Analiza rynku projekt

Wielkość: px
Rozpocząć pokaz od strony:

Download "Analiza rynku projekt"

Transkrypt

1 Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes porzebne? Jaki jes cel prowadzenia analizy? 2

2 2. Króka charakerysyka rynku pracy w Polsce (obieku będącego przedmioem badań) Podsawowe definicje charakeryzujące dany rynek, krókie omówienie srony podażowej i popyowej wybranego rynku, charakerysyka asorymenowa rynku (produkmix) Dane źródłowe w posaci abelarycznej. Tabela odpowiednio opisana: yuł + źródło. Ilusracja danych w posaci wykresu. Wykres odpowiednio opisany: yuł + źródło. Króka analiza danych źródłowych: długość szeregu czasowego, jego zmienność, pozyywny (negaywny) kierunek zmian, ip Badanie dynamiki rynku pracy w Polsce (obieku będącego przedmioem badań) Krókie omówienie meody badawczej. Zesawienie abelaryczne mierników dynamiki: odchylenia bezwzględne (prose i łańcuchowe), wskaźniki dynamiki (prose i łańcuchowe), ednioroczny przyros (+) lub spadek (-) poziomu badanego parameru rynku. Wykresy obrazujące kszałowanie się wskaźników dynamiki. 4

3 4. Prognozowanie liczby bezrobonych w Polsce (parameru obieku będącego przedmioem badań) 4.1 Predykcja na podsawie edniorocznego wzrosu (spadku) 4.2 Predykcja na podsawie modeli adapacyjnych 4.3 Predykcja na podsawie modeli endencji rozwojowej 4.4 Analiza błędów dopasowania oraz wybór meody predykcji Punky 4.1 do 4.3 Meoda badawcza, rozparywane modele, meody uzyskania wyników. Zesawienie wyników (abela(e) + wykresy). Pk. 4.4 Analiza saysyczna i inżynierska rozparywanych meod predykcji, osaeczny wybór meody wraz z uzasadnieniem, końcowe wyniki prognozowania Zakończenie 2 3 zdaniowe sreszczenie pracy. Zesawienie osaecznych wyników prognozowania. Wnioski wynikające z przedsawionej prognozy oraz wpływ wyników prognozowania na zjawiska współowarzyszące 6

4 ANALIZA SYTUACJI PRZEDSIEBIORSTWA PROGNOZY STRATEGICZNE PLANOWANIE MARKETINGOWE TAKTYCZNE PLANOWANIE MARKETINGOWE OPERACYJNE PLANOWANIE MARKETINGOWE REALIZACJA I KONTROLA PROCES ZARZĄDZANIA MARKETINGOWEGO 7 ^ w = a + b * b = ( )* ( ) i ( ) i w i 2 w a = w b * R = ( )* ( ) 2 ( ) * ( ) i i w i w i w w 2 8

5 Tabela 1. Dane rzeczywise - kszałowanie się liczby zarudnionych w firmie X w laach w i [ys.] 3,00 3,00 3,50 3,70 4,00 4,80 6,00 Źródło: biuleyn informacyjny firmy X, 2002 r. 9 Wykres 1. Kszałowanie się liczby zarudnionych w firmie X w laach ,00 w [ys.] 7,00 6,00 5,00 4,00 3,00 2, Źródło: opracowanie własne na podsawie danych z abeli 1 10

6 Tabela 2. Sposób obliczania paramerów i warości liniowego modelu regresyjnego opisującego kszałowanie się liczby zarudnionych w firmie X w laach Lp. i w i i - w i - w ( i - ) * (w i - w ) ( i - ) 2 (w i - w ) 2 w^liniowy ,00-3,00-1,00 3,00 9,00 1,00 2, ,00-2,00-1,00 2,00 4,00 1,00 3, ,50-1,00-0,50 0,50 1,00 0,25 3, ,70 0,00-0,30 0,00 0,00 0,09 4, ,00 1,00 0,00 0,00 1,00 0,00 4, ,80 2,00 0,80 1,60 4,00 0,64 4, ,00 3,00 2,00 6,00 9,00 4,00 5, , , ,81 Suma 28,00 28,00 0,00 0,00 13,10 28,00 6,98 Średnia 4,00 4,00 Źródło: opracowanie własne b= 0,4679 a= 2,1286 R= 0, Wykres 2. Kszałowanie się liczby zarudnionych w firmie X w laach wraz z prognozą na laa według liniowego modelu regresyjnego 8,00 w [ys.] 7,00 6,00 5,00 4,00 wi w^liniowy 3,00 2, Źródło: opracowanie własne na podsawie danych z abeli 2 12

7 Funkcja wykładnicza b< y=a*b^x b> b=1 4 a ,5-1 -0,5 0 0,5 1 1, Tabela 3. Sposób obliczania paramerów i warości wykładniczego modelu regresyjnego opisującego kszałowanie się liczby zarudnionych w firmie X w laach Lp. i w i w* i i - w i * - w * ( i - )*(w i * - w *) ( i - ) 2 (w i * - w *) 2 w^ wykładniczy ,00 0,4771-3,0000-0,1126 0,3378 9,0000 0,0127 2, ,00 0,4771-2,0000-0,1126 0,2252 4,0000 0,0127 3, ,50 0,5441-1,0000-0,0456 0,0456 1,0000 0,0021 3, ,70 0,5682 0,0000-0,0215 0,0000 0,0000 0,0005 3, ,00 0,6021 1,0000 0,0124 0,0124 1,0000 0,0002 4, ,80 0,6812 2,0000 0,0915 0,1831 4,0000 0,0084 4, ,00 0,7782 3,0000 0,1884 0,5653 9,0000 0,0355 5, , , ,6407 Suma 28 28,00 4,128 0,0000 0,0000 1, ,0000 0,0719 Średnia 4 4,00 0,5897 Źródło: opracowanie własne b*= 0,0489 b= 1, a*= 0,3941 a= 2, R= 0,

