MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW"

Transkrypt

1 Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW Wprowadzenie Współczesne zarządzanie ryzykiem rynkowym opiera się przede wszyskim na rozwiązaniach z obszaru eorii procesów sochasycznych (por. np. Jajuga (1999), Pionek (00), Tsay (00)). Modelowaniu podlegają bądź o szeregi cen, bądź sóp zwrou z insrumenów finansowych. Uzyskane wyniki wykorzysuje się nasępnie w analizie porfelowej, wycenie opcji czy pomiarze ryzyka. W zależności od jakości modelu zmian cen (sóp zwrou) możliwe jes uzyskiwanie wyższych dochodów, lub skueczniejsze zarządzanie ryzykiem. Nic dziwnego, iż zagadnienie, jak najlepszego modelowania zmian cen zaprząa zarówno eoreyków, jak i prakyków rynków finansowych. W szeregach sóp zwrou z insrumenów finansowych obserwuje się szereg ypowych własności (por. np. Jajuga (000), Lamber i Lauren (001), Pionek (00), Tsay (00), Pionek (003) ). Do najczęściej analizowanych należą: efek lepokurozy i grubych ogonów rozkładów sóp zwrou, efek auokorelacji sóp zwrou, efek skupiania (gromadzenia) zmienności, efek dźwigni, efek długiej pamięci w szeregach zmienności (wariancji). Wyniki badań doyczących możliwości opisu wyżej wymienionych własności odnośnie rynku polskiego dla szeregu sóp zwrou z indeksu WIG - zaprezenowano w pracy Pionka (por. Pionek (003)). W niekórych szeregach sóp zwrou obserwuje się jednak dodakowo efek skośności rozkładu sóp zwrou (por. np. Jajuga (000), Jondeau i Rockinger (000), Premarane i Bera (001)). Własność a jes chyba najrzadziej (obok długiej pamięci zmienności) uwzględnianą w modelu własnością szeregów sóp zwrou. Obserwowana poencjalnie w rozkładach sóp zwrou skośność ma jednak znaczne konsekwencje w wycenie opcji (por. Harvey i Siddique 1

2 (000)), konsrukcji porfela (por. Kraus i Lizenberger (1976), Markowiz (1991)) oraz pomiarze ryzyka, np. meodą VaR (por. np. Jorion (001)). Niniejsza praca skupia się więc na przedsawieniu jednego z możliwych podejść w zakresie opisu skośności rozkładu bezwarunkowego oraz jednoczesnego ujęcia przynajmniej niekórych z wymienionych wcześniej własności szeregów. Przedsawione zosaną dwa rozwiązania w zakresie wprowadzenia efeku skośności do (najczęściej osanio wykorzysywanego w analizach prakycznych) rozkładu -Sudena (por. Pionek (00), Pionek (003)). W części empirycznej przedsawione zosaną wyniki badań dla wybranych szeregów sóp zwrou z rynku polskiego. Pokazane zosanie, iż dla niekórych szeregów wprowadzenie do modelu efeku skośności w sposób jednoznaczny poprawia jakość dopasowania i może poencjalnie przynieść wymierne korzyści w procesie np. zarządzania ryzykiem inwesycji. Niniejszy arykuł jes konynuacją wcześniejszej pracy auora (por. Pionek (003)), w kórej zakładano symerię rozkładu resz modelu. Nie wszyskie aspeky modelowania prezenowane we wcześniejszej pracy będą ponownie analizowane. Niekóre zagadnienia porakowane zosaną skróowo. 1. Analizowany model szeregu sóp zwrou Zgodnie z zapowiedzią, w niniejszej pracy rozszerzone zosanie podejście wykorzysywane sandardowo (w ym również we wcześniejszych pracach auora (por. Pionek (00), Pionek(004))) do opisu szeregów sóp zwrou o możliwość opisu skośności rozkładów. Najprosszym sposobem uwzględnienia ewenualnej skośności rozkładu sóp zwrou jes wprowadzenie w rozważanym modelu prosych sóp zwrou: S S r = = µ + ε = µ + h z, (1) 1 S 1 akiego składnika losowego z, kóry ma rozkład skośny 1. Poszczególne oznaczenia o oczywiście (por. Pionek (00)): S - cena w chwili, µ - warunkowa warość oczekiwana sopy zwrou w chwili ( E [ r I ] µ 1 = ),

3 h - warunkowa wariancja sopy zwrou w chwili ( var [ ] h = r I 1 ), z - niezależne (sandaryzowane) reszy modelu o zerowej średniej i jednoskowej 1 wariancji, z = iid D(0,1), I - informacja dosępna w chwili -1. Zagadnienia związane z modelowaniem szeregów sóp zwrou ( r ), dzieli się w sposób nauralny na 3 obszary (por. Pionek (00), Tsay (00)): modelowanie warunkowej warości oczekiwanej procesu ( µ ), modelowanie warunkowej wariancji procesu ( h ), wybór posaci funkcji gęsości sandaryzowanych resz modelu ( z ). Wszyskie 3 zagadnienia należy rozparywać łącznie, gdyż wzajemnie wpływają na siebie i wspólnie deerminują własności i jakość osaecznego modelu. Waro zaznaczyć, iż osaeczny model można budować,,jak z klocków'' łącząc poszczególne możliwe rozwiązania. Podsawowe modele w zakresie powyższych obszarów z zasosowaniem do opisu własności szeregu sóp zwrou z indeksu WIG zaprezenowane zosały w pracy Pionka (por. Pionek (003)). W niniejszej pracy zrezygnowano z opisu długiej pamięci szeregu zmienności i do dalszych analiz wykorzysano najpopularniejsze ypowe rozwiązania w zakresie opisu warunkowej warości oczekiwanej oraz warunkowej wariancji. Umożliwia o porównanie w dalszej części pracy ypowych, sosowanych w prakyce rozwiązań z modelem rozszerzonym. Do opisu warunkowej warości oczekiwanej przyjęo model auoregresyjny rzędu pierwszego: [ ] µ = E r I = µ + ϕr, () 1 1 naomias w opisie warunkowej wariancji oparo się na modelu GJR-GARCH(1,1), kóry umożliwia, oprócz efeku gromadzenia zmienności i grubych ogonów rozkładu bezwarunkowego, opis efeku dźwigni (por. Pionek (00), Tsay (00), Pionek (003)): gdzie: ( ( ε ) ) 1 < 0 h = ω + α + α I ε + β h, (3) I 1 1 ( p) 1; gdy p = prawda =. (4) 0; gdy p = falsz 1 Innym, nierozparywanym w ej pracy podejściem jes wprowadzenie do modelu danego wzorem (1) części związanej ze skokami, o odpowiednio zadanym rozkładzie, co prowadzi do dyskrenej wersji zw. modelu skoku i dyfuzji (jump-diffusion model) (por. Pionek (00)). 3

4 W zakresie możliwych, sandaryzowanych resz modelu wykorzysuje się w prakyce przede wszyskim rozkład normalny oraz rozkłady o możliwych do uzyskania grubych ogonach rozkład -Sudena oraz uogólniony rozkład błędu (General Error Disribuion, GED). Te dwa osanie rozkłady zyskały popularność, gdyż przy prosej posaci umożliwiają opis grubych ogonów oraz akie przeskalowanie, by miały zerową warość oczekiwaną oraz jednoskową wariancję, co powoduje, że µ oraz h pozosają nadal warunkową warością oczekiwaną i warunkową wariancją. Badania empiryczne wykazały, że modele z rozkładami o poencjalnie grubych ogonach przewyższają modele z rozkładem normalnym (por. np. Jondenau i Rockinger (000), Lamber i Lauren (001), Pionek (00), Tsay (00)). Rozkład GED opisuje zazwyczaj lepiej własności rozkładów sandaryzowanych resz modelu wokół modalnej, naomias rozkład -Sudena opisuje lepiej ogony rozkładów resz. Ponieważ pojęcie ryzyka związane jes z ogonami rozkładów, większą uwagę zwrócono w zagadnieniach finansowych na rozkład -Sudena. Aby poprawić jakość dopasowania modeli, poszukiwano więc akiej modyfikacji rozkładu -Sudena, by uzyskać rozkład o zerowej średniej, jednoskowej wariancji oraz ewenualnej asymerii.. Wprowadzenie skośności do rozkładów symerycznych Efek skośności można wprowadzić do dowolnego rozkładu symerycznego o gęsości g( ) odpowiednio przekszałcając posać rozkładu na lewo i prawo od dominany. Każda z połówek orzymanego rozkładu jes fragmenem bazowego rozkładu symerycznego o innych paramerach. W ogólności, aby orzymać skośny rozkład f ( x ) na bazie rozkładu g( x ), wykorzysuje się nasępujące przekszałcenie (por. Arellano-Valle i Gomez (003)): gdzie: x x f ( x ψ ) = g I( x 0) + g I ( x< 0) a ( ψ ) + b( ψ ) a ( ψ ) b( ψ ) a ( ψ ), b( ψ ) - odpowiednio dobrane funkcje normujące, ψ - paramer wprowadzający skośność,, (5) Sosunek odpowiednich prawdopodobieńsw, mogący być miarą asymerii, dla ak wprowadzonego rozkładu skośnego wynosi: Możliwe jes oczywiście również zasosowanie rozkładów, kórych posać gęsości zawiera od razu paramer skośności, np. rozkładów hiperbolicznych, czy rozkładu Pearsona ypy IV-ego. Rozkłady e cieszą się jednak do ej pory mniejszą popularnością w prakyce, niż podejście prezenowane w dalszej części pracy. 4

