ψ przedstawia zależność

Wielkość: px
Rozpocząć pokaz od strony:

Download "ψ przedstawia zależność"

Transkrypt

1 Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi się w przesrzeni z określoną prędkością nazywaną prędkością fali Zaem wielkość zaburzenia jes również funkcją położenia ( r!, ) r! funkcja ( r! 0, ) Dla danego miejsca 0 przedsawia zależność zaburzenia od czasu lub inaczej drgania ośrodka w ym miejscu Dla danej chwili 0 funkcja ( r!, 0) przedsawia przesrzenny rozkład zaburzenia migawkowe zdjęcie sanu ośrodka Weźmy pod uwagę falę, kóra w jednowymiarowym ośrodku rozchodzi się wzdłuż osi O z prędkością (, ) Zmieniamy układ na poruszający się z ą samą prędkością co zaburzenie W nowym układzie zaburzenie jes sacjonarne, nie zależy od czasu: ()

2 Ruch falowy 4- Transformacja Galileusza daje związek między współrzędnymi w obu układach Wracając do układu wyjściowego (w kórym zaburzenie rozchodzi się) orzymujemy ( ) Jes o w dalszym ciągu funkcja położenia i czasu, yle, że nie dowolna, ale zależna od ich specjalnej kombinacji Funkcję ) ( nazywa się (jednowymiarową) funkcją falową W przypadku wielowymiarowym funkcja falowa ma posać ( ) r!! Orzymamy eraz równanie różniczkowe ruchu falowego Czyli (a dla ruchu w przeciwnym kierunku wysarczy zmienić znak ) Powórne różniczkowanie daje albo po przekszałceniu orzymujemy osaecznie równanie różniczkowe ruchu falowego pochodne wewnęrzne

3 Ruch falowy 4-3 Ze względu na sposób jego orzymania, każda funkcja ypu ( ± ) spełnia o równanie Można się przekonać, że rozwiązania różniczkowego równania ruchu falowego spełniają zasadę superpozycji, zn, jeżeli ( ± ) i ( ± ) są funkcjami falowymi spełniającymi równanie ruchu falowego i o ich suma + eż jes rozwiązaniem ego równania ( + ), ( + Wynika o wpros z faku, że operacja różniczkowania jes rozdzielna względem dodawania funkcji Zasadę superpozycji można rozszerzyć na dowolną liczbę funkcji falowych Jeżeli ( ), ( ), n n( ) są funkcjami falowymi, o ich dowolna kombinacja liniowa n ( ) c ( ) c i dowolne sałe i i i jes eż funkcją falową, czyli spełnia odpowiednie równanie różniczkowe )

4 Ruch falowy 4-4 Fale harmoniczne Jeżeli funkcja falowa ma posać lub o nazywamy ją harmoniczną Dla usalonego miejsca, np 0 (, ) Asin[ k( ± )] (, ) A cos[ k( ± )] ( 0, ) Asin[ k( ± )] ± Asin( k ) saje się ona funkcją opisującą drgania harmoniczne o częsości kołowej ω k gdzie: T jes okresem ych drgań Dla usalonej chwili, np 0 ω π k T π (,0) A sin( k ) Asin( ) T orzymujemy funkcję przesrzenną okresową o okresie równym T Iloczyn T nazywa się długością fali λ a T okresem fali Zachodzi między nimi związek: Użya wcześniej wielkość k λ T k π λ nazywa się liczbą falową (ma wymiar m - ) W ym wypadku ω nazywamy częsością kołową fali i możemy dopisać kolejny związek ω k

5 Ruch falowy 4-5 Prędkość fazowa fali Podobnie jak dla drgań harmonicznych, argumen harmonicznej funkcji falowej nazywa się fazą fali (, ) Asin[ k( )] Asin( k ω) ϕ k ω W ogólnym przypadku możemy mieć do czynienia z różną od zera fazą począkową ϕ k ω + Pochodna fazy względem czasu daje, z dokładnością do znaku, częsość kołową fali ϕ ω a względem położenia liczbę falową Ich sosunek ϕ k π λ, ϕ 0 ϕ ω π λ λ ϕ k T π T jes prędkością fali Prędkość fali, kórą wprowadziliśmy na samym począku, była prędkością z jaką przemieszczała się określona faza fali (w układzie poruszającym się z prędkością faza w danym punkcie jes sała) Dlaego prędkość ę nazywamy prędkością fazową fali lub f f ω k λ T

6 Ruch falowy 4-6 Fale przesrzenne!!! ( r, ) Asin( k r ω ) k! - wekor falowy Kierunek wekora falowego pokrywa się z kierunkiem rozchodzenia się fali, a jego długość wynosi π k! λ Punky w przesrzeni, w kórych faza fali ma określoną warość!! k r ω cons worzą powierzchnie falowe (albo fazowe) Wekor k! jes w każdym punkcie powierzchni falowej prosopadły do niej Ze względu na kszał powierzchni falowych mówimy o falach płaskich, kulisych, walcowych, ip

7 Ruch falowy 4-7 Odbicie i załamanie fal Załamanie fali na granicy dwóch ośrodków > sinα d d sinα d d sinα sinα Przy przejściu do innego ośrodka zmienia się prędkość fali i jej długość, nie zmienia się naomias częsoliwość fali Odbicie fali od granicy ośrodka α α

