o 5 : Nonlinear ARCH Model (Engle, Bollerslev, 986) Muliplicaive ARCH Model (Gewke, 986) log( h ) γ = ω + α ε h (7) ( ε ) ω α (8) = + i log Auoregressive Sandard Deviaion Model (Schwer, 990) Quadraic ARCH Model (Senana, 995) h h p = ω + αi ε i (9) i= + ω α ε α ε (0) = + ARCH-in-Mean Model (Engle, Lilien, r = λh + ε Robins, 987) h = ω + αε Najczęsrzymi echnikami esymacji paramerów procesów pozosają: meoda największej wiarygodności, meoda wnioskowania bayesowskiego, meoda momenów (generalised mehod of momens - GMM), QMLE (quasi maximum likelihood esimaion). () 4 J. Knigh, S. Sachell, Forecasing volailiy in he financial markes, Buerworh- Heinemann, R. Engle, V. Ng, Measuring and Tesing he Impac of News on Volailiy, The Journal of Finance, 5, 993 6

7 Różne echniki esymacji paramerów modeli oraz warunki na sacjonarność procesów opisane są szczegółowo w lieraurze przedmiou Przykład empiryczny Poniżej zaprezenowany zosał przykład esmacji najpopularniejszego modelu warunkowej wariancji dla szeregów finansowych - modelu GARCH(,) - dla indeksu WIG. Popularność modelu wynika przede wszyskim z jego prosoy (rzy paramery w równaniu wariancji), co jednak nie przeszkadza w osiąganiu zadowalających rezulaaów. Esymacja wyższych modeli jes częso niemożliwa ze względu na dysponowanie zby krókimi szeregami finansowymi, co powoduje że wyesymowane paramery obarczone są zby dużymi błędami. Z aką eż syuacją mamy do czynienia w warunkach polskich. Rozparywany model zdefiniowany jes poprzez nasępujące równania: r = µ + ε () h h = + αr + βh ε ω (3) ~ N(0,) (4) Zakłada się więc nasępujący rozkład warunkowy sóp zwrou: r Ψ ~ N( µ, h ) (5) gdzie: µ - średnia sop zawrou dla rozparywanego okresu, Ψ - - informacja dsosępna do chwili - włącznie. Sacjonarność procesu GARCH(,) w szerszym sensie zapewnia spełnienie warunku α + β <. Proces GARCH charakeryzuje się powracaniem do średniej. Średnia długoerminowa wariancja procesu dana jes równaniem: ω V = α β Esymację wekora paramerów θ ( ω, α, β ) = przeprowadzono meodą największej wiarygodności w procesie poszukiwania maksimum funkcji 7 : N ln L = ln N ln h ( θ ) N = = r h ( θ ) (6) π (7) 6 Volailiy. New Techniques for pricing derivaives. Pod redakcją Robera Jarrowa. (998). Risk books. 7 CH. Hafner, Nonlinear Time Series Analysis wih Applicaions o Foreign Exchange Rae Volailiy, Physica-Verlag, 998 7

8 Dla dziennych sop zwrou z indeksu WIG (dane od do ) uzyskano nasępujące oszacowanie modelu GARCH(,): r = 0, ε h = 0, ,4 + 0, 7464h h ε. Uzyskany model jes sacjonarny w szerszym sensie, gdyż: α + β = 0,9606 <. Długoerminowa dzienna wariancja procesu wynosi: 0,00006 V = = 0, , 0,4 + 0,7464 więc dzienne (chwilowe) odchylenie sandardowe sóp zwrou (średnia dzienna zmienność) dla okresu sześcioleniego wynosiła: V = 0,03956,4% Rys.. 4. przedsawia dzienna zmienność indeksu WIG wraz z naniesionym poziomem średniej.,4% Rys. 4. Dzienna zmiennośc indeksu WIG Jedną z najprosszych echnik sprawdzenia poprawności dopasowania modelu do danych empirycznych jes analiza szeregu: r ˆ µ ˆ ε = (8) hˆ gdzie: ˆµ, ĥ - wyesymowane charakerysyki procesu. W przypadku idealnego dopasowanie powinna zachodzić własność: ˆ ε ~ N(0,). (9) 8

9 Rys. 5 oraz Tabela. przedsawiaja informacje o rozkładzie εˆ. Tabela. Średnia 0, Mediana 0,07938 Odchylenie sd, Wariancja, Kuroza, Skośność -0, Rys. 5. Rozkład εˆ Źródło: obliczenia wlasne. Rozkład warunkowy εˆ posiada większą kurozę niż rozkład normalny oraz skośność różną od zera, co świadczy o braku idealnego dopasowania modelu do danych empirycznych. Z ego powodu zaproponowano zasosowanie rozkładów warunkowych odmiennych od rozkladu normalnego. Najczęściej rozparywaną modyfikacją sał się model -GARCH o warunkowym rozkładzie -Sudena 8 dany wzorami: r µ = ρ µ + ξ (0) ( ) r = + αξ + βh h ω () gdzie: ξ - - zmienna o warunkowym skośnym rozkładzie -Sudena o ν> sopniach swobody, zerowej modalnej, paramerze asymerii γ>0 oraz zmiennej precyzji h Podsumowanie Mimo braku idealnego dopasowanie klasycznego modelu GARCH(,) do danych empirycznych, i ak opisuje on lepiej rzeczywisość niż modele zakładające sałość wariancji procesu w czasie. Ławość szacowania modelu spowodowała, że znalazł on zasosowanie w pomiarze ryzyka meodą Value a Risk 9 0 oraz (w mniejszym już sopniu) w modelach wyceny opcji. 8 J. Osiewalski, M. Pipień, Bayesowskiewnioskowanie o sacjonarności procesów GARCH(,), Dynamiczne Modele Ekonomeryczne, Toruń, P. Bes, Warość narażona na ryzyko, Oficyna Ekonomiczna, Kraków, 000 9