8 Wykres 3. Kszałowanie się liczby zarudnionych w firmie X w laach wraz z prognozą na laa według wykładniczego modelu regresyjnego 8,00 w [ys.] 7,00 6,00 5,00 4,00 wi w^wykładniczy 3,00 2, Źródło: opracowanie własne na podsawie danych z abeli 3 15 Funkcja hiperboliczna ,5-1 -0,5 0 0,5 1 1,

9 Tabela 4. Sposób obliczania paramerów i warości hiperbolicznego modelu regresyjnego opisującego kszałowanie się liczby zarudnionych w firmie X w laach Lp. i w i i * i * - * w i - w ( i * - *) * (w i - w ) ( i * - *) 2 (w i - w ) 2 w^hiperboliczny ,00 1,0000 0,6296-1,0000-0,6296 0,3964 1,0000 2, ,00 0,5000 0,1296-1,0000-0,1296 0,0168 1,0000 3, ,50 0,3333-0,0371-0,5000 0,0185 0,0014 0,2500 4, ,70 0,2500-0,1204-0,3000 0,0361 0,0145 0,0900 4, ,00 0,2000-0,1704 0,0000 0,0000 0,0290 0,0000 4, ,80 0,1667-0,2037 0,8000-0,1630 0,0415 0,6400 4, ,00 0,1429-0,2276 2,0000-0,4551 0,0518 4,0000 4, , , ,65 Suma 28 28,00 2,5929 0,0000 0,0000-1,3226 0,5514 6,9800 Średnia 4 4,00 0,3704 Źródło: opracowanie własne b= -2, a= 4, R= -0, Wykres 4. Kszałowanie się liczby zarudnionych w firmie X w laach wraz z prognozą na laa według hiperbolicznego modelu regresyjnego 8,00 w [ys.] 7,00 6,00 5,00 4,00 3,00 wi w^hiperboliczny 2, Źródło: opracowanie własne na podsawie danych z abeli 4 18

10 Tabela 5 Sposób obliczania paramerów i warości hiperbolicznego (2) modelu regresyjnego opisującego kszałowanie się liczby zarudnionych w firmie X w laach Lp. i w i i * w i * i * - * w i * - w * ( i * - *)(w i * - w * ) ( i * - * ) 2 (w i * - w * ) 2 w^hiperboliczny ,00 1,0000 0,3333 0,6296 0,0694 0,0437 0,3964 0,0048 2, ,00 0,5000 0,3333 0,1296 0,0694 0,0090 0,0168 0,0048 3, ,50 0,3333 0,2857-0,0371 0,0218-0,0008 0,0014 0,0005 3, ,70 0,2500 0,2703-0,1204 0,0063-0,0008 0,0145 0,0000 4, ,00 0,2000 0,2500-0,1704-0,0140 0,0024 0,0290 0,0002 4, ,80 0,1667 0,2083-0,2037-0,0556 0,0113 0,0415 0,0031 4, ,00 0,1429 0,1667-0,2276-0,0973 0,0221 0,0518 0,0095 4, , , ,52 Suma 28 28,00 2,5929 1,8477 0,0000 0,0000 0,0870 0,5514 0,0229 Średnia 4 4,00 0,3704 0,2640 Źródło: opracowanie własne b * = 0, b= 0, a * = 0, a= 4, R= 0, Wykres 5. Kszałowanie się liczby zarudnionych w firmie X w laach wraz z prognozą na laa według hiperbolicznego (2) modelu regresyjnego 8,00 w [ys.] 7,00 6,00 5,00 4,00 3,00 wi w^hiperboliczny 2 2, Źródło: opracowanie własne na podsawie danych z abeli 5 20

11 ,5-1 -0,5 0 0,5 1 1, Tabela 6. Sposób obliczania paramerów i warości poęgowego modelu regresyjnego opisującego kszałowanie się liczby zarudnionych w firmie X w laach Lp. i w i i * w i * i * - * w i * - w * ( i * - *) * (w i * - w *) ( i * - *) 2 (w i * - w *) 2 w^poęgowy ,00 0,0000 0,4771-0,5289-0,1126 0,0595 0,2798 0,0127 2, ,00 0,3010 0,4771-0,2279-0,1126 0,0257 0,0519 0,0127 3, ,50 0,4771 0,5441-0,0518-0,0456 0,0024 0,0027 0,0021 3, ,70 0,6021 0,5682 0,0731-0,0215-0,0016 0,0053 0,0005 4, ,00 0,6990 0,6021 0,1701 0,0124 0,0021 0,0289 0,0002 4, ,80 0,7782 0,6812 0,2492 0,0915 0,0228 0,0621 0,0084 4, ,00 0,8451 0,7782 0,3162 0,1884 0,0596 0,1000 0,0355 4, , , ,51 Suma 28 28,00 3,7024 4,1280 0,0000 0,0000 0,1705 0,5307 0,0719 Średnia 4 4,00 0,5289 0,5897 Źródło: opracowanie własne b= 0,3212 a*= 0,4198 a= 2,6290 R= 0,

12 Wykres 6. Kszałowanie się liczby zarudnionych w firmie X w laach wraz z prognozą na laa według poęgowego modelu regresyjnego 8,00 w [ys.] 7,00 6,00 5,00 4,00 wi w^poęgowy 3,00 2, Źródło: opracowanie własne na podsawie danych z abeli ,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,

13 Tabela 7. Sposób obliczania paramerów i warości logarymicznego modelu regresyjnego opisującego kszałowanie się liczby zarudnionych w firmie X w laach Lp. i w i i * i * - * w i - w ( i * - *) * (w i - w ) ( i * - *) 2 (w i - w ) 2 w^logarymiczny ,00 0,0000-0,5289-1,0000 0,5289 0,2798 1,0000 2, ,00 0,3010-0,2279-1,0000 0,2279 0,0519 1,0000 3, ,50 0,4771-0,0518-0,5000 0,0259 0,0027 0,2500 3, ,70 0,6021 0,0731-0,3000-0,0219 0,0053 0,0900 4, ,00 0,6990 0,1701 0,0000 0,0000 0,0289 0,0000 4, ,80 0,7782 0,2492 0,8000 0,1994 0,0621 0,6400 4, ,00 0,8451 0,3162 2,0000 0,6324 0,1000 4,0000 4, , , ,41 Suma 28 28,00 3,7024 0,0000 0,0000 1,5925 0,5307 6,9800 Średnia 4 4,00 0,5289 Źródło: opracowanie własne b= 3,0006 a= 2,4129 R= 0, Wykres 7. Kszałowanie się liczby zarudnionych w firmie X w laach wraz z prognozą na laa według logarymicznego modelu regresyjnego 8,00 w [ys.] 7,00 6,00 5,00 4,00 wi 3,00 w^logarymiczny 2, Źródło: opracowanie własne na podsawie danych z abeli 7 26

