DYNAMIKA KONSTRUKCJI

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "DYNAMIKA KONSTRUKCJI"

Transkrypt

1 10. DYNAMIKA KONSTRUKCJI DYNAMIKA KONSTRUKCJI Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej chwili. Jes o odwołanie do zasady d'lambera, kóra mówi, że dla układu będącego w ruchu równowaga musi być spełniona w każdej chwili konkrenej przesrzeni czasowej. Macierz M jes macierzą masową, macierz K - macierzą szywności. Macierz P jes macierzą określającą przyłożone do układu obciążenia zewnęrzne. Naomias C jes macierzą określającą łumienie układu. Macierz ą przyjmujemy najczęściej w posaci zw. łumienia proporcjonalnego (zależnego od macierzy K i M) w posaci C= 1 M K (10.) Współczynniki 1 i wyznaczamy na podsawie udziału poszczególnych posaci drgań własnych. Jeśli założymy warość łumienia i obciążenia zewnęrzne równe zero, orzymamy równanie M d Kd =0 (10.3) czyli problem drgań własnych układu. Idąc dalej, sosując podsawienie d =d 0 sin (10.4) i różniczkując dwukronie po czasie d = d 0 cos d = d 0 sin (10.5) orzymujemy warości, kóre podsawiamy do równania (10.3) i dosajemy K M d 0 =0 (10.6) Czyli równanie, kóre definiuje nam uogólniony problem własny. Równanie o ma n równań rzeczywisych w posaci par: warości własnej i odpowiadającego jej wekora własnego.

2 10. DYNAMIKA KONSTRUKCJI 10.. Meody całkowania Jak wiemy równanie ruchu jes równaniem różniczkowym. Zasanówmy się zaem nad sposobami jego rozwiązywania. Ze względu na pewne własności macierzy K, M i C w analizie ruchu ciała przedsawionego przy pomocy elemenów skończonych zasadniczo sosujemy dwie meody: meodę całkowania bezpośredniego i meodę superpozycji modalnej Meody całkowania bezpośredniego Meody całkowania bezpośredniego są meodami jawnymi. Polegają ona na ym, że równanie ruchu jes całkowane krok po kroku. Równanie ma być spełnione ylko w wybranych chwilach, a nie w całym przedziale całkowania. Zakładamy, że w chwili =0 znane nam są przemieszczenia, prędkości i przyspieszenia (czyli znamy d 0, d 0, d 0 ). Rozparujemy określony przedział czasowy (0,T), kóry dzielimy na n równych przedziałów, w kórych o poszukujemy naszych nieznanych wielkości. Rozważamy zaem chwile: 0,,,...,,,..., T (10.7) Zadanie polega na zbudowaniu algorymu, kóry pozwoli nam na obliczeniu poszukiwanych warości w danym kroku przy wykorzysaniu wyliczonych warości z kroku poprzedniego. W aki sposób orzymamy warości we wszyskich chwilach czasowych z przedziału (0,T) Pokażemy na przykładzie, ok posępowania przy rozwiązywaniu zadania z dynamiki przy pomocy jednej z najbardziej efekywnych meod z grona meod całkowania bezpośredniego, a mianowicie meodą różnic cenralnych. Zakładamy zmienność w czasie wekorów prędkości i przyspieszeń w posaci d 1 d d d 1 d d d (10.8) Jeśli podsawimy operaory różnicowe (10.8) do (10.1) orzymamy 1 d d d M 1 d d C Kd =P (10.9) Z równania (10.9) obliczamy poszukiwany san przemieszczeń w chwili czyli d.

3 10. DYNAMIKA KONSTRUKCJI 3 Należy zwrócić uwagę, że rozwiązanie o orzymujemy na podsawie rozwiązania w chwili. Sąd eż meodę ę zaliczamy do meod jawnych (explicie). Dużą zaleą ego sposobu rozwiązywania równania (10.9) jes fak, iż nie musimy odwracać macierzy szywności. Należy zwrócić uwagę, że obliczanie wyników w kolejnych chwilach z wykorzysaniem wyników orzymanych w chwilach poprzednich wymaga przyjęcia pewnej procedury sarowej. Waro zaznaczyć, że zakładamy uaj, iż wekory d 0, d 0, d 0 są znane w chwili począkowej czyli w chwili =0. Sąd eż wykorzysując wzory (10.8) możemy wyznaczyć wekor przemieszczenia d w fikcyjnej chwili, kóra poprzedzać będzie począek ruchu czyli dla chwili : d =d 0 d 0 d 0, (10.10) Zaznaczmy, że meody jawne są ylko warunkowo sabilne, dlaego eż wymagane jes zasosowanie małych kroków całkowania przy obliczaniu kolejnych warości. Krok nie może być dowolnie duży, lecz musi spełniać poniższą zależność kr = T n, (10.11) gdzie T n jes najmniejszym okresem drgań układu Niespełnienie warunku (10.11) powoduje narasanie akumulację błędów całkowania i zaokrągleń w rakcie rozwiązywania równań ruchu. Algorym obliczeń dla meody całkowania jawnego: Obliczamy macierze K, C, M Nasępnie obliczamy d 0, d 0, d 0, Określamy sałe a 0 = 1 a 1 = 1 a = a 0 a 3 = 1 a (10.1) Obliczamy d =d 0 d 0 d 0 Wyznaczamy M M =a 0 M a 1 C (10.13) Triangularyzacja macierzy M przy pomocy wzoru M =L D L T (10.14)