5 ( 0 ψ ) ( < 0 ψ ) P X P X a = b ( ψ ) ( ψ ). (6) Najpopularniejsze dwa przekszałcenia opierają się na nasępujących posaciach funkcji normujących: i. ( ) a ξ 1 = ξ oraz b( ξ ) = ξ, (7) ii. a ( λ) = 1 λ oraz b( λ) 1 = + λ. (8) Pozosawiono zwyczajowe oznaczenia paramerów wprowadzających skośność sosowane w obu ych podejściach. Rozwiązania e prowadzą do nasępujących posaci rozkładów skośnych: ad i. (por. Fernandez i Sell (1998), Pipień i Osiewalski (1999), Lamber i Lauren (001)): x f x g x I g I ξ + ξ ξ ( ξ ) = ( ξ ) ( 0) + < ( 0) 1 x x Uzyskany w en sposób rozkład f ( ), (9) x ξ jes rozkładem jednomodalnym, o modalnej akiej samej jak rozkład g( x ) oraz paramerze skośności ξ > 0. Dla ξ (0,1) orzymujemy rozkład lewosronnie skośny, a dla ξ (1, + ) rozkład prawosronnie skośny. Alernaywnie paramer skośności można zdefiniować jako ξ ' = ln( ξ ), co pozwala powiązać znak parameru z kierunkiem skośności. ad ii. (por. Hansen (1994), Jondeau i Rockinger (000)): x x f x g I g I 1+ λ 1 λ ( λ ) = ( x 0) + < ( x 0) Uzyskany rozkład f ( ). (10) x λ jes również rozkładem jednomodalnym, o modalnej akiej samej jak rozkład g( x ) oraz paramerze skośności λ < 1. Dla λ ( 1,0) orzymujemy rozkład lewosronnie skośny, a dla λ (0,1) rozkład prawosronnie skośny. Waro zaznaczyć, że zesawiając wzory (6), (7), (8) możnaby sądzić, że dla parameryzacji 1 λ ξ = 1 + λ uzyskuje się en sam rozkład, co nie jes prawdą (por. Arellano-Valle i Gomez (003)). Na podsawie powyższej procedury można nadać skośność dowolnym rozkładom symerycznym, np. rozkładowi normalnemu, -Sudena, GED. Największą popularność, ze względu na możliwość modelowania jednocześnie grubych ogonów i skośności oraz ze (11) 5

6 względu na sosunkowo prosą posać maemayczną rozkładu bazowego i skośnego, zyskał skośny rozkład -Sudena. 3. Skośne rozkłady -Sudena Po zasosowaniu powyższych procedur (wzorów (9) i (10)) do sandaryzowanego rozkładu -Sudena danego wzorem: gdzie Γ + 1 Γ x g ( x) = 1+ ( ) ( ν Γ ν π ) z 1 x ( z) = x e dx 0 ν + 1, (1), uzyskuje się skośne rozkłady -Sudena. Rozkłady e posiadają jednak jedną podsawową wadę. Nie mają zerowej średniej oraz jednoskowej wariancji, a co za ym idzie paramery µ oraz h (por. wzór (1)) nie są warunkową warością oczekiwaną oraz warunkową wariancją, a jedynie modalną oraz pewną miarą dyspersji. Niedogodność ę można wyeliminować przez zasosowanie jeszcze procedury sandaryzującej. Niezbędne jes więc dokonanie nasępujących przekszałceń: ad i. (por. np. Lamber i Lauren (001)): s s z + m f ( z ξ, ν ) = g ( ξ ( s z + m) ν ) I + g ν I z ξ + ξ s ξ gdzie odpowiednio: 1 Γ ν 1 m = ξ, ξ π Γ m m 1 < z s ad ii. (por. Hansen (1994), Jondeau E., Rockinger M. (000)) b z + a b z + a f ( z λ, ν ) = b g I + b g I a 1+ λ z 1 λ gdzie odpowiednio: a < z b b s, (13) 1 = ξ + 1 m. (14) ξ, (15) 6

7 a 4 c ν λ ν 1, b 1+ 3λ a, c + 1 Γ. (16) π ( ν ) Γ Więcej szczegółów, a w ym odpowiednie wzory na momeny rozkładów skośnych -Sudena danych wzorami (13) i (15) oraz na zależności pomiędzy skośnością i kurozą, a paramerami ν oraz ξ lub λ znaleźć można np. w pracach Lambera i Laurena (001) oraz Jondeau a i Rockingera (000). Waro zaznaczyć, iż w obu przypadkach skośność i kuroza rozkładu zależą od obu paramerów. W obu przypadkach zaproponowane modyfikacje rozkładów mogą zosać w prosy sposób uwzględnione w modelach sóp zwrou z warunkową warością oczekiwaną i z warunkową wariancją. Waro zaznaczyć, iż wprowadzenie do modelu klasy GARCH rozkładu warunkowego o pewnej skośności skukuje rozkładem bezwarunkowym o większej asymerii. Zmienna z we wzorach (13) i (15) o sandaryzowana resza modelu (1) zadana wzorem: z ε =. (17) h W prakyce wzór (1) ma więc posać: + 1 Γ 1/ ν + 1 h ε g( ε, h ; θ ) = 1+ ( ) ( ν ) h Γ ν π, (18) gdzie θ o wekor paramerów modelu związanych z warunkową warością oczekiwaną oraz z warunkową wariancją ; θ = µ, ϕ, ω, α, α, β. Z obu rozwiązań wprowadzających skośność do rozkładu -Sudena większą popularnością w zagadnieniach finansowych wydaje się cieszyć rozwiązanie zadane wzorami (13) i (14). Ze względu na ograniczone rozmiary pracy, dalsza część rozważań doyczyć będzie jedynie ej modyfikacji. Na rysunku 1. przedsawiono skośny rozkład -Sudena uzyskany według procedury zaproponowanej przez Fernandeza i Seela dla paramerów ξ = 0, 75 oraz ν = 4. Jes o rozkład sandaryzowany o średniej równej zero, wariancji równej jeden oraz lewosronnej asymerii. Obok przedsawiono sandaryzowany symeryczny rozkład -Sudena również o 4 sopniach swobody. Efek asymerii jes ławo dosrzegalny. 7

