Analiza rynku projekt

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Analiza rynku projekt"

Transkrypt

1 Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes porzebne? Jaki jes cel prowadzenia analizy? 2

2 2. Króka charakerysyka rynku pracy w Polsce (obieku będącego przedmioem badań) Podsawowe definicje charakeryzujące dany rynek, krókie omówienie srony podażowej i popyowej wybranego rynku, charakerysyka asorymenowa rynku (produkmix) Dane źródłowe w posaci abelarycznej. Tabela odpowiednio opisana: yuł + źródło. Ilusracja danych w posaci wykresu. Wykres odpowiednio opisany: yuł + źródło. Króka analiza danych źródłowych: długość szeregu czasowego, jego zmienność, pozyywny (negaywny) kierunek zmian, ip Badanie dynamiki rynku pracy w Polsce (obieku będącego przedmioem badań) Krókie omówienie meody badawczej. Zesawienie abelaryczne mierników dynamiki: odchylenia bezwzględne (prose i łańcuchowe), wskaźniki dynamiki (prose i łańcuchowe), ednioroczny przyros (+) lub spadek (-) poziomu badanego parameru rynku. Wykresy obrazujące kszałowanie się wskaźników dynamiki. 4

3 4. Prognozowanie liczby bezrobonych w Polsce (parameru obieku będącego przedmioem badań) 4.1 Predykcja na podsawie edniorocznego wzrosu (spadku) 4.2 Predykcja na podsawie modeli adapacyjnych 4.3 Predykcja na podsawie modeli endencji rozwojowej 4.4 Analiza błędów dopasowania oraz wybór meody predykcji Punky 4.1 do 4.3 Meoda badawcza, rozparywane modele, meody uzyskania wyników. Zesawienie wyników (abela(e) + wykresy). Pk. 4.4 Analiza saysyczna i inżynierska rozparywanych meod predykcji, osaeczny wybór meody wraz z uzasadnieniem, końcowe wyniki prognozowania Zakończenie 2 3 zdaniowe sreszczenie pracy. Zesawienie osaecznych wyników prognozowania. Wnioski wynikające z przedsawionej prognozy oraz wpływ wyników prognozowania na zjawiska współowarzyszące 6

4 ANALIZA SYTUACJI PRZEDSIEBIORSTWA PROGNOZY STRATEGICZNE PLANOWANIE MARKETINGOWE TAKTYCZNE PLANOWANIE MARKETINGOWE OPERACYJNE PLANOWANIE MARKETINGOWE REALIZACJA I KONTROLA PROCES ZARZĄDZANIA MARKETINGOWEGO 7 ^ w = a + b * b = ( )* ( ) i ( ) i w i 2 w a = w b * R = ( )* ( ) 2 ( ) * ( ) i i w i w i w w 2 8

5 Tabela 1. Dane rzeczywise - kszałowanie się liczby zarudnionych w firmie X w laach w i [ys.] 3,00 3,00 3,50 3,70 4,00 4,80 6,00 Źródło: biuleyn informacyjny firmy X, 2002 r. 9 Wykres 1. Kszałowanie się liczby zarudnionych w firmie X w laach ,00 w [ys.] 7,00 6,00 5,00 4,00 3,00 2, Źródło: opracowanie własne na podsawie danych z abeli 1 10

6 Tabela 2. Sposób obliczania paramerów i warości liniowego modelu regresyjnego opisującego kszałowanie się liczby zarudnionych w firmie X w laach Lp. i w i i - w i - w ( i - ) * (w i - w ) ( i - ) 2 (w i - w ) 2 w^liniowy ,00-3,00-1,00 3,00 9,00 1,00 2, ,00-2,00-1,00 2,00 4,00 1,00 3, ,50-1,00-0,50 0,50 1,00 0,25 3, ,70 0,00-0,30 0,00 0,00 0,09 4, ,00 1,00 0,00 0,00 1,00 0,00 4, ,80 2,00 0,80 1,60 4,00 0,64 4, ,00 3,00 2,00 6,00 9,00 4,00 5, , , ,81 Suma 28,00 28,00 0,00 0,00 13,10 28,00 6,98 Średnia 4,00 4,00 Źródło: opracowanie własne b= 0,4679 a= 2,1286 R= 0, Wykres 2. Kszałowanie się liczby zarudnionych w firmie X w laach wraz z prognozą na laa według liniowego modelu regresyjnego 8,00 w [ys.] 7,00 6,00 5,00 4,00 wi w^liniowy 3,00 2, Źródło: opracowanie własne na podsawie danych z abeli 2 12

7 Funkcja wykładnicza b< y=a*b^x b> b=1 4 a ,5-1 -0,5 0 0,5 1 1, Tabela 3. Sposób obliczania paramerów i warości wykładniczego modelu regresyjnego opisującego kszałowanie się liczby zarudnionych w firmie X w laach Lp. i w i w* i i - w i * - w * ( i - )*(w i * - w *) ( i - ) 2 (w i * - w *) 2 w^ wykładniczy ,00 0,4771-3,0000-0,1126 0,3378 9,0000 0,0127 2, ,00 0,4771-2,0000-0,1126 0,2252 4,0000 0,0127 3, ,50 0,5441-1,0000-0,0456 0,0456 1,0000 0,0021 3, ,70 0,5682 0,0000-0,0215 0,0000 0,0000 0,0005 3, ,00 0,6021 1,0000 0,0124 0,0124 1,0000 0,0002 4, ,80 0,6812 2,0000 0,0915 0,1831 4,0000 0,0084 4, ,00 0,7782 3,0000 0,1884 0,5653 9,0000 0,0355 5, , , ,6407 Suma 28 28,00 4,128 0,0000 0,0000 1, ,0000 0,0719 Średnia 4 4,00 0,5897 Źródło: opracowanie własne b*= 0,0489 b= 1, a*= 0,3941 a= 2, R= 0,

8 Wykres 3. Kszałowanie się liczby zarudnionych w firmie X w laach wraz z prognozą na laa według wykładniczego modelu regresyjnego 8,00 w [ys.] 7,00 6,00 5,00 4,00 wi w^wykładniczy 3,00 2, Źródło: opracowanie własne na podsawie danych z abeli 3 15 Funkcja hiperboliczna ,5-1 -0,5 0 0,5 1 1,