4 10. DYNAMIKA KONSTRUKCJI 4 Obliczenia dla każdego kroku: - wekora obciążenia efekywnego R R=R K a M d a 0 M a 1 C d (10.15) - rozwiązanie równania (10.9) dla chwili -obliczenie wekorów prędkości i przyspieszeń: L T DLd = R (10.16) d a 1 d d d a 0 d d d (10.17) W przypadku braku łumienia czyli gdy C=0, równanie (10.9) upraszczamy do posaci 1 M d = R (10.18) gdzie R=R K M d 1 M d (10.19) Jeśli w równaniu (10.18) macierz mas będzie diagonalna, wówczas rozwiązania orzymujemy poprzez wykonanie określonego wzorem (10.19) mnożenia i d = R i (10.0) m ii i gdzie d oraz i R będą oznaczać i-e składowe wekorów d i R, naomias m ii odnoszą się do i-ej składowej diagonalnej macierzy mas (należy jednakże spełnić założenie, że m ii 0. Zauważmy, że nie musimy znać macierzy globalnych (zarówno macierzy szywności K jak i macierzy mas M). Dzieje się ak dlaego, bo nie rozwiązujemy układu równań liniowych. Macierze K i M mogą być określone na poziomie elemenów. Wśród meod całkowania jawnego możemy wymienić, oprócz meody różnic cenralnych, między innymi meodę Houbola, Wilsona i Newmarka. Meody e, pod warunkiem przyjęcia pewnych warości współczynników charakerysycznych dla danej meody, należą do meod bezwarunkowo sabilnych.

5 10. DYNAMIKA KONSTRUKCJI Meody superpozycji modalnej Równanie ruchu ma posać: M d C d Kd =P (10.1) M d C d Kd =P (10.) d = d [ 1 d d ] (10.3) d =d d [ 1 d d ] ℵ (10.4), - paramery przyjmowane na podsawie rozwiązań doyczących dokładności i sabilności orzymanych rozwiązań = 1 6 = 1 Rozwiązując ℵ względem d orzymamy: d = 1 [ d d d 1 ] d (10.5) ḋ = d d 1 d 1 d (10.6) 1 [ d d d 1 ] d M =P (10.7) i ḋ Z równania ego obliczamy niewiadomy wekor przemieszczeń d i podsawiamy do d Jeśli liczba kroków i liczba sopni swobody układu jes duża, wówczas efekywność obliczeń meodami całkowania bezpośredniego jes niesaysfakcjonująca. Należy wedy posłużyć się innymi meodami - meodami niejawnymi (implicie), do kórych można zaliczyć meodę superpozycji modalnej. Należy uaj dokonać przekszałcenia równania równowagi (10.1) do posaci, kóra będzie wymagała od nas mniejszego nakładu pracy.

6 10. DYNAMIKA KONSTRUKCJI 6 Dokonajmy akiego przekszałcenia wykorzysując rozwiązanie problemu drgań własnych (a więc pomijamy obciążenie zewnęrzne i łumienie) M d K d =0 (10.8) Rozwiązaniem równania (10.8) jes n par i, i, czyli macierze i w posaci =[ 1... ], n =[ 1... n ] (10.9) Spełniony jes uaj zw. warunek M-orogonalności wekorów własnych T M =1 (10.30) oraz warunek T K = (10.31) Dokonajmy ransformacji równania (10.1) sosując podsawienie d = X (10.3) Orzymujemy w en sposób równanie ruchu M Ẍ C Ẋ K X =P (10.33) Nasępnie przemnażamy lewosronnie przez T i orzymujemy T M Ẍ T C Ẋ T K X = T P (10.34) Jeśli weźmiemy pod uwagę warunki (10.31) i (10.3) dosaniemy osaecznie

7 10. DYNAMIKA KONSTRUKCJI 7 Ẍ T C Ẋ X = T P (10.35) Uzupełniamy równanie (10.34) warunkami począkowymi X 0 = T M d 0 (10.36) X 0 = T M d 0 Z równania (10.34) wynika, że jeżeli przyjmiemy macierz łumienia równą zero zn. pominiemy człon T C Ẋ o orzymamy układ równań rozprzężony co możemy zapisać jako n równań skalarnych posaci Ẍ X = T P, (10.37) gdzie ẍ i i x i =r i, (10.38) Warunki począkowe orzymujemy z (10.36) r i = i T P (10.39) x i0 = i T M d 0, x i0 = T i M d 0, (10.40) Zaznaczmy, że rozwiązanie równań (10.38) możemy prowadzić przy wykorzysaniu meod całkowania bezpośredniego lub przy wykorzysaniu zw. całki Duhamela x i = 1 i o r i sin i d i sin i i cos i (10.41) sałe i i i wyznaczamy z warunków poczakowych (10.40) W naszym zadaniu po rozwiązaniu n równań musimy powrócić do ransformacji (10.3). Orzymamy wówczas osaeczne rozwiązanie n d = i x i (10.4) i=1