8 Rys. 1. Przykładowy, sandaryzowany, skośny rozkład -Sudena Źródło: obliczenia własne. Pomimo dość skomplikowanej posaci wzoru funkcji gęsości sandaryzowanego skośnego rozkładu -Sudena, jego aplikacja nie nasręcza większych rudności. Paramery modelu wyznacza się meodą największej wiarygodności. Poniżej zaprezenowany zosał empiryczny dla danych z rynku polskiego. 4. Przekład empiryczny Celem przykładu empirycznego jes zobrazowanie możliwości wykorzysania modeli z warunkową warością oczekiwaną oraz warunkową wariancją do opisu własności szeregu sóp zwrou, gdy sandaryzowane reszy modelu mają rozkład -Sudena, kóry może być skośny. Próbę do badań sanowił szereg prosych, dziennych sóp zwrou liczonych według cen zamknięcia rynku w kolejnych dniach sesyjnych z indeksu WIG oraz z pewnej grupy akcji 3. Łączna długość analizowanych szeregów o 1556 obserwacji (od r. do r.). Esymacji paramerów analizowanych procesów dokonano za pomocą pakieu Laurena i Peersa 3.0. napisanego w języku Ox sworzonego przez Doornika i Oomsa (por. Do wyboru opymalnej posaci modelu wykorzysano (ze względu na fak, że rozparywane modele zawierają się w sobie) es opary na warościach funkcji wiarygodności (Likelihood Raio Tes) dany nasępującą saysyką: LRT = ( LLF 1 LLF ), (19) 0 3 Do analiz wybrano spółki, kóre były noowane od sycznia 1998, oraz w szeregach noowań kórych było niewiele brakujących obserwacji wynikających np. z zawieszenia noowań. 8

9 gdzie: LLF 1 - warość logarymu funkcji największej wiarygodności dla modelu z mniejszą liczbą resrykcji, LLF 0 - warość logarymu funkcji największej wiarygodności dla modelu z większą liczbą resrykcji. Saysyka LRT ma rozkład χ z ilością sopni swobody równą różnicy w liczbie resrykcji modeli. Dla różnicy resrykcji równej 1 (model z rozkładem -Sudena a model z rozkładem normalnym oraz model ze skośnym rozkładem -Sudena a model z symerycznym rozkładem -Sudena) warość kryyczna esu wynosi 3,841. Rozparywano model AR(1)-GJR-GARCH(1,1) z warunkowym skośnym rozkładem -Sudena. W modelu akim zawierają się oczywiście ypowe modele z reszami zadanymi rozkładem normalnym (ν, ξ = 1) oraz symerycznym rozkładem -Sudena ( ξ = 1). W szeregach sóp zwrou pojawiają się obserwacje nieypowe (eksremalne) o szczególnie dużych warościach bezwzględnych, znacznie wykraczających czasami poza obszar 4 lub 5 odchyleń sandardowych od średniej. Pojedyncze akie obserwacje mogą znacznie zaburzyć warości parameru skośności oraz kurozy. Tesy asymerii rozkładu opierają się na założeniu o normalności rozkładu. W przypadku danych finansowych ypu szeregi sóp zwrou esy e są mało przydane ze względu na znaczną lepokurozę rozkładów. Pojawiły się propozycje esów skośności możliwych do zasosowania w przypadku danych lepokuroycznych, kóre opierają się na eście isoności parameru skośności dla rozkładu Pearsona ypu IV (por. Premarane, Bera (001)). W niniejszej pracy zasosowano jednak podejście odmienne. Wszyskie obserwacje wykraczające poza obszar 4 odchyleń sandardowych 4 zmodyfikowano, nadając im warości z krańców przedziału 4 sigm, co powinno zmniejszyć wpływ pojedynczych obserwacji nieypowych na paramer skośności. Te pojedyncze zdarzania eksremalne powinno się modelować za pomocą rozkładów o jeszcze grubszych ogonach niż rozkład -Sudena (np. rozkład Pearsona ypu IV), lub co częściej spoykane za pomocą odpowiednio wprowadzanych do modelu skoków warości procesu (modele wywodzące się z modeli jump-diffusion dla czasu ciągłego). Tabela 1. prezenuje wyniki wybranych saysyk opisowych dla szeregów sóp zwrou z indeksu WIG oraz z akcji Compuerlandu, Jupiera, Jurzenki, Kghmu, Okocimia, Rolimpexu, Sokołowa, Swarzędza Świecia i Wólczanki dla szeregów pierwonych oraz dla szeregów zmodyfikowanych w zakresie obserwacji nieypowych (eksremalnych). Liczba zmodyfikowanych zdarzeń w ych szeregach waha się od 4 do 10, co w przypadku analizowanych szeregów o długościach 1556 obserwacji sanowi nieznaczną ilość. 4 Przedział 4 sigm zosał wybrany przez auora subiekywnie. 9

10 Rysunek. prezenuje hisogram sóp zwrou dla spółki OPTIMUS wraz z zaznaczonymi obserwacjami uznanymi za nieypowe. Tab. 1. Charakerysyki rozkładów wybranych insrumenów ze zdarz. eksrem. bez zdarz. eksrem. Spółka Skośność Kuroza Skośność Kuroza lzzn * WIG -0,064 5,536 0,016 4,6 5 COMPLAND 0,557 6,61 0,357 5,35 9 JUPITER 0,6 8,717 0,314 6, JUTRZENKA 0,76 8,438 0,454 6, KGHM 0,590 6,41 0,358 4,814 6 OKOCIM 0,873 6,804 0,638 5,76 7 ROLIMPEX 1,383 13,7 0,55 6, SOKOLOW 0,7 8,48 0,505 6,096 9 SWARZEDZ 0,713 8,447 0,315 5,16 4 SWIECIE -0,969 1,381 0,149 6,49 9 WOLCZANKA 0,873 11,150 0,519 6,569 9 * lzzn liczba zmodyfikowanych zdarzeń nieypowych Źródło: obliczenia własne. Rys.. Hisogram sóp zwrou z akcji spółki OPTIMUS wraz dopasowanym rozkładem normalnym Źródło: obliczenia własne. usunięe obserwacje Prezenowane wyniki obrazują wysępowanie efeku ypowej, prawosronnej asymerii rozkładów oraz podwyższonej kurozy. Do dalszej analizy wybrano indeks WIG, by w pewnym sopniu uzupełnić badania z wcześniejszej pracy auora (por. Pionek (003)) oraz spółkę OKOCIM, gdyż w rozkładzie bezwarunkowym jej (zmodyfikowanych) sóp zwrou obserwowana była największa skośność skośność. Tabela prezenuje wyniki esymacji warości paramerów modeli dla sandaryzowanych resz o rozkładzie normalnym, symerycznym -Sudena oraz skośnym -Sudena. Podane zosały również warości saysyk dla poszczególnych paramerów oraz warości funkcji największej wiarygodności. Dla obu szeregów paramery odpowiedzialne za opis auokorelacji, gromadzenia zmienności, dźwigni oraz grubych ogonów rozkładów warunkowych są isonie różne od zera (przy poziomie isoności 0,05). W modelu szeregu sóp zwrou dla spółki OKOCIM warunkowy rozkład resz posiada grubsze ogony. Dodakowo paramer wprowadzający skośność do rozkładu warunkowych resz jes nieisonie różny od zera dla szeregu sóp zwrou z indeksu WIG oraz jes isonie różny od zera dla szeregu sóp zwrou z akcji spółki OKOCIM. Także esy LRT dla obu szeregów preferują modele z rozkładami o grubych ogonach (rozkład normalny konra rozkład - 10

11 Sudena), lecz jedynie dla OKOCIMia uzyskuje się przewagę modelu z asymerią w rozkładzie resz modelu. Wynik en powierdza badania dla innych rynków, iż w szeregach sóp zwrou z indeksów obserwuje się znacznie mniejszą asymerie rozkładów niż dla pojedynczych akcji (por. również Tab. 1.). Osaecznie dla indeksu WIG najlepszym okazał się model z symerycznym rozkładem -Sudena, naomias dla akcji OKOCIM model z rozkładem asymerycznym. Tabela. Paramery modeli dla szeregów sóp zwrou z WIGu i spółki OKOCIM wyniki dla szeregu sóp zwrou z indeksu WIG rozkład normalny rozkład -Sudena skośny rozkł. -Sud. warość -sa. warość -sa. warość -sa. µ 0, ,7668 0, ,4361 0,0003 0,7641 ϕ 0, ,56 0, ,7 0,0879 3,343 ω 3,769E-6 3,36 3,5846E-6,419 3,6371E-6,43 α 0, ,15 0, ,30 0, ,1 β 0, ,09 0, ,96 0, ,69 α 0,037347,697 0,045159,318 0,046753,394 ν ,560 3,436 10, ,416 ξ , ,39 LLF 4346,6 4356, ,358 wyniki dla szeregu sóp zwrou ze spółki OKOCIM rozkład normalny rozkład -Sudena skośny rozkł. -Sud. µ -,6E-05-0, , ,397-0, ,419 ϕ -0,085-1,07-0, ,31-0,087-3,604 ω,768e-5 6,618,0980E-5 3,15 1,7457E-5 3,054 α 0, ,869 0, ,168 0,167 4,084 β 0, ,48 0, ,43 0,7991 9,87 α 0, ,65 0,837 3,464 0, ,594 ν - - 3, ,453 3, ,855 ξ ,1876 3,444 LLF 3641, , ,704 Powyżej zaprezenowano przydaność modelu ze skośnym rozkładem resz do opisu szeregu sóp zwrou ze spółki OKOCIM. Uzyskane wyniki mogą zosać nasępnie wykorzysane w procesie np. zarządzania ryzykiem inwesycji (wybór spółek do porfela i usalanie opymalnego składu porfela, wycena opcji, pomiar ryzyka). W pracy zaprezenowane zosało najprossze, ypowe rozwiązanie w zakresie opisu skośności, w kórym paramer skośności pozosaje sały w czasie. Akualne badania w zakresie opisu skośności skupiają się wokół dwóch obszarów: 11