10 Dalsze prace nad modelami z warunkową wariancją niewąpliwie doprowadzą do częsszego sosowania ych modeli w eorii finansów. Lieraura: [] P. Abken, S. Nandi, Opions and Volailiy, Economic Review, grudzień 996 [] P. Bes, Warość narażona na ryzyko, Oficyna Ekonomiczna, Kraków, 000 [3] T. Bollerslev, Generalized auoregressive condiional heeroskedasiciy, Journal of Economerics, 3, 986 [4] J. Cox, S. Ross, M. Rubinsein, Opion pricing: A simplified approach, Journal of Financial Economics, 7, 979, [5] R. Engle, Auoregressive condiional heeroskedasiciy wih esimaes of he variance of UK inflaion, Economerica, 50, 98 [6] R. Engle, V. Ng, Measuring and Tesing he Impac of News on Volailiy, The Journal of Finance, 5, 993 [7] E. Fama, The behaviour of sock marke prices, Journal of Business, 38, 965 [8] J. Hull (997). Fuures, opions, and oher derivaives. Prenive-Hall, New York. [9] K. Jajuga, Miary ryzyka rynkowego - cz., Rynek Terminowy, lisopad 999 [0] K. Jajuga, Modele dynamiczne w analizie insrumenów finansowych, Dynamiczne Modele Ekonomeryczne, Toruń, wrzesień 999 [] K. Jajuga, Nowe endencje w zarządzaniu ryzykiem finansowym [] Meody ekonomeryczne i saysyczne w analizie rynku kapialowego, pod red. K. Jajugi, Wydawnicwo AE we Wrocławiu, Wrocław, 000, [3] J. Knigh, S. Sachell, Forecasing volailiy in he financial markes, Buerworh- Heinemann, 998 [4] M. Łach, A. Weron, Skueczność wybranych meod obliczania VaR dla danych finansowych z polskiego rynku, Rynek Terminowy, lipiec 000 [5] D. Nelson, Condiional heeroskedasiciy in asse reurns: a new approach, Economerica, 59, 99 [6] J. Osiewalski, M. Pipień, Bayesowskiewnioskowanie o sacjonarności procesów GARCH(,), Dynamiczne Modele Ekonomeryczne, Toruń, 999 [7] Weron A., Weron R. (998). Inżynieria finansowa. WNT. Warszawa [8] P. Wilmo, Derivaives. The Theory and Pracice of Financial Engineering, Wiley, 999, 0 M. Łach, A. Weron, Skueczność wybranych meod obliczania VaR dla danych finansowych z polskiego rynku, Rynek Terminowy, lipiec 000 P. Wilmo, Derivaives. The Theory and Pracice of Financial Engineering, Wiley, 999, 0

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Wsęp MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Nowoczesne echniki zarządzania ryzykiem rynkowym

Bardziej szczegółowo

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE Paweł Kobus, Rober Pierzykowski Kaedra Ekonomerii i Informayki SGGW e-mail: pawel.kobus@saysyka.info EFEKT DŹWIGNI NA GPW W WARSZAWIE Sreszczenie: Do modelowania asymerycznego wpływu dobrych i złych informacji

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODEE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Joanna Małgorzaa andmesser Szkoła Główna

Bardziej szczegółowo

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015 Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 2083-86 Nr 29 205 Alicja Ganczarek-Gamro Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Kaedra Demografii

Bardziej szczegółowo

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA Joanna Górka * Efeky agregacji czasowej szeregów finansowych a modele klasy Sign RCA Wsęp Wprowadzenie losowego parameru do modelu auoregresyjnego zwiększa możliwości aplikacyjne ego modelu, gdyż pozwala

Bardziej szczegółowo

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20 Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informayki Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Krzyszof Pionek Weryfikacja modeli Blacka-Scholesa oraz AR-GARCH

Bardziej szczegółowo

Krzysztof Piontek MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR

Krzysztof Piontek MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR Inwesycje finansowe i ubezpieczenia endencje świaowe a rynek polski Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR Wsęp Konieczność

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Marcin Gajewski Uniwersye Łódzki 4.12.2008 Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Niezabazpieczony UIP)

Bardziej szczegółowo

Europejska opcja kupna akcji calloption

Europejska opcja kupna akcji calloption Europejska opcja kupna akcji callopion Nabywca holder: prawo kupna long posiion jednej akcji w okresie epiraiondae po cenie wykonania eercise price K w zamian za opłaę C Wysawca underwrier: obowiązek liabiliy

Bardziej szczegółowo

MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW

MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW Wprowadzenie Współczesne zarządzanie ryzykiem

Bardziej szczegółowo

KRZYSZTOF JAJUGA Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Akademia Ekonomiczna we Wrocławiu 25 LAT EKONOMETRII FINANSOWEJ