8 m 1 x 1 m x 10. DYNAMIKA KONSTRUKCJI Przykłady Równanie równowagi dynamicznej każdego punku w każdej chwili: [M ][ d ] [C ][ d ] [ K ][d ]=[ p ] (10.43) Rozwiązanie ego równania mówi nam, jak dany elemen przemieścił się w każdej chwili. Przykłady: k 1 k 1 p 1 k k p k 3 k 3 m 3 x3 p 3 Rys Przykład 1

9 10. DYNAMIKA KONSTRUKCJI 9 x 1 x x 3 k 1 k k 3 p 1 p p 3 c 1 c c 3 łumik Rys Przykład Równanie równowagi zapisane macierzowo: [k1 k k 0 c k k k 3 k 3 x c c c 3 c 3 x 0 m 0 x ]{x1 ]{ẋ1 0 k 3 k 3 x 3} [c1 c 0 c 3 c 3 ẋ 3} [m1 0 0 m 3]{ẍ1 P ẍ 3}={P1 3} P (10.44) [ K ]{x} [C ]{ẋ} [M ]{ẍ}={p} Przykład obliczeniowy: x 1 x k 1 =k k =k m 1 =m m = m Q()=0 [ 3 k k k k ]{ x 1 x } [ m 0 0 m]{ẍ1 x } = { 0 0} (10.45) X 1 =A 1 sin (10.46) X =A sin (10.47) Obliczamy drugą pochodną po czasie wyrażeń i X 1 = A 1 sin (10.48)

10 10. DYNAMIKA KONSTRUKCJI 10 X = A sin (10.49) i podsawiamy do równania 10.45, orzymując k[ 3 ]{ A 1 A } m [ ]{ A 1 A } = { 0 0} (10.50) Podsawiamy = m k : [ 3 ]{ A 1 A } { = 0 (10.51) 0} Przykładowa posać rozwiązania: 1 =0,673 =3,730 A 1 =0,73 A A 1 =,735 A (10.5) I posać: 0,73 1, Eksremalna warość własna [ A] [ B ] [ X ]={0} (10.53) [ A] [ X ]= [ B ][ X ] /[ B ] 1 (10.54) [C ] [ I ] [ B ] 1 [ A] [ X ]= [ B ] 1 [ B ] [ X ] (10.55) Orzymujemy: [C ][ X ]= [ X ] (10.56)

11 10. DYNAMIKA KONSTRUKCJI 11 [C ][ X i ]=[ X i 1 ]= [ X i 1 ] (10.57) Dokonujemy ieracji: [C ][ X 0 ]=[ X 1 ]= 1 [ X 1 ] [C ][ X 1 ]=[ X ]= [ X ] [C ][ X k 1 ]=[ X k ]= [ X k ] (10.58) Przykład: [ ][ 5 n] l [ m = ][ n] l m (10.59) 0 0 ieracje i=0: [ ]{ 0 0 l}0 ={ }i =30 { 0,166 0,300 1,000}l (10.60) i=1: [ ]{ 0,166 0,300 l,000} { 11,780 = 18,996 35,530} { 0,35 =35,59 0,566 (10.61) 1,000} Nasępne ieracje powarzamy do momenu, kiedy orzymane warości będą zbliżone: [ ]{ 0,766 1,000 0,98} { 0,78 =43,49 1,00 (10.6) 0,97}

12 10. DYNAMIKA KONSTRUKCJI Dynamika konsrukcji W przypadku dynamiki konsrukcji macierz mas wyrażona za pomocą funkcji kszału i gęsości jes posaci: M = e e N T e N e dv e (10.63) V

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof. Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając

Bardziej szczegółowo

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) =

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) = Uk lady równań różniczkowych Pojȩcia wsȩpne Uk ladem równań różniczkowych nazywamy uk lad posaci y = f (, y, y 2,, y n ) y 2 = f 2 (, y, y 2,, y n ) y n = f n (, y, y 2,, y n ) () funkcje f j, j =, 2,,

Bardziej szczegółowo

Silniki cieplne i rekurencje

Silniki cieplne i rekurencje 6 FOTO 33, Lao 6 Silniki cieplne i rekurencje Jakub Mielczarek Insyu Fizyki UJ Chciałbym Pańswu zaprezenować zagadnienie, kóre pozwala, rozważając emaykę sprawności układu silników cieplnych, zapoznać

Bardziej szczegółowo

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Meody Lagrange a i Hamilona w Mechanice Mariusz Przybycień Wydział Fizyki i Informayki Sosowanej Akademia Górniczo-Hunicza Wykład 7 M. Przybycień (WFiIS AGH) Meody Lagrange a i Hamilona... Wykład 7 1 /