12 1) zasosowania odmiennych skośnych rozkładów resz (popularność zyskuje rozkład Pearsona IV ypu, kóry umożliwia opis skośności oraz jeszcze grubszych ogonów niż dla rozkładu -Sudena 5 ), ) wprowadzenia zmiennego w czasie parameru skośności, kóry zależy również od napływających informacji (por. np. Hansen (1994)). Zasygnalizowane rozwiązania saną się obiekami dalszych badań auora. Lieraura Arellano-Valle R., Gomez H., Quinana F. (003) Saisical Inerference for a General Class of Asymmeric Disribuions, hp:// Fernandez C., Seel M., 1998, On Beyesian Modeling of Fa Tails and Skewness, Journal of he American Saisical Associaion, 93, sr Hansen B., (1994), Auoregressive condiional densiy Esimaion, Inernaional Economic Review, vol. 35, no. 3, sr Harvey C., Siddique A., 000, Condiional Skewness in Asse Pricing Tess, Journal of Finance, 55, sr , faculy.fuqua.duke.edu/~charvey Jajuga K. (1999). Nowe endencje w zarządzaniu ryzykiem finansowym, Rynek Terminowy, 3, Peneraor, Kraków Jajuga K. (000). Meody ekonomeryczne i saysyczne a analizie rynku kapiałowego. Wydawnicwo Akademii Ekonomicznej we Wrocławiu, Wrocław (pod red.) Jondeau E., Rockinger M. (000). Condiional Volailiy, Skewness and Kurosis: Exisence and Persisence, Banque de France, Jorion P., Value a Risk: he new benchmark for conrolling marke risk, nd ediion, McGraw- Hill, 001 Kraus A., Lizenberg R., 1976, Skewness Preference and he Valuaion of Risk Asses, Journal of Finance, 31, sr Lamber P., Lauren S. (001) Modelling financial ime series using GARCH-ype models wih a skewed Suden disribuion for he innovaions, Markowiz H., 1991, Porfolio selecion: Efficien Diversificaion of Invesmens, Basil Blackwell, Oxford 5 Rozkład Pearsona ypu IV zawiera w sobie rozkład -Sudena (por. Premarane, Bera (001)). 1

13 Pionek K., 00, Modelowanie i prognozowanie zmienności insrumenów finansowych, (praca dokorska), Akademia Ekonomiczna we Wrocławiu, Wrocław Pionek K., 003, Zasosowanie modeli klasy ARCH do opisu własności szeregu sóp zwrou indeksu WIG, Ekonomeria, Zeszyy Naukowe Akademii Ekonomicznej we Wrocławiu, (w druku) Premarane G., Bera A. (001) A Tes for Asymmery wih Lepokuric Financial Daa, Universiy of Illinois, Singleon J., Wingender J., 1986, Skewness Persisence in Common Sock Reurns, Journal of Financial and Quaniaive Analysis, 1, sr , Tsay R. (00). Analysis of Financial Time Series. Wiley and Sons. Chicago 13

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Wsęp MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Nowoczesne echniki zarządzania ryzykiem rynkowym

Bardziej szczegółowo

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015 Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 2083-86 Nr 29 205 Alicja Ganczarek-Gamro Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Kaedra Demografii

Bardziej szczegółowo

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE Paweł Kobus, Rober Pierzykowski Kaedra Ekonomerii i Informayki SGGW e-mail: pawel.kobus@saysyka.info EFEKT DŹWIGNI NA GPW W WARSZAWIE Sreszczenie: Do modelowania asymerycznego wpływu dobrych i złych informacji

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODEE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Joanna Małgorzaa andmesser Szkoła Główna

Bardziej szczegółowo

Wyzwania praktyczne w modelowaniu wielowymiarowych procesów GARCH

Wyzwania praktyczne w modelowaniu wielowymiarowych procesów GARCH Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu Wyzwania prakyczne w modelowaniu wielowymiarowych procesów GARCH Wsęp Od zaproponowania przez Engla w 1982 roku jednowymiarowego modelu klasy ARCH, modele

Bardziej szczegółowo

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20 Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informayki Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Krzyszof Pionek Weryfikacja modeli Blacka-Scholesa oraz AR-GARCH

Bardziej szczegółowo

MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. 1. Wstęp

MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. 1. Wstęp WERSJA ROBOCZA - PRZED POPRAWKAMI RECENZENTA Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. Wsęp Spośród wielu rodzajów ryzyka, szczególną

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml

Bardziej szczegółowo

Krzysztof Piontek MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR

Krzysztof Piontek MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR Inwesycje finansowe i ubezpieczenia endencje świaowe a rynek polski Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR Wsęp Konieczność

Bardziej szczegółowo

METODY STATYSTYCZNE W FINANSACH

METODY STATYSTYCZNE W FINANSACH METODY STATYSTYCZNE W FINANSACH Krzyszof Jajuga Akademia Ekonomiczna we Wrocławiu, Kaedra Inwesycji Finansowych i Ubezpieczeń Wprowadzenie W osanich kilkunasu laach na świecie obserwuje się dynamiczny

Bardziej szczegółowo

Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Katedra Inwestycji Finansowych i Ubezpieczeń

Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Katedra Inwestycji Finansowych i Ubezpieczeń Krzyszof Pionek Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Kaedra Inwesycji Finansowych i Ubezpieczeń Przegląd i porównanie meod oceny modeli VaR Wsęp - Miara VaR Warość zagrożona (warość narażona

Bardziej szczegółowo

Krzysztof Piontek Katedra Inwestycji Finansowych i Ubezpiecze Akademia Ekonomiczna we Wrocławiu

Krzysztof Piontek Katedra Inwestycji Finansowych i Ubezpiecze Akademia Ekonomiczna we Wrocławiu Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpiecze Akademia Ekonomiczna we Wrocławiu Zasosowanie modeli klasy ARCH do opisu własnoci szeregu sóp zwrou indeksu WIG Wsp Sporód rónych rodzajów ryzyka

Bardziej szczegółowo

Ocena efektywności procedury Congruent Specyfication dla małych prób

Ocena efektywności procedury Congruent Specyfication dla małych prób 243 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Ocena efekywności procedury Congruen Specyficaion dla małych prób Sreszczenie. Procedura specyfikacji

Bardziej szczegółowo

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA Joanna Górka * Efeky agregacji czasowej szeregów finansowych a modele klasy Sign RCA Wsęp Wprowadzenie losowego parameru do modelu auoregresyjnego zwiększa możliwości aplikacyjne ego modelu, gdyż pozwala

Bardziej szczegółowo

OCENA ATRAKCYJNOŚCI INWESTYCYJNEJ AKCJI NA PODSTAWIE CZASU PRZEBYWANIA W OBSZARACH OGRANICZONYCH KRZYWĄ WYKŁADNICZĄ

OCENA ATRAKCYJNOŚCI INWESTYCYJNEJ AKCJI NA PODSTAWIE CZASU PRZEBYWANIA W OBSZARACH OGRANICZONYCH KRZYWĄ WYKŁADNICZĄ Tadeusz Czernik Daniel Iskra Uniwersye Ekonomiczny w Kaowicach Kaedra Maemayki Sosowanej adeusz.czernik@ue.kaowice.pl daniel.iskra@ue.kaowice.pl OCEN TRKCYJNOŚCI INWESTYCYJNEJ KCJI N PODSTWIE CZSU PRZEBYWNI