9 Tabela 4. Sposób obliczania paramerów i warości hiperbolicznego modelu regresyjnego opisującego kszałowanie się liczby zarudnionych w firmie X w laach Lp. i w i i * i * - * w i - w ( i * - *) * (w i - w ) ( i * - *) 2 (w i - w ) 2 w^hiperboliczny ,00 1,0000 0,6296-1,0000-0,6296 0,3964 1,0000 2, ,00 0,5000 0,1296-1,0000-0,1296 0,0168 1,0000 3, ,50 0,3333-0,0371-0,5000 0,0185 0,0014 0,2500 4, ,70 0,2500-0,1204-0,3000 0,0361 0,0145 0,0900 4, ,00 0,2000-0,1704 0,0000 0,0000 0,0290 0,0000 4, ,80 0,1667-0,2037 0,8000-0,1630 0,0415 0,6400 4, ,00 0,1429-0,2276 2,0000-0,4551 0,0518 4,0000 4, , , ,65 Suma 28 28,00 2,5929 0,0000 0,0000-1,3226 0,5514 6,9800 Średnia 4 4,00 0,3704 Źródło: opracowanie własne b= -2, a= 4, R= -0, Wykres 4. Kszałowanie się liczby zarudnionych w firmie X w laach wraz z prognozą na laa według hiperbolicznego modelu regresyjnego 8,00 w [ys.] 7,00 6,00 5,00 4,00 3,00 wi w^hiperboliczny 2, Źródło: opracowanie własne na podsawie danych z abeli 4 18

10 Tabela 5 Sposób obliczania paramerów i warości hiperbolicznego (2) modelu regresyjnego opisującego kszałowanie się liczby zarudnionych w firmie X w laach Lp. i w i i * w i * i * - * w i * - w * ( i * - *)(w i * - w * ) ( i * - * ) 2 (w i * - w * ) 2 w^hiperboliczny ,00 1,0000 0,3333 0,6296 0,0694 0,0437 0,3964 0,0048 2, ,00 0,5000 0,3333 0,1296 0,0694 0,0090 0,0168 0,0048 3, ,50 0,3333 0,2857-0,0371 0,0218-0,0008 0,0014 0,0005 3, ,70 0,2500 0,2703-0,1204 0,0063-0,0008 0,0145 0,0000 4, ,00 0,2000 0,2500-0,1704-0,0140 0,0024 0,0290 0,0002 4, ,80 0,1667 0,2083-0,2037-0,0556 0,0113 0,0415 0,0031 4, ,00 0,1429 0,1667-0,2276-0,0973 0,0221 0,0518 0,0095 4, , , ,52 Suma 28 28,00 2,5929 1,8477 0,0000 0,0000 0,0870 0,5514 0,0229 Średnia 4 4,00 0,3704 0,2640 Źródło: opracowanie własne b * = 0, b= 0, a * = 0, a= 4, R= 0, Wykres 5. Kszałowanie się liczby zarudnionych w firmie X w laach wraz z prognozą na laa według hiperbolicznego (2) modelu regresyjnego 8,00 w [ys.] 7,00 6,00 5,00 4,00 3,00 wi w^hiperboliczny 2 2, Źródło: opracowanie własne na podsawie danych z abeli 5 20

11 ,5-1 -0,5 0 0,5 1 1, Tabela 6. Sposób obliczania paramerów i warości poęgowego modelu regresyjnego opisującego kszałowanie się liczby zarudnionych w firmie X w laach Lp. i w i i * w i * i * - * w i * - w * ( i * - *) * (w i * - w *) ( i * - *) 2 (w i * - w *) 2 w^poęgowy ,00 0,0000 0,4771-0,5289-0,1126 0,0595 0,2798 0,0127 2, ,00 0,3010 0,4771-0,2279-0,1126 0,0257 0,0519 0,0127 3, ,50 0,4771 0,5441-0,0518-0,0456 0,0024 0,0027 0,0021 3, ,70 0,6021 0,5682 0,0731-0,0215-0,0016 0,0053 0,0005 4, ,00 0,6990 0,6021 0,1701 0,0124 0,0021 0,0289 0,0002 4, ,80 0,7782 0,6812 0,2492 0,0915 0,0228 0,0621 0,0084 4, ,00 0,8451 0,7782 0,3162 0,1884 0,0596 0,1000 0,0355 4, , , ,51 Suma 28 28,00 3,7024 4,1280 0,0000 0,0000 0,1705 0,5307 0,0719 Średnia 4 4,00 0,5289 0,5897 Źródło: opracowanie własne b= 0,3212 a*= 0,4198 a= 2,6290 R= 0,

12 Wykres 6. Kszałowanie się liczby zarudnionych w firmie X w laach wraz z prognozą na laa według poęgowego modelu regresyjnego 8,00 w [ys.] 7,00 6,00 5,00 4,00 wi w^poęgowy 3,00 2, Źródło: opracowanie własne na podsawie danych z abeli ,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,

13 Tabela 7. Sposób obliczania paramerów i warości logarymicznego modelu regresyjnego opisującego kszałowanie się liczby zarudnionych w firmie X w laach Lp. i w i i * i * - * w i - w ( i * - *) * (w i - w ) ( i * - *) 2 (w i - w ) 2 w^logarymiczny ,00 0,0000-0,5289-1,0000 0,5289 0,2798 1,0000 2, ,00 0,3010-0,2279-1,0000 0,2279 0,0519 1,0000 3, ,50 0,4771-0,0518-0,5000 0,0259 0,0027 0,2500 3, ,70 0,6021 0,0731-0,3000-0,0219 0,0053 0,0900 4, ,00 0,6990 0,1701 0,0000 0,0000 0,0289 0,0000 4, ,80 0,7782 0,2492 0,8000 0,1994 0,0621 0,6400 4, ,00 0,8451 0,3162 2,0000 0,6324 0,1000 4,0000 4, , , ,41 Suma 28 28,00 3,7024 0,0000 0,0000 1,5925 0,5307 6,9800 Średnia 4 4,00 0,5289 Źródło: opracowanie własne b= 3,0006 a= 2,4129 R= 0, Wykres 7. Kszałowanie się liczby zarudnionych w firmie X w laach wraz z prognozą na laa według logarymicznego modelu regresyjnego 8,00 w [ys.] 7,00 6,00 5,00 4,00 wi 3,00 w^logarymiczny 2, Źródło: opracowanie własne na podsawie danych z abeli 7 26