KRZYSZTOF JAJUGA Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Akademia Ekonomiczna we Wrocławiu 25 LAT EKONOMETRII FINANSOWEJ KRZYSZTOF JAJUGA Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Akademia Ekonomiczna we Wrocławiu 25 LAT EKONOMETRII FINANSOWEJ EKONOMETRIA FINANSOWA OKREŚLENIE Modele ekonomerii finansowej są worzone

Bardziej szczegółowo

EFEKT DNIA TYGODNIA NA GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE WSTĘP

EFEKT DNIA TYGODNIA NA GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE WSTĘP Joanna Landmesser Kaedra Ekonomerii i Informayki SGGW e-mail: jgwiazda@mors.sggw.waw.pl EFEKT DNIA TYGODNIA NA GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE Sreszczenie: W pracy zbadano wysępowanie efeku

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Kaarzyna Kuziak Akademia Ekonomiczna

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml

Bardziej szczegółowo

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków

Bardziej szczegółowo

Wyzwania praktyczne w modelowaniu wielowymiarowych procesów GARCH

Wyzwania praktyczne w modelowaniu wielowymiarowych procesów GARCH Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu Wyzwania prakyczne w modelowaniu wielowymiarowych procesów GARCH Wsęp Od zaproponowania przez Engla w 1982 roku jednowymiarowego modelu klasy ARCH, modele

Bardziej szczegółowo

METODY STATYSTYCZNE W FINANSACH

METODY STATYSTYCZNE W FINANSACH METODY STATYSTYCZNE W FINANSACH Krzyszof Jajuga Akademia Ekonomiczna we Wrocławiu, Kaedra Inwesycji Finansowych i Ubezpieczeń Wprowadzenie W osanich kilkunasu laach na świecie obserwuje się dynamiczny

Bardziej szczegółowo

Analiza rynku projekt

Analiza rynku projekt Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes

Bardziej szczegółowo

WYCENA KONTRAKTÓW FUTURES, FORWARD I SWAP

WYCENA KONTRAKTÓW FUTURES, FORWARD I SWAP Krzyszof Jajuga Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Uniwersye Ekonomiczny we Wrocławiu WYCENA KONRAKÓW FUURES, FORWARD I SWAP DWA RODZAJE SYMERYCZNYCH INSRUMENÓW POCHODNYCH Symeryczne insrumeny

Bardziej szczegółowo

Heteroskedastyczność szeregu stóp zwrotu a koncepcja pomiaru ryzyka metodą VaR

Heteroskedastyczność szeregu stóp zwrotu a koncepcja pomiaru ryzyka metodą VaR Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Heeroskedasyczność szeregu sóp zwrou a koncepcja pomiaru ryzyka meodą VaR Wsęp Spośród wielu rodzajów ryzyka

Bardziej szczegółowo

Alicja Ganczarek Akademia Ekonomiczna w Katowicach. Analiza niezależności przekroczeń VaR na wybranym segmencie rynku energii

Alicja Ganczarek Akademia Ekonomiczna w Katowicach. Analiza niezależności przekroczeń VaR na wybranym segmencie rynku energii DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Akademia Ekonomiczna w Kaowicach Analiza

Bardziej szczegółowo

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II

Bardziej szczegółowo

Krzysztof Piontek MODELOWANIE I PROGNOZOWANIE ZMIENNOŚCI INSTRUMENTÓW FINANSOWYCH

Krzysztof Piontek MODELOWANIE I PROGNOZOWANIE ZMIENNOŚCI INSTRUMENTÓW FINANSOWYCH Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informatyki Krzysztof Piontek MODELOWANIE I PROGNOZOWANIE ZMIENNOŚCI INSTRUMENTÓW FINANSOWYCH rozprawa doktorska Promotor: prof.

Bardziej szczegółowo

Krzysztof Piontek Katedra Inwestycji Finansowych i Ubezpiecze Akademia Ekonomiczna we Wrocławiu

Krzysztof Piontek Katedra Inwestycji Finansowych i Ubezpiecze Akademia Ekonomiczna we Wrocławiu Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpiecze Akademia Ekonomiczna we Wrocławiu Zasosowanie modeli klasy ARCH do opisu własnoci szeregu sóp zwrou indeksu WIG Wsp Sporód rónych rodzajów ryzyka

Bardziej szczegółowo

Krzysztof Jajuga Akademia Ekonomiczna we Wrocławiu. Modelowanie stóp procentowych a narzędzia ekonometrii finansowej

Krzysztof Jajuga Akademia Ekonomiczna we Wrocławiu. Modelowanie stóp procentowych a narzędzia ekonometrii finansowej DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Krzyszof Jajuga Akademia Ekonomiczna

Bardziej szczegółowo

Analiza metod oceny efektywności inwestycji rzeczowych**

Analiza metod oceny efektywności inwestycji rzeczowych** Ekonomia Menedżerska 2009, nr 6, s. 119 128 Marek Łukasz Michalski* Analiza meod oceny efekywności inwesycji rzeczowych** 1. Wsęp Podsawowymi celami przedsiębiorswa w długim okresie jes rozwój i osiąganie

Bardziej szczegółowo

OCENA ATRAKCYJNOŚCI INWESTYCYJNEJ AKCJI NA PODSTAWIE CZASU PRZEBYWANIA W OBSZARACH OGRANICZONYCH KRZYWĄ WYKŁADNICZĄ

OCENA ATRAKCYJNOŚCI INWESTYCYJNEJ AKCJI NA PODSTAWIE CZASU PRZEBYWANIA W OBSZARACH OGRANICZONYCH KRZYWĄ WYKŁADNICZĄ Tadeusz Czernik Daniel Iskra Uniwersye Ekonomiczny w Kaowicach Kaedra Maemayki Sosowanej adeusz.czernik@ue.kaowice.pl daniel.iskra@ue.kaowice.pl OCEN TRKCYJNOŚCI INWESTYCYJNEJ KCJI N PODSTWIE CZSU PRZEBYWNI