Bardziej szczegółowo

KONCEPCJA WARTOŚCI ZAGROŻONEJ VaR (VALUE AT RISK)

KONCEPCJA WARTOŚCI ZAGROŻONEJ VaR (VALUE AT RISK) KONCEPCJA WARTOŚCI ZAGROŻONEJ VaR (VALUE AT RISK) Kaarzyna Kuziak Akademia Ekonomiczna we Wrocławiu, Kaedra Inwesycji Finansowych i Ubezpieczeń Wprowadzenie W 1994 roku insyucja finansowa JP Morgan opublikowała

Bardziej szczegółowo

OPTYMALIZACJA PORTFELA INWESTYCYJNEGO ZE WZGLĘDU NA MINIMALNY POZIOM TOLERANCJI DLA USTALONEGO VaR

OPTYMALIZACJA PORTFELA INWESTYCYJNEGO ZE WZGLĘDU NA MINIMALNY POZIOM TOLERANCJI DLA USTALONEGO VaR Daniel Iskra Uniwersye Ekonomiczny w Kaowicach OPTYMALIZACJA PORTFELA IWESTYCYJEGO ZE WZGLĘDU A MIIMALY POZIOM TOLERACJI DLA USTALOEGO VaR Wprowadzenie W osanich laach bardzo popularną miarą ryzyka sała

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Kaarzyna Kuziak Akademia Ekonomiczna

Bardziej szczegółowo

Transakcje insiderów a ceny akcji spółek notowanych na Giełdzie Papierów Wartościowych w Warszawie S.A.

Transakcje insiderów a ceny akcji spółek notowanych na Giełdzie Papierów Wartościowych w Warszawie S.A. Agaa Srzelczyk Transakcje insiderów a ceny akcji spółek noowanych na Giełdzie Papierów Warościowych w Warszawie S.A. Wsęp Inwesorzy oczekują od każdej noowanej na Giełdzie Papierów Warościowych spółki

Bardziej szczegółowo

specyfikacji i estymacji modelu regresji progowej (ang. threshold regression).

specyfikacji i estymacji modelu regresji progowej (ang. threshold regression). 4. Modele regresji progowej W badaniach empirycznych coraz większym zaineresowaniem cieszą się akie modele szeregów czasowych, kóre pozwalają na objaśnianie nieliniowych zależności między poszczególnymi

Bardziej szczegółowo

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Marcin Gajewski Uniwersye Łódzki 4.12.2008 Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Niezabazpieczony UIP)

Bardziej szczegółowo

EFEKT DNIA TYGODNIA NA GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE WSTĘP

EFEKT DNIA TYGODNIA NA GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE WSTĘP Joanna Landmesser Kaedra Ekonomerii i Informayki SGGW e-mail: jgwiazda@mors.sggw.waw.pl EFEKT DNIA TYGODNIA NA GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE Sreszczenie: W pracy zbadano wysępowanie efeku

Bardziej szczegółowo

ZASTOSOWANIE FUNKCJI KOPULI W MODELOWNIU INDEKSÓW GIEŁDOWYCH

ZASTOSOWANIE FUNKCJI KOPULI W MODELOWNIU INDEKSÓW GIEŁDOWYCH ZASTOSOWANIE FUNKCJI KOPULI W MODELOWNIU INDEKSÓW GIEŁDOWYCH Jacek Leśkow, Jusyna Mokrzycka, Kamil Krawiec 1 Sreszczenie Współczesne zarządzanie ryzykiem finansowanym opiera się na analizie zwroów szeregów

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

Magdalena Osińska, Marcin Fałdziński Uniwersytet Mikołaja Kopernika w Toruniu. Modele GARCH i SV z zastosowaniem teorii wartości ekstremalnych

Magdalena Osińska, Marcin Fałdziński Uniwersytet Mikołaja Kopernika w Toruniu. Modele GARCH i SV z zastosowaniem teorii wartości ekstremalnych DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarim Nakowe 4 6 września 2007 w Torni Kaedra Ekonomerii i Saysyki Uniwersye Mikołaja Kopernika w Torni Magdalena Osińska Marcin Fałdziński Uniwersye

Bardziej szczegółowo

Heteroskedastyczność szeregu stóp zwrotu a koncepcja pomiaru ryzyka metodą VaR

Heteroskedastyczność szeregu stóp zwrotu a koncepcja pomiaru ryzyka metodą VaR Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Heeroskedasyczność szeregu sóp zwrou a koncepcja pomiaru ryzyka meodą VaR Wsęp Spośród wielu rodzajów ryzyka

Bardziej szczegółowo

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków

Bardziej szczegółowo

OeconomiA copernicana. Małgorzata Madrak-Grochowska, Mirosława Żurek Uniwersytet Mikołaja Kopernika w Toruniu

OeconomiA copernicana. Małgorzata Madrak-Grochowska, Mirosława Żurek Uniwersytet Mikołaja Kopernika w Toruniu OeconomiA copernicana 2011 Nr 4 Małgorzaa Madrak-Grochowska, Mirosława Żurek Uniwersye Mikołaja Kopernika w Toruniu TESTOWANIE PRZYCZYNOWOŚCI W WARIANCJI MIĘDZY WYBRANYMI INDEKSAMI RYNKÓW AKCJI NA ŚWIECIE

Bardziej szczegółowo

Niestacjonarne zmienne czasowe własności i testowanie

Niestacjonarne zmienne czasowe własności i testowanie Maeriał dla sudenów Niesacjonarne zmienne czasowe własności i esowanie (sudium przypadku) Nazwa przedmiou: ekonomeria finansowa I (22204), analiza szeregów czasowych i prognozowanie (13201); Kierunek sudiów:

Bardziej szczegółowo

ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYCH INDEKSÓW GIEŁDOWYCH: WIG, WIG20, MIDWIG I TECHWIG

ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYCH INDEKSÓW GIEŁDOWYCH: WIG, WIG20, MIDWIG I TECHWIG Doroa Wikowska, Anna Gasek Kaedra Ekonomerii i Informayki SGGW dwikowska@mors.sggw.waw.pl ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYC INDEKSÓW GIEŁDOWYC: WIG, WIG2, MIDWIG I TECWIG Sreszczenie:

Bardziej szczegółowo

Alicja Ganczarek Akademia Ekonomiczna w Katowicach. Analiza niezależności przekroczeń VaR na wybranym segmencie rynku energii

Alicja Ganczarek Akademia Ekonomiczna w Katowicach. Analiza niezależności przekroczeń VaR na wybranym segmencie rynku energii DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Akademia Ekonomiczna w Kaowicach Analiza

Bardziej szczegółowo

Prognozowanie średniego miesięcznego kursu kupna USD

Prognozowanie średniego miesięcznego kursu kupna USD Prognozowanie średniego miesięcznego kursu kupna USD Kaarzyna Halicka Poliechnika Białosocka, Wydział Zarządzania, Kaedra Informayki Gospodarczej i Logisyki, e-mail: k.halicka@pb.edu.pl Jusyna Godlewska

Bardziej szczegółowo

PREDYKCJA KURSU EURO/DOLAR Z WYKORZYSTANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WYBRANE MODELE EKONOMETRYCZNE I PERCEPTRON WIELOWARSTWOWY

PREDYKCJA KURSU EURO/DOLAR Z WYKORZYSTANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WYBRANE MODELE EKONOMETRYCZNE I PERCEPTRON WIELOWARSTWOWY B A D A N I A O P E R A C J N E I D E C Z J E Nr 2004 Aleksandra MAUSZEWSKA Doroa WIKOWSKA PREDKCJA KURSU EURO/DOLAR Z WKORZSANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WBRANE MODELE EKONOMERCZNE I PERCEPRON WIELOWARSWOW

Bardziej szczegółowo

Zarządzanie ryzykiem. Lista 3

Zarządzanie ryzykiem. Lista 3 Zaządzanie yzykiem Lisa 3 1. Oszacowano nasępujący ozkład pawdopodobieńswa dla sóp zwou z akcji A i B (Tabela 1). W chwili obecnej Akcja A ma waość ynkową 70, a akcja B 50 zł. Ile wynosi pięciopocenowa