14 Tabela 8. Zbiorcze zesawienie modeli regresyjnych obrazujących kszałowanie się liczby zarudnionych w firmie X w laach MODEL Jedno ska WSPÓŁCZYNNIK KORELACJI liniowy w= 2, ,4679 * [ys.] 0,9371 wykładniczy w= 2,4779 * 1,1192 [ys.] 0,9648 hiperboliczny w= 4,8885-2,3987 / [ys.] -0,6742 hiperboliczny II w= ( 4,8653 * ) / ( 0, ) [ys.] 0,7739 poęgowy w= 2,6290 * 0,3212 [ys.] 0,8725 logarymiczny w= 2, ,0006 *log () [ys.] 0,8274 Źródło: opracowanie własne POSTAĆ FUNKCJI w - liczba zarudnionych, [ys.] = Tabela 9. Zesawienie prognozowanego zarudnienia w firmie X na laa według wybranych modeli regresyjnych Model liniowy wykladniczy hiperboliczny hiperboliczny 2 poęgowy logarymiczny ,87 6,10 4,59 4,44 5,13 5, ,34 6,83 4,62 4,48 5,33 5, ,81 7,64 4,65 4,52 5,51 5, ,28 8,55 4,67 4,55 5,68 5, ,74 9,57 4,69 4,57 5,84 5, ,21 10,71 4,70 4,59 5,99 5,76 Źródło: opracowanie własne 28

15 Wykres 8. Kszałowanie się liczby zarudnionych w firmie X w laach wraz z prognozą na laa według wybranych modeli regresyjnych 8,00 w [ys.] 7,00 6,00 5,00 4,00 wi w^logarymiczny 3,00 w^liniowy w^wykładniczy w^hiperboliczny w^hiperboliczny 2 w^poęgowy w^logarymiczny 2, Źródło: opracowanie własne na podsawie danych z abel Tabela 10 Korelacja, zależność a współczynnik korelacji R Korelacja Zależność < 0,20 Słaba Prawie nieznacząca 0,2 0,4 Niska Wyraźna, lecz mała 0,4 0,7 Umiarkowana Isona 0,7 0,9 Wysoka Znaczna 0,9 1,0 Bardzo wysoka Bardzo pewna Źródło: opracowanie własne na podsawie lieraury przedmiou 30

16 Obliczenie błędów dopasowania W celu oszacowania dokładności dopasowania poszczególnych modeli do danych rzeczywisych oblicza się nasępujące miary dopasowania szeregu eoreycznego do szeregu empirycznego: błąd edni ME: gdzie: y y ( ) n 1 ME = n = 1 ˆ y y dane rzeczywise (empiryczne) szeregu czasowego, ˆ dane eoreyczne szeregu czasowego, n długość szeregu czasowego, edni błąd procenowy MPE: 1 MPE = n 1 ( ) y y ˆ y n = *100% (1) (2) gdzie: wszyskie oznaczenia jak we wzorze (1), edni błąd bezwzględny MAE: n 1 MAE = y y ˆ n = 1 (3) gdzie: wszyskie oznaczenia jak we wzorze (1), 31 edni bezwzględny błąd procenowy MAPE: 1 MAPE = n n = 1 y y y ˆ * gdzie: wszyskie oznaczenia jak we wzorze (1), edni błąd kwadraowy MSE: n 1 ( y y ˆ ) MSE = n = 1 gdzie: wszyskie oznaczenia jak we wzorze (1), 2 współczynnik Theila I 2 : I ( y y ˆ ) n 2 = 1 = n = 1 gdzie: wszyskie oznaczenia jak we wzorze (1). y % (4) (5) (6) 32

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie

Bardziej szczegółowo

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,

Bardziej szczegółowo

PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010

PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010 STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Chrisian Lis PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010 Wprowadzenie Przedmioem

Bardziej szczegółowo

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Barbara Baóg Iwona Foryś PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH Wsęp Koszy dosarczenia wody

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne

Bardziej szczegółowo

Prognozowanie średniego miesięcznego kursu kupna USD

Prognozowanie średniego miesięcznego kursu kupna USD Prognozowanie średniego miesięcznego kursu kupna USD Kaarzyna Halicka Poliechnika Białosocka, Wydział Zarządzania, Kaedra Informayki Gospodarczej i Logisyki, e-mail: k.halicka@pb.edu.pl Jusyna Godlewska

Bardziej szczegółowo

Kobiety w przedsiębiorstwach usługowych prognozy nieliniowe

Kobiety w przedsiębiorstwach usługowych prognozy nieliniowe Pior Srożek * Kobiey w przedsiębiorswach usługowych prognozy nieliniowe Wsęp W dzisiejszym świecie procesy społeczno-gospodarcze zachodzą bardzo dynamicznie. W związku z ym bardzo zmienił się sereoypowy

Bardziej szczegółowo

BEZRYZYKOWNE BONY I LOKATY BANKOWE ALTERNATYWĄ DLA PRZYSZŁYCH EMERYTÓW. W tym krótkim i matematycznie bardzo prostym artykule pragnę osiągnąc 3 cele:

BEZRYZYKOWNE BONY I LOKATY BANKOWE ALTERNATYWĄ DLA PRZYSZŁYCH EMERYTÓW. W tym krótkim i matematycznie bardzo prostym artykule pragnę osiągnąc 3 cele: 1 BEZRYZYKOWNE BONY I LOKATY BANKOWE ALTERNATYWĄ DLA PRZYSZŁYCH EMERYTÓW Leszek S. Zaremba (Polish Open Universiy) W ym krókim i maemaycznie bardzo prosym arykule pragnę osiągnąc cele: (a) pokazac że kupowanie

Bardziej szczegółowo

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków

Bardziej szczegółowo

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 3. mgr Dawid Doliński

PROGNOZOWANIE. Ćwiczenia 3. mgr Dawid Doliński Ćwiczenia 3 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne

Bardziej szczegółowo

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

Metody analizy i prognozowania szeregów czasowych

Metody analizy i prognozowania szeregów czasowych Meody analizy i prognozowania szeregów czasowych Wsęp 1. Modele szeregów czasowych 2. Modele ARMA i procedura Boxa-Jenkinsa 3. Modele rendów deerminisycznych i sochasycznych 4. Meody dekompozycji szeregów

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK

ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK 1 ANALIZA, PROGNOZOWANIE I SYMULACJA 2 POBRAĆ Z INTERNETU Plaforma WSL on-line Nazwisko prowadzącego Maryna Kupczyk Folder z nazwą przedmiou - Analiza, prognozowanie i symulacja Plik o nazwie Baza do ćwiczeń

Bardziej szczegółowo

PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM

PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM prof. dr hab. Paweł Dimann 1 Znaczenie prognoz w zarządzaniu firmą Zarządzanie firmą jes nieusannym procesem podejmowania decyzji, kóry może być zdefiniowany

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml

Bardziej szczegółowo

Analiza danych DRZEWA DECYZYJNE. Drzewa decyzyjne. Entropia. http://zajecia.jakubw.pl/ test 1 dopełnienie testu 1

Analiza danych DRZEWA DECYZYJNE. Drzewa decyzyjne. Entropia. http://zajecia.jakubw.pl/ test 1 dopełnienie testu 1 Analiza danych Drzewa decyzyjne. Enropia. Jakub Wróblewski jakubw@pjwsk.edu.pl hp://zajecia.jakubw.pl/ DRZEWA DECYZYJNE Meoda reprezenacji wiedzy (modelowania ablic decyzyjnych). Pozwala na przejrzysy