14 Tabela 8. Zbiorcze zesawienie modeli regresyjnych obrazujących kszałowanie się liczby zarudnionych w firmie X w laach MODEL Jedno ska WSPÓŁCZYNNIK KORELACJI liniowy w= 2, ,4679 * [ys.] 0,9371 wykładniczy w= 2,4779 * 1,1192 [ys.] 0,9648 hiperboliczny w= 4,8885-2,3987 / [ys.] -0,6742 hiperboliczny II w= ( 4,8653 * ) / ( 0, ) [ys.] 0,7739 poęgowy w= 2,6290 * 0,3212 [ys.] 0,8725 logarymiczny w= 2, ,0006 *log () [ys.] 0,8274 Źródło: opracowanie własne POSTAĆ FUNKCJI w - liczba zarudnionych, [ys.] = Tabela 9. Zesawienie prognozowanego zarudnienia w firmie X na laa według wybranych modeli regresyjnych Model liniowy wykladniczy hiperboliczny hiperboliczny 2 poęgowy logarymiczny ,87 6,10 4,59 4,44 5,13 5, ,34 6,83 4,62 4,48 5,33 5, ,81 7,64 4,65 4,52 5,51 5, ,28 8,55 4,67 4,55 5,68 5, ,74 9,57 4,69 4,57 5,84 5, ,21 10,71 4,70 4,59 5,99 5,76 Źródło: opracowanie własne 28

15 Wykres 8. Kszałowanie się liczby zarudnionych w firmie X w laach wraz z prognozą na laa według wybranych modeli regresyjnych 8,00 w [ys.] 7,00 6,00 5,00 4,00 wi w^logarymiczny 3,00 w^liniowy w^wykładniczy w^hiperboliczny w^hiperboliczny 2 w^poęgowy w^logarymiczny 2, Źródło: opracowanie własne na podsawie danych z abel Tabela 10 Korelacja, zależność a współczynnik korelacji R Korelacja Zależność < 0,20 Słaba Prawie nieznacząca 0,2 0,4 Niska Wyraźna, lecz mała 0,4 0,7 Umiarkowana Isona 0,7 0,9 Wysoka Znaczna 0,9 1,0 Bardzo wysoka Bardzo pewna Źródło: opracowanie własne na podsawie lieraury przedmiou 30

16 Obliczenie błędów dopasowania W celu oszacowania dokładności dopasowania poszczególnych modeli do danych rzeczywisych oblicza się nasępujące miary dopasowania szeregu eoreycznego do szeregu empirycznego: błąd edni ME: gdzie: y y ( ) n 1 ME = n = 1 ˆ y y dane rzeczywise (empiryczne) szeregu czasowego, ˆ dane eoreyczne szeregu czasowego, n długość szeregu czasowego, edni błąd procenowy MPE: 1 MPE = n 1 ( ) y y ˆ y n = *100% (1) (2) gdzie: wszyskie oznaczenia jak we wzorze (1), edni błąd bezwzględny MAE: n 1 MAE = y y ˆ n = 1 (3) gdzie: wszyskie oznaczenia jak we wzorze (1), 31 edni bezwzględny błąd procenowy MAPE: 1 MAPE = n n = 1 y y y ˆ * gdzie: wszyskie oznaczenia jak we wzorze (1), edni błąd kwadraowy MSE: n 1 ( y y ˆ ) MSE = n = 1 gdzie: wszyskie oznaczenia jak we wzorze (1), 2 współczynnik Theila I 2 : I ( y y ˆ ) n 2 = 1 = n = 1 gdzie: wszyskie oznaczenia jak we wzorze (1). y % (4) (5) (6) 32

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1 PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie

Bardziej szczegółowo

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,

Bardziej szczegółowo

PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010

PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010 STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Chrisian Lis PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010 Wprowadzenie Przedmioem

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne

Bardziej szczegółowo

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Barbara Baóg Iwona Foryś PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH Wsęp Koszy dosarczenia wody

Bardziej szczegółowo

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II

Bardziej szczegółowo

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia

Bardziej szczegółowo

Dendrochronologia Tworzenie chronologii

Dendrochronologia Tworzenie chronologii Dendrochronologia Dendrochronologia jes nauką wykorzysującą słoje przyrosu rocznego drzew do określania wieku (daowania) obieków drewnianych (budynki, przedmioy). Analizy różnych paramerów słojów przyrosu

Bardziej szczegółowo

Prognozowanie średniego miesięcznego kursu kupna USD

Prognozowanie średniego miesięcznego kursu kupna USD Prognozowanie średniego miesięcznego kursu kupna USD Kaarzyna Halicka Poliechnika Białosocka, Wydział Zarządzania, Kaedra Informayki Gospodarczej i Logisyki, e-mail: k.halicka@pb.edu.pl Jusyna Godlewska

Bardziej szczegółowo

Kobiety w przedsiębiorstwach usługowych prognozy nieliniowe

Kobiety w przedsiębiorstwach usługowych prognozy nieliniowe Pior Srożek * Kobiey w przedsiębiorswach usługowych prognozy nieliniowe Wsęp W dzisiejszym świecie procesy społeczno-gospodarcze zachodzą bardzo dynamicznie. W związku z ym bardzo zmienił się sereoypowy

Bardziej szczegółowo

Analiza współzależności zjawisk

Analiza współzależności zjawisk Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.