Bardziej szczegółowo

ANALIZA ODPOWIEDZI UKŁADÓW KONSTRUKCYJNYCH NA WYMUSZENIE W POSTACI SIŁY O DOWOLNYM PRZEBIEGU CZASOWYM

ANALIZA ODPOWIEDZI UKŁADÓW KONSTRUKCYJNYCH NA WYMUSZENIE W POSTACI SIŁY O DOWOLNYM PRZEBIEGU CZASOWYM Budownicwo Mariusz Poński ANALIZA ODPOWIEDZI UKŁADÓW KONSTRUKCYJNYCH NA WYMUSZENIE W POSTACI SIŁY O DOWOLNYM PRZEBIEGU CZASOWYM Wprowadzenie Coraz większe ograniczenia czasowe podczas wykonywania projeków

Bardziej szczegółowo

Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji

Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji Agnieszka Przybylska-Mazur * Meody badania wpływu zmian kursu waluowego na wskaźnik inflacji Wsęp Do oceny łącznego efeku przenoszenia zmian czynników zewnęrznych, akich jak zmiany cen zewnęrznych (szoki

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml

Bardziej szczegółowo

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,

Bardziej szczegółowo

Wykład 5 Elementy teorii układów liniowych stacjonarnych odpowiedź na dowolne wymuszenie

Wykład 5 Elementy teorii układów liniowych stacjonarnych odpowiedź na dowolne wymuszenie Wykład 5 Elemeny eorii układów liniowych sacjonarnych odpowiedź na dowolne wymuszenie Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska

Bardziej szczegółowo

Podstawowe człony dynamiczne

Podstawowe człony dynamiczne Podsawowe człony dynamiczne charakerysyki czasowe. Człon proporcjonalny = 2. Człony całkujący idealny 3. Człon inercyjny = = + 4. Człony całkujący rzeczywisy () = + 5. Człon różniczkujący rzeczywisy ()

Bardziej szczegółowo

Dynamiczne formy pełzania i relaksacji (odprężenia) górotworu

Dynamiczne formy pełzania i relaksacji (odprężenia) górotworu Henryk FILCEK Akademia Górniczo-Hunicza, Kraków Dynamiczne formy pełzania i relaksacji (odprężenia) góroworu Sreszczenie W pracy podano rozważania na ema możliwości wzbogacenia reologicznego równania konsyuywnego

Bardziej szczegółowo

DYNAMIKA RAM WERSJA KOMPUTEROWA

DYNAMIKA RAM WERSJA KOMPUTEROWA DYNAMIKA RAM WERSJA KOMPTEROWA Parametry przekrojów belek: E=205MPa=205 10 6 kn m 2 =205109 N m 2 1 - IPE 220 Pręty: 1, 3, 4: I y =2770cm 4 =0,00002770 m 4 EI =5678500 Nm 2 A=33,4 cm 4 =0,00334 m 2 EA=684700000

Bardziej szczegółowo

Drgania układu o wielu stopniach swobody

Drgania układu o wielu stopniach swobody Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach

Bardziej szczegółowo

ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym

ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym ĆWIZENIE 4 Badanie sanów nieusalonych w obwodach, i przy wymuszeniu sałym. el ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem w sanach nieusalonych w obwodach szeregowych, i Zapoznanie się ze sposobami

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut Wojewódzki Konkurs Maemayczny dla uczniów gimnazjów. Eap szkolny 5 lisopada 2013 Czas 90 minu ZADANIA ZAMKNIĘTE Zadanie 1. (1 punk) Liczby A = 0, 99, B = 0, 99 2, C = 0, 99 3, D = 0, 99, E=0, 99 1 usawiono

Bardziej szczegółowo

RACHUNEK CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ

RACHUNEK CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ RACHUNEK CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ Wykorzysano: M A T E M A T Y K A Wykład dla sudenów Część Krzyszo KOŁOWROCKI, ZBIÓR ZADAŃ Z RACHUNKU CAŁKOWEGO Krzyszo PISKÓRZ Deinicja CAŁKA NIEOZNACZONA Funkcję

Bardziej szczegółowo

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: = ROZŁADOWANIE KONDENSATORA I. el ćwiczenia: wyznaczenie zależności napięcia (i/lub prądu I ) rozładowania kondensaora w funkcji czasu : = (), wyznaczanie sałej czasowej τ =. II. Przyrządy: III. Lieraura:

Bardziej szczegółowo

I. KINEMATYKA I DYNAMIKA

I. KINEMATYKA I DYNAMIKA piagoras.d.pl I. KINEMATYKA I DYNAMIKA KINEMATYKA: Położenie ciała w przesrzeni można określić jedynie względem jakiegoś innego ciała lub układu ciał zwanego układem odniesienia. Ruch i spoczynek są względne

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych Równania różniczkowe zwyczajne o rozdzielonych zmiennych Definicja. Równaniem różniczkowym o rozdzielonych zmiennych nazywamy równanie postaci p(y) = q() (.) rozwiązanie równania sprowadza się do postaci

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR LORTORIUM PODSTWY ELEKTRONIKI adanie ramki X-OR 1.1 Wsęp eoreyczny. ramka XOR ramka a realizuje funkcję logiczną zwaną po angielsku EXLUSIVE-OR (WYŁĄZNIE LU). Polska nazwa brzmi LO. Funkcję EX-OR zapisuje

Bardziej szczegółowo

Rys.1. Podstawowa klasyfikacja sygnałów

Rys.1. Podstawowa klasyfikacja sygnałów Kaedra Podsaw Sysemów echnicznych - Podsawy merologii - Ćwiczenie 1. Podsawowe rodzaje i ocena sygnałów Srona: 1 1. CEL ĆWICZENIA Celem ćwiczenia jes zapoznanie się z podsawowymi rodzajami sygnałów, ich

Bardziej szczegółowo

Krzywe na płaszczyźnie.