Bardziej szczegółowo

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA Joanna Górka * Efeky agregacji czasowej szeregów finansowych a modele klasy Sign RCA Wsęp Wprowadzenie losowego parameru do modelu auoregresyjnego zwiększa możliwości aplikacyjne ego modelu, gdyż pozwala

Bardziej szczegółowo

Struktura sektorowa finansowania wydatków na B+R w krajach strefy euro

Struktura sektorowa finansowania wydatków na B+R w krajach strefy euro Rozdział i. Srukura sekorowa finansowania wydaków na B+R w krajach srefy euro Rober W. Włodarczyk 1 Sreszczenie W arykule podjęo próbę oceny srukury sekorowej (sekor przedsiębiorsw, sekor rządowy, sekor

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODEE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Joanna Małgorzaa andmesser Szkoła Główna

Bardziej szczegółowo

PREDYKCJA KURSU EURO/DOLAR Z WYKORZYSTANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WYBRANE MODELE EKONOMETRYCZNE I PERCEPTRON WIELOWARSTWOWY

PREDYKCJA KURSU EURO/DOLAR Z WYKORZYSTANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WYBRANE MODELE EKONOMETRYCZNE I PERCEPTRON WIELOWARSTWOWY B A D A N I A O P E R A C J N E I D E C Z J E Nr 2004 Aleksandra MAUSZEWSKA Doroa WIKOWSKA PREDKCJA KURSU EURO/DOLAR Z WKORZSANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WBRANE MODELE EKONOMERCZNE I PERCEPRON WIELOWARSWOW

Bardziej szczegółowo

Analiza popytu. Ekonometria. Metody i analiza problemów ekonomicznych. (pod red. Krzysztofa Jajugi), Wydawnictwo AE Wrocław, 1999.

Analiza popytu. Ekonometria. Metody i analiza problemów ekonomicznych. (pod red. Krzysztofa Jajugi), Wydawnictwo AE Wrocław, 1999. Analiza popyu Eonomeria. Meody i analiza problemów eonomicznych (pod red. Krzyszofa Jajugi) Wydawnicwo AE Wrocław 1999. Popy P = f ( X X... X ε ) 1 2 m Zmienne onrolowane: np.: cena (C) nałady na relamę

Bardziej szczegółowo

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW Kaedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW Sposoby usalania płac w gospodarce Jednym z głównych powodów, dla kórych na rynku pracy obserwujemy poziom bezrobocia wyższy

Bardziej szczegółowo

METODY STATYSTYCZNE W FINANSACH

METODY STATYSTYCZNE W FINANSACH METODY STATYSTYCZNE W FINANSACH Krzyszof Jajuga Akademia Ekonomiczna we Wrocławiu, Kaedra Inwesycji Finansowych i Ubezpieczeń Wprowadzenie W osanich kilkunasu laach na świecie obserwuje się dynamiczny

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne

Bardziej szczegółowo

Matematyka finansowa 20.03.2006 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r.

Matematyka finansowa 20.03.2006 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r. Komisja Egzaminacyjna dla Akuariuszy XXXVIII Egzamin dla Akuariuszy z 20 marca 2006 r. Część I Maemayka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minu 1 1. Ile

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Efektywność projektów inwestycyjnych. Statyczne i dynamiczne metody oceny projektów inwestycyjnych

Efektywność projektów inwestycyjnych. Statyczne i dynamiczne metody oceny projektów inwestycyjnych Efekywość projeków iwesycyjych Saycze i dyamicze meody ocey projeków iwesycyjych Źródła fiasowaia Iwesycje Rzeczowe Powiększeie mająku rwałego firmy, zysk spodzieway w dłuższym horyzocie czasowym. Fiasowe

Bardziej szczegółowo

EFEKTYWNOŚĆ INWESTYCJI MODERNIZACYJNYCH. dr inż. Robert Stachniewicz

EFEKTYWNOŚĆ INWESTYCJI MODERNIZACYJNYCH. dr inż. Robert Stachniewicz EFEKTYWNOŚĆ INWESTYCJI MODERNIZACYJNYCH dr inż. Rober Sachniewicz METODY OCENY EFEKTYWNOŚCI PROJEKTÓW INWESTYCYJNYCH Jednymi z licznych celów i zadań przedsiębiorswa są: - wzros warości przedsiębiorswa

Bardziej szczegółowo

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Wsęp MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Nowoczesne echniki zarządzania ryzykiem rynkowym

Bardziej szczegółowo

Ocena efektywności procedury Congruent Specyfication dla małych prób

Ocena efektywności procedury Congruent Specyfication dla małych prób 243 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Ocena efekywności procedury Congruen Specyficaion dla małych prób Sreszczenie. Procedura specyfikacji

Bardziej szczegółowo

Egzamin ze statystyki, Studia Licencjackie Stacjonarne. TEMAT C grupa 1 Czerwiec 2007

Egzamin ze statystyki, Studia Licencjackie Stacjonarne. TEMAT C grupa 1 Czerwiec 2007 Egzamin ze statystyki, Studia Licencjackie Stacjonarne TEMAT C grupa 1 Czerwiec 2007 (imię, nazwisko, nr albumu).. Przy rozwiązywaniu zadań, jeśli to konieczne, naleŝy przyjąć poziom istotności 0,01 i

Bardziej szczegółowo

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE Janusz Sowiński, Rober Tomaszewski, Arur Wacharczyk Insyu Elekroenergeyki Poliechnika Częsochowska Aky prawne

Bardziej szczegółowo

Estymacja stopy NAIRU dla Polski *

Estymacja stopy NAIRU dla Polski * Michał Owerczuk * Pior Śpiewanowski Esymacja sopy NAIRU dla Polski * * Sudenci, Szkoła Główna Handlowa, Sudenckie Koło Naukowe Ekonomii Teoreycznej przy kaedrze Ekonomii I. Auorzy będą bardzo wdzięczni

Bardziej szczegółowo

MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. 1. Wstęp

MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. 1. Wstęp WERSJA ROBOCZA - PRZED POPRAWKAMI RECENZENTA Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. Wsęp Spośród wielu rodzajów ryzyka, szczególną

Bardziej szczegółowo

Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego

Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego Część VII. Analiza szeregu czasowego 1 DEFINICJA SZEREGU CZASOWEGO Szeregiem czasowym nazywamy zbiór warości cechy w uporządkowanych chronologicznie różnych momenach (okresach) czasu. Oznaczając przez