Bardziej szczegółowo

Wprowadzenie do teorii prognozowania

Wprowadzenie do teorii prognozowania Wprowadzenie do teorii prognozowania I Pojęcia: 1. Prognoza i zmienna prognozowana (przedmiot prognozy). Prognoza punktowa i przedziałowa. 2. Okres prognozy i horyzont prognozy. Prognozy krótkoterminowe

Bardziej szczegółowo

licencjat Pytania teoretyczne:

licencjat Pytania teoretyczne: Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie

Bardziej szczegółowo

Strukturalne podejście w prognozowaniu produktu krajowego brutto w ujęciu regionalnym

Strukturalne podejście w prognozowaniu produktu krajowego brutto w ujęciu regionalnym Jacek Baóg Uniwersye Szczeciński Srukuralne podejście w prognozowaniu produku krajowego bruo w ujęciu regionalnym Znajomość poziomu i dynamiki produku krajowego bruo wyworzonego w poszczególnych regionach

Bardziej szczegółowo

Ocena płynności wybranymi metodami szacowania osadu 1

Ocena płynności wybranymi metodami szacowania osadu 1 Bogdan Ludwiczak Wprowadzenie Ocena płynności wybranymi meodami szacowania osadu W ubiegłym roku zaszły znaczące zmiany doyczące pomiaru i zarządzania ryzykiem bankowym. Są one konsekwencją nowowprowadzonych

Bardziej szczegółowo

Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji

Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji Agnieszka Przybylska-Mazur * Meody badania wpływu zmian kursu waluowego na wskaźnik inflacji Wsęp Do oceny łącznego efeku przenoszenia zmian czynników zewnęrznych, akich jak zmiany cen zewnęrznych (szoki

Bardziej szczegółowo

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów

Bardziej szczegółowo

Analiza opłacalności inwestycji logistycznej Wyszczególnienie

Analiza opłacalności inwestycji logistycznej Wyszczególnienie inwesycji logisycznej Wyszczególnienie Laa Dane w ys. zł 2 3 4 5 6 7 8 Przedsięwzięcie I Program rozwoju łańcucha (kanału) dysrybucji przewiduje realizację inwesycji cenrum dysrybucyjnego. Do oceny przyjęo

Bardziej szczegółowo

BEZRYZYKOWNE BONY I LOKATY BANKOWE ALTERNATYWĄ DLA PRZYSZŁYCH EMERYTÓW. W tym krótkim i matematycznie bardzo prostym artykule pragnę osiągnąc 3 cele:

BEZRYZYKOWNE BONY I LOKATY BANKOWE ALTERNATYWĄ DLA PRZYSZŁYCH EMERYTÓW. W tym krótkim i matematycznie bardzo prostym artykule pragnę osiągnąc 3 cele: 1 BEZRYZYKOWNE BONY I LOKATY BANKOWE ALTERNATYWĄ DLA PRZYSZŁYCH EMERYTÓW Leszek S. Zaremba (Polish Open Universiy) W ym krókim i maemaycznie bardzo prosym arykule pragnę osiągnąc cele: (a) pokazac że kupowanie

Bardziej szczegółowo

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków

Bardziej szczegółowo

Metody prognozowania: Szeregi czasowe. Dr inż. Sebastian Skoczypiec. ver Co to jest szereg czasowy?

Metody prognozowania: Szeregi czasowe. Dr inż. Sebastian Skoczypiec. ver Co to jest szereg czasowy? Meody prognozowania: Szeregi czasowe Dr inż. Sebasian Skoczypiec ver. 11.20.2009 Co o jes szereg czasowy? Szereg czasowy: uporządkowany zbiór warości badanej cechy lub warości określonego zjawiska, zaobserwowanych

Bardziej szczegółowo

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA 1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje

Bardziej szczegółowo

Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006

Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006 Modele dynamiczne Paweł Cibis pcibis@o2.pl 27 kwietnia 2006 1 Wyodrębnianie tendencji rozwojowej 2 Etap I Wyodrębnienie tendencji rozwojowej Etap II Uwolnienie wyrazów szeregu empirycznego od trendu Etap

Bardziej szczegółowo

3. Modele tendencji czasowej w prognozowaniu

3. Modele tendencji czasowej w prognozowaniu II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa

Bardziej szczegółowo

3. Analiza własności szeregu czasowego i wybór typu modelu

3. Analiza własności szeregu czasowego i wybór typu modelu 3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK 1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 3. mgr Dawid Doliński

PROGNOZOWANIE. Ćwiczenia 3. mgr Dawid Doliński Ćwiczenia 3 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,

Bardziej szczegółowo

Analiza danych DRZEWA DECYZYJNE. Drzewa decyzyjne. Entropia. http://zajecia.jakubw.pl/ test 1 dopełnienie testu 1

Analiza danych DRZEWA DECYZYJNE. Drzewa decyzyjne. Entropia. http://zajecia.jakubw.pl/ test 1 dopełnienie testu 1 Analiza danych Drzewa decyzyjne. Enropia. Jakub Wróblewski jakubw@pjwsk.edu.pl hp://zajecia.jakubw.pl/ DRZEWA DECYZYJNE Meoda reprezenacji wiedzy (modelowania ablic decyzyjnych). Pozwala na przejrzysy

Bardziej szczegółowo

ZASTOSOWANIE WYBRANYCH MODELI ADAPTACYJNYCH W PROGNOZOWANIU BRAKUJĄCYCH DANYCH W SZEREGACH ZE ZŁOŻONĄ SEZONOWOŚCIĄ DLA LUK NIESYSTEMATYCZNYCH

ZASTOSOWANIE WYBRANYCH MODELI ADAPTACYJNYCH W PROGNOZOWANIU BRAKUJĄCYCH DANYCH W SZEREGACH ZE ZŁOŻONĄ SEZONOWOŚCIĄ DLA LUK NIESYSTEMATYCZNYCH METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XV/4, 214, sr. 181 194 ZASTOSOWANIE WYBRANYCH MODELI ADAPTACYJNYCH W PROGNOZOWANIU BRAKUJĄCYCH DANYCH W SZEREGACH ZE ZŁOŻONĄ SEZONOWOŚCIĄ DLA LUK NIESYSTEMATYCZNYCH