Bardziej szczegółowo

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE Janusz Sowiński, Rober Tomaszewski, Arur Wacharczyk Insyu Elekroenergeyki Poliechnika Częsochowska Aky prawne

Bardziej szczegółowo

UMK w Toruniu ANALIZA ZALEŻNOŚCI MIĘDZY INDEKSEM WIG A WYBRANYMI INDEKSAMI RYNKÓW AKCJI NA ŚWIECIE

UMK w Toruniu ANALIZA ZALEŻNOŚCI MIĘDZY INDEKSEM WIG A WYBRANYMI INDEKSAMI RYNKÓW AKCJI NA ŚWIECIE Pior Fiszeder UMK w Toruniu ANALIZA ZALEŻNOŚCI MIĘDZY INDEKSEM WIG A WYBRANYMI INDEKSAMI RYNKÓW AKCJI NA ŚWIECIE. Wprowadzenie Rynki kapiałowe na świecie są coraz silniej powiązane. Do najważniejszych

Bardziej szczegółowo

Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak

Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak Ocena wyników zarządzania porelem Analiza i Zarządzanie Porelem cz. 6 Dr Kaarzyna Kuziak Eapy oceny wyników zarządzania porelem: - (porolio perormance measuremen) - Przypisanie wyników zarządzania porelem

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

ZALEŻNOŚCI POMIĘDZY KURSAMI WALUT ŚRODKOWOEUROPEJSKICH W OKRESIE KRYZYSU 2008 *

ZALEŻNOŚCI POMIĘDZY KURSAMI WALUT ŚRODKOWOEUROPEJSKICH W OKRESIE KRYZYSU 2008 * PRZEGLĄD STATYSTYCZNY R. LVII ZESZYT 1 2010 AGATA KLIBER, PAWEŁ KLIBER ZALEŻNOŚCI POMIĘDZY KURSAMI WALUT ŚRODKOWOEUROPEJSKICH W OKRESIE KRYZYSU 2008 * 1. WSTĘP Celem niniejszego badania było zbadanie zależności

Bardziej szczegółowo

Transakcje insiderów a ceny akcji spółek notowanych na Giełdzie Papierów Wartościowych w Warszawie S.A.

Transakcje insiderów a ceny akcji spółek notowanych na Giełdzie Papierów Wartościowych w Warszawie S.A. Agaa Srzelczyk Transakcje insiderów a ceny akcji spółek noowanych na Giełdzie Papierów Warościowych w Warszawie S.A. Wsęp Inwesorzy oczekują od każdej noowanej na Giełdzie Papierów Warościowych spółki

Bardziej szczegółowo

MODELOWANIE KURSÓW WALUTOWYCH NA PRZYKŁADZIE MODELI KURSÓW RÓWNOWAGI ORAZ ZMIENNOŚCI NA RYNKU FOREX

MODELOWANIE KURSÓW WALUTOWYCH NA PRZYKŁADZIE MODELI KURSÓW RÓWNOWAGI ORAZ ZMIENNOŚCI NA RYNKU FOREX Krzyszof Ćwikliński Uniwersye Ekonomiczny we Wrocławiu Wydział Zarządzania, Informayki i Finansów Kaedra Ekonomerii krzyszof.cwiklinski@ue.wroc.pl Daniel Papla Uniwersye Ekonomiczny we Wrocławiu Wydział

Bardziej szczegółowo

MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII

MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII KRZYSZTOF JAJUGA Akademia Ekonomiczna we Wrocławiu MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII. Modele makroekonomiczne a modele sóp procenowych wprowadzenie Nie do podważenia

Bardziej szczegółowo

OeconomiA copernicana. Małgorzata Madrak-Grochowska, Mirosława Żurek Uniwersytet Mikołaja Kopernika w Toruniu

OeconomiA copernicana. Małgorzata Madrak-Grochowska, Mirosława Żurek Uniwersytet Mikołaja Kopernika w Toruniu OeconomiA copernicana 2011 Nr 4 Małgorzaa Madrak-Grochowska, Mirosława Żurek Uniwersye Mikołaja Kopernika w Toruniu TESTOWANIE PRZYCZYNOWOŚCI W WARIANCJI MIĘDZY WYBRANYMI INDEKSAMI RYNKÓW AKCJI NA ŚWIECIE

Bardziej szczegółowo

Prognozowanie średniego miesięcznego kursu kupna USD

Prognozowanie średniego miesięcznego kursu kupna USD Prognozowanie średniego miesięcznego kursu kupna USD Kaarzyna Halicka Poliechnika Białosocka, Wydział Zarządzania, Kaedra Informayki Gospodarczej i Logisyki, e-mail: k.halicka@pb.edu.pl Jusyna Godlewska

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 689 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 50 2012 ANALIZA WŁASNOŚCI OPCJI SUPERSHARE

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 689 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 50 2012 ANALIZA WŁASNOŚCI OPCJI SUPERSHARE ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 689 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 5 212 EWA DZIAWGO ANALIZA WŁASNOŚCI OPCJI SUPERSHARE Wprowadzenie Proces globalizacji rynków finansowych stwarza