Bardziej szczegółowo

METODA OKREŚLANIA WIELKOŚCI KONTRAKTÓW NA ENERGIĘ ELEKTRYCZNĄ

METODA OKREŚLANIA WIELKOŚCI KONTRAKTÓW NA ENERGIĘ ELEKTRYCZNĄ B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 3 2009 Barbara GŁADYSZ* METODA OKREŚLANIA WIELKOŚCI KONTRAKTÓW NA ENERGIĘ ELEKTRYCZNĄ W arykule zaproponowano meodę określania wielkości konraków na

Bardziej szczegółowo

OTWARTE FUNDUSZE EMERYTALNE W POLSCE Struktura funduszy emerytalnych pod względem liczby członków oraz wielkości aktywów

OTWARTE FUNDUSZE EMERYTALNE W POLSCE Struktura funduszy emerytalnych pod względem liczby członków oraz wielkości aktywów OTWARTE FUNDUSZE EMERYTALNE W POLSCE Struktura funduszy emerytalnych pod względem liczby członków oraz wielkości aktywów Tomasz Gruszczyk Informatyka i Ekonometria I rok, nr indeksu: 156012 Sopot, styczeń

Bardziej szczegółowo

Wyższa Szkoła Marketingu i Zarządzania w Lesznie

Wyższa Szkoła Marketingu i Zarządzania w Lesznie Wyższa Szkoła Markeingu i Zarządzania w Lesznie MATERIAŁY ROBOCZE NA ZAJĘCIA Z PRZEDMIOTU BIZNES PLAN Opracowali: dr Jacek Kowalewski mgr Kazimierz Linowski Leszno 2008 2 S P I S T R E Ś C I WPROWADZENIE.

Bardziej szczegółowo

ĆWICZENIE NR 43 U R I (1)

ĆWICZENIE NR 43 U R I (1) ĆWCZENE N 43 POMY OPO METODĄ TECHNCZNĄ Cel ćwiczenia: wyznaczenie warości oporu oporników poprzez pomiary naężania prądu płynącego przez opornik oraz napięcia na oporniku Wsęp W celu wyznaczenia warości

Bardziej szczegółowo

Ćwiczenie 119. Tabela II. Część P19. Wyznaczanie okresu drgań masy zawieszonej na sprężynie. Nr wierzchołka 0 1 2 3 4 5 6 7 8

Ćwiczenie 119. Tabela II. Część P19. Wyznaczanie okresu drgań masy zawieszonej na sprężynie. Nr wierzchołka 0 1 2 3 4 5 6 7 8 2012 Kaedra Fizyki SGGW Nazwisko... Daa... Nr na liście... Imię... Wydział... Dzień yg.... Godzina... Ruch harmoniczny prosy masy na sprężynie Tabela I: Część X19. Wyznaczanie sałej sprężyny Położenie

Bardziej szczegółowo

TRANZYSTORY POLOWE JFET I MOSFET

TRANZYSTORY POLOWE JFET I MOSFET POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora

Bardziej szczegółowo

Klasyfikacja modeli. Metoda najmniejszych kwadratów

Klasyfikacja modeli. Metoda najmniejszych kwadratów Konspek ekonomeria: Weryfikacja modelu ekonomerycznego Podręcznik: Ekonomeria i badania operacyjne, red. nauk. Marek Gruszczyński, Maria Podgórska, omasz Kuszewski (ale można czyać dowolny podręcznik do

Bardziej szczegółowo

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH Franciszek SPYRA ZPBE Energopomiar Elekryka, Gliwice Marian URBAŃCZYK Insyu Fizyki Poliechnika Śląska, Gliwice DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015 Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 2083-86 Nr 29 205 Alicja Ganczarek-Gamro Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Kaedra Demografii

Bardziej szczegółowo

ZJAWISKA SZOKOWE W ROZWOJU GOSPODARCZYM WYBRANYCH KRAJÓW UNII EUROPEJSKIEJ

ZJAWISKA SZOKOWE W ROZWOJU GOSPODARCZYM WYBRANYCH KRAJÓW UNII EUROPEJSKIEJ Anna Janiga-Ćmiel Uniwersye Ekonomiczny w Kaowicach Wydział Zarządzania Kaedra Maemayki anna.janiga-cmiel@ue.kaowice.pl ZJAWISKA SZOKOWE W ROZWOJU GOSPODARCZYM WYBRANYCH KRAJÓW UNII EUROPEJSKIEJ Sreszczenie:

Bardziej szczegółowo

Regulatory. Zadania regulatorów. Regulator

Regulatory. Zadania regulatorów. Regulator Regulaory Regulaor Urządzenie, kórego podsawowym zadaniem jes na podsawie sygnału uchybu (odchyłki regulacji) ukszałowanie sygnału serującego umożliwiającego uzyskanie pożądanego przebiegu wielkości regulowanej

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

Stała potencjalnego wzrostu w rachunku kapitału ludzkiego

Stała potencjalnego wzrostu w rachunku kapitału ludzkiego 252 Dr Wojciech Kozioł Kaedra Rachunkowości Uniwersye Ekonomiczny w Krakowie Sała poencjalnego wzrosu w rachunku kapiału ludzkiego WSTĘP Prowadzone do ej pory badania naukowe wskazują, że poencjał kapiału

Bardziej szczegółowo

Management Systems in Production Engineering No 4(20), 2015

Management Systems in Production Engineering No 4(20), 2015 EKONOMICZNE ASPEKTY PRZYGOTOWANIA PRODUKCJI NOWEGO WYROBU Janusz WÓJCIK Fabryka Druu Gliwice Sp. z o.o. Jolana BIJAŃSKA, Krzyszof WODARSKI Poliechnika Śląska Sreszczenie: Realizacja prac z zakresu przygoowania

Bardziej szczegółowo

ANALIZA CEN TRANSAKCYJNYCH MIESZKA NA RYNKACH PIERWOTNYM I WTÓRNYM W WYBRANYCH MIASTACH POLSKI W LATACH 2007 2012

ANALIZA CEN TRANSAKCYJNYCH MIESZKA NA RYNKACH PIERWOTNYM I WTÓRNYM W WYBRANYCH MIASTACH POLSKI W LATACH 2007 2012 STUDIA I PRACE WYDZIAU NAUK EKONOMICZNYCH I ZARZDZANIA NR 31 Józef Hozer Uniwersye Szczeciski Anna Gdakowicz Uniwersye Szczeciski ANALIZA CEN TRANSAKCYJNYCH MIESZKA NA RYNKACH PIERWOTNYM I WTÓRNYM W WYBRANYCH

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam

Bardziej szczegółowo

Identyfikacja wahań koniunkturalnych gospodarki polskiej

Identyfikacja wahań koniunkturalnych gospodarki polskiej Rozdział i Idenyfikacja wahań koniunkuralnych gospodarki polskiej dr Rafał Kasperowicz Uniwersye Ekonomiczny w Poznaniu Kaedra Mikroekonomii Sreszczenie Celem niniejszego opracowania jes idenyfikacja wahao

Bardziej szczegółowo

Magdalena Osińska, Marcin Fałdziński Uniwersytet Mikołaja Kopernika w Toruniu. Modele GARCH i SV z zastosowaniem teorii wartości ekstremalnych

Magdalena Osińska, Marcin Fałdziński Uniwersytet Mikołaja Kopernika w Toruniu. Modele GARCH i SV z zastosowaniem teorii wartości ekstremalnych DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarim Nakowe 4 6 września 2007 w Torni Kaedra Ekonomerii i Saysyki Uniwersye Mikołaja Kopernika w Torni Magdalena Osińska Marcin Fałdziński Uniwersye

Bardziej szczegółowo

Po co w ogóle prognozujemy?