8 Ruch falowy 4-8 Odbicie i załamanie na granicy dwóch ośrodków α α sinα sinα n Prawo odbicia Wekor k! fali padającej, wekor k! fali odbiej i normalna do powierzchni granicznej w miejscu odbicia leżą w jednej płaszczyźnie, i ką padania jes równy kąowi odbicia α α Prawo załamania (Snelius a) Wekor k! fali padającej, wekor k! fali załamanej i normalna do powierzchni granicznej w miejscu załamania leżą w jednej płaszczyźnie, i sinα n sinα Jeżeli >, o jes aki graniczny ką padania α αgr ( sin α gr n ), π że ką załamania jes prosy α i zaburzenie rozchodzi się wzdłuż granicy między ośrodkami Dla kąów padania α > αgr fala nie przenika do drugiego ośrodka, ale ulega całkowiemu wewnęrznemu odbiciu na granicy

9 Ruch falowy 4-9 Prawa odbicia i załamania fal można wyprowadzić z bardzo ważnej zasady doyczącej ruchu falowego zasady Fermaa Zaburzenie (fala) rozchodzi się w ośrodku po akiej drodze, że czas przejścia między dwoma punkami jes eksremalny zwykle minimalny Linię, kóra jes w każdym punkcie syczna do wekora falowego k! (albo prosopadła do powierzchni falowej) nazywamy promieniem fali Można powiedzieć, że zaburzenie, rozchodzące się w ośrodku w posaci fali, przemieszcza się wzdłuż promieni ej fali W ośrodkach jednorodnych, gdzie cons, promienie fali są liniami prosymi Na granicy akich ośrodków promienie załamują się zmieniają kierunek W ośrodkach niejednorodnych prędkość fali nie jes sała (r ) a promienie przesają być liniami prosymi! W prawie wszyskich ośrodkach prędkość fali zależy od jej długości (częsoliwości) (k), a w ośrodkach anizoropowych (np w kryszałach) wysępuje eż zależność prędkości od kierunku rozchodzenia się! (k ) lub od kierunku polaryzacji fali (dla fal poprzecznych) W pierwszym przypadku mówimy o dyspersji fal fale o różnych długościach (częsoliwościach) biegną z różnymi prędkościami W ośrodkach anizoropowych wysępuje dodakowe zjawiska: dwójłomności, polaryzacji

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof. Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

Laseryimpulsowe-cotojest?

Laseryimpulsowe-cotojest? Laseryimpulsowe-coojes? Pior Migdał marca5 Laseryciągłe Prawie każdy widział laser, choćby w posaci breloczka z odpowiednią diodą LED. Co jes charakerysyczne dla promienia emiowanego z akiego urządzenia?

Bardziej szczegółowo

ANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ

ANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ Ćwiczenie 8 ANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ. Cel ćwiczenia Analiza złożonego przebiegu drgań maszyny i wyznaczenie częsoliwości składowych harmonicznych ego przebiegu.. Wprowadzenie

Bardziej szczegółowo

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Świat fizyki Klasa III

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Świat fizyki Klasa III 9. O elekryczności saycznej Wymagania na poszczególne oceny przy realizacji i podręcznika Świa fizyki Klasa III Tema według 9.1. Elekryzowanie przez arcie i zeknięcie z ciałem naelekryzowanym opisuje budowę

Bardziej szczegółowo

Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela.

Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela. Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela. I LO im. Stefana Żeromskiego w Lęborku 20 luty 2012 Stolik optyczny

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 5 Temat: Interferometr Michelsona 7.. Cel i zakres ćwiczenia 7 INTERFEROMETR MICHELSONA Celem ćwiczenia jest zapoznanie się z budową i

Bardziej szczegółowo

Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje.

Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Działanie obrazujące soczewek lub układu soczewek wygodnie

Bardziej szczegółowo

4.4. Obliczanie elementów grzejnych

4.4. Obliczanie elementów grzejnych 4.4. Obiczanie eemenów grzejnych Po wyznaczeniu wymiarów przewodu grzejnego naeży zaprojekować eemen grzejny, a więc okreśić wymiary skręki grzejnej czy eemenu faisego (wężownicy grzejnej, meandra grzejnego).

Bardziej szczegółowo

LINIA DŁUGA Konspekt do ćwiczeń laboratoryjnych z przedmiotu TECHNIKA CYFROWA

LINIA DŁUGA Konspekt do ćwiczeń laboratoryjnych z przedmiotu TECHNIKA CYFROWA LINIA DŁUGA Z Z, τ e u u Z L l Konspek do ćwiczeń laboraoryjnych z przedmiou TECHNIKA CYFOWA SPIS TEŚCI. Definicja linii dłuiej... 3. Schema zasępczy linii dłuiej przedsawiony za pomocą elemenów o sałych

Bardziej szczegółowo

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki.

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. 1. Równanie soczewki i zwierciadła kulistego. Z podobieństwa trójkątów ABF i LFD (patrz rysunek powyżej) wynika,

Bardziej szczegółowo

+OPTYKA 3.stacjapogody.waw.pl K.M.

+OPTYKA 3.stacjapogody.waw.pl K.M. Zwierciadło płaskie, prawo odbicia. +OPTYKA.stacjapogody.waw.pl K.M. Promień padający, odbity i normalna leżą w jednej płaszczyźnie, prostopadłej do płaszczyzny zwierciadła Obszar widzialności punktu w

Bardziej szczegółowo

Rozdział 8. Analiza fourierowska. 8.1 Rozwinięcie w szereg Fouriera

Rozdział 8. Analiza fourierowska. 8.1 Rozwinięcie w szereg Fouriera Rozdział 8 Analiza fourierowska 8.1 Rozwinięcie w szereg Fouriera Rozważmy funkcję rzeczywistą f określoną na okręgu o promieniu jednostkowym. Parametryzując okrąg przy pomocy kąta φ [, π] otrzymujemy

Bardziej szczegółowo

Wymagania przedmiotowe z fizyki - klasa III (obowiązujące w roku szkolnym 2013/2014)