Bardziej szczegółowo

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować

Bardziej szczegółowo

Metody analizy i prognozowania szeregów czasowych

Metody analizy i prognozowania szeregów czasowych Meody analizy i prognozowania szeregów czasowych Wsęp 1. Modele szeregów czasowych 2. Modele ARMA i procedura Boxa-Jenkinsa 3. Modele rendów deerminisycznych i sochasycznych 4. Meody dekompozycji szeregów

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK

ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK 1 ANALIZA, PROGNOZOWANIE I SYMULACJA 2 POBRAĆ Z INTERNETU Plaforma WSL on-line Nazwisko prowadzącego Maryna Kupczyk Folder z nazwą przedmiou - Analiza, prognozowanie i symulacja Plik o nazwie Baza do ćwiczeń

Bardziej szczegółowo

Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA

Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA Zadanie 1 (Plik danych: Transport w Polsce (1990-2015)) Na

Bardziej szczegółowo

PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM

PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM prof. dr hab. Paweł Dimann 1 Znaczenie prognoz w zarządzaniu firmą Zarządzanie firmą jes nieusannym procesem podejmowania decyzji, kóry może być zdefiniowany

Bardziej szczegółowo

OBLICZANIE TERMINU REALIZACJI PRZEDSIĘWZIĘĆ BUDOWLANYCH METODĄ CCPM NA PODSTAWIE MULTIPLIKATYWNEGO MODELU CZASU TRWANIA CZYNNOŚCI

OBLICZANIE TERMINU REALIZACJI PRZEDSIĘWZIĘĆ BUDOWLANYCH METODĄ CCPM NA PODSTAWIE MULTIPLIKATYWNEGO MODELU CZASU TRWANIA CZYNNOŚCI Dane bibliograficzne o arykule: hp://mieczyslaw_polonski.users.sggw.pl/mppublikacje Mieczysław POŁOŃSKI 1 OBLICZANIE TERMIN REALIZACJI PRZEDSIĘWZIĘĆ BDOWLANYCH METODĄ CCPM NA PODSTAWIE MLTIPLIKATYWNEGO

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml

Bardziej szczegółowo

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW Kaedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW Sposoby usalania płac w gospodarce Jednym z głównych powodów, dla kórych na rynku pracy obserwujemy poziom bezrobocia wyższy

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO ODPOWIED NA PYTANIE PROFESORA RAUTSKAUKASA

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO ODPOWIED NA PYTANIE PROFESORA RAUTSKAUKASA ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO NR 394 PRACE KATEDRY EKONOMETRII I STATYSTYKI NR 15 2004 JÓZEF HOZER Uniwersye Szczeci ski ODPOWIED NA PYTANIE PROFESORA RAUTSKAUKASA 1. PYTANIE PROFESORA RAUTSKAUKASA

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA Joanna Górka * Efeky agregacji czasowej szeregów finansowych a modele klasy Sign RCA Wsęp Wprowadzenie losowego parameru do modelu auoregresyjnego zwiększa możliwości aplikacyjne ego modelu, gdyż pozwala

Bardziej szczegółowo

OTWARTE FUNDUSZE EMERYTALNE W POLSCE Struktura funduszy emerytalnych pod względem liczby członków oraz wielkości aktywów

OTWARTE FUNDUSZE EMERYTALNE W POLSCE Struktura funduszy emerytalnych pod względem liczby członków oraz wielkości aktywów OTWARTE FUNDUSZE EMERYTALNE W POLSCE Struktura funduszy emerytalnych pod względem liczby członków oraz wielkości aktywów Tomasz Gruszczyk Informatyka i Ekonometria I rok, nr indeksu: 156012 Sopot, styczeń

Bardziej szczegółowo

Indeksy dynamiki (o stałej i zmiennej podstawie)

Indeksy dynamiki (o stałej i zmiennej podstawie) Indeksy dynamiki (o stałej i zmiennej podstawie) Proste indeksy dynamiki określają tempo zmian pojedynczego szeregu czasowego. Wyodrębnia się dwa podstawowe typy indeksów: indeksy o stałej podstawie; indeksy

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Efektywność projektów inwestycyjnych. Statyczne i dynamiczne metody oceny projektów inwestycyjnych

Efektywność projektów inwestycyjnych. Statyczne i dynamiczne metody oceny projektów inwestycyjnych Efekywość projeków iwesycyjych Saycze i dyamicze meody ocey projeków iwesycyjych Źródła fiasowaia Iwesycje Rzeczowe Powiększeie mająku rwałego firmy, zysk spodzieway w dłuższym horyzocie czasowym. Fiasowe

Bardziej szczegółowo

Wygładzanie metodą średnich ruchomych w procesach stałych

Wygładzanie metodą średnich ruchomych w procesach stałych Wgładzanie meodą średnich ruchomch w procesach sałch Cel ćwiczenia. Przgoowanie procedur Średniej Ruchomej (dla ruchomego okna danch); 2. apisanie procedur do obliczenia sandardowego błędu esmacji;. Wizualizacja

Bardziej szczegółowo

Struktura sektorowa finansowania wydatków na B+R w krajach strefy euro

Struktura sektorowa finansowania wydatków na B+R w krajach strefy euro Rozdział i. Srukura sekorowa finansowania wydaków na B+R w krajach srefy euro Rober W. Włodarczyk 1 Sreszczenie W arykule podjęo próbę oceny srukury sekorowej (sekor przedsiębiorsw, sekor rządowy, sekor

Bardziej szczegółowo

Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie

Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych dr

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODEE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Joanna Małgorzaa andmesser Szkoła Główna

Bardziej szczegółowo

Analiza popytu. Ekonometria. Metody i analiza problemów ekonomicznych. (pod red. Krzysztofa Jajugi), Wydawnictwo AE Wrocław, 1999.