Bardziej szczegółowo

ZJAWISKA SZOKOWE W ROZWOJU GOSPODARCZYM WYBRANYCH KRAJÓW UNII EUROPEJSKIEJ

ZJAWISKA SZOKOWE W ROZWOJU GOSPODARCZYM WYBRANYCH KRAJÓW UNII EUROPEJSKIEJ Anna Janiga-Ćmiel Uniwersye Ekonomiczny w Kaowicach Wydział Zarządzania Kaedra Maemayki anna.janiga-cmiel@ue.kaowice.pl ZJAWISKA SZOKOWE W ROZWOJU GOSPODARCZYM WYBRANYCH KRAJÓW UNII EUROPEJSKIEJ Sreszczenie:

Bardziej szczegółowo

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar. EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b

Bardziej szczegółowo

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II

Bardziej szczegółowo

Nie(efektywność) informacyjna giełdowego rynku kontraktów terminowych w Polsce

Nie(efektywność) informacyjna giełdowego rynku kontraktów terminowych w Polsce Zeszyy Naukowe Uniwersyeu Szczecińskiego nr 862 Finanse, Rynki Finansowe, Ubezpieczenia nr 75 (2015) DOI: 10.18276/frfu.2015.75-16 s. 193 204 Nie(efekywność) informacyjna giełdowego rynku konraków erminowych

Bardziej szczegółowo

KRZYSZTOF JAJUGA Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Akademia Ekonomiczna we Wrocławiu 25 LAT EKONOMETRII FINANSOWEJ

KRZYSZTOF JAJUGA Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Akademia Ekonomiczna we Wrocławiu 25 LAT EKONOMETRII FINANSOWEJ KRZYSZTOF JAJUGA Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Akademia Ekonomiczna we Wrocławiu 25 LAT EKONOMETRII FINANSOWEJ EKONOMETRIA FINANSOWA OKREŚLENIE Modele ekonomerii finansowej są worzone

Bardziej szczegółowo

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów

Bardziej szczegółowo

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012 MAŁGORZATA WASILEWSKA PORÓWNANIE METODY NPV, DRZEW DECYZYJNYCH I METODY OPCJI REALNYCH W WYCENIE PROJEKTÓW

Bardziej szczegółowo

Jacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie.

Jacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie. DYNAMICZNE MODELE EKONOMETRYCZNE Jacek Kwiakowski Magdalena Osińska Uniwersye Mikołaja Kopernika Procesy zawierające sochasyczne pierwiaski jednoskowe idenyfikacja i zasosowanie.. Wsęp Większość lieraury

Bardziej szczegółowo

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU B A D A N I A O P E R A C J N E I D E C Z J E Nr 2 2006 Bogusław GUZIK* SZACOWANIE MODELU RNKOWEGO CKLU ŻCIA PRODUKTU Przedsawiono zasadnicze podejścia do saysycznego szacowania modelu rynkowego cyklu

Bardziej szczegółowo

WYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA NA PRZYKŁADZIE VALUE AT RISK

WYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA NA PRZYKŁADZIE VALUE AT RISK Przemysław Jeziorski Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Zakład Demografii i Saysyki Ekonomicznej przemyslaw.jeziorski@ue.kaowice.pl WYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA

Bardziej szczegółowo

Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak

Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak Ocena wyników zarządzania porelem Analiza i Zarządzanie Porelem cz. 6 Dr Kaarzyna Kuziak Eapy oceny wyników zarządzania porelem: - (porolio perormance measuremen) - Przypisanie wyników zarządzania porelem

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA 1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje

Bardziej szczegółowo

WARTOŚĆ ZAGROŻONA OPCJI EUROPEJSKICH SZACOWANA PRZEDZIAŁOWO. SYMULACJE

WARTOŚĆ ZAGROŻONA OPCJI EUROPEJSKICH SZACOWANA PRZEDZIAŁOWO. SYMULACJE Daniel Iskra Uniwersye Ekonomiczny w Kaowicach WARTOŚĆ ZAGROŻONA OPCJI EUROPEJSKICH SZACOWANA PRZEDZIAŁOWO. SYMULACJE Wprowadzenie Jednym z aspeków współczesnej ekonomii jes zarządzanie ryzykiem związanym

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1 PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,

Bardziej szczegółowo

O PEWNYCH KRYTERIACH INWESTOWANIA W OPCJE NA AKCJE

O PEWNYCH KRYTERIACH INWESTOWANIA W OPCJE NA AKCJE MEODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH om XIII/3, 01, sr 43 5 O EWNYCH KRYERIACH INWESOWANIA W OCJE NA AKCJE omasz Warowny Kaedra Meod Ilościowych w Zarządzaniu oliechnika Lubelska e-mail: warowny@pollubpl

Bardziej szczegółowo

ANNA GÓRSKA MONIKA KRAWIEC Szkoła Główna Gospodarstwa Wiejskiego w Warszawie

ANNA GÓRSKA MONIKA KRAWIEC Szkoła Główna Gospodarstwa Wiejskiego w Warszawie ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 013 ANNA GÓRSKA MONIKA KRAWIEC Szkoła Główna Gospodarswa Wiejskiego w Warszawie BADANIE EFEKTYWNOŚCI INFORMACYJNEJ

Bardziej szczegółowo

Ocena płynności wybranymi metodami szacowania osadu 1

Ocena płynności wybranymi metodami szacowania osadu 1 Bogdan Ludwiczak Wprowadzenie Ocena płynności wybranymi meodami szacowania osadu W ubiegłym roku zaszły znaczące zmiany doyczące pomiaru i zarządzania ryzykiem bankowym. Są one konsekwencją nowowprowadzonych

Bardziej szczegółowo

Daniel Papla Akademia Ekonomiczna we Wrocławiu. Wykorzystanie modelu DCC-MGARCH w analizie zmian zależności wybranych akcji GPW w Warszawie

Daniel Papla Akademia Ekonomiczna we Wrocławiu. Wykorzystanie modelu DCC-MGARCH w analizie zmian zależności wybranych akcji GPW w Warszawie DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 27 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Akademia Ekonomiczna we Wrocławiu Wykorzysanie

Bardziej szczegółowo

Analiza metod oceny efektywności inwestycji rzeczowych**

Analiza metod oceny efektywności inwestycji rzeczowych** Ekonomia Menedżerska 2009, nr 6, s. 119 128 Marek Łukasz Michalski* Analiza meod oceny efekywności inwesycji rzeczowych** 1. Wsęp Podsawowymi celami przedsiębiorswa w długim okresie jes rozwój i osiąganie

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Anna Krauze Uniwersye Warmińsko-Mazurski

Bardziej szczegółowo

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE Janusz Sowiński, Rober Tomaszewski, Arur Wacharczyk Insyu Elekroenergeyki Poliechnika Częsochowska Aky prawne

Bardziej szczegółowo

Europejska opcja kupna akcji calloption

Europejska opcja kupna akcji calloption Europejska opcja kupna akcji callopion Nabywca holder: prawo kupna long posiion jednej akcji w okresie epiraiondae po cenie wykonania eercise price K w zamian za opłaę C Wysawca underwrier: obowiązek liabiliy

Bardziej szczegółowo

Komputerowa analiza przepływów turbulentnych i indeksu Dow Jones

Komputerowa analiza przepływów turbulentnych i indeksu Dow Jones Kompuerowa analiza przepływów urbulennych i indeksu Dow Jones Rafał Ogrodowczyk Pańswowa Wyższa Szkoła Zawodowa w Chełmie Wiesław A. Kamiński Uniwersye Marii Curie-Skłodowskie w Lublinie W badaniach porównano

Bardziej szczegółowo

Krzysztof Piontek MODELOWANIE I PROGNOZOWANIE ZMIENNOŚCI INSTRUMENTÓW FINANSOWYCH

Krzysztof Piontek MODELOWANIE I PROGNOZOWANIE ZMIENNOŚCI INSTRUMENTÓW FINANSOWYCH Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informatyki Krzysztof Piontek MODELOWANIE I PROGNOZOWANIE ZMIENNOŚCI INSTRUMENTÓW FINANSOWYCH rozprawa doktorska Promotor: prof.