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012 MAŁGORZATA WASILEWSKA PORÓWNANIE METODY NPV, DRZEW DECYZYJNYCH I METODY OPCJI REALNYCH W WYCENIE PROJEKTÓW

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA 1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje

Bardziej szczegółowo

specyfikacji i estymacji modelu regresji progowej (ang. threshold regression).

specyfikacji i estymacji modelu regresji progowej (ang. threshold regression). 4. Modele regresji progowej W badaniach empirycznych coraz większym zaineresowaniem cieszą się akie modele szeregów czasowych, kóre pozwalają na objaśnianie nieliniowych zależności między poszczególnymi

Bardziej szczegółowo

Szeregi czasowe, analiza zależności krótkoi długozasięgowych

Szeregi czasowe, analiza zależności krótkoi długozasięgowych Szeregi czasowe, analiza zależności krótkoi długozasięgowych Rafał Weron rweron@im.pwr.wroc.pl Definicje Mając dany proces {X t } autokowariancję definiujemy jako : γ(t, t ) = cov(x t, X t ) = = E[(X t

Bardziej szczegółowo

WARTOŚĆ ZAGROŻONA OPCJI EUROPEJSKICH SZACOWANA PRZEDZIAŁOWO. SYMULACJE

WARTOŚĆ ZAGROŻONA OPCJI EUROPEJSKICH SZACOWANA PRZEDZIAŁOWO. SYMULACJE Daniel Iskra Uniwersye Ekonomiczny w Kaowicach WARTOŚĆ ZAGROŻONA OPCJI EUROPEJSKICH SZACOWANA PRZEDZIAŁOWO. SYMULACJE Wprowadzenie Jednym z aspeków współczesnej ekonomii jes zarządzanie ryzykiem związanym

Bardziej szczegółowo

KONCEPCJA WARTOŚCI ZAGROŻONEJ VaR (VALUE AT RISK)

KONCEPCJA WARTOŚCI ZAGROŻONEJ VaR (VALUE AT RISK) KONCEPCJA WARTOŚCI ZAGROŻONEJ VaR (VALUE AT RISK) Kaarzyna Kuziak Akademia Ekonomiczna we Wrocławiu, Kaedra Inwesycji Finansowych i Ubezpieczeń Wprowadzenie W 1994 roku insyucja finansowa JP Morgan opublikowała

Bardziej szczegółowo

ZASTOSOWANIE FUNKCJI KOPULI W MODELOWNIU INDEKSÓW GIEŁDOWYCH

ZASTOSOWANIE FUNKCJI KOPULI W MODELOWNIU INDEKSÓW GIEŁDOWYCH ZASTOSOWANIE FUNKCJI KOPULI W MODELOWNIU INDEKSÓW GIEŁDOWYCH Jacek Leśkow, Jusyna Mokrzycka, Kamil Krawiec 1 Sreszczenie Współczesne zarządzanie ryzykiem finansowanym opiera się na analizie zwroów szeregów

Bardziej szczegółowo

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia

Bardziej szczegółowo

POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE

POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE Anea Kłodzińska, Poliechnika Koszalińska, Zakład Ekonomerii POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE Sopy procenowe w analizach ekonomicznych Sopy procenowe

Bardziej szczegółowo

Jacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie.

Jacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie. DYNAMICZNE MODELE EKONOMETRYCZNE Jacek Kwiakowski Magdalena Osińska Uniwersye Mikołaja Kopernika Procesy zawierające sochasyczne pierwiaski jednoskowe idenyfikacja i zasosowanie.. Wsęp Większość lieraury

Bardziej szczegółowo

licencjat Pytania teoretyczne:

licencjat Pytania teoretyczne: Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie

Bardziej szczegółowo

PIOTR FISZEDER, JACEK KWIATKOWSKI Katedra Ekonometrii i Statystyki

PIOTR FISZEDER, JACEK KWIATKOWSKI Katedra Ekonometrii i Statystyki PIOTR FISZEDER, JACEK KWIATKOWSKI Kaedra Ekonomerii i Saysyki DYNAMICZNA ANALIZA ZALEŻNOŚCI POMIĘDZY OCZEKIWANĄ STOPĄ ZWROTU A WARUNKOWĄ WARIANCJĄ Sreszczenie: W badaniu zasosowano modele GARCHM ze sałym

Bardziej szczegółowo

Bayesowskie porównanie modeli STUR i GARCH w finansowych szeregach czasowych 1

Bayesowskie porównanie modeli STUR i GARCH w finansowych szeregach czasowych 1 Jacek Kwiakowski Uniwersye Mikołaja Kopernika w Toruniu Bayesowskie porównanie modeli STUR i GARCH w finansowych szeregach czasowych 1 WSTĘP Powszechnie wiadomo, że podsawowymi własnościami procesów finansowych

Bardziej szczegółowo

WYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA NA PRZYKŁADZIE VALUE AT RISK

WYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA NA PRZYKŁADZIE VALUE AT RISK Przemysław Jeziorski Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Zakład Demografii i Saysyki Ekonomicznej przemyslaw.jeziorski@ue.kaowice.pl WYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA

Bardziej szczegółowo

Strukturalne podejście w prognozowaniu produktu krajowego brutto w ujęciu regionalnym