Po co w ogóle prognozujemy? Po co w ogóle prognozujemy? Pojęcie prognozy: racjonalne, naukowe przewidywanie przyszłych zdarzeń stwierdzenie odnoszącym się do określonej przyszłości formułowanym z wykorzystaniem metod naukowym, weryfikowalnym

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI WYMAGANIA EDUKACYJNE DLA UCZNIÓW KLAS I

PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI WYMAGANIA EDUKACYJNE DLA UCZNIÓW KLAS I PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI WYMAGANIA EDUKACYJNE DLA UCZNIÓW KLAS I Wymagania konieczne ocena dopuszczająca wie że długość i odległość mierzymy w milimerach cenymerach merach lub kilomerach

Bardziej szczegółowo

REGRESJA (postać liniowa funkcji) - ROZWIĄZANIA Komentarze kursywą, rozwiązania oraz treści zadań pismem prostym.

REGRESJA (postać liniowa funkcji) - ROZWIĄZANIA Komentarze kursywą, rozwiązania oraz treści zadań pismem prostym. REGRESJA (postać liniowa funkcji) - ROZWIĄZANIA Komentarze kursywą, rozwiązania oraz treści zadań pismem prostym. Zadanie 1 W celu ustalenia zależności między liczbą braków a wielkością produkcji części

Bardziej szczegółowo

E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO

E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO Marek Pękała i Jadwiga Szydłowska Procesy rozładowania kondensaora i drgania relaksacyjne w obwodach RC należą do szerokiej klasy procesów relaksacyjnych. Procesy

Bardziej szczegółowo

JAKOŚĆ ZYSKU SPÓŁEK IPO NA PRZYKŁADZIE GPW W WARSZAWIE

JAKOŚĆ ZYSKU SPÓŁEK IPO NA PRZYKŁADZIE GPW W WARSZAWIE Rafał Cieślik Uniwersye Warszawski JAKOŚĆ ZYSKU SPÓŁEK IPO NA PRZYKŁADZIE GPW W WARSZAWIE Wprowadzenie Noblisa Joseph E. Sigliz za jedną z pięciu głównych przyczyn obecnego kryzysu gospodarczego uważa

Bardziej szczegółowo

Determinanty oszczêdzania w Polsce P r a c a z b i o r o w a p o d r e d a k c j ¹ B a r b a r y L i b e r d y

Determinanty oszczêdzania w Polsce P r a c a z b i o r o w a p o d r e d a k c j ¹ B a r b a r y L i b e r d y Deerminany oszczêdzania w Polsce P r a c a z b i o r o w a p o d r e d a k c j ¹ B a r b a r y L i b e r d y W a r s z a w a, 1 9 9 9 nr 28 Prezenowane w serii Rapory CASE sanowiska meryoryczne wyra aj¹

Bardziej szczegółowo

Zarządzanie ryzykiem. Lista 3

Zarządzanie ryzykiem. Lista 3 Zaządzanie yzykiem Lisa 3 1. Oszacowano nasępujący ozkład pawdopodobieńswa dla sóp zwou z akcji A i B (Tabela 1). W chwili obecnej Akcja A ma waość ynkową 70, a akcja B 50 zł. Ile wynosi pięciopocenowa

Bardziej szczegółowo

PROPOZYCJA NOWEJ METODY OKREŚLANIA ZUŻYCIA TECHNICZNEGO BUDYNKÓW

PROPOZYCJA NOWEJ METODY OKREŚLANIA ZUŻYCIA TECHNICZNEGO BUDYNKÓW Udosępnione na prawach rękopisu, 8.04.014r. Publikacja: Knyziak P., "Propozycja nowej meody określania zuzycia echnicznego budynków" (Proposal Of New Mehod For Calculaing he echnical Deerioraion Of Buildings),

Bardziej szczegółowo

Bezpośrednie inwestycje zagraniczne w Unii Europejskiej w świetle teorii rozwoju regionalnego i teorii lokalizacji

Bezpośrednie inwestycje zagraniczne w Unii Europejskiej w świetle teorii rozwoju regionalnego i teorii lokalizacji T.Laocha, Bezpośrednie inwesycje zagraniczne w UE w świele eorii Tomasz Laocha * Bezpośrednie inwesycje zagraniczne w Unii Europejskiej w świele eorii rozwoju regionalnego i eorii lokalizacji 1. Wprowadzenie

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Jerzy Czesław Ossowski Katedra Ekonomii i Zarzdzania Przedsibiorstwem Wydział Zarzdzania i Ekonomii Politechnika Gdaska

Jerzy Czesław Ossowski Katedra Ekonomii i Zarzdzania Przedsibiorstwem Wydział Zarzdzania i Ekonomii Politechnika Gdaska A.02.2 Jerzy Czesław Ossowski Kaedra Ekonomii i Zarzdzania Przedsibiorswem Wydział Zarzdzania i Ekonomii Poliechnika Gdaska Marcin Judycki Dresdner Kleinwor Wassersein - London VII Seminarium Naukowe Kaedry

Bardziej szczegółowo

Dopasowanie prostej do wyników pomiarów.

Dopasowanie prostej do wyników pomiarów. Dopasowanie prostej do wyników pomiarów. Graficzna analiza zależności liniowej Założenie: każdy z pomiarów obarczony jest taką samą niepewnością pomiarową (takiej samej wielkości prostokąty niepewności).

Bardziej szczegółowo

Co to jest analiza regresji?