Bardziej szczegółowo

Pomiar ryzyka odchylenia od benchmarku w warunkach zmiennej w czasie strategii inwestycyjnej OFE - kotynuacja. Wojciech Otto Uniwersytet Warszawski

Pomiar ryzyka odchylenia od benchmarku w warunkach zmiennej w czasie strategii inwestycyjnej OFE - kotynuacja. Wojciech Otto Uniwersytet Warszawski Pomiar ryzyka odchylenia od benchmarku w warunkach zmiennej w czasie sraegii inwesycyjnej OFE - koynuacja Wojciech Oo Uniwersye Warszawski Refera przygoowany na Ogólnopolską Konferencję Naukową Zagadnienia

Bardziej szczegółowo

licencjat Pytania teoretyczne:

licencjat Pytania teoretyczne: Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie

Bardziej szczegółowo

WPŁYW NIEPEWNOŚCI OSZACOWANIA ZMIENNOŚCI NA CENĘ INSTRUMENTÓW POCHODNYCH

WPŁYW NIEPEWNOŚCI OSZACOWANIA ZMIENNOŚCI NA CENĘ INSTRUMENTÓW POCHODNYCH Tadeusz Czernik Uniwersye Ekonomiczny w Kaowicach WPŁYW NIEPEWNOŚCI OZACOWANIA ZMIENNOŚCI NA CENĘ INTRUMENTÓW POCHODNYCH Wprowadzenie Jednym z filarów współczesnych finansów jes eoria wyceny insrumenów

Bardziej szczegółowo

STATYSTYCZNA WERYFIKACJA MODELU CAPM NA PRZYKŁADZIE POLSKIEGO RYNKU KAPITAŁOWEGO WPROWADZENIE METODOLOGIA TESTOWANIA MODELU

STATYSTYCZNA WERYFIKACJA MODELU CAPM NA PRZYKŁADZIE POLSKIEGO RYNKU KAPITAŁOWEGO WPROWADZENIE METODOLOGIA TESTOWANIA MODELU GraŜyna Trzpio, Dominik KręŜołek Kaedra Saysyki Akademii Ekonomicznej w Kaowicach e-mail rzpio@sulu.ae.kaowice.pl, dominik_arkano@wp.pl STATYSTYCZNA WERYFIKACJA MODELU CAPM NA PRZYKŁADZIE POLSKIEGO RYNKU

Bardziej szczegółowo

Porównanie jakości nieliniowych modeli ekonometrycznych na podstawie testów trafności prognoz

Porównanie jakości nieliniowych modeli ekonometrycznych na podstawie testów trafności prognoz 233 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Porównanie jakości nieliniowych modeli ekonomerycznych na podsawie esów rafności prognoz Sreszczenie.

Bardziej szczegółowo

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,

Bardziej szczegółowo

POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE

POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE Anea Kłodzińska, Poliechnika Koszalińska, Zakład Ekonomerii POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE Sopy procenowe w analizach ekonomicznych Sopy procenowe

Bardziej szczegółowo

MODELOWANIE KURSÓW WALUTOWYCH NA PRZYKŁADZIE MODELI KURSÓW RÓWNOWAGI ORAZ ZMIENNOŚCI NA RYNKU FOREX

MODELOWANIE KURSÓW WALUTOWYCH NA PRZYKŁADZIE MODELI KURSÓW RÓWNOWAGI ORAZ ZMIENNOŚCI NA RYNKU FOREX Krzyszof Ćwikliński Uniwersye Ekonomiczny we Wrocławiu Wydział Zarządzania, Informayki i Finansów Kaedra Ekonomerii krzyszof.cwiklinski@ue.wroc.pl Daniel Papla Uniwersye Ekonomiczny we Wrocławiu Wydział

Bardziej szczegółowo

TESTOWANIE STABILNOŚCI PARAMETRÓW WIELOCZYNNIKOWYCH MODELI MARKET TIMING Z OPÓŹNIONĄ ZMIENNĄ RYNKOWĄ 1

TESTOWANIE STABILNOŚCI PARAMETRÓW WIELOCZYNNIKOWYCH MODELI MARKET TIMING Z OPÓŹNIONĄ ZMIENNĄ RYNKOWĄ 1 METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XII/, 011, sr. 59 69 TESTOWANIE STABILNOŚCI PARAMETRÓW WIELOCZYNNIKOWYCH MODELI MARKET TIMING Z OPÓŹNIONĄ ZMIENNĄ RYNKOWĄ 1 Joanna Olbryś Wydział Informayki,

Bardziej szczegółowo

Modelowanie "długotrwałej pamici" szeregów zmiennoci

Modelowanie długotrwałej pamici szeregów zmiennoci Krzyszof Pionek Kaera Inwesyci Finansowych i Ubezpiecze Akaemia Ekonomiczna we Wrocławiu Moelowanie "ługorwałe pamici" szeregów zmiennoci Wsp Cech charakerysyczn nowoczesnego zarzzania ryzykiem sało si

Bardziej szczegółowo

WERYFIKACJA WYBRANYCH TECHNIK PROGNOZOWANIA ZMIENNOCI ANALIZA SZEREGÓW CZASOWYCH

WERYFIKACJA WYBRANYCH TECHNIK PROGNOZOWANIA ZMIENNOCI ANALIZA SZEREGÓW CZASOWYCH PRACE NAUKOWE AKADEII EKONOICZNEJ WE WROCŁAWIU Nr 99 2003 Inwesycje finansowe i ubezpieczenia endencje wiaowe a polski rynek Krzyszof Pionek Akadeia Ekonoiczna we Wrocławiu WERYFIKACJA WYBRANYCH TECHNIK

Bardziej szczegółowo

Metody prognozowania: Szeregi czasowe. Dr inż. Sebastian Skoczypiec. ver Co to jest szereg czasowy?

Metody prognozowania: Szeregi czasowe. Dr inż. Sebastian Skoczypiec. ver Co to jest szereg czasowy? Meody prognozowania: Szeregi czasowe Dr inż. Sebasian Skoczypiec ver. 11.20.2009 Co o jes szereg czasowy? Szereg czasowy: uporządkowany zbiór warości badanej cechy lub warości określonego zjawiska, zaobserwowanych

Bardziej szczegółowo

Analiza stabilności parametrów hybrydowych modeli market-timing polskich funduszy inwestycyjnych 1

Analiza stabilności parametrów hybrydowych modeli market-timing polskich funduszy inwestycyjnych 1 Joanna Olbryś * Analiza sabilności paramerów hybrydowych modeli marke-iming polskich funduszy inwesycyjnych 1 Wsęp Hybrydowe czeroczynnikowe modele marke-iming funduszy inwesycyjnych akcji polskich zosały

Bardziej szczegółowo

Dendrochronologia Tworzenie chronologii

Dendrochronologia Tworzenie chronologii Dendrochronologia Dendrochronologia jes nauką wykorzysującą słoje przyrosu rocznego drzew do określania wieku (daowania) obieków drewnianych (budynki, przedmioy). Analizy różnych paramerów słojów przyrosu

Bardziej szczegółowo

Analiza stabilności parametrów hybrydowych modeli market-timing polskich funduszy inwestycyjnych 1

Analiza stabilności parametrów hybrydowych modeli market-timing polskich funduszy inwestycyjnych 1 Joanna Olbryś * Analiza sabilności paramerów hybrydowych modeli marke-iming polskich funduszy inwesycyjnych Wsęp Hybrydowe czeroczynnikowe modele marke-iming funduszy inwesycyjnych akcji polskich zosały

Bardziej szczegółowo

dr inż. MARCIN MAŁACHOWSKI Instytut Technik Innowacyjnych EMAG

dr inż. MARCIN MAŁACHOWSKI Instytut Technik Innowacyjnych EMAG dr inż. MARCIN MAŁACHOWSKI Insyu Technik Innowacyjnych EMAG Wykorzysanie opycznej meody pomiaru sężenia pyłu do wspomagania oceny paramerów wpływających na możliwość zaisnienia wybuchu osiadłego pyłu węglowego

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 27 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaa Kopernika w Toruniu Małgorzaa Borzyszkowska Uniwersye Gdański

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika Zależność

Bardziej szczegółowo

IMPLEMENTACJA WYBRANYCH METOD ANALIZY STANÓW NIEUSTALONYCH W ŚRODOWISKU MATHCAD

IMPLEMENTACJA WYBRANYCH METOD ANALIZY STANÓW NIEUSTALONYCH W ŚRODOWISKU MATHCAD Pior Jankowski Akademia Morska w Gdyni IMPLEMENTACJA WYBRANYCH METOD ANALIZY STANÓW NIEUSTALONYCH W ŚRODOWISKU MATHCAD W arykule przedsawiono możliwości (oraz ograniczenia) środowiska Mahcad do analizy