Strukturalne podejście w prognozowaniu produktu krajowego brutto w ujęciu regionalnym Jacek Baóg Uniwersye Szczeciński Srukuralne podejście w prognozowaniu produku krajowego bruo w ujęciu regionalnym Znajomość poziomu i dynamiki produku krajowego bruo wyworzonego w poszczególnych regionach

Bardziej szczegółowo

WPŁYW NIEPEWNOŚCI OSZACOWANIA ZMIENNOŚCI NA CENĘ INSTRUMENTÓW POCHODNYCH

WPŁYW NIEPEWNOŚCI OSZACOWANIA ZMIENNOŚCI NA CENĘ INSTRUMENTÓW POCHODNYCH Tadeusz Czernik Uniwersye Ekonomiczny w Kaowicach WPŁYW NIEPEWNOŚCI OZACOWANIA ZMIENNOŚCI NA CENĘ INTRUMENTÓW POCHODNYCH Wprowadzenie Jednym z filarów współczesnych finansów jes eoria wyceny insrumenów

Bardziej szczegółowo

Daniel Papla Akademia Ekonomiczna we Wrocławiu. Wykorzystanie modelu DCC-MGARCH w analizie zmian zależności wybranych akcji GPW w Warszawie

Daniel Papla Akademia Ekonomiczna we Wrocławiu. Wykorzystanie modelu DCC-MGARCH w analizie zmian zależności wybranych akcji GPW w Warszawie DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 27 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Akademia Ekonomiczna we Wrocławiu Wykorzysanie

Bardziej szczegółowo

Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Katedra Inwestycji Finansowych i Ubezpieczeń

Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Katedra Inwestycji Finansowych i Ubezpieczeń Krzyszof Pionek Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Kaedra Inwesycji Finansowych i Ubezpieczeń Przegląd i porównanie meod oceny modeli VaR Wsęp - Miara VaR Warość zagrożona (warość narażona

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO NR 394 PRACE KATEDRY EKONOMETRII I STATYSTYKI NR 5 4 EWA DZIAWGO Uniwersye Miołaa Kopernia w Toruniu ANALIZA WRA LIWO CI CENY KOSZYKOWEJ OPCJI KUPNA WPROWADZENIE

Bardziej szczegółowo

O PEWNYCH KRYTERIACH INWESTOWANIA W OPCJE NA AKCJE

O PEWNYCH KRYTERIACH INWESTOWANIA W OPCJE NA AKCJE MEODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH om XIII/3, 01, sr 43 5 O EWNYCH KRYERIACH INWESOWANIA W OCJE NA AKCJE omasz Warowny Kaedra Meod Ilościowych w Zarządzaniu oliechnika Lubelska e-mail: warowny@pollubpl

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1 PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,

Bardziej szczegółowo

Ocena efektywności procedury Congruent Specyfication dla małych prób

Ocena efektywności procedury Congruent Specyfication dla małych prób 243 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Ocena efekywności procedury Congruen Specyficaion dla małych prób Sreszczenie. Procedura specyfikacji

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,

Bardziej szczegółowo

OPTYMALIZACJA PORTFELA INWESTYCYJNEGO ZE WZGLĘDU NA MINIMALNY POZIOM TOLERANCJI DLA USTALONEGO VaR

OPTYMALIZACJA PORTFELA INWESTYCYJNEGO ZE WZGLĘDU NA MINIMALNY POZIOM TOLERANCJI DLA USTALONEGO VaR Daniel Iskra Uniwersye Ekonomiczny w Kaowicach OPTYMALIZACJA PORTFELA IWESTYCYJEGO ZE WZGLĘDU A MIIMALY POZIOM TOLERACJI DLA USTALOEGO VaR Wprowadzenie W osanich laach bardzo popularną miarą ryzyka sała

Bardziej szczegółowo

ZJAWISKA SZOKOWE W ROZWOJU GOSPODARCZYM WYBRANYCH KRAJÓW UNII EUROPEJSKIEJ

ZJAWISKA SZOKOWE W ROZWOJU GOSPODARCZYM WYBRANYCH KRAJÓW UNII EUROPEJSKIEJ Anna Janiga-Ćmiel Uniwersye Ekonomiczny w Kaowicach Wydział Zarządzania Kaedra Maemayki anna.janiga-cmiel@ue.kaowice.pl ZJAWISKA SZOKOWE W ROZWOJU GOSPODARCZYM WYBRANYCH KRAJÓW UNII EUROPEJSKIEJ Sreszczenie:

Bardziej szczegółowo

Dendrochronologia Tworzenie chronologii

Dendrochronologia Tworzenie chronologii Dendrochronologia Dendrochronologia jes nauką wykorzysującą słoje przyrosu rocznego drzew do określania wieku (daowania) obieków drewnianych (budynki, przedmioy). Analizy różnych paramerów słojów przyrosu

Bardziej szczegółowo

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XLIII nr 2 (2012)

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XLIII nr 2 (2012) A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XLIII nr 2 (2012) 211 220 Pierwsza wersja złożona 25 października 2011 ISSN Końcowa wersja zaakcepowana 3 grudnia 2012 2080-0339

Bardziej szczegółowo

Estymacja stopy NAIRU dla Polski *

Estymacja stopy NAIRU dla Polski * Michał Owerczuk * Pior Śpiewanowski Esymacja sopy NAIRU dla Polski * * Sudenci, Szkoła Główna Handlowa, Sudenckie Koło Naukowe Ekonomii Teoreycznej przy kaedrze Ekonomii I. Auorzy będą bardzo wdzięczni