Krzywe na płaszczyźnie. Krzwe na płaszczźnie. Współrzędne paramerczne i biegunowe. Współrzędne biegunowe. Dan jes punk O, zwan biegunem, kór sanowi począek półprosej, zwanej półosią. Dowoln punk P na płaszczźnie można opisać

Bardziej szczegółowo

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów

Bardziej szczegółowo

Szeregi Fouriera. Powyższe współczynniki można wyznaczyć analitycznie z następujących zależności:

Szeregi Fouriera. Powyższe współczynniki można wyznaczyć analitycznie z następujących zależności: Trygonomeryczny szereg Fouriera Szeregi Fouriera Każdy okresowy sygnał x() o pulsacji podsawowej ω, spełniający warunki Dirichlea:. całkowalny w okresie: gdzie T jes okresem funkcji x(), 2. posiadający

Bardziej szczegółowo

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar. EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b

Bardziej szczegółowo

ĆWICZENIE NR 43 U R I (1)

ĆWICZENIE NR 43 U R I (1) ĆWCZENE N 43 POMY OPO METODĄ TECHNCZNĄ Cel ćwiczenia: wyznaczenie warości oporu oporników poprzez pomiary naężania prądu płynącego przez opornik oraz napięcia na oporniku Wsęp W celu wyznaczenia warości

Bardziej szczegółowo

PROGRAMOWY GENERATOR PROCESÓW STOCHASTYCZNYCH LEVY EGO

PROGRAMOWY GENERATOR PROCESÓW STOCHASTYCZNYCH LEVY EGO POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 69 Elecrical Engineering 0 Janusz WALCZAK* Seweryn MAZURKIEWICZ* PROGRAMOWY GENERATOR PROCESÓW STOCHASTYCZNYCH LEVY EGO W arykule opisano meodę generacji

Bardziej szczegółowo

Praca domowa nr 1. Metodologia Fizyki. Grupa 1. Szacowanie wartości wielkości fizycznych Zad Stoisz na brzegu oceanu, pogoda jest idealna,

Praca domowa nr 1. Metodologia Fizyki. Grupa 1. Szacowanie wartości wielkości fizycznych Zad Stoisz na brzegu oceanu, pogoda jest idealna, Praca domowa nr. Meodologia Fizyki. Grupa. Szacowanie warości wielkości fizycznych Zad... Soisz na brzegu oceanu, pogoda jes idealna, powierze przeźroczyse; proszę oszacować jak daleko od Ciebie znajduje

Bardziej szczegółowo

Kinematyka W Y K Ł A D I. Ruch jednowymiarowy. 2-1 Przemieszczenie, prędkość. x = x 2 - x x t

Kinematyka W Y K Ł A D I. Ruch jednowymiarowy. 2-1 Przemieszczenie, prędkość. x = x 2 - x x t Wykład z fizyki. Pior Posmykiewicz W Y K Ł A D I Ruch jednowymiarowy Kinemayka Zaczniemy wykład z fizyki od badania przedmioów będących w ruchu. Dział fizyki, kóry zajmuje się badaniem ruchu ciał bez wnikania

Bardziej szczegółowo

Dendrochronologia Tworzenie chronologii

Dendrochronologia Tworzenie chronologii Dendrochronologia Dendrochronologia jes nauką wykorzysującą słoje przyrosu rocznego drzew do określania wieku (daowania) obieków drewnianych (budynki, przedmioy). Analizy różnych paramerów słojów przyrosu

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp

Bardziej szczegółowo

PROJEKT nr 1 Projekt spawanego węzła kratownicy. Sporządził: Andrzej Wölk

PROJEKT nr 1 Projekt spawanego węzła kratownicy. Sporządził: Andrzej Wölk PROJEKT nr 1 Projek spawanego węzła kraownicy Sporządził: Andrzej Wölk Projek pojedynczego węzła spawnego kraownicy Siły: 1 = 10 3 = -10 Kąy: α = 5 o β = 75 o γ = 75 o Schema węzła kraownicy Dane: Grubość

Bardziej szczegółowo

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów

Bardziej szczegółowo

E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO

E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO Marek Pękała i Jadwiga Szydłowska Procesy rozładowania kondensaora i drgania relaksacyjne w obwodach RC należą do szerokiej klasy procesów relaksacyjnych. Procesy