Bardziej szczegółowo

OBLICZANIE TERMINU REALIZACJI PRZEDSIĘWZIĘĆ BUDOWLANYCH METODĄ CCPM NA PODSTAWIE MULTIPLIKATYWNEGO MODELU CZASU TRWANIA CZYNNOŚCI

OBLICZANIE TERMINU REALIZACJI PRZEDSIĘWZIĘĆ BUDOWLANYCH METODĄ CCPM NA PODSTAWIE MULTIPLIKATYWNEGO MODELU CZASU TRWANIA CZYNNOŚCI Dane bibliograficzne o arykule: hp://mieczyslaw_polonski.users.sggw.pl/mppublikacje Mieczysław POŁOŃSKI 1 OBLICZANIE TERMIN REALIZACJI PRZEDSIĘWZIĘĆ BDOWLANYCH METODĄ CCPM NA PODSTAWIE MLTIPLIKATYWNEGO

Bardziej szczegółowo

STATYSTYCZNY POMIAR EFEKTYWNOŚCI FUNDUSZY INWESTYCYJNYCH OTWARTYCH ZA POMOCĄ EAM (I)

STATYSTYCZNY POMIAR EFEKTYWNOŚCI FUNDUSZY INWESTYCYJNYCH OTWARTYCH ZA POMOCĄ EAM (I) STATYSTYCZNY POMIAR EFEKTYWNOŚCI FUNDUSZY INWESTYCYJNYCH OTWARTYCH ZA POMOCĄ EAM (I) dr Jacek, M. Kowalski Wyższa Szkoła Bankowa w Poznaniu jakowalski@op.pl Absrak Jes o pierwsza część, drugiego z cyklu

Bardziej szczegółowo

PIOTR FISZEDER, JACEK KWIATKOWSKI Katedra Ekonometrii i Statystyki

PIOTR FISZEDER, JACEK KWIATKOWSKI Katedra Ekonometrii i Statystyki PIOTR FISZEDER, JACEK KWIATKOWSKI Kaedra Ekonomerii i Saysyki DYNAMICZNA ANALIZA ZALEŻNOŚCI POMIĘDZY OCZEKIWANĄ STOPĄ ZWROTU A WARUNKOWĄ WARIANCJĄ Sreszczenie: W badaniu zasosowano modele GARCHM ze sałym

Bardziej szczegółowo

Czy prowadzona polityka pieniężna jest skuteczna? Jaki ma wpływ na procesy

Czy prowadzona polityka pieniężna jest skuteczna? Jaki ma wpływ na procesy Dobromił Serwa Reakcje rynków finansowych na szoki w poliyce pieniężnej.. Wsęp Czy prowadzona poliyka pieniężna jes skueczna? Jaki ma wpływ na procesy ekonomiczne zachodzące w kraju? Czy jes ona równie

Bardziej szczegółowo

ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH

ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH Pior KISIELEWSKI, Łukasz SOBOTA ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH W arykule przedsawiono zasosowanie eorii masowej obsługi do analizy i modelowania wybranych sysemów

Bardziej szczegółowo

Estymacja stopy NAIRU dla Polski *

Estymacja stopy NAIRU dla Polski * Michał Owerczuk * Pior Śpiewanowski Esymacja sopy NAIRU dla Polski * * Sudenci, Szkoła Główna Handlowa, Sudenckie Koło Naukowe Ekonomii Teoreycznej przy kaedrze Ekonomii I. Auorzy będą bardzo wdzięczni

Bardziej szczegółowo

Analiza danych DRZEWA DECYZYJNE. Drzewa decyzyjne. Entropia. http://zajecia.jakubw.pl/ test 1 dopełnienie testu 1

Analiza danych DRZEWA DECYZYJNE. Drzewa decyzyjne. Entropia. http://zajecia.jakubw.pl/ test 1 dopełnienie testu 1 Analiza danych Drzewa decyzyjne. Enropia. Jakub Wróblewski jakubw@pjwsk.edu.pl hp://zajecia.jakubw.pl/ DRZEWA DECYZYJNE Meoda reprezenacji wiedzy (modelowania ablic decyzyjnych). Pozwala na przejrzysy

Bardziej szczegółowo

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XLIII nr 2 (2012)

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XLIII nr 2 (2012) A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XLIII nr 2 (2012) 211 220 Pierwsza wersja złożona 25 października 2011 ISSN Końcowa wersja zaakcepowana 3 grudnia 2012 2080-0339

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK 1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny

Bardziej szczegółowo

PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM

PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM prof. dr hab. Paweł Dimann 1 Znaczenie prognoz w zarządzaniu firmą Zarządzanie firmą jes nieusannym procesem podejmowania decyzji, kóry może być zdefiniowany

Bardziej szczegółowo

ŹRÓDŁA FLUKTUACJI REALNEGO EFEKTYWNEGO KURSU EUR/ PLN

ŹRÓDŁA FLUKTUACJI REALNEGO EFEKTYWNEGO KURSU EUR/ PLN METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XII/, 0, sr. 389 398 ŹRÓDŁA FLUKTUACJI REALNEGO EFEKTYWNEGO KURSU EUR/ PLN Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków Gospodarczych

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 2013

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 2013 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 2013 MAŁGORZATA BOŁTUĆ Uniwersye Ekonomiczny we Wrocławiu ZALEŻNOŚĆ POMIĘDZY RYNKIEM SWAPÓW KREDYTOWYCH

Bardziej szczegółowo

MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII

MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII KRZYSZTOF JAJUGA Akademia Ekonomiczna we Wrocławiu MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII. Modele makroekonomiczne a modele sóp procenowych wprowadzenie Nie do podważenia

Bardziej szczegółowo

1.1. Bezpośrednie transformowanie napięć przemiennych

1.1. Bezpośrednie transformowanie napięć przemiennych Rozdział Wprowadzenie.. Bezpośrednie ransformowanie napięć przemiennych Bezpośrednie ransformowanie napięć przemiennych jes formą zmiany paramerów wielkości fizycznych charakeryzujących energię elekryczną

Bardziej szczegółowo

Bayesowskie porównanie modeli STUR i GARCH w finansowych szeregach czasowych 1

Bayesowskie porównanie modeli STUR i GARCH w finansowych szeregach czasowych 1 Jacek Kwiakowski Uniwersye Mikołaja Kopernika w Toruniu Bayesowskie porównanie modeli STUR i GARCH w finansowych szeregach czasowych 1 WSTĘP Powszechnie wiadomo, że podsawowymi własnościami procesów finansowych

Bardziej szczegółowo

hact , 4 haot technice świec japońskich. 4 Na podstawie strony internetowej:

hact , 4 haot technice świec japońskich. 4 Na podstawie strony internetowej: Zasosowanie echniki Heikin Ashi na rynku kapiałowym Krzyszof Borowski Opublikowany w: Sudia i Prace Kolegium Zarządzania i Finansów, Zeszy Naukowy 66, Warszawa 26, sr. 9-99. Po raz pierwszy japońskie echniki

Bardziej szczegółowo

O EFEKTACH ZASTOSOWANIA PEWNEJ METODY WYZNACZANIA PROGNOZ JAKOŚCIOWYCH ZMIAN CEN AKCJI W WARUNKACH KRYZYSU FINANSOWEGO 2008 ROKU

O EFEKTACH ZASTOSOWANIA PEWNEJ METODY WYZNACZANIA PROGNOZ JAKOŚCIOWYCH ZMIAN CEN AKCJI W WARUNKACH KRYZYSU FINANSOWEGO 2008 ROKU Arykuł opublikowany w: Rynki kapiałowe a koniunkura gospodarcza, red. A. Szablewski, R. Wójcikowski, Wydawnicwo Poliechniki Łódzkiej, Łódź 009, s. 95-07 Doroa Wiśniewska Uniwersye Ekonomiczny w Poznaniu

Bardziej szczegółowo

Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji

Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji Agnieszka Przybylska-Mazur * Meody badania wpływu zmian kursu waluowego na wskaźnik inflacji Wsęp Do oceny łącznego efeku przenoszenia zmian czynników zewnęrznych, akich jak zmiany cen zewnęrznych (szoki

Bardziej szczegółowo