Wymagania przedmiotowe z fizyki - klasa III (obowiązujące w roku szkolnym 2013/2014) Wymagania przedmioowe z izyki - klasa III (obowiązujące w roku szkolnym 013/014) 8. Drgania i ale sprężyse!wskazuje w ooczeniu przykłady ciał wykonujących ruch drgający!podaje znaczenie pojęć: położenie

Bardziej szczegółowo

Ć W I C Z E N I E N R O-7

Ć W I C Z E N I E N R O-7 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-7 POMIAR PROMIENI KRZYWIZNY SOCZEWKI PŁASKO-WYPUKŁEJ METODĄ PIERŚCIENI

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 7 Temat: Pomiar kąta załamania i kąta odbicia światła. Sposoby korekcji wad wzroku. 1. Wprowadzenie Zestaw ćwiczeniowy został

Bardziej szczegółowo

Szkoła z przyszłością. szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Szkoła z przyszłością. szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Szkoła z przyszłośią szkolenie współfinansowane przez Unię Europejską w ramah Europejskiego Funduszu Społeznego Narodowe Cenrum Badań Jądrowyh, ul. Andrzeja Sołana 7, 05-400 Owok-Świerk ĆWICZENIE a L A

Bardziej szczegółowo

WYTRZYMAŁOŚĆ KOMPOZYTÓW WARSTWOWYCH

WYTRZYMAŁOŚĆ KOMPOZYTÓW WARSTWOWYCH WYTRZYMAŁOŚĆ KOMPOZYTÓW WARTWOWYCH Zagadnienia wyrzymałościowe w przypadku maeriałów kompozyowych, a mówiąc ściślej włóknisych kompozyów warswowych (np. laminay zbrojone włóknami) należy rozparywać na

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

z graniczną technologią

z graniczną technologią STUDIA OECOOMICA POSAIESIA 23, vol., no. (25) Uniwersye Ekonomiczny w Poznaniu, Wydział Informayki i Gospodarki Elekronicznej, Kaedra Ekonomii Maemaycznej emil.panek@ue.poznan.pl iesacjonarny model von

Bardziej szczegółowo

Ćwiczenie: "Zagadnienia optyki"

Ćwiczenie: Zagadnienia optyki Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.

Bardziej szczegółowo

Niestacjonarne zmienne czasowe własności i testowanie

Niestacjonarne zmienne czasowe własności i testowanie Maeriał dla sudenów Niesacjonarne zmienne czasowe własności i esowanie (sudium przypadku) Nazwa przedmiou: ekonomeria finansowa I (22204), analiza szeregów czasowych i prognozowanie (13201); Kierunek sudiów:

Bardziej szczegółowo

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI

WYMAGANIA EDUKACYJNE Z FIZYKI WYMAGANIA EDUKACYJNE Z FIZYKI KLASA III Drgania i fale mechaniczne Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia.

Bardziej szczegółowo

Analiza matematyczna 2 Lista zadań

Analiza matematyczna 2 Lista zadań Analiza maemayczna Lisa zadań Opracowanie: dr Marian Gewer, doc. Zbigniew Skoczylas Lisa. Korzysając z definicji zbadać zbieżność całek niewłaściwych pierwszego rodzaju: d) + ; b) arccg; e) +) ; c) 4+3

Bardziej szczegółowo

Wyznaczanie temperatury i wysokości podstawy chmur

Wyznaczanie temperatury i wysokości podstawy chmur Wyznaczanie emperaury i wysokości podsawy chmur Czas rwania: 10 minu Czas obserwacji: dowolny Wymagane warunki meeorologiczne: pochmurnie lub umiarkowane zachmurzenie Częsoliwość wykonania: 1 raz w ciągu

Bardziej szczegółowo

Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste:

Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste: Fale świetlne Światło jest falą elektromagnetyczną, czyli rozchodzącymi się w przestrzeni zmiennymi i wzajemnie przenikającymi się polami: elektrycznym i magnetycznym. Szybkość światła w próżni jest największa

Bardziej szczegółowo

O WYBRANYCH SPOSOBACH OPISU DYNAMIKI EKONOMICZNYCH STRUKTUR PRZESTRZENNYCH

O WYBRANYCH SPOSOBACH OPISU DYNAMIKI EKONOMICZNYCH STRUKTUR PRZESTRZENNYCH STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 26 Krzyszof Heberlein Uniwersye Szczeciński O WYBRANYCH SPOSOBACH OPISU DYNAMIKI EKONOMICZNYCH STRUKTUR PRZESTRZENNYCH STRESZCZENIE W arykule

Bardziej szczegółowo

IMPLEMENTACJA WYBRANYCH METOD ANALIZY STANÓW NIEUSTALONYCH W ŚRODOWISKU MATHCAD

IMPLEMENTACJA WYBRANYCH METOD ANALIZY STANÓW NIEUSTALONYCH W ŚRODOWISKU MATHCAD Pior Jankowski Akademia Morska w Gdyni IMPLEMENTACJA WYBRANYCH METOD ANALIZY STANÓW NIEUSTALONYCH W ŚRODOWISKU MATHCAD W arykule przedsawiono możliwości (oraz ograniczenia) środowiska Mahcad do analizy

Bardziej szczegółowo

Wymagania edukacyjne z fizyki dla klasy III

Wymagania edukacyjne z fizyki dla klasy III edukacyjne z fizyki dla klasy III edukacyjne z fizyki dla klasy III gimnazjum opare na programie nauczania Świa fizyki, auorswa B. Sagnowskiej (wersja 2), wydawnicwa Zamkor, 10. Prąd Tema według 10.1.