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy

Bardziej szczegółowo

Zarządzanie ryzykiem. Lista 3

Zarządzanie ryzykiem. Lista 3 Zaządzanie yzykiem Lisa 3 1. Oszacowano nasępujący ozkład pawdopodobieńswa dla sóp zwou z akcji A i B (Tabela 1). W chwili obecnej Akcja A ma waość ynkową 70, a akcja B 50 zł. Ile wynosi pięciopocenowa

Bardziej szczegółowo

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak ( ) ( ) ( ) i E E E i r r = = = = = θ θ ρ ν φ ε ρ α * 1 1 1 ) ( R. popyu R. Fishera Krzywa Phillipsa

Bardziej szczegółowo

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Barbara Baóg Iwona Foryś PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH Wsęp Koszy dosarczenia wody

Bardziej szczegółowo

WPŁYW WARTOŚCI EKSTREMALNYCH NA ZMIENNOŚĆ STOCHASTYCZNĄ

WPŁYW WARTOŚCI EKSTREMALNYCH NA ZMIENNOŚĆ STOCHASTYCZNĄ Jusyna Majewska Uniwersye Ekonomiczny w Kaowicach WPŁYW WARTOŚCI EKSTREMALNYCH NA ZMIENNOŚĆ STOCHASTYCZNĄ Wprowadzenie Idea modelu zmienności sochasycznej (ang. sochasic volailiy, SV) powsała na podsawie

Bardziej szczegółowo

Czy prowadzona polityka pieniężna jest skuteczna? Jaki ma wpływ na procesy

Czy prowadzona polityka pieniężna jest skuteczna? Jaki ma wpływ na procesy Dobromił Serwa Reakcje rynków finansowych na szoki w poliyce pieniężnej.. Wsęp Czy prowadzona poliyka pieniężna jes skueczna? Jaki ma wpływ na procesy ekonomiczne zachodzące w kraju? Czy jes ona równie

Bardziej szczegółowo

Magdalena Osińska, Marcin Fałdziński Uniwersytet Mikołaja Kopernika w Toruniu. Modele GARCH i SV z zastosowaniem teorii wartości ekstremalnych

Magdalena Osińska, Marcin Fałdziński Uniwersytet Mikołaja Kopernika w Toruniu. Modele GARCH i SV z zastosowaniem teorii wartości ekstremalnych DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarim Nakowe 4 6 września 2007 w Torni Kaedra Ekonomerii i Saysyki Uniwersye Mikołaja Kopernika w Torni Magdalena Osińska Marcin Fałdziński Uniwersye

Bardziej szczegółowo

Nie(efektywność) informacyjna giełdowego rynku kontraktów terminowych w Polsce

Nie(efektywność) informacyjna giełdowego rynku kontraktów terminowych w Polsce Zeszyy Naukowe Uniwersyeu Szczecińskiego nr 862 Finanse, Rynki Finansowe, Ubezpieczenia nr 75 (2015) DOI: 10.18276/frfu.2015.75-16 s. 193 204 Nie(efekywność) informacyjna giełdowego rynku konraków erminowych

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,

Bardziej szczegółowo

POMIAR RYZYKA RYNKOWEGO OPCJI NA PRZYKŁADZIE OPCJI NA WIG20

POMIAR RYZYKA RYNKOWEGO OPCJI NA PRZYKŁADZIE OPCJI NA WIG20 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 450 PRACE KATEDRY EKONOMETRII I STATYSTYKI NR 17 2006 KATARZYNA KUZIAK Akademia Ekonomiczna Wrocław POMIAR RYZYKA RYNKOWEGO OPCJI NA PRZYKŁADZIE OPCJI NA

Bardziej szczegółowo

Metody analizy i prognozowania szeregów czasowych

Metody analizy i prognozowania szeregów czasowych Meody analizy i prognozowania szeregów czasowych Wsęp 1. Modele szeregów czasowych 2. Modele ARMA i procedura Boxa-Jenkinsa 3. Modele rendów deerminisycznych i sochasycznych 4. Meody dekompozycji szeregów

Bardziej szczegółowo

Eliza Buszkowska * DYNAMIKA PRZEPŁYWÓW INWESTYCJI POMIĘDZY GIEŁDAMI

Eliza Buszkowska * DYNAMIKA PRZEPŁYWÓW INWESTYCJI POMIĘDZY GIEŁDAMI ACTA UNIVERSITATIS NICOLAI COPERNICI DOI: hp://dx.doi.org/10.12775/aunc_econ.2014.017 EKONOMIA XLV nr 2 (2014) 275 288 Pierwsza wersja złożona 26 czerwca 2014 ISSN Końcowa wersja zaakcepowana 20 grudnia

Bardziej szczegółowo

Management Systems in Production Engineering No 4(20), 2015

Management Systems in Production Engineering No 4(20), 2015 EKONOMICZNE ASPEKTY PRZYGOTOWANIA PRODUKCJI NOWEGO WYROBU Janusz WÓJCIK Fabryka Druu Gliwice Sp. z o.o. Jolana BIJAŃSKA, Krzyszof WODARSKI Poliechnika Śląska Sreszczenie: Realizacja prac z zakresu przygoowania