Analiza popytu. Ekonometria. Metody i analiza problemów ekonomicznych. (pod red. Krzysztofa Jajugi), Wydawnictwo AE Wrocław, 1999. Analiza popyu Eonomeria. Meody i analiza problemów eonomicznych (pod red. Krzyszofa Jajugi) Wydawnicwo AE Wrocław 1999. Popy P = f ( X X... X ε ) 1 2 m Zmienne onrolowane: np.: cena (C) nałady na relamę

Bardziej szczegółowo

PREDYKCJA KURSU EURO/DOLAR Z WYKORZYSTANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WYBRANE MODELE EKONOMETRYCZNE I PERCEPTRON WIELOWARSTWOWY

PREDYKCJA KURSU EURO/DOLAR Z WYKORZYSTANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WYBRANE MODELE EKONOMETRYCZNE I PERCEPTRON WIELOWARSTWOWY B A D A N I A O P E R A C J N E I D E C Z J E Nr 2004 Aleksandra MAUSZEWSKA Doroa WIKOWSKA PREDKCJA KURSU EURO/DOLAR Z WKORZSANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WBRANE MODELE EKONOMERCZNE I PERCEPRON WIELOWARSWOW

Bardziej szczegółowo

Wydatki [zł] Wydatki 36,4 38, ,6 37,6 40, , ,5 33 Czas

Wydatki [zł] Wydatki 36,4 38, ,6 37,6 40, , ,5 33 Czas Wydatki [zł] Zestaw zadań z Zastosowania metod progn. Zadanie 1 Dany jest następujący szereg czasowy: t 1 2 3 4 5 6 7 8 y t 11 14 13 18 17 25 26 28 Dokonaj jego dekompozycji na podstawowe składowe. Wykonaj

Bardziej szczegółowo

MODELE PROGNOSTYCZNE SPRZEDAśY ENERGII ELEKTRYCZNEJ ODBIORCOM WIEJSKIM OPARTE NA WYMIARZE FRAKTALNYM, LOGISTYCZNE I KRZYśOWANIA HEURYSTYCZNEGO

MODELE PROGNOSTYCZNE SPRZEDAśY ENERGII ELEKTRYCZNEJ ODBIORCOM WIEJSKIM OPARTE NA WYMIARZE FRAKTALNYM, LOGISTYCZNE I KRZYśOWANIA HEURYSTYCZNEGO InŜynieria Rolnicza 11/2006 Małgorzaa Trojanowska Kaedra Energeyki Rolniczej Akademia Rolnicza w Krakowie MODELE PROGNOSTYCZNE SPRZEDAśY ENERGII ELEKTRYCZNEJ ODBIORCOM WIEJSKIM OPARTE NA WYMIARZE FRAKTALNYM,

Bardziej szczegółowo

Egzamin ze statystyki, Studia Licencjackie Stacjonarne. TEMAT C grupa 1 Czerwiec 2007

Egzamin ze statystyki, Studia Licencjackie Stacjonarne. TEMAT C grupa 1 Czerwiec 2007 Egzamin ze statystyki, Studia Licencjackie Stacjonarne TEMAT C grupa 1 Czerwiec 2007 (imię, nazwisko, nr albumu).. Przy rozwiązywaniu zadań, jeśli to konieczne, naleŝy przyjąć poziom istotności 0,01 i

Bardziej szczegółowo

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar. EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b

Bardziej szczegółowo

Analiza i prognozowanie szeregów czasowych

Analiza i prognozowanie szeregów czasowych Analiza i pognozowanie szeegów czasowych Pojęcie szeegu czasowego Szeeg czasowy (chonologiczny, dynamiczny, ozwojowy) pezenuje ozwój wybanego zjawiska w czasie; zawiea waości zjawiska y w jednoskach czasu,,

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM PODSTAW ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 5 PROSTOWNIKI DO UŻYTKU

Bardziej szczegółowo

METODY STATYSTYCZNE W FINANSACH

METODY STATYSTYCZNE W FINANSACH METODY STATYSTYCZNE W FINANSACH Krzyszof Jajuga Akademia Ekonomiczna we Wrocławiu, Kaedra Inwesycji Finansowych i Ubezpieczeń Wprowadzenie W osanich kilkunasu laach na świecie obserwuje się dynamiczny

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

Matematyka finansowa 20.03.2006 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r.

Matematyka finansowa 20.03.2006 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r. Komisja Egzaminacyjna dla Akuariuszy XXXVIII Egzamin dla Akuariuszy z 20 marca 2006 r. Część I Maemayka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minu 1 1. Ile

Bardziej szczegółowo

WAHANIA NATĘśEŃ RUCHU DROGOWEGO NA SIECI DRÓG MIEJSKICH

WAHANIA NATĘśEŃ RUCHU DROGOWEGO NA SIECI DRÓG MIEJSKICH dr hab. inŝ. Kazimierz Kłosek Prof. nzw. Poliechniki Śląskiej, Kierownik Kaedry Dróg i Mosów dr inŝ. Anna Olma Wydział Budownicwa Poliechniki Śląskiej Gliwice, Polska WAHANIA NATĘśEŃ RUCHU DROGOWEGO NA

Bardziej szczegółowo

EFEKTYWNOŚĆ INWESTYCJI MODERNIZACYJNYCH. dr inż. Robert Stachniewicz

EFEKTYWNOŚĆ INWESTYCJI MODERNIZACYJNYCH. dr inż. Robert Stachniewicz EFEKTYWNOŚĆ INWESTYCJI MODERNIZACYJNYCH dr inż. Rober Sachniewicz METODY OCENY EFEKTYWNOŚCI PROJEKTÓW INWESTYCYJNYCH Jednymi z licznych celów i zadań przedsiębiorswa są: - wzros warości przedsiębiorswa

Bardziej szczegółowo

Projekcja wyników ekonomicznych produkcji mleka na 2020 rok. Seminarium, IERiGŻ-PIB, r. mgr Konrad Jabłoński

Projekcja wyników ekonomicznych produkcji mleka na 2020 rok. Seminarium, IERiGŻ-PIB, r. mgr Konrad Jabłoński Projekcja wyników ekonomicznych produkcji mleka na 2020 rok Seminarium, IERiGŻ-PIB, 02.09.2016 r. mgr Konrad Jabłoński Plan prezentacji 1. Cel badań 2. Metodyka badań 3. Projekcja wyników ekonomicznych

Bardziej szczegółowo

Ocena efektywności procedury Congruent Specyfication dla małych prób

Ocena efektywności procedury Congruent Specyfication dla małych prób 243 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Ocena efekywności procedury Congruen Specyficaion dla małych prób Sreszczenie. Procedura specyfikacji

Bardziej szczegółowo

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE Janusz Sowiński, Rober Tomaszewski, Arur Wacharczyk Insyu Elekroenergeyki Poliechnika Częsochowska Aky prawne

Bardziej szczegółowo

Spis treści. Summaries

Spis treści. Summaries Spis reści Wsęp.............................................................. 7 Ireneusz Kuropka: Przydaność wybranych modeli umieralności do prognozowania naężenia zgonów w Polsce.............................