Bardziej szczegółowo

ŚWIATŁO I JEGO ROLA W PRZYRODZIE

ŚWIATŁO I JEGO ROLA W PRZYRODZIE ŚWIATŁO I JEGO ROLA W PRZYRODZIE I. Optyka geotermalna W tym rozdziale poznasz właściwości światła widzialnego, prawa rządzące jego rozchodzeniem się w przestrzeni oraz sposoby wykorzystania tych praw

Bardziej szczegółowo

Na pewno zrozumiesz!! Jacek Kratkowski

Na pewno zrozumiesz!! Jacek Kratkowski Na pewno zrozumiesz!! Jacek Kratkowski Instrukcja obsługi programu - przejścia między slajdami kliknięcie myszką lub naciśnięcie klawisza ENTER - powrót do poprzedniego slajdu lub powtórzenie animacji

Bardziej szczegółowo

Fale elektromagnetyczne i optyka

Fale elektromagnetyczne i optyka Fale elekromageycze i opyka Pole elekrycze i mageycze Powsaie siły elekromooryczej musi być związae z powsaiem wirowego pola elekryczego Zmiee pole mageycze wywołuje w kaŝdym pukcie pola powsawaie wirowego

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA W PRZESTRZENI

GEOMETRIA ANALITYCZNA W PRZESTRZENI GEOMETRIA ANALITYCZNA W PRZESTRZENI Położenie punktu w przestrzeni określamy za pomocą trzech liczb (x, y, z). Liczby te odpowiadają rzutom na osie układu współrzędnych: każdy rzut wzdłuż płaszczyzny równoległej

Bardziej szczegółowo

O pewnym algorytmie rozwiązującym problem optymalnej alokacji zasobów. Cezary S. Zaremba*, Leszek S. Zaremba ** WPROWADZENIE

O pewnym algorytmie rozwiązującym problem optymalnej alokacji zasobów. Cezary S. Zaremba*, Leszek S. Zaremba ** WPROWADZENIE O pewnym algorymie rozwiązującym problem opymalnej alokacji zasobów Cezary S. Zaremba*, Leszek S. Zaremba ** WPROWADZENIE W kierowaniu firmą Zarząd częso saje wobec problemu rozdysponowania (alokacji)

Bardziej szczegółowo

KRYTERIA OCENIANIA Z FIZYKI DLA KLASY III GIMNAZJUM

KRYTERIA OCENIANIA Z FIZYKI DLA KLASY III GIMNAZJUM KRYTERIA OCENIANIA Z FIZYKI DLA KLASY III GIMNAZJUM DRGANIA I FALE MECHANICZNE - Uczeń nie opanował wiedzy i umiejętności niezbędnych w dalszej nauce. -Wie, że fale sprężyste nie mogą rozchodzić się w

Bardziej szczegółowo

BEZRYZYKOWNE BONY I LOKATY BANKOWE ALTERNATYWĄ DLA PRZYSZŁYCH EMERYTÓW. W tym krótkim i matematycznie bardzo prostym artykule pragnę osiągnąc 3 cele:

BEZRYZYKOWNE BONY I LOKATY BANKOWE ALTERNATYWĄ DLA PRZYSZŁYCH EMERYTÓW. W tym krótkim i matematycznie bardzo prostym artykule pragnę osiągnąc 3 cele: 1 BEZRYZYKOWNE BONY I LOKATY BANKOWE ALTERNATYWĄ DLA PRZYSZŁYCH EMERYTÓW Leszek S. Zaremba (Polish Open Universiy) W ym krókim i maemaycznie bardzo prosym arykule pragnę osiągnąc cele: (a) pokazac że kupowanie

Bardziej szczegółowo

4.1 Obsługa oscyloskopu(f10)

4.1 Obsługa oscyloskopu(f10) 164 Fale 4.1 Obsługa oscyloskopu(f10) Bezpośrednim celem ćwiczenia jes zapoznanie się z działaniem i obsługą oscyloskopuak,abywprzyszłościmożnabyłoprzyjegopomocywykonywaćpomiary.wym celu należy przeprowadzić

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE STOPNIE SZKOLNE Z FIZYKI W KLASIE III

WYMAGANIA NA POSZCZEGÓLNE STOPNIE SZKOLNE Z FIZYKI W KLASIE III WYMAGANIA NA POSZCZEGÓLNE STOPNIE SZKOLNE Z FIZYKI W KLASIE III Dział XI. DRGANIA I FALE (9 godzin lekcyjnych) Ocenę dopuszczającą otrzymuje uczeń, który: wskaże w otaczającej rzeczywistości przykłady

Bardziej szczegółowo

Przedmiotowy system oceniania z fizyki w klasie 3

Przedmiotowy system oceniania z fizyki w klasie 3 Przedmiotowy system oceniania z fizyki w klasie 3 Szczegółowe wymagania na poszczególne stopnie (oceny) 1. Drgania i fale R treści nadprogramowe Stopień dopuszczający Stopień dostateczny Stopień dobry

Bardziej szczegółowo

XXXIV Olimpiada Wiedzy Elektrycznej i Elektronicznej Kraków 31 marca 2011. Test dla grupy elektronicznej

XXXIV Olimpiada Wiedzy Elektrycznej i Elektronicznej Kraków 31 marca 2011. Test dla grupy elektronicznej XXXIV Olimpiada Wiedzy lekrycznej i lekronicznej Kraków marca Tes dla grupy elekronicznej.ezysancja zasępcza widziana z zacisków B wynosi:,,4,6,8 B. W poniższym układzie do wyznaczenia prądu w rezysancji

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Fizyka. Poziom rozszerzony. Listopad 2014