Bardziej szczegółowo

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów

Bardziej szczegółowo

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów

Bardziej szczegółowo

dr hab. Renata Karkowska 1

dr hab. Renata Karkowska 1 dr hab. Renata Karkowska 1 Czym jest ryzyko? Rodzaje ryzyka? Co oznacza zarządzanie? Dlaczego zarządzamy ryzykiem? 2 Przedmiot ryzyka Otoczenie bliższe/dalsze (czynniki ryzyka egzogeniczne vs endogeniczne)

Bardziej szczegółowo

PREDYKCJA KURSU EURO/DOLAR Z WYKORZYSTANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WYBRANE MODELE EKONOMETRYCZNE I PERCEPTRON WIELOWARSTWOWY

PREDYKCJA KURSU EURO/DOLAR Z WYKORZYSTANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WYBRANE MODELE EKONOMETRYCZNE I PERCEPTRON WIELOWARSTWOWY B A D A N I A O P E R A C J N E I D E C Z J E Nr 2004 Aleksandra MAUSZEWSKA Doroa WIKOWSKA PREDKCJA KURSU EURO/DOLAR Z WKORZSANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WBRANE MODELE EKONOMERCZNE I PERCEPRON WIELOWARSWOW

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 391 TORUŃ Ewa Dziawgo WYCENA POTĘGOWEJ ASYMETRYCZNEJ OPCJI KUPNA

EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 391 TORUŃ Ewa Dziawgo WYCENA POTĘGOWEJ ASYMETRYCZNEJ OPCJI KUPNA ACTA UNIVERSITATIS NICOLAI COPERNICI EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 391 TORUŃ 2009 Uniwersytet Mikołaja Kopernika w Toruniu Katedra Ekonometrii i Statystyki Ewa Dziawgo WYCENA POTĘGOWEJ

Bardziej szczegółowo

ANNA GÓRSKA MONIKA KRAWIEC Szkoła Główna Gospodarstwa Wiejskiego w Warszawie

ANNA GÓRSKA MONIKA KRAWIEC Szkoła Główna Gospodarstwa Wiejskiego w Warszawie ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 013 ANNA GÓRSKA MONIKA KRAWIEC Szkoła Główna Gospodarswa Wiejskiego w Warszawie BADANIE EFEKTYWNOŚCI INFORMACYJNEJ

Bardziej szczegółowo

PROGRAMOWY GENERATOR PROCESÓW STOCHASTYCZNYCH LEVY EGO

PROGRAMOWY GENERATOR PROCESÓW STOCHASTYCZNYCH LEVY EGO POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 69 Elecrical Engineering 0 Janusz WALCZAK* Seweryn MAZURKIEWICZ* PROGRAMOWY GENERATOR PROCESÓW STOCHASTYCZNYCH LEVY EGO W arykule opisano meodę generacji

Bardziej szczegółowo

Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji

Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji Agnieszka Przybylska-Mazur * Meody badania wpływu zmian kursu waluowego na wskaźnik inflacji Wsęp Do oceny łącznego efeku przenoszenia zmian czynników zewnęrznych, akich jak zmiany cen zewnęrznych (szoki

Bardziej szczegółowo

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU B A D A N I A O P E R A C J N E I D E C Z J E Nr 2 2006 Bogusław GUZIK* SZACOWANIE MODELU RNKOWEGO CKLU ŻCIA PRODUKTU Przedsawiono zasadnicze podejścia do saysycznego szacowania modelu rynkowego cyklu

Bardziej szczegółowo

TESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH

TESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Mariusz Doszyń TESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH Od pewnego czasu w lieraurze ekonomerycznej pojawiają się

Bardziej szczegółowo

Komputerowa analiza przepływów turbulentnych i indeksu Dow Jones

Komputerowa analiza przepływów turbulentnych i indeksu Dow Jones Kompuerowa analiza przepływów urbulennych i indeksu Dow Jones Rafał Ogrodowczyk Pańswowa Wyższa Szkoła Zawodowa w Chełmie Wiesław A. Kamiński Uniwersye Marii Curie-Skłodowskie w Lublinie W badaniach porównano

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK 1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona Sprawdzanie założeń przyjętych o modelu (etap IIIC przyjętego schematu modelowania regresyjnego) 1. Szum 2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Anna Krauze Uniwersye Warmińsko-Mazurski

Bardziej szczegółowo

Beata Stolorz. Słowa kluczowe: opcje, miary wrażliwości, gamma, zomma, model wyceny opcji Blacka Scholesa.

Beata Stolorz. Słowa kluczowe: opcje, miary wrażliwości, gamma, zomma, model wyceny opcji Blacka Scholesa. Zomma współczynnik wrażliwości opcji Beata Stolorz Zomma współczynnik wrażliwości opcji Streszczenie: Jednym z najlepszych narzędzi pomiaru ryzyka opcji są miary wrażliwości. Odzwierciedlają one wpływ

Bardziej szczegółowo

ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYCH INDEKSÓW GIEŁDOWYCH: WIG, WIG20, MIDWIG I TECHWIG

ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYCH INDEKSÓW GIEŁDOWYCH: WIG, WIG20, MIDWIG I TECHWIG Doroa Wikowska, Anna Gasek Kaedra Ekonomerii i Informayki SGGW dwikowska@mors.sggw.waw.pl ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYC INDEKSÓW GIEŁDOWYC: WIG, WIG2, MIDWIG I TECWIG Sreszczenie:

Bardziej szczegółowo