Bardziej szczegółowo

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Wsęp MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Nowoczesne echniki zarządzania ryzykiem rynkowym

Bardziej szczegółowo

Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego

Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego Część VII. Analiza szeregu czasowego 1 DEFINICJA SZEREGU CZASOWEGO Szeregiem czasowym nazywamy zbiór warości cechy w uporządkowanych chronologicznie różnych momenach (okresach) czasu. Oznaczając przez

Bardziej szczegółowo

Estymacja stopy NAIRU dla Polski *

Estymacja stopy NAIRU dla Polski * Michał Owerczuk * Pior Śpiewanowski Esymacja sopy NAIRU dla Polski * * Sudenci, Szkoła Główna Handlowa, Sudenckie Koło Naukowe Ekonomii Teoreycznej przy kaedrze Ekonomii I. Auorzy będą bardzo wdzięczni

Bardziej szczegółowo

EKONOMETRYCZNA PROGNOZA ODPŁYWÓW Z BEZROBOCIA

EKONOMETRYCZNA PROGNOZA ODPŁYWÓW Z BEZROBOCIA EKONOMETRYCZNA PROGNOZA ODPŁYWÓW Z BEZROBOCIA W OPARCIU O KONCEPCJĘ FUNKCJI DOPASOWAŃ Adam Kowol 2 1. Sformułowanie zadania prognostycznego Celem niniejszej pracy jest próba prognozy kształtowania się

Bardziej szczegółowo

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015 Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 2083-86 Nr 29 205 Alicja Ganczarek-Gamro Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Kaedra Demografii

Bardziej szczegółowo

Ćwiczenia IV

Ćwiczenia IV Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie

Bardziej szczegółowo

Propozycja modelu prognostycznego dla wartości jednostek rozrachunkowych OFE. 1. Wstęp

Propozycja modelu prognostycznego dla wartości jednostek rozrachunkowych OFE. 1. Wstęp 1 Sugerowany przypis: Chybalski F., Propozycja modelu prognostycznego dla wartości jednostek rozrachunkowych OFE, Przegląd Statystyczny, nr 3/2006, Dom Wydawniczy Elipsa, Warszawa 2006, s. 73-82 Propozycja

Bardziej szczegółowo

MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. 1. Wstęp

MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. 1. Wstęp WERSJA ROBOCZA - PRZED POPRAWKAMI RECENZENTA Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. Wsęp Spośród wielu rodzajów ryzyka, szczególną

Bardziej szczegółowo

WYKORZYSTANIE TEORII CHAOSU ZDETERMINOWANEGO W PROGNOZOWANIU KROKOWYM ROCZNEGO ZUŻYCIA ENERGII ELEKTRYCZNEJ PRZEZ ODBIORCÓW WIEJSKICH

WYKORZYSTANIE TEORII CHAOSU ZDETERMINOWANEGO W PROGNOZOWANIU KROKOWYM ROCZNEGO ZUŻYCIA ENERGII ELEKTRYCZNEJ PRZEZ ODBIORCÓW WIEJSKICH INFRASTRUKTURA I EKOLOGIA TERENÓW WIEJSKICH Nr 2/2005, POLSKA AKADEMIA NAUK, Oddział w Krakowie, s. 121 128 Komisja Technicznej Infrasrukury Wsi Małgorzaa Trojanowska WYKORZYSTANIE TEORII CHAOSU ZDETERMINOWANEGO

Bardziej szczegółowo

Ćwiczenie 119. Tabela II. Część P19. Wyznaczanie okresu drgań masy zawieszonej na sprężynie. Nr wierzchołka 0 1 2 3 4 5 6 7 8

Ćwiczenie 119. Tabela II. Część P19. Wyznaczanie okresu drgań masy zawieszonej na sprężynie. Nr wierzchołka 0 1 2 3 4 5 6 7 8 2012 Kaedra Fizyki SGGW Nazwisko... Daa... Nr na liście... Imię... Wydział... Dzień yg.... Godzina... Ruch harmoniczny prosy masy na sprężynie Tabela I: Część X19. Wyznaczanie sałej sprężyny Położenie

Bardziej szczegółowo

TRANZYSTORY POLOWE JFET I MOSFET

TRANZYSTORY POLOWE JFET I MOSFET POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora

Bardziej szczegółowo

Magdalena Osińska, Marcin Fałdziński Uniwersytet Mikołaja Kopernika w Toruniu. Modele GARCH i SV z zastosowaniem teorii wartości ekstremalnych

Magdalena Osińska, Marcin Fałdziński Uniwersytet Mikołaja Kopernika w Toruniu. Modele GARCH i SV z zastosowaniem teorii wartości ekstremalnych DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarim Nakowe 4 6 września 2007 w Torni Kaedra Ekonomerii i Saysyki Uniwersye Mikołaja Kopernika w Torni Magdalena Osińska Marcin Fałdziński Uniwersye

Bardziej szczegółowo

Wyższa Szkoła Marketingu i Zarządzania w Lesznie

Wyższa Szkoła Marketingu i Zarządzania w Lesznie Wyższa Szkoła Markeingu i Zarządzania w Lesznie MATERIAŁY ROBOCZE NA ZAJĘCIA Z PRZEDMIOTU BIZNES PLAN Opracowali: dr Jacek Kowalewski mgr Kazimierz Linowski Leszno 2008 2 S P I S T R E Ś C I WPROWADZENIE.