Co to jest analiza regresji? Co to jest analiza regresji? Celem analizy regresji jest badanie związków pomiędzy wieloma zmiennymi niezależnymi (objaśniającymi) a zmienną zależną (objaśnianą), która musi mieć charakter liczbowy. W

Bardziej szczegółowo

Analiza metod oceny efektywności inwestycji rzeczowych**

Analiza metod oceny efektywności inwestycji rzeczowych** Ekonomia Menedżerska 2009, nr 6, s. 119 128 Marek Łukasz Michalski* Analiza meod oceny efekywności inwesycji rzeczowych** 1. Wsęp Podsawowymi celami przedsiębiorswa w długim okresie jes rozwój i osiąganie

Bardziej szczegółowo

ZASTOSOWANIE METODY OBLICZEŃ UPROSZCZONYCH DO WYZNACZANIA CZASU JAZDY POCIĄGU NA SZLAKU

ZASTOSOWANIE METODY OBLICZEŃ UPROSZCZONYCH DO WYZNACZANIA CZASU JAZDY POCIĄGU NA SZLAKU PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 87 Transpor 01 Jarosław Poznański Danua Żebrak Poliechnika Warszawska, Wydział Transporu ZASTOSOWANIE METODY OBLICZEŃ UPROSZCZONYCH DO WYZNACZANIA CZASU JAZDY

Bardziej szczegółowo

ROZDZIAŁ 12 MIKROEKONOMICZNE PODSTAWY MODELI NOWEJ EKONOMII KLASYCZNEJ

ROZDZIAŁ 12 MIKROEKONOMICZNE PODSTAWY MODELI NOWEJ EKONOMII KLASYCZNEJ Kaarzyna Szarzec ROZDZIAŁ 2 MIKROEKONOMICZNE PODSTAWY MODELI NOWEJ EKONOMII KLASYCZNEJ. Uwagi wsępne Program nowej ekonomii klasycznej, w kórej nazwie podkreślone są jej związki z ekonomią klasyczną i

Bardziej szczegółowo

Wykład 3 POLITYKA PIENIĘŻNA POLITYKA FISKALNA

Wykład 3 POLITYKA PIENIĘŻNA POLITYKA FISKALNA Makroekonomia II Wykład 3 POLITKA PIENIĘŻNA POLITKA FISKALNA PLAN POLITKA PIENIĘŻNA. Podaż pieniądza. Sysem rezerwy ułamkowej i podaż pieniądza.2 Insrumeny poliyki pieniężnej 2. Popy na pieniądz 3. Prowadzenie

Bardziej szczegółowo

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Marcin Gajewski Uniwersye Łódzki 4.12.2008 Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Niezabazpieczony UIP)

Bardziej szczegółowo

Metody ilościowe w systemie prognozowania cen produktów rolnych. Mariusz Hamulczuk Cezary Klimkowski Stanisław Stańko

Metody ilościowe w systemie prognozowania cen produktów rolnych. Mariusz Hamulczuk Cezary Klimkowski Stanisław Stańko Meody ilościowe w sysemie prognozowania cen produków rolnych nr 89 2013 Mariusz Hamulczuk Cezary Klimkowski Sanisław Sańko Meody ilościowe w sysemie prognozowania cen produków rolnych Meody ilościowe

Bardziej szczegółowo

Jednofazowe przekształtniki DC AC i AC DC z eliminacją składowej podwójnej częstotliwości po stronie DC

Jednofazowe przekształtniki DC AC i AC DC z eliminacją składowej podwójnej częstotliwości po stronie DC Akademia Górniczo-Hunicza im. Sanisława Saszica w Krakowie Wydział Elekroechniki, Auomayki, Informayki i Inżynierii Biomedycznej Kaedra Energoelekroniki i Auomayki Sysemów Przewarzania Energii Auorefera

Bardziej szczegółowo

Stały czy płynny? Model PVEC realnego kursu walutowego dla krajów Europy Środkowo-Wschodniej implikacje dla Polski

Stały czy płynny? Model PVEC realnego kursu walutowego dla krajów Europy Środkowo-Wschodniej implikacje dla Polski Maeriały i Sudia nr 312 Sały czy płynny? Model PVEC realnego kursu waluowego dla krajów Europy Środkowo-Wschodniej implikacje dla Polski Pior Kębłowski Maeriały i Sudia nr 312 Sały czy płynny? Model PVEC

Bardziej szczegółowo

MODELOWANIE KURSÓW WALUTOWYCH NA PRZYKŁADZIE MODELI KURSÓW RÓWNOWAGI ORAZ ZMIENNOŚCI NA RYNKU FOREX

MODELOWANIE KURSÓW WALUTOWYCH NA PRZYKŁADZIE MODELI KURSÓW RÓWNOWAGI ORAZ ZMIENNOŚCI NA RYNKU FOREX Krzyszof Ćwikliński Uniwersye Ekonomiczny we Wrocławiu Wydział Zarządzania, Informayki i Finansów Kaedra Ekonomerii krzyszof.cwiklinski@ue.wroc.pl Daniel Papla Uniwersye Ekonomiczny we Wrocławiu Wydział

Bardziej szczegółowo

Analiza efektywności kosztowej w oparciu o wskaźnik dynamicznego kosztu jednostkowego

Analiza efektywności kosztowej w oparciu o wskaźnik dynamicznego kosztu jednostkowego TRANSFORM ADVICE PROGRAMME Invesmen in Environmenal Infrasrucure in Poland Analiza efekywności koszowej w oparciu o wskaźnik dynamicznego koszu jednoskowego dr Jana Rączkę Warszawa, 13.06.2002 2 Spis reści

Bardziej szczegółowo

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem

Bardziej szczegółowo

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XLIII nr 2 (2012) 161 181

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XLIII nr 2 (2012) 161 181 A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XLIII nr (01) 161 181 Pierwsza wersja złożona 9 marca 01 ISSN Końcowa wersja zaakcepowana 15 grudnia 01 080-0339 Anna Michałek

Bardziej szczegółowo

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego

Bardziej szczegółowo

Marża zakupu bid (pkb) Marża sprzedaży ask (pkb)

Marża zakupu bid (pkb) Marża sprzedaży ask (pkb) Swap (IRS) i FRA Przykład. Sandardowy swap procenowy Dealer proponuje nasępujące sałe sopy dla sandardowej "plain vanilla" procenowej ransakcji swap. ermin wygaśnięcia Sopa dla obligacji skarbowych Marża

Bardziej szczegółowo

TESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH

TESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Mariusz Doszyń TESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH Od pewnego czasu w lieraurze ekonomerycznej pojawiają się

Bardziej szczegółowo

OeconomiA copernicana. Małgorzata Madrak-Grochowska, Mirosława Żurek Uniwersytet Mikołaja Kopernika w Toruniu