Bardziej szczegółowo

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia

Bardziej szczegółowo

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków

Bardziej szczegółowo

IMPLEMENTACJA WYBRANYCH METOD ANALIZY STANÓW NIEUSTALONYCH W ŚRODOWISKU MATHCAD

IMPLEMENTACJA WYBRANYCH METOD ANALIZY STANÓW NIEUSTALONYCH W ŚRODOWISKU MATHCAD Pior Jankowski Akademia Morska w Gdyni IMPLEMENTACJA WYBRANYCH METOD ANALIZY STANÓW NIEUSTALONYCH W ŚRODOWISKU MATHCAD W arykule przedsawiono możliwości (oraz ograniczenia) środowiska Mahcad do analizy

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

3. Wykład Układy równań liniowych.

3. Wykład Układy równań liniowych. 31 Układy równań liniowych 3 Wykład 3 Definicja 31 Niech F będzie ciałem Układem m równań liniowych o niewiadomych x 1,, x n, m, n N, o współczynnikach z ciała F nazywamy układ równań postaci: x 1 + +

Bardziej szczegółowo

8. PODSTAWY ANALIZY NIELINIOWEJ

8. PODSTAWY ANALIZY NIELINIOWEJ 8. PODSTAWY ANALIZY NIELINIOWEJ 1 8. 8. PODSTAWY ANALIZY NIELINIOWEJ 8.1. Wprowadzenie Zadania nieliniowe mają swoje zastosowanie na przykład w rozwiązywaniu cięgien. Przyczyny nieliniowości: 1) geometryczne:

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

Prognozowanie średniego miesięcznego kursu kupna USD

Prognozowanie średniego miesięcznego kursu kupna USD Prognozowanie średniego miesięcznego kursu kupna USD Kaarzyna Halicka Poliechnika Białosocka, Wydział Zarządzania, Kaedra Informayki Gospodarczej i Logisyki, e-mail: k.halicka@pb.edu.pl Jusyna Godlewska

Bardziej szczegółowo

Przemysław Klęsk. Słowa kluczowe: analiza składowych głównych, rozmaitości algebraiczne

Przemysław Klęsk. Słowa kluczowe: analiza składowych głównych, rozmaitości algebraiczne Przemysław Klęsk O ALGORYTMIE PRINCIPAL MANIFOLDS OPARTYM NA PCA SŁUŻACYM DO ZNAJDOWANIA DZIEDZIN JAKO ROZMAITOŚCI ALGEBRAICZNYCH NA PODSTAWIE ZBIORU DANYCH, PROPOZYCJA MIAR JAKOŚCI ROZMAITOŚCI Sreszczenie

Bardziej szczegółowo

Ćw. S-II.2 CHARAKTERYSTYKI SKOKOWE ELEMENTÓW AUTOMATYKI

Ćw. S-II.2 CHARAKTERYSTYKI SKOKOWE ELEMENTÓW AUTOMATYKI Dr inż. Michał Chłędowski PODSAWY AUOMAYKI I ROBOYKI LABORAORIUM Ćw. S-II. CHARAKERYSYKI SKOKOWE ELEMENÓW AUOMAYKI Cel ćwiczenia Celem ćwiczenia jes zapoznanie się z pojęciem charakerysyki skokowej h(),

Bardziej szczegółowo

specyfikacji i estymacji modelu regresji progowej (ang. threshold regression).

specyfikacji i estymacji modelu regresji progowej (ang. threshold regression). 4. Modele regresji progowej W badaniach empirycznych coraz większym zaineresowaniem cieszą się akie modele szeregów czasowych, kóre pozwalają na objaśnianie nieliniowych zależności między poszczególnymi

Bardziej szczegółowo

Badanie funktorów logicznych TTL - ćwiczenie 1

Badanie funktorów logicznych TTL - ćwiczenie 1 adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI BUDOWLANYCH

DYNAMIKA KONSTRUKCJI BUDOWLANYCH DYNAMIKA KONSTRUKCJI BUDOWLANYCH Roman Lewandowski Wydawnictwo Politechniki Poznańskiej, Poznań 2006 Książka jest przeznaczona dla studentów wydziałów budownictwa oraz inżynierów budowlanych zainteresowanych

Bardziej szczegółowo

Związek między ruchem harmonicznym a ruchem jednostajnym po okręgu

Związek między ruchem harmonicznym a ruchem jednostajnym po okręgu Związek międz ruchem harmonicznm a ruchem jednosajnm po okręgu Rozważm rzu Q i R punku P na osie i : Q cos v r R sin R Q P δ Q cos ( δ ) R sin ( δ ) Jeżeli punk P porusza się ruchem jednosajnm po okręgu,

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

Postęp techniczny. Model lidera-naśladowcy. Dr hab. Joanna Siwińska-Gorzelak

Postęp techniczny. Model lidera-naśladowcy. Dr hab. Joanna Siwińska-Gorzelak Posęp echniczny. Model lidera-naśladowcy Dr hab. Joanna Siwińska-Gorzelak Założenia Rozparujemy dwa kraje; kraj 1 jes bardziej zaawansowany echnologicznie (lider); kraj 2 jes mniej zaawansowany i nie worzy

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy

Bardziej szczegółowo

Numeryczne rozwiązywanie równań różniczkowych ( )

Numeryczne rozwiązywanie równań różniczkowych ( ) Numeryczne rozwiązywanie równań różniczkowych Równanie różniczkowe jest to równanie, w którym występuje pochodna (czyli różniczka). Przykładem najprostszego równania różniczkowego może być: y ' = 2x które