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Fizyka. Poziom rozszerzony. Listopad 2014 Vademecum Fizyka KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM nowa vademecum MATURA 015 FIZYKA zakres rozszerzony Fizyka Poziom rozszerzony KOD WEWNĄTRZ Zacznij przygotowania do matury już dziś

Bardziej szczegółowo

ROZDZIAŁ 10 WPŁYW DYSKRECJONALNYCH INSTRUMENTÓW POLITYKI FISKALNEJ NA ZMIANY AKTYWNOŚCI GOSPODARCZEJ

ROZDZIAŁ 10 WPŁYW DYSKRECJONALNYCH INSTRUMENTÓW POLITYKI FISKALNEJ NA ZMIANY AKTYWNOŚCI GOSPODARCZEJ Ryszard Barczyk ROZDZIAŁ 10 WPŁYW DYSKRECJONALNYCH INSTRUMENTÓW POLITYKI FISKALNEJ NA ZMIANY AKTYWNOŚCI GOSPODARCZEJ 1. Wsęp Organy pańswa realizując cele poliyki sabilizacji koniunkury gospodarczej sosują

Bardziej szczegółowo

Przedmiotowy system oceniania do części 2 podręcznika Klasy 3 w roku szkolnym 2013-2014 sem I

Przedmiotowy system oceniania do części 2 podręcznika Klasy 3 w roku szkolnym 2013-2014 sem I Przedmiotowy system oceniania do części 2 podręcznika Klasy 3 w roku szkolnym 2013-2014 sem I Tabela wymagań programowych i kategorii celów poznawczych Temat lekcji w podręczniku 22. Ruch drgający podać

Bardziej szczegółowo

Wyznaczanie prędkości rozchodzenia się dźwięku w powietrzu i w ciele stałym

Wyznaczanie prędkości rozchodzenia się dźwięku w powietrzu i w ciele stałym Wyznaczanie prędkości rozchodzenia się dźwięku w powietrzu i w ciele stałym Obowiązkowa znajomość zagadnień: ĆWICZENIE 8 Podstawowe wiadomości o ruchu falowym: prędkość, amplituda, okres i częstość; ruch

Bardziej szczegółowo

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Michał Łasica klasa IIId nr 13 22 grudnia 2006 1 1 Doświadczalne wyznaczanie ogniskowej soczewki 1.1

Bardziej szczegółowo

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m.

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m. Segment B.XIV Prądy zmienne Przygotowała: dr Anna Zawadzka Zad. 1 Obwód drgający składa się z pojemności C = 4 nf oraz samoindukcji L = 90 µh. Jaki jest okres, częstotliwość, częstość kątowa drgań oraz

Bardziej szczegółowo

Hologram może zostać ręcznie wytworzony poprzez zarysowanie kawałka plastiku. Jak działa to zjawisko? Wykonaj taki hologram.

Hologram może zostać ręcznie wytworzony poprzez zarysowanie kawałka plastiku. Jak działa to zjawisko? Wykonaj taki hologram. Problem 2, Hologram Krzysztof Pietrzak, Gamma_γ Treść problemu: Hologram może zostać ręcznie wytworzony poprzez zarysowanie kawałka plastiku. Jak działa to zjawisko? Wykonaj taki hologram. Analiza teoretyczna:

Bardziej szczegółowo

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie

Bardziej szczegółowo

O PEWNYCH KRYTERIACH INWESTOWANIA W OPCJE NA AKCJE

O PEWNYCH KRYTERIACH INWESTOWANIA W OPCJE NA AKCJE MEODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH om XIII/3, 01, sr 43 5 O EWNYCH KRYERIACH INWESOWANIA W OCJE NA AKCJE omasz Warowny Kaedra Meod Ilościowych w Zarządzaniu oliechnika Lubelska e-mail: warowny@pollubpl

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU B A D A N I A O P E R A C J N E I D E C Z J E Nr 2 2006 Bogusław GUZIK* SZACOWANIE MODELU RNKOWEGO CKLU ŻCIA PRODUKTU Przedsawiono zasadnicze podejścia do saysycznego szacowania modelu rynkowego cyklu

Bardziej szczegółowo

Ć W I C Z E N I E N R M-2

Ć W I C Z E N I E N R M-2 INSYU FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I ECHNOLOGII MAERIAŁÓW POLIECHNIKA CZĘSOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M- ZALEŻNOŚĆ OKRESU DRGAŃ WAHADŁA OD AMPLIUDY Ćwiczenie M-: Zależność

Bardziej szczegółowo

Wykład 3 POLITYKA PIENIĘŻNA POLITYKA FISKALNA

Wykład 3 POLITYKA PIENIĘŻNA POLITYKA FISKALNA Makroekonomia II Wykład 3 POLITKA PIENIĘŻNA POLITKA FISKALNA PLAN POLITKA PIENIĘŻNA. Podaż pieniądza. Sysem rezerwy ułamkowej i podaż pieniądza.2 Insrumeny poliyki pieniężnej 2. Popy na pieniądz 3. Prowadzenie

Bardziej szczegółowo

Najprostszą soczewkę stanowi powierzchnia sferyczna stanowiąca granicę dwóch ośr.: powietrza, o wsp. załamania n 1. sin θ 1. sin θ 2.