OeconomiA copernicana. Małgorzata Madrak-Grochowska, Mirosława Żurek Uniwersytet Mikołaja Kopernika w Toruniu OeconomiA copernicana 2011 Nr 4 Małgorzaa Madrak-Grochowska, Mirosława Żurek Uniwersye Mikołaja Kopernika w Toruniu TESTOWANIE PRZYCZYNOWOŚCI W WARIANCJI MIĘDZY WYBRANYMI INDEKSAMI RYNKÓW AKCJI NA ŚWIECIE

Bardziej szczegółowo

Alicja Ganczarek Akademia Ekonomiczna w Katowicach. Analiza niezależności przekroczeń VaR na wybranym segmencie rynku energii

Alicja Ganczarek Akademia Ekonomiczna w Katowicach. Analiza niezależności przekroczeń VaR na wybranym segmencie rynku energii DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Akademia Ekonomiczna w Kaowicach Analiza

Bardziej szczegółowo

MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII

MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII KRZYSZTOF JAJUGA Akademia Ekonomiczna we Wrocławiu MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII. Modele makroekonomiczne a modele sóp procenowych wprowadzenie Nie do podważenia

Bardziej szczegółowo

POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE

POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE Anea Kłodzińska, Poliechnika Koszalińska, Zakład Ekonomerii POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE Sopy procenowe w analizach ekonomicznych Sopy procenowe

Bardziej szczegółowo

KOSZTOWA OCENA OPŁACALNOŚCI EKSPLOATACJI WĘGLA BRUNATNEGO ZE ZŁOŻA LEGNICA ZACHÓD **

KOSZTOWA OCENA OPŁACALNOŚCI EKSPLOATACJI WĘGLA BRUNATNEGO ZE ZŁOŻA LEGNICA ZACHÓD ** Górnicwo i Geoinżynieria Rok 31 Zeszy 2 2007 Kazimierz Czopek* KOSZTOWA OCENA OPŁACALNOŚCI EKSPLOATACJI WĘGLA BRUNATNEGO ZE ZŁOŻA LEGNICA ZACHÓD ** 1. Wprowadzenie Uwzględniając ylko prosy bilans energii

Bardziej szczegółowo

ROZDZIAŁ 8 DYSKUSJA NAD NEO-KEYNESOWSKĄ KRZYWĄ PHILLIPSA WNIOSKI DLA POLSKI

ROZDZIAŁ 8 DYSKUSJA NAD NEO-KEYNESOWSKĄ KRZYWĄ PHILLIPSA WNIOSKI DLA POLSKI Marcin Brycz ROZDZIAŁ 8 DYSKUSJA NAD NEO-KEYNESOWSKĄ KRZYWĄ PHILLIPSA WNIOSKI DLA POLSKI Wprowadzenie Blisko pięćdziesią la ocząca się dyskusja nad krzywą Phillipsa nabrała nowego rozmachu od czasu publikacji

Bardziej szczegółowo

Analiza Współzależności

Analiza Współzależności Statystyka Opisowa z Demografią oraz Biostatystyka Analiza Współzależności Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka

Bardziej szczegółowo

1.1. Bezpośrednie transformowanie napięć przemiennych

1.1. Bezpośrednie transformowanie napięć przemiennych Rozdział Wprowadzenie.. Bezpośrednie ransformowanie napięć przemiennych Bezpośrednie ransformowanie napięć przemiennych jes formą zmiany paramerów wielkości fizycznych charakeryzujących energię elekryczną

Bardziej szczegółowo

Badania trakcyjne samochodu.

Badania trakcyjne samochodu. Uniwersye Technologiczno-Humanisyczny im. Kazimierza Pułaskiego w Radomiu Wydział Mechaniczny Insyu Eksploaacji Pojazdów i Maszyn Budowa samochodów i eoria ruchu Insrukcja do ćwiczenia Badania rakcyjne

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU B A D A N I A O P E R A C J N E I D E C Z J E Nr 2 2006 Bogusław GUZIK* SZACOWANIE MODELU RNKOWEGO CKLU ŻCIA PRODUKTU Przedsawiono zasadnicze podejścia do saysycznego szacowania modelu rynkowego cyklu

Bardziej szczegółowo

Eliza Buszkowska * DYNAMIKA PRZEPŁYWÓW INWESTYCJI POMIĘDZY GIEŁDAMI

Eliza Buszkowska * DYNAMIKA PRZEPŁYWÓW INWESTYCJI POMIĘDZY GIEŁDAMI ACTA UNIVERSITATIS NICOLAI COPERNICI DOI: hp://dx.doi.org/10.12775/aunc_econ.2014.017 EKONOMIA XLV nr 2 (2014) 275 288 Pierwsza wersja złożona 26 czerwca 2014 ISSN Końcowa wersja zaakcepowana 20 grudnia

Bardziej szczegółowo

Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 23 marca 2006

Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 23 marca 2006 , transformacja liniowa i estymacja modelu KMNK Paweł Cibis pcibis@o2.pl 23 marca 2006 1 Miary dopasowania modelu do danych empirycznych Współczynnik determinacji Współczynnik zbieżności 2 3 Etapy transformacji

Bardziej szczegółowo

EFEKTYWNOŚĆ INWESTYCJI W ZAPASY W OPODATKOWANYCH I NIE OPODATKOWANYCH ORGANIZACJACH 1

EFEKTYWNOŚĆ INWESTYCJI W ZAPASY W OPODATKOWANYCH I NIE OPODATKOWANYCH ORGANIZACJACH 1 GRZEGORZ MICHALSKI EFEKTYWNOŚĆ INWESTYCJI W ZAPASY W OPODATKOWANYCH I NIE OPODATKOWANYCH ORGANIZACJACH 1 1. Wsęp Organizacje, mogą działać jako opodakowane przedsiębiorswa działające na zasadach komercyjnych

Bardziej szczegółowo

Model MaMoR2 Informacje o konstrukcji i załoŝeniach. Tomasz Kaczor

Model MaMoR2 Informacje o konstrukcji i załoŝeniach. Tomasz Kaczor Model MaMoR2 Informacje o konsrukcji i załoŝeniach Tomasz Kaczor Warszawa, lisopad 2006 Model MaMoR2 Informacje o konsrukcji i załoŝeniach Spis reści Wsęp... 5 Filozofia i podsawowe zaleŝności modelu...

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

METROLOGICZNE WŁASNOŚCI SYSTEMU BADAWCZEGO

METROLOGICZNE WŁASNOŚCI SYSTEMU BADAWCZEGO PROBLEY NIEONWENCJONALNYCH ŁADÓW ŁOŻYSOWYCH Łódź, 4 maja 999 r. Jadwiga Janowska, Waldemar Oleksiuk Insyu ikromechaniki i Fooniki, Poliechnika Warszawska ETROLOGICZNE WŁASNOŚCI SYSTE BADAWCZEGO SŁOWA LCZOWE:

Bardziej szczegółowo