Bardziej szczegółowo

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW Kaedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW Sposoby usalania płac w gospodarce Jednym z głównych powodów, dla kórych na rynku pracy obserwujemy poziom bezrobocia wyższy

Bardziej szczegółowo

METROLOGICZNE WŁASNOŚCI SYSTEMU BADAWCZEGO

METROLOGICZNE WŁASNOŚCI SYSTEMU BADAWCZEGO PROBLEY NIEONWENCJONALNYCH ŁADÓW ŁOŻYSOWYCH Łódź, 4 maja 999 r. Jadwiga Janowska, Waldemar Oleksiuk Insyu ikromechaniki i Fooniki, Poliechnika Warszawska ETROLOGICZNE WŁASNOŚCI SYSTE BADAWCZEGO SŁOWA LCZOWE:

Bardziej szczegółowo

Podział metod przeszukiwania

Podział metod przeszukiwania Podział meod przeszukiwania Algorymy geneyczne - selekcja Algorymy geneyczne - krzyŝowanie Algorymy geneyczne - muacja Algorymy geneyczne - algorym działania Opymalizacja dla funkcji jednej zmiennej Opymalizacja

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Równania różniczkowe Numeryczne rozwiązywanie równań różniczkowych zwyczajnych

Modelowanie i obliczenia techniczne. Równania różniczkowe Numeryczne rozwiązywanie równań różniczkowych zwyczajnych Moelowanie i obliczenia echniczne Równania różniczowe Numeryczne rozwiązywanie równań różniczowych zwyczajnych Przyła ułau ynamicznego E Uła ynamiczny R 0 Zachozi porzeba wyznaczenia: C u C () i() ur ir

Bardziej szczegółowo

Równania różniczkowe wyższych rzędów

Równania różniczkowe wyższych rzędów Równania różniczkowe wyższych rzędów Marcin Orchel Spis treści 1 Wstęp 1 1.1 Istnienie rozwiązań............................... 1 1. Rozwiązanie ogólne............................... 1.3 Obniżanie rzędu

Bardziej szczegółowo

Ćwiczenie XII: PRAWO PODZIAŁU NERNSTA

Ćwiczenie XII: PRAWO PODZIAŁU NERNSTA Ćwiczenie XII: PRAWO PODZIAŁU NERNSTA opracowanie: Wojciech Solarski Wprowadzenie Prawo podziału sformułowane przez Walera H. Nensa opisuje układ rójskładnikowy, z czego dwa składniki o rozpuszczalniki

Bardziej szczegółowo

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com

Bardziej szczegółowo

Lista nr Znaleźć rozwiązania ogólne następujących równań różniczkowych: a) y = y t,

Lista nr Znaleźć rozwiązania ogólne następujących równań różniczkowych: a) y = y t, RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE B Lisa nr 1 1. Napisać równanie różniczkowe, jakie spełnia napięcie u = u() na okładkach kondensaora w obwodzie zawierającym połączone szeregowo oporność R i pojemność C,

Bardziej szczegółowo

II.1. Zagadnienia wstępne.

II.1. Zagadnienia wstępne. II.1. Zagadnienia wsępne. Arysoeles ze Sagiry wyraźnie łączy ruch z czasem: A jes niemożliwe, żeby zaczął się albo usał ruch, gdyż jak powiedzieliśmy ruch jes wieczny, a ak samo i czas, bo czas jes albo

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek, 10-11; środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1 PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,

Bardziej szczegółowo

Przekształcenie Laplace a. Definicja i własności, transformaty podstawowych sygnałów

Przekształcenie Laplace a. Definicja i własności, transformaty podstawowych sygnałów Przekzałcenie Laplace a Deinicja i właności, ranormay podawowych ygnałów Tranormaą Laplace a unkcji je unkcja S zmiennej zepolonej, kórą oznacza ię naępująco: L[ ] unkcja S nazywana bywa również unkcją

Bardziej szczegółowo

Matematyka A, kolokwium, 15 maja 2013 rozwia. ciem rozwia

Matematyka A, kolokwium, 15 maja 2013 rozwia. ciem rozwia Maemayka A kolokwium maja rozwia zania Należy przeczyać CA LE zadanie PRZED rozpocze ciem rozwia zywania go!. Niech M. p. Dowieść że dla każdej pary liczb ca lkowiych a b isnieje aka para liczb wymiernych

Bardziej szczegółowo

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie

Bardziej szczegółowo

WPŁYW WARUNKÓW CHŁODZENIA

WPŁYW WARUNKÓW CHŁODZENIA Akademia Górniczo-Hunicza im. Sanisława Saszica Wydział Inżynierii Meali i Informayki Przemysłowej Kaedra Techniki Cieplnej i Ochrony Środowiska Rozprawa dokorska WPŁYW WARUNKÓW CHŁODZENIA ORAZ PRZEWODNOŚCI

Bardziej szczegółowo

Mariusz Plich. Spis treści:

Mariusz Plich. Spis treści: Spis reści: Modele wielorównaniowe - mnożniki i symulacje. Podsawowe pojęcia i klasyfikacje. Czynniki modelowania i sposoby wykorzysania modelu 3. ypy i posacie modeli wielorównaniowych 4. Przykłady modeli

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE A. RÓWNANIA RZĘDU PIERWSZEGO Uwagi ogólne Równanie różniczkowe zwyczajne rzędu pierwszego zawiera. Poza tym może zawierać oraz zmienną. Czyli ma postać ogólną Na przykład

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na

Bardziej szczegółowo

Eksploracja danych. KLASYFIKACJA I REGRESJA cz. 1. Wojciech Waloszek. Teresa Zawadzka.