Najprostszą soczewkę stanowi powierzchnia sferyczna stanowiąca granicę dwóch ośr.: powietrza, o wsp. załamania n 1. sin θ 1. sin θ 2. Ia. OPTYKA GEOMETRYCZNA wprowadzenie Niemal każdy system optoelektroniczny zawiera oprócz źródła światła i detektora - co najmniej jeden element optyczny, najczęściej soczewkę gdy system służy do analizy

Bardziej szczegółowo

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Podstawy Działanie obrazujące soczewek lub układu soczewek

Bardziej szczegółowo

ZASADY PRZEPROWADZANIA EGZAMINU DYPLOMOWEGO KOŃCZĄCEGO STUDIA PIERWSZEGO ORAZ DRUGIEGO STOPNIA NA KIERUNKU FIZYKA

ZASADY PRZEPROWADZANIA EGZAMINU DYPLOMOWEGO KOŃCZĄCEGO STUDIA PIERWSZEGO ORAZ DRUGIEGO STOPNIA NA KIERUNKU FIZYKA ZASADY PRZEPROWADZANIA EGZAMINU DYPLOMOWEGO KOŃCZĄCEGO STUDIA PIERWSZEGO ORAZ DRUGIEGO STOPNIA NA KIERUNKU FIZYKA INSTYTUT FIZYKI WYDZIAŁ MATEMATYKI, FIZYKI I TECHNIKI UNIWERSYTET KAZIMIERZA WIELKIEGO

Bardziej szczegółowo

i 0,T F T F 0 Zatem: oprocentowanie proste (kapitalizacja na koniec okresu umownego 0;N, tj. w momencie t N : F t F 0 t 0;N, F 0

i 0,T F T F 0 Zatem: oprocentowanie proste (kapitalizacja na koniec okresu umownego 0;N, tj. w momencie t N : F t F 0 t 0;N, F 0 Maemayka finansowa i ubezpieczeniowa - 1 Sopy procenowe i dyskonowe 1. Sopa procenowa (sopa zwrou, sopa zysku) (Ineres Rae). Niech: F - kapiał wypoŝyczony (zainwesowany) w momencie, F T - kapiał zwrócony

Bardziej szczegółowo

(Plan wynikowy) - zakładane osiągnięcia ucznia Fizyka klasa II

(Plan wynikowy) - zakładane osiągnięcia ucznia Fizyka klasa II (Plan wynikowy) - zakładane osiągnięcia ucznia Fizyka klasa II 1 Zapoznanie z wymaganiami edukacyjnymi i kryeriami oceniania. Regulamin pracowni i przepisy BHP. 1. Jak opisujemy ruch? (1.1, 1., 1.5, 1.6,

Bardziej szczegółowo

dr inż. MARCIN MAŁACHOWSKI Instytut Technik Innowacyjnych EMAG

dr inż. MARCIN MAŁACHOWSKI Instytut Technik Innowacyjnych EMAG dr inż. MARCIN MAŁACHOWSKI Insyu Technik Innowacyjnych EMAG Wykorzysanie opycznej meody pomiaru sężenia pyłu do wspomagania oceny paramerów wpływających na możliwość zaisnienia wybuchu osiadłego pyłu węglowego

Bardziej szczegółowo

U b e zpieczenie w t eo r ii użyteczności i w t eo r ii w yceny a ktywów

U b e zpieczenie w t eo r ii użyteczności i w t eo r ii w yceny a ktywów dr Dariusz Sańko Kaedra Ubezpieczenia Społecznego Szkoła Główna Handlowa dariusz.sanko@gmail.com lisopada 006 r., akualizacja i poprawki: 30 sycznia 008 r. U b e zpieczenie w eo r ii użyeczności i w eo

Bardziej szczegółowo

Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka materialnego A. B.

Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka materialnego A. B. Imię i nazwisko Pytanie 1/ Zaznacz właściwą odpowiedź: Fale elektromagnetyczne są falami poprzecznymi podłużnymi Pytanie 2/ Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka

Bardziej szczegółowo

Kobiety w przedsiębiorstwach usługowych prognozy nieliniowe

Kobiety w przedsiębiorstwach usługowych prognozy nieliniowe Pior Srożek * Kobiey w przedsiębiorswach usługowych prognozy nieliniowe Wsęp W dzisiejszym świecie procesy społeczno-gospodarcze zachodzą bardzo dynamicznie. W związku z ym bardzo zmienił się sereoypowy

Bardziej szczegółowo

KLASA 1. 1. Wykonujemy pomiary. Wymagania ponadpodstawowe

KLASA 1. 1. Wykonujemy pomiary. Wymagania ponadpodstawowe KLASA 1 1. Wykonujemy pomiary Tema lekcji Wielkości fizyczne, kóre mierzysz na co dzień Pomiar warości siły ciężkości Wyznaczanie gęsości subsancji Pomiar ciśnienia wymienia przyrządy, za pomocą kórych

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę* Zał. nr 4 do ZW 33/01 WYDZIAŁ PPT KARTA PRZEDMIOTU Nazwa w języku polskim: Podstawy optyki fizycznej i instrumentalnej Nazwa w języku angielskim Fundamentals of Physical and Instrumental Optics Kierunek

Bardziej szczegółowo

8. Zakładane osiągnięcia ucznia (wymagania edukacyjne)

8. Zakładane osiągnięcia ucznia (wymagania edukacyjne) 8. Zakładane osiągnięcia ucznia (wymagania edukacyjne) 1 Lekcja wsępna 1. Wykonujemy pomiary 2 3 4 5 6 7 8 9 10 11 12 Wielkości fizyczne, kóre mierzysz na co dzień Pomiar warości siły ciężkości Wyznaczanie

Bardziej szczegółowo

Zakładane osiągnięcia ucznia (wymagania edukacyjne)

Zakładane osiągnięcia ucznia (wymagania edukacyjne) Zakładane osiągnięcia ucznia (wymagania edukacyjne) 1 Lekcja wsępna 1. Wykonujemy pomiary Lp. Tema lekcji Wymagania konieczne 2 3 4 5 6 7 8 9 10 11 12 Wielkości fizyczne, kóre mierzysz na co dzień Pomiar

Bardziej szczegółowo

Wymagania programowe na poszczególne oceny. Maria Majewska. Ocena niedostateczna: uczeń nie opanował wymagań na ocenę dopuszczającą.