Bardziej szczegółowo

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH Franciszek SPYRA ZPBE Energopomiar Elekryka, Gliwice Marian URBAŃCZYK Insyu Fizyki Poliechnika Śląska, Gliwice DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

Regresja i Korelacja

Regresja i Korelacja Regresja i Korelacja Regresja i Korelacja W przyrodzie często obserwujemy związek między kilkoma cechami, np.: drzewa grubsze są z reguły wyższe, drewno iglaste o węższych słojach ma większą gęstość, impregnowane

Bardziej szczegółowo

Budowa scenariuszy wzrostu gospodarczego w ujęciu regionalnym

Budowa scenariuszy wzrostu gospodarczego w ujęciu regionalnym Jacek Baóg Uniwersye Szczeciński Budowa scenariuszy wzrosu gospodarczego w ujęciu regionalnym Wsęp Wzros gospodarczy wskazywany jes przez eorię ekonomii za najważniejszy czynnik deerminujący poziom rozwoju

Bardziej szczegółowo

Klasyfikacja modeli. Metoda najmniejszych kwadratów

Klasyfikacja modeli. Metoda najmniejszych kwadratów Konspek ekonomeria: Weryfikacja modelu ekonomerycznego Podręcznik: Ekonomeria i badania operacyjne, red. nauk. Marek Gruszczyński, Maria Podgórska, omasz Kuszewski (ale można czyać dowolny podręcznik do

Bardziej szczegółowo

Po co w ogóle prognozujemy?

Po co w ogóle prognozujemy? Po co w ogóle prognozujemy? Pojęcie prognozy: racjonalne, naukowe przewidywanie przyszłych zdarzeń stwierdzenie odnoszącym się do określonej przyszłości formułowanym z wykorzystaniem metod naukowym, weryfikowalnym

Bardziej szczegółowo

Macierz X ma wymiary: 27 wierszy (liczba obserwacji) x 6 kolumn (kolumna jednostkowa i 5 kolumn ze zmiennymi objaśniającymi) X

Macierz X ma wymiary: 27 wierszy (liczba obserwacji) x 6 kolumn (kolumna jednostkowa i 5 kolumn ze zmiennymi objaśniającymi) X ROZWIĄZANIA ZADAO Zadanie EKONOMETRIA_dw_.xls Na podsawie danych zamieszczonych w arkuszu Zadanie. Podad posad analiyczną modelu ekonomerycznego wielkości produkcji w przemyśle od PO - liczby pracujących

Bardziej szczegółowo

Regulatory. Zadania regulatorów. Regulator

Regulatory. Zadania regulatorów. Regulator Regulaory Regulaor Urządzenie, kórego podsawowym zadaniem jes na podsawie sygnału uchybu (odchyłki regulacji) ukszałowanie sygnału serującego umożliwiającego uzyskanie pożądanego przebiegu wielkości regulowanej

Bardziej szczegółowo

ZJAWISKA SZOKOWE W ROZWOJU GOSPODARCZYM WYBRANYCH KRAJÓW UNII EUROPEJSKIEJ

ZJAWISKA SZOKOWE W ROZWOJU GOSPODARCZYM WYBRANYCH KRAJÓW UNII EUROPEJSKIEJ Anna Janiga-Ćmiel Uniwersye Ekonomiczny w Kaowicach Wydział Zarządzania Kaedra Maemayki anna.janiga-cmiel@ue.kaowice.pl ZJAWISKA SZOKOWE W ROZWOJU GOSPODARCZYM WYBRANYCH KRAJÓW UNII EUROPEJSKIEJ Sreszczenie:

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

Management Systems in Production Engineering No 4(20), 2015

Management Systems in Production Engineering No 4(20), 2015 EKONOMICZNE ASPEKTY PRZYGOTOWANIA PRODUKCJI NOWEGO WYROBU Janusz WÓJCIK Fabryka Druu Gliwice Sp. z o.o. Jolana BIJAŃSKA, Krzyszof WODARSKI Poliechnika Śląska Sreszczenie: Realizacja prac z zakresu przygoowania

Bardziej szczegółowo

Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 4 Prognozowanie, stabilność 1 / 17 Agenda

Bardziej szczegółowo

Stała potencjalnego wzrostu w rachunku kapitału ludzkiego

Stała potencjalnego wzrostu w rachunku kapitału ludzkiego 252 Dr Wojciech Kozioł Kaedra Rachunkowości Uniwersye Ekonomiczny w Krakowie Sała poencjalnego wzrosu w rachunku kapiału ludzkiego WSTĘP Prowadzone do ej pory badania naukowe wskazują, że poencjał kapiału

Bardziej szczegółowo

ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym

ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym ĆWIZENIE 4 Badanie sanów nieusalonych w obwodach, i przy wymuszeniu sałym. el ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem w sanach nieusalonych w obwodach szeregowych, i Zapoznanie się ze sposobami

Bardziej szczegółowo

TEORIA PRZEKSZTAŁTNIKÓW. Kurs elementarny Zakres przedmiotu: ( 7 dwugodzinnych wykładów :)

TEORIA PRZEKSZTAŁTNIKÓW. Kurs elementarny Zakres przedmiotu: ( 7 dwugodzinnych wykładów :) W1. Wiadomości wsępne EORA PRZEKSZAŁNKÓW W. Przekszałniki sieciowe 1 W3. Przekszałniki sieciowe Kurs elemenarny Zakres przedmiou: ( 7 dwugodzinnych wykładów :) W4. Złożone i specjalne układy przekszałników

Bardziej szczegółowo

Rzetelność komunikowania wyników egzaminów zewnętrznych w oparciu o metodę tendencji rozwojowej próba oceny

Rzetelność komunikowania wyników egzaminów zewnętrznych w oparciu o metodę tendencji rozwojowej próba oceny dr Maria Sasin Poliechnika Koszalińska Teraźniejszość i przyszłość oceniania szkolnego Rzeelność komunikowania wyników egzaminów zewnęrznych w oparciu o meodę endencji rozwojowej próba oceny Wprowadzenie

Bardziej szczegółowo

Co to jest analiza regresji?

Co to jest analiza regresji? Co to jest analiza regresji? Celem analizy regresji jest badanie związków pomiędzy wieloma zmiennymi niezależnymi (objaśniającymi) a zmienną zależną (objaśnianą), która musi mieć charakter liczbowy. W

Bardziej szczegółowo