Eksploracja danych. KLASYFIKACJA I REGRESJA cz. 1. Wojciech Waloszek. Teresa Zawadzka. Eksploracja danych KLASYFIKACJA I REGRESJA cz. 1 Wojciech Waloszek wowal@ei.pg.gda.pl Teresa Zawadzka egra@ei.pg.gda.pl Kaedra Inżyrii Oprogramowania Wydział Elekroniki, Telekomunikacji i Informayki Poliechnika

Bardziej szczegółowo

Ocena płynności wybranymi metodami szacowania osadu 1

Ocena płynności wybranymi metodami szacowania osadu 1 Bogdan Ludwiczak Wprowadzenie Ocena płynności wybranymi meodami szacowania osadu W ubiegłym roku zaszły znaczące zmiany doyczące pomiaru i zarządzania ryzykiem bankowym. Są one konsekwencją nowowprowadzonych

Bardziej szczegółowo

Analiza danych DRZEWA DECYZYJNE. Drzewa decyzyjne. Entropia. http://zajecia.jakubw.pl/ test 1 dopełnienie testu 1

Analiza danych DRZEWA DECYZYJNE. Drzewa decyzyjne. Entropia. http://zajecia.jakubw.pl/ test 1 dopełnienie testu 1 Analiza danych Drzewa decyzyjne. Enropia. Jakub Wróblewski jakubw@pjwsk.edu.pl hp://zajecia.jakubw.pl/ DRZEWA DECYZYJNE Meoda reprezenacji wiedzy (modelowania ablic decyzyjnych). Pozwala na przejrzysy

Bardziej szczegółowo

Nr zadania Σ Punkty:

Nr zadania Σ Punkty: Kolokwim z krs Modele saysyczne niezawodności sysemów ROZWIĄZANIA Do wykonania jes 5 zadań. W smie, można zyskać 5 pnków. Na napisanie kolokwim mają Pańswo 7 min. Proszę wykonywać każde zadanie na osobnej

Bardziej szczegółowo

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE

WYMAGANIA EDUKACYJNE GIMNAZJUM NR W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z FIZYKI w klasie II gimnazjum sr. 1 4. Jak opisujemy ruch? oblicza średnią

Bardziej szczegółowo

OBLICZANIE POCHODNYCH FUNKCJI.

OBLICZANIE POCHODNYCH FUNKCJI. OBLICZANIE POCHODNYCH FUNKCJI. ROZWIĄZYWANIE RÓWNAŃ RÓŻNICZKOWYCH. ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ LINIOWYCH. Obliczanie pochodnych funkcji. Niech będzie dana funkcja y(x określona i różniczkowalna na przedziale

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Fale elektromagnetyczne spektrum

Fale elektromagnetyczne spektrum Fale elekroagneyczne spekru w próżni wszyskie fale e- rozchodzą się z prędkością c 3. 8 /s Jaes Clerk Mawell (w połowie XIX w.) wykazał, że świało jes falą elekroagneyczną rozprzesrzeniającą się falą ziennego

Bardziej szczegółowo

Wyznaczanie temperatury i wysokości podstawy chmur

Wyznaczanie temperatury i wysokości podstawy chmur Wyznaczanie emperaury i wysokości podsawy chmur Czas rwania: 10 minu Czas obserwacji: dowolny Wymagane warunki meeorologiczne: pochmurnie lub umiarkowane zachmurzenie Częsoliwość wykonania: 1 raz w ciągu

Bardziej szczegółowo

Ocena efektywności procedury Congruent Specyfication dla małych prób

Ocena efektywności procedury Congruent Specyfication dla małych prób 243 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Ocena efekywności procedury Congruen Specyficaion dla małych prób Sreszczenie. Procedura specyfikacji

Bardziej szczegółowo

Przekształcanie równań stanu do postaci kanonicznej diagonalnej

Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przygotowanie: Dariusz Pazderski Liniowe przekształcenie równania stanu Rozważmy liniowe równanie stanu i równanie wyjścia układu niesingularnego

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

Obliczenia iteracyjne

Obliczenia iteracyjne Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej

Bardziej szczegółowo

METODA SIŁ KRATOWNICA

METODA SIŁ KRATOWNICA Część. METDA SIŁ - RATWNICA.. METDA SIŁ RATWNICA Sposób rozwiązywania kratownic statycznie niewyznaczalnych metodą sił omówimy rozwiązują przykład liczbowy. Zadanie Dla kratownicy przedstawionej na rys..

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.

Bardziej szczegółowo