Wymagania programowe na poszczególne oceny. Maria Majewska. Ocena niedostateczna: uczeń nie opanował wymagań na ocenę dopuszczającą. Wymagania programowe na poszczególne oceny klasa III Maria Majewska Ocena niedostateczna: uczeń nie opanował wymagań na ocenę dopuszczającą. Ocena dopuszczająca [1] - zna pojęcia: położenie równowagi,

Bardziej szczegółowo

Michał Praszałowicz, pok. 438. michal@if.uj.edu.pl strona www: th-www.if.uj.edu.pl/~michal wykład 3 godz. za wyjątkiem listopada Egzamin: esej max.

Michał Praszałowicz, pok. 438. michal@if.uj.edu.pl strona www: th-www.if.uj.edu.pl/~michal wykład 3 godz. za wyjątkiem listopada Egzamin: esej max. Michał Praszałowicz, pok. 438. michal@if.uj.edu.pl strona www: th-www.if.uj.edu.pl/~michal wykład 3 godz. za wyjątkiem listopada Egzamin: esej max. 10 stron na jeden z listy tematów + rozmowa USOS! 1 Model

Bardziej szczegółowo

Metoda osłabionego całkowitego wewnętrznego odbicia ATR (Attenuated Total Reflection)

Metoda osłabionego całkowitego wewnętrznego odbicia ATR (Attenuated Total Reflection) Metoda osłabionego całkowitego wewnętrznego odbicia ATR (Attenuated Total Reflection) Całkowite wewnętrzne odbicie n 2 θ θ n 1 n > n 1 2 Kiedy promień pada na granicę ośrodków pod kątem większym od kąta

Bardziej szczegółowo

8. Zakładane osiągnięcia ucznia (Plan wynikowy)

8. Zakładane osiągnięcia ucznia (Plan wynikowy) 8. Zakładane osiągnięcia ucznia (Plan wynikowy) 1 Lekcja wsępna 1. Wykonujemy pomiary Lp. Tema lekcji Wymagania konieczne 2 3 4 5 6 7 8 9 10 Wielkości fizyczne, kóre mierzysz na co dzień Pomiar warości

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY 1. Wykonujemy pomiary wymienia przyrządy, za pomocą kórych mierzymy długość, emperaurę, czas, szybkość i masę podaje zakres pomiarowy przyrządu przelicza jednoski

Bardziej szczegółowo

XLI OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne

XLI OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne XLI OLIPIADA FIZYCZNA EAP I Zadanie doświadczalne ZADANIE D Pod działaniem sil zewnęznych ciała sale ulęgają odkszałceniom. Wyznacz zależność pomienia obszau syczniści szklanej soczewki z płyka szklana

Bardziej szczegółowo

Optyka 2012/13 powtórzenie

Optyka 2012/13 powtórzenie strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Słońce w ciągu dnia przemieszcza się na niebie ze wschodu na zachód. W którym kierunku obraca się Ziemia? Zadanie 2. Na rysunku przedstawiono

Bardziej szczegółowo

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub

Bardziej szczegółowo

PUBLICZNE GIMNAZJUM nr 1 z ODDZIAŁAMI INTEGRACYJNYMI im. ks. prof. JÓZEFA TISCHNERA w CHRZANOWIE.

PUBLICZNE GIMNAZJUM nr 1 z ODDZIAŁAMI INTEGRACYJNYMI im. ks. prof. JÓZEFA TISCHNERA w CHRZANOWIE. PUBLICZNE GIMNAZJUM nr 1 z ODDZIAŁAMI INTEGRACYJNYMI im. ks. prof. JÓZEFA TISCHNERA w CHRZANOWIE. 1. Wykonujemy pomiary Wymagania na poszczególne oceny z fizyki w gimnazjum. Wielkości fizyczne, kóre mierzysz

Bardziej szczegółowo

Optyka geometryczna z elementami optyki falowej. Marian Talar

Optyka geometryczna z elementami optyki falowej. Marian Talar Optyka geometryczna z elementami optyki falowej Marian Talar 21 lipca 2006 1 Informacje ogólne To, że światło jest falą elektromagnetyczną wiadomo było już od czasu gdy J. C. Maxwell (1831-1879) sformułował

Bardziej szczegółowo

Ć W I C Z E N I E N R M-7

Ć W I C Z E N I E N R M-7 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M-7 BADANIE CZĘSTOŚCI DRGAŃ WŁASNYCH ORAZ WYZNACZANIE PRĘDKOŚCI

Bardziej szczegółowo

Wymagania na poszczególne oceny z fizyki w roku szkolnym 2012/2013 w Gimnazjum nr 2 w Kolbuszowej

Wymagania na poszczególne oceny z fizyki w roku szkolnym 2012/2013 w Gimnazjum nr 2 w Kolbuszowej Wymagania na poszczególne oceny z fizyki w roku szkolnym 2012/2013 w Gimnazjum nr 2 w Kolbuszowej 1. Wykonujemy pomiary Lp. Tema lekcji Wymagania konieczne 2 3 4 5 6 7 8 9 10 11 Wielkości fizyczne, kóre

Bardziej szczegółowo

Spis treêci. IV. Drgania i fale mechaniczne. V. Optyka

Spis treêci. IV. Drgania i fale mechaniczne. V. Optyka 2 2 Spis treêci IV. Drgania i fale mechaniczne 22. Ruch drgajàcy............................................ 6 23. Drgania swobodne........................................ 10 24. Przemiany energii podczas

Bardziej szczegółowo

Badanie zjawisk optycznych przy użyciu zestawu Laser Kit

Badanie zjawisk optycznych przy użyciu zestawu Laser Kit LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 5 Badanie zjawisk optycznych przy użyciu zestawu Laser Kit Cel ćwiczenia: Zapoznanie studentów ze zjawiskami optycznymi. Badane elementy: Zestaw ćwiczeniowy Laser

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura 12. Fale elektromagnetyczne zadania z arkusza I 12.5 12.1 12.6 12.2 12.7 12.8 12.9 12.3 12.10 12.4 12.11 12. Fale elektromagnetyczne - 1 - 12.12 12.20 12.13 12.14 12.21 12.22 12.15 12.23 12.16 12.24 12.17

Bardziej szczegółowo

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków

Bardziej szczegółowo

Ćwiczenie 53. Soczewki

Ćwiczenie 53. Soczewki Ćwiczenie 53. Soczewki Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Pomiar ogniskowych soczewki skupiającej i układu soczewek (skupiająca i rozpraszająca), obliczenie ogniskowej soczewki rozpraszającej.

Bardziej szczegółowo

INTERFEROMETR MICHELSONA ver. R

INTERFEROMETR MICHELSONA ver. R INTERFEROMETR MICHELSONA ver. R Celem ćwiczenia jest konstrukcja interferometru Michelsona i weryfikacja jego zdolności pomiaru frontów falowych. A. Ustawienie interferometru 1. Przygotuj dużą, skolimowaną

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam

Bardziej szczegółowo

Praca jest wykonywana podczas przesuwania się ciała pod wpływem siły. Wartość pracy możemy oblicz z wzoru:

Praca jest wykonywana podczas przesuwania się ciała pod wpływem siły. Wartość pracy możemy oblicz z wzoru: Energia mechaniczna Energia mechaniczna jest związana ruchem i położeniem danego ciała względem dowolnego układu odniesienia. Jest sumą energii kinetycznej i potencjalnej. Aby ciało mogło się poruszać

Bardziej szczegółowo

Fig. 1. Interferometr A. A. Michelsona.

Fig. 1. Interferometr A. A. Michelsona. Efek Sagnaa dr Janusz. Kępka Wsęp. Jednym z najbardziej reklamowanyh eksperymenów był i jes eksperymen lbera brahama Mihelsona zapoząkowany w 88, i nasępnie powarzany po roku 880 we współpray z Ewardem

Bardziej szczegółowo

Sprawujesz osobistą opiekę nad dzieckiem? Przeczytaj koniecznie!

Sprawujesz osobistą opiekę nad dzieckiem? Przeczytaj koniecznie! Sprawujesz osobisą opiekę nad dzieckiem? Przeczyaj koniecznie! Czy z yułu sprawowania osobisej opieki nad dzieckiem podlegasz ubezpieczeniom społecznym i zdrowonemu Od 1 września 2013 r. osoba sprawująca

Bardziej szczegółowo

KOOF Szczecin: www.of.szc.pl

KOOF Szczecin: www.of.szc.pl IX OLIMPIADA FIZYCZNA (959/960). Soień III, zadanie doświadczalne D. Źródło: Komie Główny Olimiady Fizycznej; Aniela Nowicka: Olimiady Fizyczne IX i X. PZWS, Warszawa 965 (sr. 6 69). Nazwa zadania: Działy:

Bardziej szczegółowo

Odgłosy z jaskini (10) Kamień, ptak i drzewo

Odgłosy z jaskini (10) Kamień, ptak i drzewo FOTON 10, Jesień 008 59 Odgłosy z jaskini (10) Kamień, ptak i drzewo Adam Smólski Już małe dziecko zauważa, że jak stoi w wannie, to ma krótsze nogi, a spacerując nad Morskim Okiem słyszy od rodziców,

Bardziej szczegółowo

Spis treści Wykład 1. Fale i ich modelowanie

Spis treści Wykład 1. Fale i ich modelowanie Spis treści Wykład 1. Fale i ich modelowanie.................... 3 1.1. Wstęp.................................. 3 1.2. Modelowanie świata.......................... 3 1.3. Fale w przyrodzie............................

Bardziej szczegółowo

Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz

Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz Kartezjański układ współrzędnych: Wersory osi: e x x i e y y j e z z k r - wektor o współrzędnych [ x 0, y 0, z 0 ] Wektor położenia: r t =[ x t, y t,z t ] każda współrzędna zmienia się w czasie. r t =

Bardziej szczegółowo

Wyzwania praktyczne w modelowaniu wielowymiarowych procesów GARCH

Wyzwania praktyczne w modelowaniu wielowymiarowych procesów GARCH Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu Wyzwania prakyczne w modelowaniu wielowymiarowych procesów GARCH Wsęp Od zaproponowania przez Engla w 1982 roku jednowymiarowego modelu klasy ARCH, modele

Bardziej szczegółowo

Zadania do rozdziału 10.

Zadania do rozdziału 10. Zadania do rozdziału 0. Zad.0.. Jaką wsokość musi mieć pionowe zwierciadło ab osoba o wzroście.80 m mogła się w nim zobaczć cała. Załóżm, że ocz znajdują się 0 cm poniżej czubka głow. Ab prawidłowo rozwiązać

Bardziej szczegółowo

Ć W I C Z E N I E N R O-6

Ć W I C Z E N I E N R O-6 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-6 WYZNACZANIE DŁUGOŚCI FAL PODSTAWOWYCH BARW W WIDMIE ŚWIATŁA BIAŁEGO

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo